Comment
The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (see, for example, Bianchi et al., 1997; Schmidtchen & Berger, 1997), both on account of the importance of anion binding, recognition and transport in many biochemical processes (Lehn, 1995; Beer, 1996; Pajewski et al., 2004, and references therein) and because anions can be
used to direct the self-assembly of organic (and organometallic) molecules in desired ways (Gale, 2000
, 2001
; Sessler
et al., 2003
). Thus, the Cl
− anion has been successfully used to assemble double-helical motifs of various molecules containing aromatic groups, with
π-stacking within the helices (Hasenknopf
et al., 1996
, 1997
). Indeed, halide anions can be particularly useful for such applications because of the high flexibility of their coordination (Ilioudis
et al., 2000
). In the present work, we have investigated the effects of Cl
− and Br
− ions on the assembly of 4-[bis&4-hydroxy-shy;(4-hydroxy-3,5-dimethylphenyl)methyl]pyridine,
L, a molecule with a relatively rigid tripodal framework. To our knowledge, neither this molecule nor any other with one pyridyl and two 4-hydroxyphenyl groups linked through a single C atom has been structurally characterized to date. Meanwhile, related ArCH(C
6H
4OH-
p)
2 (
e.g. with Ar = C
6H
4Br-
p) compounds have been used as ligands to obtain topologically chiral [2]catenane complexes of gold(I), whereby the unsymmetrical ArCH `hinge group' plays a crucial role in imposing
chirality (McArdle
et al., 2002
).
Originally, we intended to prepare a copper(II) complex of L to serve as a building block for the construction of a supermolecule. However, crystallization from an aqueous solution containing equivalent quantities of HCl, L and CuCl2·2H2O unexpectedly yielded LH+·Cl−, (I). This compound and its analogue LH+·Br−, (II), were also formed from an acidic solution of L and HCl (or HBr) in the presence of catalytic quantities of CuCl2·2H2O, but in the complete absence of the latter we could not obtain any crystals of the salts.
The crystals of (I) and (II) are isomorphous. The asymmetric unit comprises one halide anion and one LH+ cation (with N1 protonated), which adopts practically the same propeller-like conformation in both crystals; the pyridine ring and benzene rings bearing atoms O1 and O2 (Fig. 1) are inclined to the C4/C14/C24 plane in the same sense by 53.9 (1), 42.6 (1) and 41.5 (1)°, respectively, in (I) and by 55.0 (1), 39.7 (1) and 41.4 (1)°, respectively, in (II).
The asymmetric unit contains three H atoms (two hydroxyl and one pyridinium) capable of forming strong hydrogen bonds, and three potential acceptors, viz. two O atoms and the halide anion. In fact, only the anion acts as the acceptor of all three such bonds (Table 5), probably because the competitiveness of the O atoms as acceptors is severely diminished by the masking effect of the adjacent methyl groups. The anion and the three bonded H atoms are coplanar to within 0.1 Å. The configuration can be described as T-shaped rather than trigonal (Fig. 2), which is relatively rare but not unknown (Ilioudis et al., 2000). Indeed, halide anions are known to behave as `spherical' acceptors without any clearly favoured coordination geometry, although some preference towards quasi-tetrahedral and trigonal configurations can be discerned (Ilioudis et al., 2000).
These three strong hydrogen bonds link the cations into ribbons running parallel to the crystallographic b axis (Fig. 2). Besides these, the anion participates in three weak interactions (Table 5) with aromatic and methyl H atoms, with each of the six contacts involving a different cation. It is noteworthy that strong bonds in (II) are longer than those in (I), roughly in line with the increase of the ionic radius of Br− (1.96 Å; Shannon & Prewitt, 1969) compared with Cl− (1.81 Å), but the weak bonds lengthen much less or even contract on going from (I) to (II). The difference can be explained by the higher polarizability of the Br− anion and hence higher (C)H⋯X dispersion interactions in (II), while this difference is less relevant for the strong hydrogen bonds, which have larger contributions of (time-independent) ion–dipole interactions. The weak hydrogen bonds are roughly normal to the T-plane of the strong hydrogen bonds, while the wide angle φ1 is occupied by pyridine atom C2 of another cation, generated by inversion at (1 − x, 2 − y, −z). The corresponding distances [Cl⋯C2 = 3.382 (2) Å and Br⋯C2 = 3.458 (1) Å] are both shorter than the sums of the van der Waals radii (3.53 and 3.65 Å, respectively; Rowland & Taylor, 1996).
Thus, through this system of hydrogen bonds, the halide anions are decisive in directing the packing of the LH+ cations. However, the resulting structure is ribbon-like rather than helical. Substitution of a Br− anion for Cl− affects different types of hydrogen bonds selectively. Also noteworthy is the ability of copper(II) chloride to facilitate the crystallization of (I) and (II) without itself being incorporated into the structure. This effect may be useful as a method for controlling molecular self-assembly. Therefore, we intend a further study of its mechanism and possible applications.
| Figure 1 The cations and anions in the structures of (a) (I) and (b) (II), showing the atomic numbering schemes. Displacement ellipsoids are drawn at the 50% probability level. |
| Figure 2 The system of strong hydrogen bonds in structures (I) (X = Cl) and (II) (X = Br). The H⋯X⋯H angles are φ1 = 170°, φ2 = 84° and φ3 = 104° in (I), and φ1 = 73°, φ2 = 82° and φ3 = 105° in (II); s.u. values are ∼1°. The symmetry codes are as given in the tables. |
Experimental
Compound L was synthesized by condensation of 2,6-dimethyl-phenol with pyridine-4-carbaldehyde. Specifically, pyridine-4-carbaldehyde (0.534 g, 5.0 mmol) and 2,6-dimethylphenol (1.221 g, 10 mmol) were dissolved in 1 M sulfuric acid (1.4 ml) mixed with methanol (10 ml). Trifloroacetic acid (1 ml) was then added. The mixture was heated at 353 K for 8 h, after which the solvents were removed under vacuum. The residue was dissolved in water (15 ml), extracted with ethyl acetate (15 ml) and dried over anhydrous Na2SO4. Removal of the solvents and subsequent column chromatography (silica gel 60–120 mesh; hexanes/ethyl acetate, 4:1) gave L as a white solid (yield: 1.43 g, 86%; m.p. 478 K). IR (KBr, ν, cm−1): 3385 (s), 3083 (s), 2914 (w), 2079 (w), 1634 (s), 1485 (s), 1147 (s), 1004 (s); 1H NMR (400 MHz, DMSO-d6,): δ 2.18 (s, 12H), 3.70 (s, 2H), 5.43 (s, 1H), 6.60 (s, 4H), 7.6 (d, 2H, J = 6.4 Hz), 6.7 (d, 2H, J = 6.4 Hz); 13C NMR (100 MHz, DMSO-d6): δ 17.4, 55.68, 125.18, 127.78, 129.25, 131.46, 141.63, 152.81, 166.53. Slow evaporation of a solution of L (0.332 g, 1 mmol) and HCl (0.3 ml, 11.5 M) in methanol in the presence of CuCl2·2H2O (0.085 g, 5 mol%) gave (I) as a pale-yellow precipitate, which was recrystallized from methanol (m.p. 487 K). IR (KBr, ν, cm−1): 3375 (s), 2786 (s), 2034 (s), 1629 (s), 1481 (s), 1317 (s), 1194 (s), 1024 (w). Slow evaporation of a solution of L (0.333 g, 1 mmol) in methanol containing HBr (0.5 ml, 60%) and cupric bromide (0.012 g, 5 mol%) gave (II) as pale-orange crystals (m.p. 492 K). IR (KBr, ν, cm−1): 3334 (s), 3228 (w), 2930 (s), 2022 (s), 1775 (s), 1629 (s), 1492 (s), 1190 (s), 1134 (w).
Compound (I)
Data collection
Bruker SMART 6000 CCD area-detector diffractometer ω scans Absorption correction: integration(XPREP in SHELXTL; Bruker, 2001)Tmin = 0.953, Tmax = 0.984 21 158 measured reflections 4383 independent reflections 3330 reflections with I > 2σ(I) Rint = 0.058 θmax = 27.5° h = −11 → 11 k = −18 → 18 l = −20 → 20
|
O1—C11 | 1.377 (2) | O2—C21 | 1.374 (2) | N1—C2 | 1.338 (2) | N1—C6 | 1.340 (3) | C4—C7 | 1.514 (2) | C7—C24 | 1.529 (2) | C7—C14 | 1.533 (2) | | C2—N1—C6 | 122.11 (17) | C4—C7—C24 | 112.16 (14) | C4—C7—C14 | 109.72 (14) | C24—C7—C14 | 115.71 (14) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯Cl | 0.94 (3) | 2.19 (3) | 3.0371 (17) | 150 (2) | O1—HO1⋯Cli | 0.81 (2) | 2.36 (3) | 3.0732 (15) | 147 (2) | O2—HO2⋯Clii | 0.84 (3) | 2.45 (3) | 3.1990 (15) | 148 (2) | C7—H7⋯Cliv | 1.00 | 2.99 | 3.9568 (19) | 162 | C17—H171⋯Clv | 0.98 | 3.02 | 3.956 (2) | 160 | C18—H181⋯Clvi | 0.98 | 3.11 | 3.802 (2) | 129 | Symmetry codes: (i) ; (ii) x, y-1, z; (iii) -x+1, -y+2, -z; (iv) ; (v) ; (vi) -x+2, -y+2, -z. | |
Compound (II)
Data collection
Bruker APEX CCD area-detector diffractometer ω scans Absorption correction: multi-scan(SADABS; Bruker, 2003)Tmin = 0.803, Tmax = 1.000 21 226 measured reflections 5943 independent reflections 5263 reflections with I > 2σ(I) Rint = 0.017 θmax = 30.5° h = −12 → 12 k = −20 → 21 l = −21 → 22
|
O1—C11 | 1.3718 (14) | O2—C21 | 1.3746 (15) | N1—C2 | 1.3377 (18) | N1—C6 | 1.340 (2) | C4—C7 | 1.5139 (17) | C7—C24 | 1.5270 (17) | C7—C14 | 1.5293 (16) | | C2—N1—C6 | 122.65 (12) | C4—C7—C24 | 111.83 (10) | C4—C7—C14 | 109.97 (10) | C24—C7—C14 | 116.38 (10) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯Br | 0.84 (3) | 2.46 (3) | 3.2090 (11) | 150 (2) | O1—HO1⋯Bri | 0.83 (2) | 2.47 (2) | 3.1984 (10) | 148 (2) | O2—HO2⋯Brii | 0.80 (2) | 2.70 (2) | 3.3745 (10) | 143 (2) | C7—H7⋯Briv | 1.00 | 2.92 | 3.8791 (12) | 161 | C17—H171⋯Brv | 0.98 | 3.05 | 3.9690 (15) | 157 | C18—H181⋯Brvi | 0.98 | 3.13 | 3.8243 (15) | 129 | Symmetry codes: (i) ; (ii) x, y-1, z; (iii) -x+1, -y+2, -z; (iv) ; (v) ; (vi) -x+2, -y+2, -z. | |
D—H⋯X | D⋯Cl | H⋯Cl | D—H⋯Cl | D⋯Br | H⋯Br | D—H⋯Br | N1—H1⋯X | 3.037 (2) | 2.13 (3) | 149 (2) | 3.209 (1) | 2.33 (3) | 145 (2) | O1—HO1⋯Xi | 3.073 (2) | 2.23 (3) | 145 (2) | 3.198 (1) | 2.35 (2) | 146 (2) | O2—HO2⋯Xii | 3.199 (2) | 2.35 (3) | 147 (2) | 3.375 (1) | 2.61 (2) | 136 (2) | C7—H7⋯Xiv | 3.957 (2) | 2.92 | 162 | 3.879 (1) | 2.84 | 161 (2) | C17—H171⋯Xv | 3.956 (2) | 2.93 | 159 | 3.969 (1) | 2.97 | 155 (2) | C18—H181⋯Xvi | 3.802 (2) | 3.05 | 127 | 3.824 (1) | 3.05 | 130 (2) | Symmetry codes: (i) ; (ii) x, y-1, z; (iv) ; (v) ; (vi) -x+2, -y+2, -z. | |
All H atoms were located in a difference Fourier synthesis. Methyl groups were treated as rigid bodies rotating around the C—C bonds, with fixed C—H distances of 0.98 Å and a common (refined) Uiso(H) value for each group. H atoms bonded to O and N atoms were refined in the isotropic approximation. The remaining H atoms were treated as riding on their parent C atoms, with Csp2—H = 0.95 Å and C7—H = 1.00 Å, and Uiso(H) = 1.2Ueq(C).
For both compounds, data collection: SMART (Bruker, 2001). Cell refinement: SMART for (I); SAINT (Bruker, 2003) for (II). Data reduction: SAINT (Bruker, 2001) for (I); SAINT (Bruker, 2003) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
Compound L was synthesized by condensation of 2,6-dimethyl-phenol with pyridine-4-carboxaldehyde. Pyridine-4-carboxaldehyde (0.534 g, 5.0 mmol) and 2,6-dimethylphenol (1.221 g, 10 mmol) were dissolved in 1 M sulfuric acid (1.4 ml) mixed with methanol (10 ml). Trifloroacetic acid (1 ml) was then added. The mixture was heated at 353 K for 8 h, after which the solvents were removed under vacuum. The residue was dissolved in water (15 ml), extracted with ethyl acetate (15 ml) and dried over anhydrous Na2SO4. Removal of the solvents and subsequent column chromatography (silica gel 60–120 mesh; hexanes/ethyl acetate, 4:1) gave L as a white solid (yield: 1.43 g, 86%; m.p. 478 K). Spectroscopic analysis: IR (KBr, ν, cm−1): 3385 (s), 3083 (s), 2914 (w), 2079 (w), 1634 (s), 1485 (s), 1147 (s), 1004 (s); 1H NMR (400 MHz, DMSO-d6, δ, p.p.m.): 2.18 (s, 12H), 3.70 (s, 2H), 5.43 (s, 1H), 6.60 (s, 4H), 7.6 (d, 2H, J = 6.4 Hz), 6.7 (d, 2H, J = 6.4 Hz); 13C NMR (100 MHz, DMSO-d6, δ, p.p.m.): 17.4, 55.68, 125.18, 127.78, 129.25, 131.46, 141.63, 152.81, 166.53. Slow evaporation of a solution of L (0.332 g, 1 mmol) and HCl (0.3 ml, 11.5 M) in methanol in the presence of CuCl2·2H2O (0.085 g, 5 mol%) gave (I) as a pale-yellow precipitate, which was recrystallized from methanol (m.p. 487 K). IR (KBr, ν, cm−1): 3375 (s), 2786 (s), 2034 (s), 1629 (s), 1481 (s), 1317 (s), 1194 (s), 1024 (w). Slow evaporation of a solution of L (0.333 g, 1 mmol) in methanol containing HBr (0.5 ml, 60%) and cupric bromide (0.012 g, 5mol%) gave (II) as pale-orange crystals (m.p. 492 K). IR (KBr, ν, cm−1): 3334 (s), 3228 (w), 2930 (s), 2022 (s), 1775 (s), 1629 (s), 1492 (s), 1190 (s), 1134 (w).
All H atoms were located in a difference Fourier synthesis. Methyl groups were treated as rigid bodies rotating around the C—C bonds, with fixed C—H distances of 0.98 Å and a common (refined) Uiso(H) for each group. The H atoms bonded to O and N were refined in the isotropic approximation. The remaining H atoms were treated as riding on their parent C atoms, with Csp2—H = 0.95 Å and C7—H = 1.00 Å, and with Uiso(H) = 1.2Ueq(C).
For both compounds, data collection: SMART (Bruker, 2001). Cell refinement: SMART for (I); SAINT (Bruker, 2003) for (II). Data reduction: SAINT (Bruker, 2001) for (I); SAINT for (II). For both compounds, program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
(I) 4-[bis(4-hydroxy-3,5-dimethylphenyl)methyl]pyridinium chloride
top Crystal data top C22H24NO2+·Cl− | F(000) = 784 |
Mr = 369.87 | Dx = 1.286 Mg m−3 |
Monoclinic, P21/n | Melting point: 487 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6590 (2) Å | Cell parameters from 4680 reflections |
b = 14.3920 (17) Å | θ = 2.4–29.7° |
c = 15.7057 (12) Å | µ = 0.22 mm−1 |
β = 102.519 (14)° | T = 120 K |
V = 1910.7 (3) Å3 | Tetragonal prism, yellow |
Z = 4 | 0.26 × 0.15 × 0.09 mm |
Data collection top Bruker SMART 6000 CCD area-detector diffractometer | 4383 independent reflections |
Radiation source: fine-focus sealed tube | 3330 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 5.6 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
ω scans | h = −11→11 |
Absorption correction: integration (XPREP in SHELXTL; Bruker, 2001) | k = −18→18 |
Tmin = 0.953, Tmax = 0.984 | l = −20→20 |
21158 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0817P)2 + 0.4133P] where P = (Fo2 + 2Fc2)/3 |
4383 reflections | (Δ/σ)max = 0.014 |
255 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Crystal data top C22H24NO2+·Cl− | V = 1910.7 (3) Å3 |
Mr = 369.87 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6590 (2) Å | µ = 0.22 mm−1 |
b = 14.3920 (17) Å | T = 120 K |
c = 15.7057 (12) Å | 0.26 × 0.15 × 0.09 mm |
β = 102.519 (14)° | |
Data collection top Bruker SMART 6000 CCD area-detector diffractometer | 4383 independent reflections |
Absorption correction: integration (XPREP in SHELXTL; Bruker, 2001) | 3330 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.984 | Rint = 0.058 |
21158 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.65 e Å−3 |
4383 reflections | Δρmin = −0.24 e Å−3 |
255 parameters | |
Special details top Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 sets of ω scans; each set at different ϕ angles and each scan (5 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.86 cm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Methyl groups were refined as rigid rotating bodies with a common refined U for three H atoms, H atoms bound to O or N - All H-atom parameters refined, other H atoms - riding (H-atom parameters constrained). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl | 0.67927 (5) | 1.10752 (3) | 0.04967 (3) | 0.02800 (15) | |
O1 | 1.54504 (15) | 0.67658 (10) | 0.30663 (9) | 0.0266 (3) | |
H01 | 1.587 (3) | 0.6452 (16) | 0.3478 (16) | 0.034 (6)* | |
O2 | 0.58085 (17) | 0.32211 (10) | 0.04137 (9) | 0.0304 (3) | |
H02 | 0.641 (3) | 0.276 (2) | 0.0410 (18) | 0.056 (8)* | |
N1 | 0.70051 (18) | 0.89947 (11) | 0.08251 (12) | 0.0267 (4) | |
H1 | 0.667 (3) | 0.9558 (18) | 0.0540 (16) | 0.041 (7)* | |
C2 | 0.6963 (2) | 0.82318 (13) | 0.03341 (13) | 0.0264 (4) | |
H2 | 0.6568 | 0.8264 | −0.0279 | 0.032* | |
C3 | 0.7495 (2) | 0.73993 (12) | 0.07229 (12) | 0.0236 (4) | |
H3 | 0.7469 | 0.6856 | 0.0377 | 0.028* | |
C4 | 0.80714 (19) | 0.73532 (12) | 0.16210 (12) | 0.0206 (4) | |
C5 | 0.8070 (2) | 0.81678 (13) | 0.21036 (13) | 0.0257 (4) | |
H5 | 0.8435 | 0.8157 | 0.2719 | 0.031* | |
C6 | 0.7545 (2) | 0.89790 (13) | 0.16917 (13) | 0.0277 (4) | |
H6 | 0.7561 | 0.9535 | 0.2020 | 0.033* | |
C7 | 0.8733 (2) | 0.64730 (12) | 0.20894 (11) | 0.0215 (4) | |
H7 | 0.8380 | 0.6470 | 0.2655 | 0.026* | |
C11 | 1.38339 (19) | 0.66520 (13) | 0.28506 (11) | 0.0221 (4) | |
C12 | 1.3035 (2) | 0.59837 (12) | 0.32347 (12) | 0.0237 (4) | |
C13 | 1.1390 (2) | 0.59376 (12) | 0.29654 (12) | 0.0235 (4) | |
H13 | 1.0830 | 0.5492 | 0.3227 | 0.028* | |
C14 | 1.0544 (2) | 0.65237 (12) | 0.23259 (11) | 0.0215 (4) | |
C15 | 1.1390 (2) | 0.71711 (13) | 0.19534 (12) | 0.0221 (4) | |
H15 | 1.0833 | 0.7571 | 0.1510 | 0.027* | |
C16 | 1.3033 (2) | 0.72516 (13) | 0.22110 (12) | 0.0240 (4) | |
C17 | 1.3927 (2) | 0.53286 (15) | 0.39161 (14) | 0.0350 (5) | |
H171 | 1.3174 | 0.4970 | 0.4169 | 0.046 (4)* | |
H172 | 1.4622 | 0.5686 | 0.4376 | 0.046 (4)* | |
H173 | 1.4564 | 0.4903 | 0.3646 | 0.046 (4)* | |
C18 | 1.3910 (2) | 0.79781 (15) | 0.18157 (15) | 0.0343 (5) | |
H181 | 1.3152 | 0.8360 | 0.1408 | 0.055 (4)* | |
H182 | 1.4635 | 0.7675 | 0.1503 | 0.055 (4)* | |
H183 | 1.4514 | 0.8373 | 0.2279 | 0.055 (4)* | |
C21 | 0.6598 (2) | 0.39988 (12) | 0.07845 (12) | 0.0228 (4) | |
C22 | 0.8205 (2) | 0.41535 (12) | 0.08192 (12) | 0.0228 (4) | |
C23 | 0.8903 (2) | 0.49566 (12) | 0.12383 (11) | 0.0222 (4) | |
H23 | 0.9999 | 0.5065 | 0.1276 | 0.027* | |
C24 | 0.8034 (2) | 0.55992 (12) | 0.16001 (11) | 0.0210 (4) | |
C25 | 0.6415 (2) | 0.54374 (12) | 0.15194 (11) | 0.0221 (4) | |
H25 | 0.5801 | 0.5887 | 0.1741 | 0.026* | |
C26 | 0.5681 (2) | 0.46459 (12) | 0.11279 (12) | 0.0224 (4) | |
C27 | 0.9156 (2) | 0.34865 (14) | 0.04012 (14) | 0.0312 (4) | |
H271 | 0.9173 | 0.2876 | 0.0680 | 0.071 (5)* | |
H272 | 1.0241 | 0.3719 | 0.0474 | 0.071 (5)* | |
H273 | 0.8675 | 0.3430 | −0.0222 | 0.071 (5)* | |
C28 | 0.3949 (2) | 0.44674 (14) | 0.10888 (13) | 0.0280 (4) | |
H281 | 0.3539 | 0.4941 | 0.1430 | 0.038 (4)* | |
H282 | 0.3820 | 0.3851 | 0.1330 | 0.038 (4)* | |
H283 | 0.3362 | 0.4494 | 0.0481 | 0.038 (4)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl | 0.0247 (2) | 0.0210 (2) | 0.0341 (3) | 0.00200 (16) | −0.00290 (19) | −0.00081 (17) |
O1 | 0.0167 (6) | 0.0340 (8) | 0.0270 (7) | 0.0015 (5) | 0.0004 (5) | 0.0030 (6) |
O2 | 0.0286 (7) | 0.0195 (7) | 0.0394 (8) | −0.0014 (6) | −0.0010 (6) | −0.0047 (6) |
N1 | 0.0199 (7) | 0.0197 (8) | 0.0385 (9) | 0.0008 (6) | 0.0015 (7) | 0.0012 (7) |
C2 | 0.0221 (9) | 0.0249 (9) | 0.0296 (10) | −0.0015 (7) | 0.0003 (7) | −0.0008 (7) |
C3 | 0.0213 (9) | 0.0219 (9) | 0.0268 (9) | −0.0015 (7) | 0.0035 (7) | −0.0042 (7) |
C4 | 0.0135 (7) | 0.0229 (9) | 0.0254 (9) | −0.0022 (6) | 0.0041 (6) | −0.0019 (7) |
C5 | 0.0227 (9) | 0.0271 (10) | 0.0266 (9) | −0.0016 (7) | 0.0039 (7) | −0.0055 (7) |
C6 | 0.0226 (9) | 0.0231 (9) | 0.0365 (11) | −0.0010 (7) | 0.0047 (8) | −0.0085 (8) |
C7 | 0.0183 (8) | 0.0245 (9) | 0.0207 (8) | −0.0011 (7) | 0.0021 (7) | −0.0017 (7) |
C11 | 0.0164 (8) | 0.0273 (9) | 0.0219 (9) | 0.0002 (7) | 0.0021 (7) | −0.0036 (7) |
C12 | 0.0228 (9) | 0.0258 (9) | 0.0210 (9) | 0.0007 (7) | 0.0017 (7) | 0.0002 (7) |
C13 | 0.0209 (8) | 0.0236 (9) | 0.0249 (9) | −0.0026 (7) | 0.0027 (7) | 0.0007 (7) |
C14 | 0.0195 (8) | 0.0227 (9) | 0.0210 (9) | −0.0004 (7) | 0.0014 (7) | −0.0028 (7) |
C15 | 0.0200 (8) | 0.0240 (9) | 0.0215 (8) | 0.0019 (7) | 0.0026 (7) | 0.0016 (7) |
C16 | 0.0205 (8) | 0.0270 (9) | 0.0244 (9) | −0.0007 (7) | 0.0049 (7) | 0.0003 (7) |
C17 | 0.0254 (10) | 0.0381 (12) | 0.0390 (12) | 0.0003 (8) | 0.0015 (8) | 0.0140 (9) |
C18 | 0.0228 (9) | 0.0394 (12) | 0.0412 (12) | 0.0007 (8) | 0.0079 (8) | 0.0130 (9) |
C21 | 0.0270 (9) | 0.0176 (8) | 0.0209 (9) | −0.0020 (7) | −0.0008 (7) | 0.0016 (7) |
C22 | 0.0253 (9) | 0.0218 (9) | 0.0213 (9) | 0.0025 (7) | 0.0049 (7) | 0.0031 (7) |
C23 | 0.0196 (8) | 0.0230 (9) | 0.0231 (9) | −0.0001 (7) | 0.0031 (7) | 0.0022 (7) |
C24 | 0.0209 (8) | 0.0210 (9) | 0.0198 (8) | −0.0005 (7) | 0.0014 (7) | 0.0033 (7) |
C25 | 0.0220 (9) | 0.0212 (9) | 0.0221 (9) | 0.0019 (7) | 0.0027 (7) | −0.0002 (7) |
C26 | 0.0206 (8) | 0.0222 (9) | 0.0224 (9) | 0.0004 (7) | 0.0004 (7) | 0.0043 (7) |
C27 | 0.0329 (10) | 0.0259 (10) | 0.0358 (11) | 0.0023 (8) | 0.0095 (9) | −0.0041 (8) |
C28 | 0.0221 (9) | 0.0275 (10) | 0.0326 (10) | −0.0039 (7) | 0.0021 (8) | −0.0013 (8) |
Geometric parameters (Å, º) top O1—C11 | 1.377 (2) | C15—C16 | 1.397 (2) |
O1—H01 | 0.81 (2) | C15—H15 | 0.9500 |
O2—C21 | 1.374 (2) | C16—C18 | 1.503 (3) |
O2—H02 | 0.84 (3) | C17—H171 | 0.9800 |
N1—C2 | 1.338 (2) | C17—H172 | 0.9800 |
N1—C6 | 1.340 (3) | C17—H173 | 0.9800 |
N1—H1 | 0.94 (3) | C18—H181 | 0.9800 |
C2—C3 | 1.378 (3) | C18—H182 | 0.9800 |
C2—H2 | 0.9500 | C18—H183 | 0.9800 |
C3—C4 | 1.392 (3) | C21—C22 | 1.398 (3) |
C3—H3 | 0.9500 | C21—C26 | 1.405 (3) |
C4—C5 | 1.396 (2) | C22—C23 | 1.401 (2) |
C4—C7 | 1.514 (2) | C22—C27 | 1.505 (3) |
C5—C6 | 1.364 (3) | C23—C24 | 1.389 (2) |
C5—H5 | 0.9500 | C23—H23 | 0.9500 |
C6—H6 | 0.9500 | C24—C25 | 1.399 (2) |
C7—C24 | 1.529 (2) | C25—C26 | 1.382 (2) |
C7—C14 | 1.533 (2) | C25—H25 | 0.9500 |
C7—H7 | 1.0000 | C26—C28 | 1.510 (2) |
C11—C16 | 1.390 (3) | C27—H271 | 0.9800 |
C11—C12 | 1.396 (3) | C27—H272 | 0.9800 |
C12—C13 | 1.397 (2) | C27—H273 | 0.9800 |
C12—C17 | 1.507 (3) | C28—H281 | 0.9800 |
C13—C14 | 1.392 (2) | C28—H282 | 0.9800 |
C13—H13 | 0.9500 | C28—H283 | 0.9800 |
C14—C15 | 1.390 (2) | | |
| | | |
C11—O1—H01 | 112.5 (17) | C15—C16—C18 | 120.79 (16) |
C21—O2—H02 | 112.7 (19) | C12—C17—H171 | 109.5 |
C2—N1—C6 | 122.11 (17) | C12—C17—H172 | 109.5 |
C2—N1—H1 | 117.7 (15) | H171—C17—H172 | 109.5 |
C6—N1—H1 | 120.1 (15) | C12—C17—H173 | 109.5 |
N1—C2—C3 | 119.58 (18) | H171—C17—H173 | 109.5 |
N1—C2—H2 | 120.2 | H172—C17—H173 | 109.5 |
C3—C2—H2 | 120.2 | C16—C18—H181 | 109.5 |
C2—C3—C4 | 120.16 (17) | C16—C18—H182 | 109.5 |
C2—C3—H3 | 119.9 | H181—C18—H182 | 109.5 |
C4—C3—H3 | 119.9 | C16—C18—H183 | 109.5 |
C3—C4—C5 | 117.89 (17) | H181—C18—H183 | 109.5 |
C3—C4—C7 | 123.17 (16) | H182—C18—H183 | 109.5 |
C5—C4—C7 | 118.92 (16) | O2—C21—C22 | 123.08 (17) |
C6—C5—C4 | 120.04 (18) | O2—C21—C26 | 115.59 (16) |
C6—C5—H5 | 120.0 | C22—C21—C26 | 121.33 (16) |
C4—C5—H5 | 120.0 | C21—C22—C23 | 118.31 (16) |
N1—C6—C5 | 120.21 (17) | C21—C22—C27 | 121.03 (16) |
N1—C6—H6 | 119.9 | C23—C22—C27 | 120.65 (16) |
C5—C6—H6 | 119.9 | C24—C23—C22 | 121.62 (16) |
C4—C7—C24 | 112.16 (14) | C24—C23—H23 | 119.2 |
C4—C7—C14 | 109.72 (14) | C22—C23—H23 | 119.2 |
C24—C7—C14 | 115.71 (14) | C23—C24—C25 | 118.24 (16) |
C4—C7—H7 | 106.2 | C23—C24—C7 | 124.22 (15) |
C24—C7—H7 | 106.2 | C25—C24—C7 | 117.53 (15) |
C14—C7—H7 | 106.2 | C26—C25—C24 | 122.19 (17) |
O1—C11—C16 | 115.17 (16) | C26—C25—H25 | 118.9 |
O1—C11—C12 | 123.25 (16) | C24—C25—H25 | 118.9 |
C16—C11—C12 | 121.57 (16) | C25—C26—C21 | 118.23 (16) |
C13—C12—C11 | 118.05 (16) | C25—C26—C28 | 121.04 (16) |
C13—C12—C17 | 121.14 (17) | C21—C26—C28 | 120.72 (16) |
C11—C12—C17 | 120.81 (16) | C22—C27—H271 | 109.5 |
C14—C13—C12 | 122.14 (17) | C22—C27—H272 | 109.5 |
C14—C13—H13 | 118.9 | H271—C27—H272 | 109.5 |
C12—C13—H13 | 118.9 | C22—C27—H273 | 109.5 |
C15—C14—C13 | 117.87 (16) | H271—C27—H273 | 109.5 |
C15—C14—C7 | 122.30 (15) | H272—C27—H273 | 109.5 |
C13—C14—C7 | 119.75 (16) | C26—C28—H281 | 109.5 |
C14—C15—C16 | 122.00 (16) | C26—C28—H282 | 109.5 |
C14—C15—H15 | 119.0 | H281—C28—H282 | 109.5 |
C16—C15—H15 | 119.0 | C26—C28—H283 | 109.5 |
C11—C16—C15 | 118.36 (16) | H281—C28—H283 | 109.5 |
C11—C16—C18 | 120.84 (16) | H282—C28—H283 | 109.5 |
| | | |
C5—C4—C7—C14 | −74.99 (19) | C4—C7—C24—C25 | −65.1 (2) |
C4—C7—C14—C15 | −15.3 (2) | C13—C14—C7—C24 | −70.4 (2) |
C3—C4—C7—C24 | −26.7 (2) | C14—C7—C24—C23 | −11.6 (2) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl | 0.94 (3) | 2.19 (3) | 3.0371 (17) | 150 (2) |
O1—H01···Cli | 0.81 (2) | 2.36 (3) | 3.0732 (15) | 147 (2) |
O2—H02···Clii | 0.84 (3) | 2.45 (3) | 3.1990 (15) | 148 (2) |
C2—H2···Cliii | 0.95 | 3.01 | 3.3813 (19) | 105 |
C7—H7···Cliv | 1.00 | 2.99 | 3.9568 (19) | 162 |
C17—H171···Clv | 0.98 | 3.02 | 3.956 (2) | 160 |
C18—H181···Clvi | 0.98 | 3.11 | 3.802 (2) | 129 |
Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+2, −z. |
(II) 4-[bis(4-hydroxy-3,5-dimethylphenyl)methyl]pyridinium bromide
top Crystal data top C22H24NO2+·Br− | F(000) = 856 |
Mr = 414.33 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/n | Melting point: 492 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7217 (4) Å | Cell parameters from 5710 reflections |
b = 14.7461 (6) Å | θ = 2.8–30.5° |
c = 15.4836 (6) Å | µ = 2.12 mm−1 |
β = 101.59 (1)° | T = 120 K |
V = 1950.73 (14) Å3 | Tetragonal prism, pale orange |
Z = 4 | 0.32 × 0.22 × 0.12 mm |
Data collection top Bruker APEX CCD area-detector diffractometer | 5943 independent reflections |
Radiation source: 60W microfocus Bede Microsource with glass polycapillary optics | 5263 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 8 pixels mm-1 | θmax = 30.5°, θmin = 1.9° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | k = −20→21 |
Tmin = 0.803, Tmax = 1.000 | l = −21→22 |
21226 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4161P] where P = (Fo2 + 2Fc2)/3 |
5942 reflections | (Δ/σ)max = 0.002 |
256 parameters | Δρmax = 0.90 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Crystal data top C22H24NO2+·Br− | V = 1950.73 (14) Å3 |
Mr = 414.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7217 (4) Å | µ = 2.12 mm−1 |
b = 14.7461 (6) Å | T = 120 K |
c = 15.4836 (6) Å | 0.32 × 0.22 × 0.12 mm |
β = 101.59 (1)° | |
Data collection top Bruker APEX CCD area-detector diffractometer | 5943 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 5263 reflections with I > 2σ(I) |
Tmin = 0.803, Tmax = 1.000 | Rint = 0.017 |
21226 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.90 e Å−3 |
5942 reflections | Δρmin = −0.23 e Å−3 |
256 parameters | |
Special details top Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 sets of ω scans; each set at different ϕ angles and each scan covering 0.3° in ω. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Methyl groups were refined as rigid rotating bodies with a common refined U for three H atoms, H atoms bound to O or N - All H-atom parameters refined, other H atoms - riding (H-atom parameters constrained). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br | 0.676256 (14) | 1.104801 (8) | 0.049778 (8) | 0.01935 (5) | |
O1 | 1.53558 (11) | 0.67884 (7) | 0.30619 (6) | 0.02138 (18) | |
H01 | 1.580 (2) | 0.6448 (14) | 0.3461 (13) | 0.031 (5)* | |
O2 | 0.58366 (13) | 0.32722 (7) | 0.04327 (7) | 0.0261 (2) | |
H02 | 0.644 (3) | 0.2868 (17) | 0.0411 (14) | 0.043 (6)* | |
N1 | 0.69909 (14) | 0.88983 (8) | 0.08199 (9) | 0.0229 (2) | |
H1 | 0.666 (2) | 0.9386 (18) | 0.0574 (14) | 0.041 (6)* | |
C2 | 0.69750 (15) | 0.81554 (9) | 0.03223 (9) | 0.0222 (2) | |
H2 | 0.6602 | 0.8186 | −0.0297 | 0.027* | |
C3 | 0.75057 (15) | 0.73441 (8) | 0.07182 (8) | 0.0190 (2) | |
H3 | 0.7497 | 0.6813 | 0.0370 | 0.026 (4)* | |
C4 | 0.80539 (13) | 0.73026 (8) | 0.16255 (8) | 0.0159 (2) | |
C5 | 0.80231 (15) | 0.80967 (9) | 0.21150 (9) | 0.0208 (2) | |
H5 | 0.8371 | 0.8087 | 0.2737 | 0.025* | |
C6 | 0.74897 (16) | 0.88898 (9) | 0.16968 (10) | 0.0231 (3) | |
H6 | 0.7474 | 0.9431 | 0.2028 | 0.028* | |
C7 | 0.87305 (13) | 0.64491 (8) | 0.20970 (8) | 0.0156 (2) | |
H7 | 0.8382 | 0.6447 | 0.2674 | 0.019* | |
C11 | 1.37668 (14) | 0.66615 (8) | 0.28433 (8) | 0.0167 (2) | |
C12 | 1.29883 (15) | 0.59747 (8) | 0.32041 (8) | 0.0184 (2) | |
C13 | 1.13635 (15) | 0.59164 (8) | 0.29451 (8) | 0.0186 (2) | |
H13 | 1.0819 | 0.5462 | 0.3198 | 0.022* | |
C14 | 1.05168 (14) | 0.65102 (8) | 0.23220 (8) | 0.0161 (2) | |
C15 | 1.13420 (14) | 0.71704 (9) | 0.19643 (8) | 0.0187 (2) | |
H15 | 1.0785 | 0.7571 | 0.1531 | 0.022* | |
C16 | 1.29571 (14) | 0.72639 (9) | 0.22197 (8) | 0.0191 (2) | |
C17 | 1.38861 (17) | 0.53198 (11) | 0.38671 (11) | 0.0302 (3) | |
H171 | 1.3149 | 0.4932 | 0.4099 | 0.048 (4)* | |
H172 | 1.4529 | 0.5659 | 0.4352 | 0.048 (4)* | |
H173 | 1.4563 | 0.4942 | 0.3581 | 0.048 (4)* | |
C18 | 1.38276 (16) | 0.79933 (11) | 0.18407 (11) | 0.0309 (3) | |
H181 | 1.3084 | 0.8362 | 0.1426 | 0.049 (4)* | |
H182 | 1.4584 | 0.7715 | 0.1531 | 0.049 (4)* | |
H183 | 1.4383 | 0.8379 | 0.2318 | 0.049 (4)* | |
C21 | 0.66121 (16) | 0.40333 (8) | 0.08027 (9) | 0.0183 (2) | |
C22 | 0.82030 (15) | 0.41792 (9) | 0.08246 (8) | 0.0189 (2) | |
C23 | 0.89009 (14) | 0.49652 (8) | 0.12421 (8) | 0.0178 (2) | |
H23 | 0.9985 | 0.5068 | 0.1272 | 0.021* | |
C24 | 0.80389 (14) | 0.55947 (8) | 0.16128 (8) | 0.0164 (2) | |
C25 | 0.64388 (14) | 0.54369 (8) | 0.15516 (8) | 0.0176 (2) | |
H25 | 0.5834 | 0.5873 | 0.1787 | 0.021* | |
C26 | 0.57090 (14) | 0.46625 (8) | 0.11571 (8) | 0.0180 (2) | |
C27 | 0.91482 (18) | 0.35192 (10) | 0.04044 (10) | 0.0270 (3) | |
H271 | 0.9165 | 0.2929 | 0.0697 | 0.052 (4)* | |
H272 | 1.0221 | 0.3746 | 0.0465 | 0.052 (4)* | |
H273 | 0.8674 | 0.3453 | −0.0222 | 0.052 (4)* | |
C28 | 0.39958 (16) | 0.44905 (10) | 0.11277 (10) | 0.0244 (3) | |
H281 | 0.3583 | 0.4960 | 0.1466 | 0.042 (3)* | |
H282 | 0.3866 | 0.3894 | 0.1383 | 0.042 (3)* | |
H283 | 0.3425 | 0.4505 | 0.0514 | 0.042 (3)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br | 0.01843 (7) | 0.01508 (7) | 0.02192 (7) | 0.00139 (4) | −0.00220 (5) | −0.00117 (4) |
O1 | 0.0133 (4) | 0.0265 (5) | 0.0230 (4) | 0.0004 (3) | 0.0006 (3) | 0.0047 (4) |
O2 | 0.0260 (5) | 0.0150 (4) | 0.0343 (5) | −0.0018 (4) | −0.0008 (4) | −0.0052 (4) |
N1 | 0.0177 (5) | 0.0153 (5) | 0.0335 (6) | 0.0017 (4) | 0.0002 (4) | 0.0020 (4) |
C2 | 0.0202 (6) | 0.0201 (6) | 0.0243 (6) | 0.0005 (5) | −0.0004 (5) | 0.0017 (5) |
C3 | 0.0192 (5) | 0.0162 (5) | 0.0201 (5) | 0.0009 (4) | 0.0007 (4) | −0.0022 (4) |
C4 | 0.0124 (5) | 0.0152 (5) | 0.0194 (5) | −0.0001 (4) | 0.0014 (4) | −0.0021 (4) |
C5 | 0.0193 (5) | 0.0198 (6) | 0.0224 (6) | −0.0004 (4) | 0.0017 (4) | −0.0066 (5) |
C6 | 0.0191 (6) | 0.0173 (6) | 0.0322 (7) | −0.0003 (4) | 0.0034 (5) | −0.0076 (5) |
C7 | 0.0144 (5) | 0.0158 (5) | 0.0161 (5) | −0.0005 (4) | 0.0019 (4) | −0.0007 (4) |
C11 | 0.0139 (5) | 0.0195 (5) | 0.0162 (5) | 0.0006 (4) | 0.0019 (4) | −0.0009 (4) |
C12 | 0.0168 (5) | 0.0189 (5) | 0.0181 (5) | 0.0011 (4) | 0.0001 (4) | 0.0020 (4) |
C13 | 0.0178 (5) | 0.0176 (5) | 0.0194 (5) | −0.0013 (4) | 0.0013 (4) | 0.0021 (4) |
C14 | 0.0142 (5) | 0.0174 (5) | 0.0157 (5) | 0.0009 (4) | 0.0005 (4) | −0.0015 (4) |
C15 | 0.0163 (5) | 0.0207 (6) | 0.0183 (5) | 0.0020 (4) | 0.0016 (4) | 0.0037 (4) |
C16 | 0.0167 (5) | 0.0212 (6) | 0.0196 (5) | 0.0004 (4) | 0.0043 (4) | 0.0041 (4) |
C17 | 0.0209 (6) | 0.0313 (7) | 0.0359 (7) | 0.0012 (5) | −0.0002 (6) | 0.0162 (6) |
C18 | 0.0187 (6) | 0.0355 (8) | 0.0382 (8) | −0.0009 (5) | 0.0047 (6) | 0.0184 (6) |
C21 | 0.0224 (6) | 0.0131 (5) | 0.0175 (5) | −0.0018 (4) | −0.0006 (4) | 0.0014 (4) |
C22 | 0.0219 (6) | 0.0162 (5) | 0.0184 (5) | 0.0026 (4) | 0.0034 (4) | 0.0012 (4) |
C23 | 0.0171 (5) | 0.0175 (5) | 0.0184 (5) | 0.0006 (4) | 0.0029 (4) | 0.0018 (4) |
C24 | 0.0173 (5) | 0.0143 (5) | 0.0166 (5) | 0.0000 (4) | 0.0009 (4) | 0.0012 (4) |
C25 | 0.0169 (5) | 0.0164 (5) | 0.0187 (5) | 0.0008 (4) | 0.0014 (4) | 0.0000 (4) |
C26 | 0.0177 (5) | 0.0170 (5) | 0.0178 (5) | −0.0007 (4) | 0.0000 (4) | 0.0024 (4) |
C27 | 0.0301 (7) | 0.0212 (6) | 0.0314 (7) | 0.0037 (5) | 0.0099 (6) | −0.0048 (5) |
C28 | 0.0182 (6) | 0.0236 (6) | 0.0304 (7) | −0.0036 (5) | 0.0024 (5) | −0.0011 (5) |
Geometric parameters (Å, º) top O1—C11 | 1.3718 (14) | C15—C16 | 1.3914 (17) |
O1—H01 | 0.83 (2) | C15—H15 | 0.9500 |
O2—C21 | 1.3746 (15) | C16—C18 | 1.5022 (18) |
O2—H02 | 0.80 (2) | C17—H171 | 0.9800 |
N1—C2 | 1.3377 (18) | C17—H172 | 0.9800 |
N1—C6 | 1.340 (2) | C17—H173 | 0.9800 |
N1—H1 | 0.84 (3) | C18—H181 | 0.9800 |
C2—C3 | 1.3810 (18) | C18—H182 | 0.9800 |
C2—H2 | 0.9500 | C18—H183 | 0.9800 |
C3—C4 | 1.3913 (17) | C21—C22 | 1.3978 (18) |
C3—H3 | 0.9500 | C21—C26 | 1.3986 (18) |
C4—C5 | 1.3981 (17) | C22—C23 | 1.4048 (17) |
C4—C7 | 1.5139 (17) | C22—C27 | 1.5053 (18) |
C5—C6 | 1.3720 (19) | C23—C24 | 1.3892 (17) |
C5—H5 | 0.9500 | C23—H23 | 0.9500 |
C6—H6 | 0.9500 | C24—C25 | 1.3991 (17) |
C7—C24 | 1.5270 (17) | C25—C26 | 1.3878 (17) |
C7—C14 | 1.5293 (16) | C25—H25 | 0.9500 |
C7—H7 | 1.0000 | C26—C28 | 1.5072 (18) |
C11—C16 | 1.3950 (17) | C27—H271 | 0.9800 |
C11—C12 | 1.3969 (17) | C27—H272 | 0.9800 |
C12—C13 | 1.3958 (17) | C27—H273 | 0.9800 |
C12—C17 | 1.5088 (18) | C28—H281 | 0.9800 |
C13—C14 | 1.3988 (17) | C28—H282 | 0.9800 |
C13—H13 | 0.9500 | C28—H283 | 0.9800 |
C14—C15 | 1.3903 (17) | | |
| | | |
C11—O1—H01 | 113.5 (14) | C11—C16—C18 | 120.06 (11) |
C21—O2—H02 | 110.5 (16) | C12—C17—H171 | 109.5 |
C2—N1—C6 | 122.65 (12) | C12—C17—H172 | 109.5 |
C2—N1—H1 | 118.6 (15) | H171—C17—H172 | 109.5 |
C6—N1—H1 | 118.8 (15) | C12—C17—H173 | 109.5 |
N1—C2—C3 | 119.34 (13) | H171—C17—H173 | 109.5 |
N1—C2—H2 | 120.3 | H172—C17—H173 | 109.5 |
C3—C2—H2 | 120.3 | C16—C18—H181 | 109.5 |
C2—C3—C4 | 120.19 (12) | C16—C18—H182 | 109.5 |
C2—C3—H3 | 119.9 | H181—C18—H182 | 109.5 |
C4—C3—H3 | 119.9 | C16—C18—H183 | 109.5 |
C3—C4—C5 | 118.06 (11) | H181—C18—H183 | 109.5 |
C3—C4—C7 | 123.03 (11) | H182—C18—H183 | 109.5 |
C5—C4—C7 | 118.88 (11) | O2—C21—C22 | 122.60 (12) |
C6—C5—C4 | 119.98 (12) | O2—C21—C26 | 115.88 (12) |
C6—C5—H5 | 120.0 | C22—C21—C26 | 121.53 (11) |
C4—C5—H5 | 120.0 | C21—C22—C23 | 118.32 (12) |
N1—C6—C5 | 119.77 (12) | C21—C22—C27 | 121.14 (12) |
N1—C6—H6 | 120.1 | C23—C22—C27 | 120.53 (12) |
C5—C6—H6 | 120.1 | C24—C23—C22 | 121.40 (12) |
C4—C7—C24 | 111.83 (10) | C24—C23—H23 | 119.3 |
C4—C7—C14 | 109.97 (10) | C22—C23—H23 | 119.3 |
C24—C7—C14 | 116.38 (10) | C23—C24—C25 | 118.43 (11) |
C4—C7—H7 | 106.0 | C23—C24—C7 | 124.13 (11) |
C24—C7—H7 | 106.0 | C25—C24—C7 | 117.44 (10) |
C14—C7—H7 | 106.0 | C26—C25—C24 | 121.99 (11) |
O1—C11—C16 | 115.46 (11) | C26—C25—H25 | 119.0 |
O1—C11—C12 | 123.25 (11) | C24—C25—H25 | 119.0 |
C16—C11—C12 | 121.29 (11) | C25—C26—C21 | 118.29 (11) |
C13—C12—C11 | 118.48 (11) | C25—C26—C28 | 121.07 (12) |
C13—C12—C17 | 120.94 (12) | C21—C26—C28 | 120.63 (11) |
C11—C12—C17 | 120.57 (11) | C22—C27—H271 | 109.5 |
C12—C13—C14 | 121.63 (12) | C22—C27—H272 | 109.5 |
C12—C13—H13 | 119.2 | H271—C27—H272 | 109.5 |
C14—C13—H13 | 119.2 | C22—C27—H273 | 109.5 |
C15—C14—C13 | 118.00 (11) | H271—C27—H273 | 109.5 |
C15—C14—C7 | 122.39 (11) | H272—C27—H273 | 109.5 |
C13—C14—C7 | 119.52 (11) | C26—C28—H281 | 109.5 |
C14—C15—C16 | 122.12 (11) | C26—C28—H282 | 109.5 |
C14—C15—H15 | 118.9 | H281—C28—H282 | 109.5 |
C16—C15—H15 | 118.9 | C26—C28—H283 | 109.5 |
C15—C16—C11 | 118.46 (11) | H281—C28—H283 | 109.5 |
C15—C16—C18 | 121.48 (12) | H282—C28—H283 | 109.5 |
| | | |
C5—C4—C7—C14 | −75.36 (14) | C4—C7—C24—C25 | −64.67 (14) |
C4—C7—C14—C15 | −12.64 (16) | C13—C14—C7—C24 | −67.76 (15) |
C3—C4—C7—C24 | −28.52 (16) | C14—C7—C24—C23 | −11.40 (17) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br | 0.84 (3) | 2.46 (3) | 3.2090 (11) | 149.8 (19) |
O1—H01···Bri | 0.83 (2) | 2.47 (2) | 3.1984 (10) | 147.5 (18) |
O2—H02···Brii | 0.80 (2) | 2.70 (2) | 3.3745 (10) | 143 (2) |
C2—H2···Briii | 0.95 | 3.10 | 3.4576 (13) | 104 |
C7—H7···Briv | 1.00 | 2.92 | 3.8791 (12) | 161 |
C17—H171···Brv | 0.98 | 3.05 | 3.9690 (15) | 157 |
C18—H181···Brvi | 0.98 | 3.13 | 3.8243 (15) | 129 |
Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+2, −z. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C22H24NO2+·Cl− | C22H24NO2+·Br− |
Mr | 369.87 | 414.33 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, P21/n |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 8.6590 (2), 14.3920 (17), 15.7057 (12) | 8.7217 (4), 14.7461 (6), 15.4836 (6) |
α, β, γ (°) | 90, 102.519 (14), 90 | 90, 101.59 (1), 90 |
V (Å3) | 1910.7 (3) | 1950.73 (14) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.22 | 2.12 |
Crystal size (mm) | 0.26 × 0.15 × 0.09 | 0.32 × 0.22 × 0.12 |
|
Data collection |
Diffractometer | Bruker SMART 6000 CCD area-detector diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Integration (XPREP in SHELXTL; Bruker, 2001) | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.953, 0.984 | 0.803, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21158, 4383, 3330 | 21226, 5943, 5263 |
Rint | 0.058 | 0.017 |
(sin θ/λ)max (Å−1) | 0.650 | 0.714 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.142, 1.05 | 0.027, 0.070, 1.05 |
No. of reflections | 4383 | 5942 |
No. of parameters | 255 | 256 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.65, −0.24 | 0.90, −0.23 |
Selected geometric parameters (Å, º) for (I) topO1—C11 | 1.377 (2) | N1—C6 | 1.340 (3) |
O1—H01 | 0.81 (2) | N1—H1 | 0.94 (3) |
O2—C21 | 1.374 (2) | C4—C7 | 1.514 (2) |
O2—H02 | 0.84 (3) | C7—C24 | 1.529 (2) |
N1—C2 | 1.338 (2) | C7—C14 | 1.533 (2) |
| | | |
C2—N1—C6 | 122.11 (17) | C4—C7—C14 | 109.72 (14) |
C4—C7—C24 | 112.16 (14) | C24—C7—C14 | 115.71 (14) |
Hydrogen-bond geometry (Å, º) for (I) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl | 0.94 (3) | 2.19 (3) | 3.0371 (17) | 150 (2) |
O1—H01···Cli | 0.81 (2) | 2.36 (3) | 3.0732 (15) | 147 (2) |
O2—H02···Clii | 0.84 (3) | 2.45 (3) | 3.1990 (15) | 148 (2) |
C2—H2···Cliii | 0.95 | 3.01 | 3.3813 (19) | 105 |
C7—H7···Cliv | 1.00 | 2.99 | 3.9568 (19) | 162 |
C17—H171···Clv | 0.98 | 3.02 | 3.956 (2) | 160 |
C18—H181···Clvi | 0.98 | 3.11 | 3.802 (2) | 129 |
Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+2, −z. |
Selected geometric parameters (Å, º) for (II) topO1—C11 | 1.3718 (14) | N1—C6 | 1.340 (2) |
O1—H01 | 0.83 (2) | N1—H1 | 0.84 (3) |
O2—C21 | 1.3746 (15) | C4—C7 | 1.5139 (17) |
O2—H02 | 0.80 (2) | C7—C24 | 1.5270 (17) |
N1—C2 | 1.3377 (18) | C7—C14 | 1.5293 (16) |
| | | |
C2—N1—C6 | 122.65 (12) | C4—C7—C14 | 109.97 (10) |
C4—C7—C24 | 111.83 (10) | C24—C7—C14 | 116.38 (10) |
Hydrogen-bond geometry (Å, º) for (II) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br | 0.84 (3) | 2.46 (3) | 3.2090 (11) | 149.8 (19) |
O1—H01···Bri | 0.83 (2) | 2.47 (2) | 3.1984 (10) | 147.5 (18) |
O2—H02···Brii | 0.80 (2) | 2.70 (2) | 3.3745 (10) | 143 (2) |
C2—H2···Briii | 0.95 | 3.10 | 3.4576 (13) | 104 |
C7—H7···Briv | 1.00 | 2.92 | 3.8791 (12) | 161 |
C17—H171···Brv | 0.98 | 3.05 | 3.9690 (15) | 157 |
C18—H181···Brvi | 0.98 | 3.13 | 3.8243 (15) | 129 |
Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+2, −z. |
Corrected hydrogen-bond distances (Å) and angles (°) in (I) and (II) topCalculated for idealized bond lengths N—H 1.01, O—H 0.97 and C—H 1.08 Å, as determined by neutron diffraction (Allen et al., 1987). X = Cl in (I) and Br in (II). |
D—H···X | D···Cl | H···Cl | D-H-Cl | D···Br | H···Br | D-H-Br |
N1—H1···X | 3.037 (2) | 2.13 (3) | 149 (2) | 3.209 (1) | 2.33 (3) | 145 (2) |
O1—H01···Xi | 3.073 (2) | 2.23 (3) | 145 (2) | 3.198 (1) | 2.35 (2) | 146 (2) |
O2—H02···Xii | 3.199 (2) | 2.35 (3) | 147 (2) | 3.375 (1) | 2.61 (2) | 136 (2) |
C7—H7···Xiii | 3.957 (2) | 2.92 | 162 | 3.879 (1) | 2.84 | 161 (2) |
C17—H171···Xiv | 3.956 (2) | 2.93 | 159 | 3.969 (1) | 2.97 | 155 (2) |
C18—H181···Xv | 3.802 (2) | 3.05 | 127 | 3.824 (1) | 3.05 | 130 (2) |
Symmetry codes: (i) 5/2 − x, y − 1/2, 1/2 − z, (ii) x, y − 1, z, (iii) 3/2 − x, y − 1/2, 1/2 − z, (iv) x + 1/2, 3/2 − y, z + 1/2, (v) 2 − x, 2 − y, −z. |
Acknowledgements
The authors thank the Council of Scientific and Industrial Research, New Delhi, India, for financial support (RSS) and Dr R. Kataky, Department of Chemistry, University of Durham, for helpful advice.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Beer, P. D. (1996). J. Chem. Soc. Chem. Commun. pp. 689–696. CrossRef Google Scholar
Bianchi, A., Bowman-James, K. & Garcia-España, E. (1997). Editors. Supramolecular Chemistry of Anions. New York: Wiley–VCH. Google Scholar
Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT (Version 6.45a) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gale, P. A. (2000). Coord. Chem. Rev. 199, 181–233. Web of Science CrossRef CAS Google Scholar
Gale, P. A. (2001). Coord. Chem. Rev. 213, 79–128. Web of Science CrossRef CAS Google Scholar
Hasenknopf, B., Lehn, J. M., Boumediene, N., Dupont-Gervais, A., Van Dorsselar, A., Kniesel, B. & Fenske, D. (1997). J. Am. Chem. Soc. 119, 10956–10962. CSD CrossRef CAS Web of Science Google Scholar
Hasenknopf, B., Lehn, J. M., Kniesel, B., Baum, G. & Fenske, D. (1996). Angew. Chem. Int. Ed. Engl. 35, 1838–1840. CSD CrossRef CAS Web of Science Google Scholar
Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798. Web of Science CSD CrossRef CAS Google Scholar
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH. Google Scholar
McArdle, C. P., Van, S., Jennings, M. C. & Puddephatt, R. J. (2002). J. Am. Chem. Soc. 124, 3959–3965. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pajewski, R., Ferdani, R., Schlesinger, P. H. & Gokel, G. W. (2004). Chem. Commun. pp. 160–161. Web of Science CrossRef Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Schmidtchen, F. P. & Berger, M. (1997). Chem. Rev. 97, 1609–1646. CrossRef PubMed CAS Web of Science Google Scholar
Sessler, J. L. Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17–55. Web of Science CrossRef CAS Google Scholar
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946. CrossRef CAS IUCr Journals Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
| STRUCTURAL CHEMISTRY |
ISSN: 2053-2296
The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (see, for example, Bianchi et al., 1997; Schmidtchen & Berger, 1997), both on account of the importance of anion binding, recognition and transport in many biochemical processes (Lehn, 1995; Beer, 1996; Pajewski et al., 2004, and references therein) and because anions can be used to direct the self-assembly of organic (and organometallic) molecules in desired ways (Gale, 2000, 2001; Sessler et al., 2003). Thus, the Cl− anion has been successfully used to assemble double-helical motifs of various molecules containing aromatic groups, with π-stacking within the helices (Hasenknopf et al., 1996, 1997). Indeed, halide anions can be particularly useful for such applications because of the high flexibility of their coordination (Ilioudis et al., 2004). In the present work, we have investigated the effects of Cl− and Br− ions on the assembly of 4-[bis(3,5-dimethyl-4-hydroxyphenyl)methyl]pyridine, L, a molecule with a relatively rigid tripodal framework. To our knowledge, neither this molecule nor any other with two p-phenol and one pyridyl groups linked through a single C atom has been structurally characterized to date. Meanwhile, related compounds ArCH(C6H4OH-p)2 (e.g. with Ar = C6H4Br-p) have been used as ligands to obtain topologically chiral [2]catenane complexes of gold(I), whereby the unsymmetrical `hinge group' ArCH plays a crucial role in imposing chirality (McArdle et al., 2002).
Originally, we intended to prepare a copper(II) complex of L to serve as a building block for a supermolecule. However, crystallization from an aqueous solution containing equivalent quantities of HCl, L and CuCl2·2H2O unexpectedly yielded LH+Cl−, (I). This compound and its analogue LH+Br−, (II), were also formed from an acidic solution of L and HCl (or HBr) in the presence of catalytic quantities of CuCl2·2H2O, but in the complete absence of the latter we could not obtain any crystals of the salts.
The crystals of (I) and (II) are isomorphous. The asymmetric unit comprises one halide anion and one LH+ cation (with N1 protonated), which adopts practically the same propeller-like conformation; the pyridine ring and benzene rings A and B Please define (Fig. 1) are inclined to the C4/C14/C24 plane in the same sense, by 53.9 (1), 42.6 (1) and 41.5 (1)°, respectively, in (I) and by 55.0 (1), 39.7 (1) and 41.4 (1)°, respectively, in (II).
The asymmetric unit contains three H atoms (two hydroxyl and one pyridinium) capable of forming strong hydrogen bonds, and three potential acceptors, viz. two O atoms and the halide anion. In fact, only the anion acts as the acceptor of all three such bonds (Table 5), probably because competitiveness of the O atoms as acceptors is severely diminished by the masking effect of the adjacent methyl groups. The anion and the three bonded H atoms are coplanar to within 0.1 Å. The configuration can be described as T-shaped rather than trigonal (Fig. 2), which is relatively rare but not unknown (Ilioudis et al., 2000). Indeed, halide anions are known to behave as `spherical' acceptors without any clearly favoured coordination geometry, although some preference towards quasi-tetrahedral and trigonal configurations can be discerned (Ilioudis et al., 2000).
These three strong hydrogen bonds link the cations into ribbons running parallel to the crystallographic b axis (Fig. 2). Besides these, the anion participates in three weak interactions (Table 5) with aromatic and methyl H atoms, with each of the six contacts involving a different cation. It is noteworthy that strong bonds in (II) are longer than those in (I), roughly in line with the increase of the ionic radius of Br− (1.96 Å; Shannon & Prewitt, 1969) compared with Cl− (1.81 Å), but the weak bonds lengthen much less or even contract on going from (I) to (II). The difference can be explained by the higher polarizability of the Br− anion and hence higher (C)H···X dispersion interactions in (II), while this difference is less relevant for the strong hydrogen bonds, which have larger contributions of (time-independent) ion–dipole interactions. The weak hydrogen bonds are roughly normal to the T-plane of the strong ones, while the wide angle ϕ1 is occupied by the pyridine ring atom C2 of another cation, generated by inversion (1 − x, 2 − y, −z). The corresponding distances, Cl···C2 3.382 (2) and Br···C2 3.458 (1) Å, are both shorter than the sums of the van der Waals radii (3.53 and 3.65 Å, respectively; Rowland & Taylor, 1996).
Thus, through this system of hydrogen bonds, the halide anions are decisive in directing the packing of the LH+ cations. However, the resulting structure is ribbon-like rather than helical. Substitution of a Br− anion for Cl− affects different types of hydrogen bonds selectively. Also noteworthy is the ability of copper(II) chloride to facilitate the crystallization of (I) and (II) without itself being incorporated into the structure. This effect may be useful as a method for controlling molecular self-assembly. Therefore, we intend a further study of its mechanism and possible applications.