organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A new polymorph and two inclusion compounds of 9,9′-spiro­bifluorene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of York, Heslington, York YO10 5DD, England
*Correspondence e-mail: red4@york.ac.uk

(Received 9 February 2005; accepted 24 March 2005; online 30 April 2005)

Two new inclusion compounds of 9,9′-spiro­bifluorene (SBF) incorporating benzene [(I), C25H16·C6H6] and biphen­yl [(II), C25H16·C12H10], and a new polymorph of SBF [(III), C25H16] are reported. All three exhibit C—H⋯π(arene) hydrogen bonds between adjacent SBF mol­ecules. Compound (II)[link] also contains biphen­yl C—H to SBF π-arene inter­actions. Collectively, hydrogen bonding gives rise to a chain and a layered motif in compounds (I)[link] and (II)[link], respectively.

Comment

The synthesis of 9,9′-spiro­bifluorene (SBF) was first reported by Clarkson & Gomberg in 1930[Clarkson, R. G. & Gomberg, M. (1930). J. Am. Chem. Soc. 52, 2881-2896.], and the first single-crystal structure determination was reported four deca­des later by Schenk (1972[Schenk, H. (1972). Acta Cryst. B28, 625-628.]). Exhibiting D2d point symmetry, SBF is an unusual structural motif, which has prompted its use in mol­ecular recognition (Alcazar & Diederich 1992[Alcazar, V. & Diederich, F. (1992). Angew. Chem. Int. Ed. Engl. 31, 1521-1523.]) and catalytic applications (Poriel et al., 2003[Poriel, C., Ferrand, Y., le Maux, P., Paul, C., Rault-Berthelot, J. & Simonneaux, G. (2003). Chem. Commun. pp. 2308-2309.]), and its incorporation into materials that exhibit unusual optoelectronic properties (Wong et al., 2002[Wong, K. T., Chien, Y. Y., Chen, R. T., Wang, C. F., Lin, Y. T., Chiang, H. H., Hsieh, P. Y., Wu, C. C., Chou, C. H., Su, Y. O., Lee, G. H. & Peng, S. M. (2002). J. Am. Chem. Soc. 124, 11576-11577.]). We have recently been inter­ested in using SBF as a structural motif in mol­ecular solids and report here the structures of two inclusion compounds, (I)[link] and (II)[link], incorporating benzene and biphen­yl, respectively. In the course of our study, we also determined the structure of a new polymorph of SBF, (III)[link].

[Scheme 1]

One of our initial aims had been to prepare co-crystals of SBF and fluorinated aromatics, including hexa­fluoro­benzene, perfluoro­naphthalene and perfluoro­biphen­yl, with the intention of investigating supramolecular structures akin to those derived from co-crystallization between planar hydro- and fluoro­aromatics. However, in no case did co-crystals between SBF and fluoro­aromatics result. We tentatively assigned this observation to repulsive (steric) inter­actions between SBF and fluoro­aromatics, preventing the attractive mol­ecular electric quadrupole moment inter­actions that result in parallel stacking in many perhydro/perfluoro aromatic co-crystals (Williams, 1993[Williams, J. H. (1993). Acc. Chem. Res. 26, 593-598.]). However, we rationalized that it may be possible to prepare inclusion compounds incorporating SBF and hydro­aromatics, because the relative quadrupole moments would give rise to attractive edge-to-face electrostatic inter­actions (Lowden & Chandler 1974[Lowden, L. J. & Chandler, D. (1974). J. Chem. Phys. 61, 5228-5241.]; Shi & Bartell 1988[Shi, X. Q. & Bartell, L. S. (1988). J. Phys. Chem. 92, 5667-5673.]) that could be sterically accessible for SBF. Indeed, co-crystallization of SBF and the hydro­aromatics benzene and biphen­yl gave the inclusion compounds (I)[link] and (II)[link], respectively, which exhibit a range of edge-to face C—H⋯π(arene) hydrogen bonds between the aromatic moieties.

The bond lengths and angles of the constituent mol­ecules of (I)–(III) are not exceptional. Examination of the packing diagrams reveals structural motifs resulting from C—H⋯π(arene) inter­actions and, based on the C—H⋯A (A = acceptor) angles and H⋯A bond lengths, these are considered here as weak hydrogen bonds.

Compound (I)[link] contains one mol­ecule of SBF and one mol­ecule of benzene in the asymmetric unit (Fig. 1[link]). Hydrogen bonds are present between adjacent SBF mol­ecules, resulting in an infinite chain motif (Fig. 2[link]). The benzene mol­ecules do not participate in any directional bonding, and there is no directional bonding nor any short contacts between the chains. Hydrogen-bonding details are shown in Fig. 2[link], and the distance between atom H4 in the mol­ecule at (x, y, z) and Cg1 (the centroid of the C20–C25 benzene ring) in the symmetry-related mol­ecule at (−[{1\over 2}] + x, [{1\over 2}]y, −[{1\over 2}] + z) is 2.67 Å (Table 1[link]).

Compound (II)[link] contains one mol­ecule of SBF and one mol­ecule of biphen­yl in the asymmetric unit (Fig. 3[link]) and exhibits several C—H⋯π(arene) hydrogen-bonding motifs (Fig. 4[link]), which collectively result in a layered structure with planes parallel to the (011) direction (Table 2[link]). In contrast with (I)[link], adjacent SBF mol­ecules at (x, y, z) and (1 − x, 1 − y, 2 − z) are connected via a pair of hydrogen bonds between atom H16 and the C2–C7 benzene ring (Fig. 4[link]), with a H16⋯Cg2 (ring centroid of the C2–C7 ring) distance of 2.65 Å. Biphen­yl distance of mol­ecules connect SBF pairs via a series of C—H⋯π-arene inter­actions. Atom H29 in a biphen­yl mol­ecule at (1 − x, 2 − y, 1 − z) inter­acts in an asymmetric hydrogen bond with the arene moiety C8–C13 (centroid Cg3) of an SBF mol­ecule at (x, y, z). In addition, biphen­yl–SBF hydrogen bonding is present between atoms H3 and C27 of an SBF mol­ecule at (x, y, z), and atoms C22 and H28, respectively, of a biphen­yl mol­ecule at (x, y, z), connecting pairs of SBF mol­ecules into a chain motif. The chains can then be inter­preted as precursors to a layer in the [011] plane via inter­action of SBF and biphen­yl atoms.

Compound (III)[link] contains two mol­ecules of SBF in the asymmetric unit (Fig. 5[link]), in contrast to a single mol­ecule observed by Schenk (1971[Schenk, H. (1972). Acta Cryst. B28, 625-628.]), which aggregates through very short inter­molecular C—C distances (3.22, 3.35 and 3.45 Å) from edge–edge π-inter­actions between phen­yl groups. The new polymorph, (III)[link], does not exhibit short C—C contacts, but SBF mol­ecules of (III)[link] participate in C—H⋯π interactions to give centrosymmetric SBF dimers (Fig. 6[link]), with a H11ACg4 distance of 2.59 Å [Cg4 is the centroid of the C20A–C25A ring at (1-x, -y, 1-z); C11A—H11A = 0.95 Å, C11ACg4 = 3.495 Å and C11A—H11ACg4 = 160°]. Examination of the packing shows that layers of discrete SBF dimers are present parallel to the bc plane, separated by layers of SBF mol­ecules that do not exhibit directional bonding (Fig. 6[link]). In our study, all other solvent mixtures that we examined led to crystallization of the polymorph identified by Schenk (1971[Schenk, H. (1972). Acta Cryst. B28, 625-628.]). This suggests that polymorph (III)[link] is possibly metastable with respect to that described by Schenk (1971[Schenk, H. (1972). Acta Cryst. B28, 625-628.]).

It is anticipated that the weak hydrogen-bonding motifs observed in compounds (I)–(III) are likely to be an important factor in determining the structures of mol­ecular solids derived from SBF.

[Figure 1]
Figure 1
A view of the asymmetric unit of (I)[link], showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The hydrogen bonding in (I)[link]. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) and (−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively. Inset: a view down the C4—H4 bond axis, showing the relative π-arene position.
[Figure 3]
Figure 3
A view of the asymmetric unit of (II)[link], showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 4]
Figure 4
The hydrogen bonding in (II)[link]. Atoms marked with an asterisk (*), a hash (#) or a prime (′) are at the symmetry positions (1 − x, 1 − y, 2 − z), (1 − x, 2 − y, −z) and (−1 + x, y, z), respectively.
[Figure 5]
Figure 5
A view of the asymmetric unit of (III)[link], showing both SBF moieties and the atom-numbering scheme, with 50% probability displacement ellipsoids.
[Figure 6]
Figure 6
The hydrogen bonding in (III)[link]. Atoms marked with an asterisk (*), a hash (#) or a prime (′) are at the symmetry positions (1 − x, −y, 1 − z), (x, 1 + y, z) and (1 − x, 1 − y, 1 − z), respectively.

Experimental

Single crystals of (I)–(III) were grown by slow evaporation of SBF (20 mg) dissolved in benzene for (I)[link], in penta­ne containing 1 equivalent of biphen­yl for (II)[link], and in a 1:1 mixture of hexa­fluoro­benzene and dichloro­methane for (III)[link]. All compounds melted in the range 470–473 K.

Compound (I)[link]

Crystal data
  • C25H16·C6H6

  • Mr = 394.49

  • Monoclinic, P 21 /n

  • a = 10.7900 (6) Å

  • b = 18.4004 (10) Å

  • c = 10.8403 (6) Å

  • β = 92.8770 (10)°

  • V = 2149.5 (2) Å3

  • Z = 4

  • Dx = 1.219 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4471 reflections

  • θ = 2.2–27.4°

  • μ = 0.07 mm−1

  • T = 115 (2) K

  • Block, colourless

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.893, Tmax = 0.990

  • 14 724 measured reflections

  • 4921 independent reflections

  • 3949 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 27.5°

  • h = −14 → 13

  • k = −23 → 23

  • l = −14 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.02

  • 4921 reflections

  • 280 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.056P)2 + 0.5085P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.95 2.67 3.61 172
C11—H11⋯C16ii 0.95 2.74 3.6196 (18) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C25H16·C12H10

  • Mr = 470.58

  • Triclinic, [P \overline 1]

  • a = 9.774 (4) Å

  • b = 11.427 (4) Å

  • c = 13.075 (5) Å

  • α = 71.339 (8)°

  • β = 83.106 (9)°

  • γ = 67.030 (7)°

  • V = 1273.8 (8) Å3

  • Z = 2

  • Dx = 1.227 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 944 reflections

  • θ = 2.4–24.2°

  • μ = 0.07 mm−1

  • T = 115 (2) K

  • Block, colourless

  • 0.14 × 0.11 × 0.04 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.985, Tmax = 0.998

  • 6971 measured reflections

  • 4476 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 25.1°

  • h = −11 → 6

  • k = −13 → 13

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.248

  • S = 0.92

  • 4476 reflections

  • 335 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.022 (6)

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C2–C7 ring and Cg3 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Cg2i 0.95 2.65 3.57 162
C29—H29⋯Cg3ii 0.95 2.63 3.56 163
C3—H3⋯C27 0.95 2.80 3.692 (5) 157
C28—H28⋯C22 0.95 2.84 3.658 (6) 147
C12—H12⋯C31iii 0.95 2.87 3.783 (5) 161
C31—H31⋯C19iv 0.95 2.80 3.708 (5) 159
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z; (iii) x-1, y, z; (iv) x+1, y, z.

Compound (III)[link]

Crystal data
  • C25H16

  • Mr = 316.38

  • Monoclinic, P 21 /c

  • a = 18.2491 (17) Å

  • b = 11.1522 (10) Å

  • c = 18.6918 (17) Å

  • β = 117.907 (2)°

  • V = 3361.7 (5) Å3

  • Z = 8

  • Dx = 1.250 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7135 reflections

  • θ = 2.2–25.0°

  • μ = 0.07 mm−1

  • T = 115 (2) K

  • Block, colourless

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.970, Tmax = 0.987

  • 18 394 measured reflections

  • 5925 independent reflections

  • 4923 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 25.0°

  • h = −16 → 21

  • k = −13 → 13

  • l = −22 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.05

  • 5925 reflections

  • 451 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.075P)2 + 0.6111P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

H atoms were placed in calculated positions and treated as riding, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). Compound (II)[link] contains zero values in the weighting scheme, resulting from weak diffraction by this sample.

For all compounds, data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; structure solution: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); publication software: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The synthesis of 9,9'-spirobifluorene (SBF) was first reported by Clarkson & Gomberg in 1930, and the first single-crystal structure determination was reported four decades later by Schenk (1971). Exhibiting D2d point symmetry, SBF is an unusual structural motif, and this has prompted its use in molecular recognition (Alcazar & Diederich 1992) and catalytic applications (Poriel et al., 2003), and its incorporation into materials that exhibit unusual optoelectronic properties (Wong et al., 2002). We have recently been interested in using SBF as a structural motif in molecular solids and report here the structures of two inclusion compounds incorporating benzene, (I), and biphenyl, (II). In the course of our study, we also determined the structure of a new polymorph of SBF, (III).

One of our initial aims had been to prepare cocrystals of SBF and fluorinated aromatics, including hexafluorobenzene, perfluoronaphthalene and perfluorobiphenyl, with the intention of investigating supramolecular structures akin to those derived from cocrystallization between planar hydro- and fluoroaromatics. However, in no case did cocrystals between SBF and fluoroaromatics result. We tentatively assigned this observation to repulsive (steric) interactions between SBF and fluoroaromatics, preventing the attractive molecular electric quadrupole moment interactions that result in parallel stacking in many perhydro/perflouro aromatic cocrystals (Williams, 1993). However, we rationalized that it may be possible to prepare inclusion compounds incorporating SBF and hydroaromatics, because the relative quadrupole moments would give rise to attractive edge-to-face electrostatic interactions (Lowden & Chandler 1974; Shi & Bartell 1988) that could be sterically accessible for SBF. Indeed, cocrystallization of SBF and the hydroaromatics benzene and biphenyl gave the inclusion compounds (I) and (II), respectively, which exhibit a range of edge-to face C—H···π(arene) hydrogen bonds between the aromatic moieties.

The bond lengths and angles of the constituent molecules of (I)–(III) are not exceptional. Examination of the packing diagrams reveals structural motifs resulting from C—H···π(arene) interactions and, based on the C—H···A (A = acceptor) angles and H···A bond lengths, these are considered here as weak hydrogen bonds.

Compound (I) contains one molecule of SBF and one molecule of benzene in the asymmetric unit (Fig. 1). Hydrogen bonds are present between adjacent SBF molecules, resulting in an infinite chain motif (Fig. 2). The benzene molecules do not participate in any directional bonding, and there is no directional bonding nor any short contacts between the chains. Hydrogen-bonding details are shown in Fig. 2 and the distance between atom H4 in the molecule at (x, y, z) and Cg1 (the centroid of the C20–C25 phenyl ring) in the symmetry-related molecule at (−1/2 + x, 1/2 − y, −1/2 + z) is 2.67 Å (Table 1).

Compound (II) contains one molecule of SBF and one molecule of biphenyl in the asymmetric unit (Fig. 3) and exhibits several C—H···π(arene) hydrogen-bonding motifs (Fig. 4), which collectively result in a layered structure with planes parallel to the (011) direction (Table 2). In contrast with (I), adjacent SBF molecules at (x,y,z) and (1 − x, 1 − y, 2 − z) are connected via a pair of hydrogen bonds between atom H16 and the C2–C7 phenyl ring (Fig. 4), with H16···Cg2 (ring centroid of the C2–C7 ring) = 2.65 Å. Biphenyl molecules connect SBF pairs with a series of C—H···π-arene interactions. Atom H29 in a biphenyl molecule at (1 − x, 2 − y, 1 − z) interacts in an asymmetric hydrogen bond with the arene moiety C8–C13 (centroid Cg3) of an SBF molecule at (x, y, z). In addition, biphenyl–SBF hydrogen bonding is present between atoms H3 and C27 of an SBF molecule at (x, y, z), and atoms C22 and H28, respectively, of a biphenyl molecule at (x, y, z), connecting pairs of SBF molecules into a chain motif. The chains can then be interpreted as precursors to a layer in the [011] plane via interaction of SBF and biphenyl atoms.

Compound (III) contains two molecules of SBF in the asymmetric unit (Fig. 5a,b), in contrast with the single molecule observed by Schenk (1971), which aggregates through very short intermolecular C—C distances (3.22, 3.35 and 3.45 Å) from edge–edge π-interactions between phenyl groups. The new polymorph, (III), does not exhibit short C—C contacts, but one SBF molecule of (III) participates in directed interactions to give SBF dimers (Fig. 6), with H11A···C23A = 2.77 Å between molecules at (x, y, z) and (1 − x, −y, 1 − z), respectively, and with a C11A—H11A—C23A angle of 168°. However, the hydrogen bonding of H11A can also be described from atom H11A to the C22A–C24A ring, with H11A···centroid(C22A–C24A) = 2.64 Å. Examination of the packing shows that layers of discrete SBF dimers are present parallel to the bc plane, separated by layers of SBF molecules that do not exhibit directional bonding (Fig. 6). In our study, all other solvent mixtures that we examined led to crystallization of the polymorph identified by Schenk (1971). This suggests that polymorph (III) is possibly metastable with respect to that described by Schenk (1971).

It is anticipated that the weak hydrogen-bonding motifs observed in compounds (I)–(III) are likely to be an important factor in determining the structures of molecular solids derived from SBF.

Experimental top

Single crystals of (I)–(III) were grown by slow evaporation of SBF (20 mg) dissolved in benzene for (I), in pentane containing 1 equivalent of biphenyl for (II), and in a 1:1 mixture of hexafluorobenzene and dichloromethane for (III). All compounds melted in the range 470–473 K.

Refinement top

H atoms were placed in calculated positions and treated as riding, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). ompound (II) contains zero values in the weighting scheme, resulting from weak diffraction by this sample.

Computing details top

For all compounds, data collection: SMART (Bruker, 2000). Cell refinement: SAINT-Plus (Bruker, 2000) for (I), (II); SMART for (III). Data reduction: SAINT-Plus for (I), (II); SAINT-Plus (Bruker, 2000) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme and with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonding in (I). Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1/2 + x, 1/2 − y, 1/2 + z) and (−1/2 + x, 1/2 − y, −1/2 + z), respectively. Inset: a view down the C4—H4 bond axis, showing the relative π-arene position.
[Figure 3] Fig. 3. A view of the asymmetric unit of (II), showing the atom-numbering scheme and with 50% probability displacement ellipsoids.
[Figure 4] Fig. 4. The hydrogen bonding in (II). Atoms marked with an asterisk (*),a hash (#), or a prime (') are at the symmetry positions (1 − x, 1 − y, 2 − z), (1 − x, 2 − y, −z) and (−1 + x, y, z), respectively.
[Figure 5] Fig. 5. A view of the asymmetric unit of (III), showing both SBF moieties and the atom-numbering scheme, with 50% probability displacement ellipsoids.
[Figure 6] Fig. 6. The hydrogen bonding in (III). Atoms marked with an asterisk (*), a hash (#), or a prime (') are at the symmetry positions (1 − x, −y, 1 − z), (x, 1 + y, z) and (1 − x, 1 − y, 1 − z), respectively.
(I) 9,9'-spirobifluorene–benzene (1/1) top
Crystal data top
C25H16·C6H6F(000) = 832
Mr = 394.49Dx = 1.219 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4471 reflections
a = 10.7900 (6) Åθ = 2.2–27.4°
b = 18.4004 (10) ŵ = 0.07 mm1
c = 10.8403 (6) ÅT = 115 K
β = 92.877 (1)°Block, colourless
V = 2149.5 (2) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4921 independent reflections
Radiation source: fine-focus sealed tube3949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.893, Tmax = 0.990k = 2323
14724 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.056P)2 + 0.5085P]
where P = (Fo2 + 2Fc2)/3
4921 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H16·C6H6V = 2149.5 (2) Å3
Mr = 394.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7900 (6) ŵ = 0.07 mm1
b = 18.4004 (10) ÅT = 115 K
c = 10.8403 (6) Å0.2 × 0.2 × 0.2 mm
β = 92.877 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3949 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.990Rint = 0.024
14724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4921 reflectionsΔρmin = 0.18 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50192 (10)0.25828 (6)0.17051 (10)0.0193 (2)
C20.44272 (10)0.31068 (6)0.07547 (11)0.0203 (2)
C30.39191 (11)0.29525 (7)0.04131 (11)0.0241 (3)
H30.38930.24670.07130.029*
C40.34474 (12)0.35209 (7)0.11397 (11)0.0277 (3)
H40.31000.34240.19450.033*
C50.34784 (12)0.42300 (7)0.06987 (12)0.0293 (3)
H50.31470.46120.12040.035*
C60.39881 (11)0.43870 (7)0.04723 (12)0.0253 (3)
H60.40090.48730.07700.030*
C70.44683 (10)0.38217 (6)0.12016 (11)0.0212 (2)
C80.50858 (10)0.38196 (6)0.24407 (11)0.0212 (2)
C90.53906 (11)0.43841 (7)0.32586 (11)0.0258 (3)
H90.51650.48710.30630.031*
C100.60317 (12)0.42177 (7)0.43678 (12)0.0289 (3)
H100.62460.45960.49350.035*
C110.63641 (12)0.35055 (7)0.46591 (11)0.0280 (3)
H110.68090.34040.54180.034*
C120.60502 (11)0.29404 (7)0.38478 (11)0.0242 (3)
H120.62700.24530.40500.029*
C130.54144 (10)0.31016 (6)0.27452 (11)0.0206 (2)
C140.41596 (11)0.19683 (6)0.20736 (10)0.0202 (2)
C150.30392 (11)0.20146 (7)0.26408 (11)0.0244 (3)
H150.27120.24730.28620.029*
C160.24010 (12)0.13748 (8)0.28803 (12)0.0293 (3)
H160.16340.13980.32720.035*
C170.28752 (12)0.07051 (7)0.25527 (12)0.0306 (3)
H170.24220.02750.27110.037*
C180.40041 (12)0.06546 (7)0.19962 (12)0.0278 (3)
H180.43290.01950.17780.033*
C190.46484 (11)0.12908 (6)0.17648 (10)0.0218 (2)
C200.58640 (11)0.14067 (6)0.12370 (10)0.0217 (2)
C210.67396 (12)0.09168 (7)0.08289 (12)0.0280 (3)
H210.65840.04090.08340.034*
C220.78442 (12)0.11883 (7)0.04149 (12)0.0315 (3)
H220.84510.08610.01370.038*
C230.80788 (12)0.19296 (7)0.03999 (12)0.0297 (3)
H230.88450.21030.01200.036*
C240.72001 (11)0.24228 (7)0.07912 (11)0.0245 (3)
H240.73540.29310.07730.029*
C250.60990 (11)0.21544 (6)0.12066 (10)0.0202 (2)
C260.51299 (14)0.10350 (8)0.55764 (13)0.0367 (3)
H260.53840.09970.47520.044*
C270.39970 (13)0.07605 (8)0.58842 (13)0.0343 (3)
H270.34740.05290.52720.041*
C280.36196 (12)0.08211 (7)0.70821 (13)0.0304 (3)
H280.28350.06360.72890.036*
C290.43833 (13)0.11503 (7)0.79758 (12)0.0300 (3)
H290.41280.11880.87990.036*
C300.55203 (14)0.14247 (8)0.76711 (13)0.0355 (3)
H300.60450.16540.82840.043*
C310.58947 (13)0.13661 (8)0.64703 (14)0.0374 (3)
H310.66770.15540.62620.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (5)0.0221 (6)0.0176 (5)0.0008 (4)0.0012 (4)0.0007 (4)
C20.0166 (5)0.0233 (6)0.0211 (6)0.0013 (4)0.0030 (4)0.0023 (4)
C30.0236 (6)0.0261 (6)0.0225 (6)0.0004 (5)0.0007 (5)0.0012 (5)
C40.0261 (6)0.0359 (7)0.0210 (6)0.0005 (5)0.0014 (5)0.0026 (5)
C50.0280 (7)0.0319 (7)0.0282 (7)0.0056 (5)0.0031 (5)0.0093 (5)
C60.0252 (6)0.0218 (6)0.0295 (6)0.0025 (5)0.0066 (5)0.0015 (5)
C70.0172 (5)0.0245 (6)0.0222 (6)0.0003 (4)0.0053 (4)0.0004 (4)
C80.0175 (5)0.0253 (6)0.0212 (6)0.0000 (4)0.0055 (4)0.0017 (4)
C90.0251 (6)0.0258 (6)0.0270 (6)0.0013 (5)0.0070 (5)0.0049 (5)
C100.0267 (6)0.0349 (7)0.0254 (6)0.0056 (5)0.0055 (5)0.0113 (5)
C110.0231 (6)0.0410 (7)0.0199 (6)0.0019 (5)0.0004 (5)0.0034 (5)
C120.0202 (6)0.0305 (6)0.0220 (6)0.0010 (5)0.0023 (5)0.0001 (5)
C130.0166 (5)0.0255 (6)0.0199 (6)0.0009 (4)0.0035 (4)0.0029 (4)
C140.0207 (6)0.0242 (6)0.0154 (5)0.0011 (4)0.0011 (4)0.0008 (4)
C150.0226 (6)0.0321 (7)0.0186 (6)0.0024 (5)0.0003 (5)0.0007 (5)
C160.0227 (6)0.0439 (8)0.0216 (6)0.0037 (5)0.0034 (5)0.0049 (5)
C170.0314 (7)0.0336 (7)0.0266 (7)0.0092 (5)0.0001 (5)0.0075 (5)
C180.0315 (7)0.0246 (6)0.0270 (6)0.0013 (5)0.0006 (5)0.0023 (5)
C190.0229 (6)0.0250 (6)0.0174 (5)0.0006 (4)0.0001 (4)0.0009 (4)
C200.0242 (6)0.0239 (6)0.0169 (5)0.0018 (5)0.0010 (4)0.0003 (4)
C210.0334 (7)0.0250 (6)0.0260 (6)0.0059 (5)0.0049 (5)0.0011 (5)
C220.0310 (7)0.0365 (7)0.0275 (7)0.0127 (5)0.0087 (5)0.0003 (5)
C230.0246 (6)0.0401 (8)0.0252 (6)0.0032 (5)0.0078 (5)0.0053 (5)
C240.0245 (6)0.0281 (6)0.0211 (6)0.0005 (5)0.0029 (5)0.0032 (5)
C250.0212 (6)0.0241 (6)0.0152 (5)0.0032 (4)0.0006 (4)0.0001 (4)
C260.0441 (8)0.0401 (8)0.0267 (7)0.0033 (6)0.0089 (6)0.0018 (6)
C270.0375 (8)0.0351 (7)0.0296 (7)0.0049 (6)0.0056 (6)0.0006 (5)
C280.0239 (6)0.0301 (7)0.0372 (7)0.0003 (5)0.0033 (5)0.0016 (5)
C290.0371 (7)0.0259 (6)0.0276 (7)0.0006 (5)0.0069 (5)0.0026 (5)
C300.0376 (8)0.0358 (7)0.0327 (7)0.0101 (6)0.0012 (6)0.0042 (6)
C310.0301 (7)0.0427 (8)0.0402 (8)0.0092 (6)0.0093 (6)0.0013 (6)
Geometric parameters (Å, º) top
C1—C131.5220 (15)C16—C171.3872 (19)
C1—C21.5275 (15)C16—H160.9500
C1—C251.5277 (15)C17—C181.3893 (18)
C1—C141.5281 (15)C17—H170.9500
C2—C31.3836 (16)C18—C191.3907 (17)
C2—C71.4016 (16)C18—H180.9500
C3—C41.3904 (17)C19—C201.4727 (16)
C3—H30.9500C20—C211.3938 (17)
C4—C51.3893 (19)C20—C251.3997 (16)
C4—H40.9500C21—C221.3875 (18)
C5—C61.3883 (18)C21—H210.9500
C5—H50.9500C22—C231.3874 (19)
C6—C71.3909 (17)C22—H220.9500
C6—H60.9500C23—C241.3939 (17)
C7—C81.4691 (17)C23—H230.9500
C8—C91.3944 (17)C24—C251.3826 (16)
C8—C131.4029 (16)C24—H240.9500
C9—C101.3909 (18)C26—C271.379 (2)
C9—H90.9500C26—C311.382 (2)
C10—C111.3909 (19)C26—H260.9500
C10—H100.9500C27—C281.3847 (19)
C11—C121.3926 (17)C27—H270.9500
C11—H110.9500C28—C291.3800 (19)
C12—C131.3802 (16)C28—H280.9500
C12—H120.9500C29—C301.3820 (19)
C14—C151.3862 (16)C29—H290.9500
C14—C191.4008 (16)C30—C311.386 (2)
C15—C161.3948 (18)C30—H300.9500
C15—H150.9500C31—H310.9500
C13—C1—C2101.29 (9)C17—C16—C15120.67 (12)
C13—C1—C25113.29 (9)C17—C16—H16119.7
C2—C1—C25112.81 (9)C15—C16—H16119.7
C13—C1—C14114.94 (9)C16—C17—C18120.89 (12)
C2—C1—C14113.87 (9)C16—C17—H17119.6
C25—C1—C14101.21 (9)C18—C17—H17119.6
C3—C2—C7120.87 (11)C17—C18—C19118.62 (12)
C3—C2—C1128.36 (11)C17—C18—H18120.7
C7—C2—C1110.76 (10)C19—C18—H18120.7
C2—C3—C4118.75 (11)C18—C19—C14120.56 (11)
C2—C3—H3120.6C18—C19—C20130.92 (11)
C4—C3—H3120.6C14—C19—C20108.50 (10)
C5—C4—C3120.65 (12)C21—C20—C25120.12 (11)
C5—C4—H4119.7C21—C20—C19131.36 (11)
C3—C4—H4119.7C25—C20—C19108.51 (10)
C6—C5—C4120.77 (12)C22—C21—C20118.47 (12)
C6—C5—H5119.6C22—C21—H21120.8
C4—C5—H5119.6C20—C21—H21120.8
C5—C6—C7118.90 (12)C23—C22—C21121.19 (12)
C5—C6—H6120.6C23—C22—H22119.4
C7—C6—H6120.6C21—C22—H22119.4
C6—C7—C2120.07 (11)C22—C23—C24120.61 (12)
C6—C7—C8131.34 (11)C22—C23—H23119.7
C2—C7—C8108.57 (10)C24—C23—H23119.7
C9—C8—C13120.21 (11)C25—C24—C23118.38 (12)
C9—C8—C7131.39 (11)C25—C24—H24120.8
C13—C8—C7108.38 (10)C23—C24—H24120.8
C10—C9—C8118.48 (12)C24—C25—C20121.22 (11)
C10—C9—H9120.8C24—C25—C1127.88 (11)
C8—C9—H9120.8C20—C25—C1110.89 (10)
C11—C10—C9121.00 (11)C27—C26—C31119.80 (13)
C11—C10—H10119.5C27—C26—H26120.1
C9—C10—H10119.5C31—C26—H26120.1
C10—C11—C12120.56 (12)C26—C27—C28120.23 (13)
C10—C11—H11119.7C26—C27—H27119.9
C12—C11—H11119.7C28—C27—H27119.9
C13—C12—C11118.75 (12)C29—C28—C27120.02 (12)
C13—C12—H12120.6C29—C28—H28120.0
C11—C12—H12120.6C27—C28—H28120.0
C12—C13—C8121.00 (11)C28—C29—C30119.90 (13)
C12—C13—C1127.98 (11)C28—C29—H29120.0
C8—C13—C1110.99 (10)C30—C29—H29120.0
C15—C14—C19120.52 (11)C29—C30—C31120.00 (13)
C15—C14—C1128.67 (11)C29—C30—H30120.0
C19—C14—C1110.81 (10)C31—C30—H30120.0
C14—C15—C16118.72 (11)C26—C31—C30120.04 (13)
C14—C15—H15120.6C26—C31—H31120.0
C16—C15—H15120.6C30—C31—H31120.0
C13—C1—C2—C3178.21 (11)C13—C1—C14—C19125.38 (11)
C25—C1—C2—C356.79 (15)C2—C1—C14—C19118.41 (11)
C14—C1—C2—C357.84 (15)C25—C1—C14—C192.92 (12)
C13—C1—C2—C70.64 (11)C19—C14—C15—C160.95 (17)
C25—C1—C2—C7122.06 (10)C1—C14—C15—C16179.32 (11)
C14—C1—C2—C7123.31 (10)C14—C15—C16—C170.27 (18)
C7—C2—C3—C40.01 (17)C15—C16—C17—C181.0 (2)
C1—C2—C3—C4178.76 (11)C16—C17—C18—C190.46 (19)
C2—C3—C4—C50.40 (18)C17—C18—C19—C140.77 (18)
C3—C4—C5—C60.45 (19)C17—C18—C19—C20177.58 (12)
C4—C5—C6—C70.07 (19)C15—C14—C19—C181.49 (17)
C5—C6—C7—C20.33 (17)C1—C14—C19—C18178.74 (10)
C5—C6—C7—C8178.11 (12)C15—C14—C19—C20177.20 (10)
C3—C2—C7—C60.38 (17)C1—C14—C19—C202.57 (13)
C1—C2—C7—C6179.33 (10)C18—C19—C20—C211.1 (2)
C3—C2—C7—C8178.39 (10)C14—C19—C20—C21177.43 (12)
C1—C2—C7—C80.56 (12)C18—C19—C20—C25179.55 (12)
C6—C7—C8—C90.8 (2)C14—C19—C20—C251.05 (13)
C2—C7—C8—C9177.82 (12)C25—C20—C21—C220.95 (18)
C6—C7—C8—C13178.80 (12)C19—C20—C21—C22177.37 (12)
C2—C7—C8—C130.23 (13)C20—C21—C22—C230.2 (2)
C13—C8—C9—C100.54 (17)C21—C22—C23—C240.6 (2)
C7—C8—C9—C10177.31 (12)C22—C23—C24—C250.75 (19)
C8—C9—C10—C110.02 (18)C23—C24—C25—C200.00 (18)
C9—C10—C11—C120.61 (19)C23—C24—C25—C1178.47 (11)
C10—C11—C12—C130.63 (18)C21—C20—C25—C240.86 (18)
C11—C12—C13—C80.06 (17)C19—C20—C25—C24177.82 (10)
C11—C12—C13—C1177.54 (11)C21—C20—C25—C1179.57 (10)
C9—C8—C13—C120.52 (17)C19—C20—C25—C10.89 (13)
C7—C8—C13—C12177.78 (10)C13—C1—C25—C2452.75 (16)
C9—C8—C13—C1178.50 (10)C2—C1—C25—C2461.59 (15)
C7—C8—C13—C10.20 (13)C14—C1—C25—C24176.34 (11)
C2—C1—C13—C12177.30 (11)C13—C1—C25—C20125.85 (11)
C25—C1—C13—C1256.22 (15)C2—C1—C25—C20119.81 (11)
C14—C1—C13—C1259.48 (15)C14—C1—C25—C202.26 (12)
C2—C1—C13—C80.50 (12)C31—C26—C27—C280.6 (2)
C25—C1—C13—C8121.59 (11)C26—C27—C28—C290.7 (2)
C14—C1—C13—C8122.72 (11)C27—C28—C29—C300.5 (2)
C13—C1—C14—C1554.37 (16)C28—C29—C30—C310.3 (2)
C2—C1—C14—C1561.85 (15)C27—C26—C31—C300.3 (2)
C25—C1—C14—C15176.83 (11)C29—C30—C31—C260.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.673.61172
C11—H11···C16ii0.952.743.6196 (18)154
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
(II) 9,9'-spirobifluorene–biphenyl (1/1) top
Crystal data top
C25H16·C12H10Z = 2
Mr = 470.58F(000) = 496
Triclinic, P1Dx = 1.227 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.774 (4) ÅCell parameters from 944 reflections
b = 11.427 (4) Åθ = 2.4–24.2°
c = 13.075 (5) ŵ = 0.07 mm1
α = 71.339 (8)°T = 115 K
β = 83.106 (9)°Block, colourless
γ = 67.030 (7)°0.14 × 0.11 × 0.04 mm
V = 1273.8 (8) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
4476 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 116
Tmin = 0.985, Tmax = 0.998k = 1313
6971 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.248 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4476 reflectionsΔρmax = 0.33 e Å3
335 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: Please provide, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (6)
Crystal data top
C25H16·C12H10γ = 67.030 (7)°
Mr = 470.58V = 1273.8 (8) Å3
Triclinic, P1Z = 2
a = 9.774 (4) ÅMo Kα radiation
b = 11.427 (4) ŵ = 0.07 mm1
c = 13.075 (5) ÅT = 115 K
α = 71.339 (8)°0.14 × 0.11 × 0.04 mm
β = 83.106 (9)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4476 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2416 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.998Rint = 0.050
6971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 0.92Δρmax = 0.33 e Å3
4476 reflectionsΔρmin = 0.29 e Å3
335 parameters
Special details top

Experimental. The crystals were small and diffracted weakly resulting in a poor quality data set.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3594 (4)0.7724 (3)0.7315 (2)0.0254 (8)
C20.5255 (4)0.6915 (3)0.7212 (2)0.0264 (8)
C30.6458 (4)0.7082 (3)0.7525 (2)0.0309 (9)
H30.63110.77860.78140.037*
C40.7887 (4)0.6195 (3)0.7407 (3)0.0352 (9)
H40.87250.63010.76080.042*
C50.8092 (4)0.5155 (3)0.6998 (3)0.0376 (9)
H50.90710.45560.69240.045*
C60.6885 (4)0.4978 (3)0.6696 (2)0.0338 (9)
H60.70320.42600.64240.041*
C70.5463 (4)0.5870 (3)0.6799 (2)0.0300 (9)
C80.3987 (4)0.5965 (3)0.6522 (2)0.0282 (8)
C90.3595 (4)0.5203 (3)0.6057 (2)0.0347 (9)
H90.43230.44330.59130.042*
C100.2101 (4)0.5604 (3)0.5809 (3)0.0370 (9)
H100.18090.51020.54840.044*
C110.1031 (4)0.6723 (3)0.6027 (2)0.0356 (9)
H110.00230.69880.58360.043*
C120.1422 (4)0.7459 (3)0.6522 (2)0.0327 (9)
H120.06870.82140.66860.039*
C130.2904 (4)0.7073 (3)0.6773 (2)0.0275 (8)
C140.3164 (3)0.7563 (3)0.8499 (2)0.0264 (8)
C150.3362 (3)0.6394 (3)0.9331 (2)0.0290 (8)
H150.37760.55540.91960.035*
C160.2942 (4)0.6480 (3)1.0363 (3)0.0362 (9)
H160.30590.56911.09420.043*
C170.2351 (4)0.7707 (3)1.0561 (3)0.0372 (9)
H170.20800.77461.12750.045*
C180.2151 (4)0.8876 (3)0.9728 (3)0.0345 (9)
H180.17360.97150.98630.041*
C190.2569 (3)0.8793 (3)0.8694 (3)0.0283 (8)
C200.2507 (3)0.9838 (3)0.7664 (3)0.0289 (8)
C210.1995 (4)1.1219 (3)0.7429 (3)0.0372 (9)
H210.16021.16350.79800.045*
C220.2073 (4)1.1969 (3)0.6371 (3)0.0404 (10)
H220.17091.29120.61940.049*
C230.2673 (4)1.1369 (3)0.5563 (3)0.0420 (10)
H230.27251.19030.48450.050*
C240.3196 (4)0.9994 (3)0.5797 (3)0.0341 (9)
H240.36040.95810.52460.041*
C250.3114 (4)0.9235 (3)0.6849 (3)0.0282 (8)
C260.7446 (4)0.9565 (3)0.8318 (3)0.0282 (8)
C270.6081 (4)1.0320 (3)0.7779 (3)0.0364 (9)
H270.52241.01390.80770.044*
C280.5956 (4)1.1330 (3)0.6819 (3)0.0389 (9)
H280.50181.18230.64670.047*
C290.7172 (4)1.1628 (3)0.6367 (3)0.0377 (9)
H290.70841.23130.57030.045*
C300.8534 (4)1.0907 (3)0.6902 (3)0.0357 (9)
H300.93831.11030.66050.043*
C310.8655 (4)0.9908 (3)0.7862 (3)0.0324 (9)
H310.95880.94400.82230.039*
C320.7616 (4)0.8427 (3)0.9315 (3)0.0304 (9)
C330.6389 (4)0.8290 (3)0.9948 (3)0.0392 (9)
H330.54270.89540.97470.047*
C340.6548 (4)0.7211 (4)1.0855 (3)0.0440 (10)
H340.56980.71451.12690.053*
C350.7936 (5)0.6224 (4)1.1167 (3)0.0463 (10)
H350.80450.54781.17870.056*
C360.9163 (4)0.6345 (4)1.0558 (3)0.0459 (10)
H361.01230.56831.07670.055*
C370.9000 (4)0.7420 (3)0.9651 (3)0.0366 (9)
H370.98560.74780.92420.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (2)0.0263 (18)0.0305 (19)0.0098 (16)0.0011 (15)0.0111 (15)
C20.020 (2)0.0281 (19)0.0271 (18)0.0062 (16)0.0015 (15)0.0075 (15)
C30.024 (2)0.035 (2)0.0300 (19)0.0088 (18)0.0000 (16)0.0075 (16)
C40.023 (2)0.040 (2)0.035 (2)0.0090 (18)0.0004 (16)0.0049 (18)
C50.023 (2)0.042 (2)0.035 (2)0.0008 (18)0.0014 (17)0.0092 (18)
C60.033 (2)0.032 (2)0.0287 (19)0.0025 (18)0.0030 (17)0.0115 (16)
C70.028 (2)0.0265 (19)0.0261 (18)0.0043 (18)0.0041 (16)0.0048 (15)
C80.028 (2)0.0288 (19)0.0270 (19)0.0110 (17)0.0022 (16)0.0074 (16)
C90.040 (2)0.0289 (19)0.033 (2)0.0110 (18)0.0007 (18)0.0090 (16)
C100.045 (3)0.040 (2)0.032 (2)0.025 (2)0.0001 (18)0.0068 (17)
C110.032 (2)0.047 (2)0.030 (2)0.020 (2)0.0015 (17)0.0085 (18)
C120.029 (2)0.036 (2)0.0307 (19)0.0093 (18)0.0009 (16)0.0104 (17)
C130.029 (2)0.0266 (19)0.0236 (18)0.0107 (17)0.0027 (16)0.0032 (15)
C140.0168 (19)0.031 (2)0.033 (2)0.0076 (16)0.0015 (16)0.0127 (17)
C150.024 (2)0.0247 (19)0.035 (2)0.0069 (16)0.0010 (16)0.0082 (16)
C160.030 (2)0.044 (2)0.027 (2)0.0094 (18)0.0004 (16)0.0054 (17)
C170.030 (2)0.054 (2)0.030 (2)0.015 (2)0.0065 (17)0.019 (2)
C180.029 (2)0.033 (2)0.042 (2)0.0085 (17)0.0048 (17)0.0173 (18)
C190.020 (2)0.033 (2)0.034 (2)0.0086 (17)0.0053 (16)0.0137 (16)
C200.021 (2)0.029 (2)0.038 (2)0.0111 (17)0.0012 (16)0.0098 (17)
C210.025 (2)0.033 (2)0.053 (2)0.0090 (18)0.0027 (18)0.0158 (19)
C220.027 (2)0.030 (2)0.061 (3)0.0105 (18)0.0006 (19)0.009 (2)
C230.032 (2)0.039 (2)0.048 (2)0.0155 (19)0.0021 (19)0.0003 (19)
C240.028 (2)0.033 (2)0.039 (2)0.0105 (18)0.0043 (17)0.0069 (17)
C250.021 (2)0.0277 (19)0.033 (2)0.0071 (16)0.0026 (16)0.0069 (16)
C260.026 (2)0.0289 (19)0.032 (2)0.0093 (17)0.0009 (16)0.0130 (16)
C270.025 (2)0.031 (2)0.048 (2)0.0086 (18)0.0005 (18)0.0087 (18)
C280.027 (2)0.034 (2)0.051 (2)0.0082 (18)0.0108 (19)0.0075 (19)
C290.042 (3)0.033 (2)0.036 (2)0.012 (2)0.0024 (19)0.0087 (17)
C300.028 (2)0.042 (2)0.036 (2)0.0122 (19)0.0031 (17)0.0115 (18)
C310.020 (2)0.037 (2)0.037 (2)0.0070 (17)0.0010 (17)0.0102 (18)
C320.027 (2)0.032 (2)0.036 (2)0.0100 (18)0.0039 (17)0.0157 (17)
C330.031 (2)0.036 (2)0.050 (2)0.0115 (19)0.0054 (19)0.0161 (19)
C340.046 (3)0.046 (2)0.045 (2)0.023 (2)0.015 (2)0.018 (2)
C350.057 (3)0.041 (2)0.037 (2)0.018 (2)0.001 (2)0.0065 (18)
C360.038 (3)0.043 (2)0.045 (2)0.008 (2)0.006 (2)0.006 (2)
C370.027 (2)0.038 (2)0.039 (2)0.0073 (19)0.0027 (17)0.0076 (18)
Geometric parameters (Å, º) top
C1—C141.526 (4)C19—C201.476 (4)
C1—C251.528 (4)C20—C211.395 (4)
C1—C131.534 (4)C20—C251.399 (4)
C1—C21.538 (4)C21—C221.386 (5)
C2—C31.387 (4)C21—H210.9500
C2—C71.398 (4)C22—C231.390 (5)
C3—C41.395 (4)C22—H220.9500
C3—H30.9500C23—C241.388 (4)
C4—C51.390 (5)C23—H230.9500
C4—H40.9500C24—C251.384 (4)
C5—C61.391 (5)C24—H240.9500
C5—H50.9500C26—C311.396 (4)
C6—C71.388 (4)C26—C271.399 (4)
C6—H60.9500C26—C321.488 (4)
C7—C81.484 (5)C27—C281.386 (5)
C8—C91.389 (4)C27—H270.9500
C8—C131.403 (4)C28—C291.377 (5)
C9—C101.394 (5)C28—H280.9500
C9—H90.9500C29—C301.392 (5)
C10—C111.389 (4)C29—H290.9500
C10—H100.9500C30—C311.381 (4)
C11—C121.390 (4)C30—H300.9500
C11—H110.9500C31—H310.9500
C12—C131.386 (4)C32—C371.397 (4)
C12—H120.9500C32—C331.405 (5)
C14—C151.387 (4)C33—C341.382 (5)
C14—C191.391 (4)C33—H330.9500
C15—C161.386 (4)C34—C351.387 (5)
C15—H150.9500C34—H340.9500
C16—C171.390 (4)C35—C361.386 (5)
C16—H160.9500C35—H350.9500
C17—C181.387 (4)C36—C371.379 (4)
C17—H170.9500C36—H360.9500
C18—C191.387 (4)C37—H370.9500
C18—H180.9500
C14—C1—C25101.8 (2)C18—C19—C14120.5 (3)
C14—C1—C13113.2 (2)C18—C19—C20131.1 (3)
C25—C1—C13115.6 (3)C14—C19—C20108.4 (3)
C14—C1—C2110.6 (2)C21—C20—C25120.3 (3)
C25—C1—C2115.7 (3)C21—C20—C19130.7 (3)
C13—C1—C2100.4 (2)C25—C20—C19108.9 (3)
C3—C2—C7120.9 (3)C22—C21—C20118.3 (3)
C3—C2—C1127.7 (3)C22—C21—H21120.9
C7—C2—C1111.2 (3)C20—C21—H21120.9
C2—C3—C4118.7 (3)C21—C22—C23121.3 (3)
C2—C3—H3120.6C21—C22—H22119.3
C4—C3—H3120.6C23—C22—H22119.3
C5—C4—C3120.3 (3)C24—C23—C22120.5 (3)
C5—C4—H4119.9C24—C23—H23119.8
C3—C4—H4119.9C22—C23—H23119.8
C4—C5—C6121.0 (3)C25—C24—C23118.7 (3)
C4—C5—H5119.5C25—C24—H24120.6
C6—C5—H5119.5C23—C24—H24120.6
C7—C6—C5118.8 (3)C24—C25—C20120.9 (3)
C7—C6—H6120.6C24—C25—C1129.1 (3)
C5—C6—H6120.6C20—C25—C1110.0 (3)
C6—C7—C2120.3 (3)C31—C26—C27116.8 (3)
C6—C7—C8131.2 (3)C31—C26—C32121.3 (3)
C2—C7—C8108.5 (3)C27—C26—C32121.9 (3)
C9—C8—C13120.9 (3)C28—C27—C26121.2 (3)
C9—C8—C7131.1 (3)C28—C27—H27119.4
C13—C8—C7108.0 (3)C26—C27—H27119.4
C8—C9—C10118.0 (3)C29—C28—C27121.0 (3)
C8—C9—H9121.0C29—C28—H28119.5
C10—C9—H9121.0C27—C28—H28119.5
C11—C10—C9121.2 (3)C28—C29—C30118.6 (3)
C11—C10—H10119.4C28—C29—H29120.7
C9—C10—H10119.4C30—C29—H29120.7
C10—C11—C12120.6 (3)C31—C30—C29120.3 (3)
C10—C11—H11119.7C31—C30—H30119.9
C12—C11—H11119.7C29—C30—H30119.9
C13—C12—C11118.8 (3)C30—C31—C26122.0 (3)
C13—C12—H12120.6C30—C31—H31119.0
C11—C12—H12120.6C26—C31—H31119.0
C12—C13—C8120.4 (3)C37—C32—C33116.6 (3)
C12—C13—C1128.1 (3)C37—C32—C26121.6 (3)
C8—C13—C1111.5 (3)C33—C32—C26121.7 (3)
C15—C14—C19121.0 (3)C34—C33—C32121.5 (3)
C15—C14—C1128.2 (3)C34—C33—H33119.2
C19—C14—C1110.8 (3)C32—C33—H33119.2
C16—C15—C14118.4 (3)C33—C34—C35120.6 (4)
C16—C15—H15120.8C33—C34—H34119.7
C14—C15—H15120.8C35—C34—H34119.7
C15—C16—C17120.7 (3)C36—C35—C34118.8 (3)
C15—C16—H16119.6C36—C35—H35120.6
C17—C16—H16119.6C34—C35—H35120.6
C18—C17—C16120.8 (3)C37—C36—C35120.5 (4)
C18—C17—H17119.6C37—C36—H36119.7
C16—C17—H17119.6C35—C36—H36119.7
C19—C18—C17118.6 (3)C36—C37—C32122.0 (3)
C19—C18—H18120.7C36—C37—H37119.0
C17—C18—H18120.7C32—C37—H37119.0
C14—C1—C2—C362.9 (4)C16—C17—C18—C190.7 (5)
C25—C1—C2—C352.1 (4)C17—C18—C19—C140.5 (5)
C13—C1—C2—C3177.2 (3)C17—C18—C19—C20179.4 (3)
C14—C1—C2—C7113.5 (3)C15—C14—C19—C180.4 (5)
C25—C1—C2—C7131.4 (3)C1—C14—C19—C18177.7 (3)
C13—C1—C2—C76.3 (3)C15—C14—C19—C20179.5 (3)
C7—C2—C3—C40.8 (5)C1—C14—C19—C202.3 (4)
C1—C2—C3—C4176.9 (3)C18—C19—C20—C210.7 (6)
C2—C3—C4—C50.9 (5)C14—C19—C20—C21179.3 (3)
C3—C4—C5—C60.2 (5)C18—C19—C20—C25178.0 (3)
C4—C5—C6—C70.7 (5)C14—C19—C20—C252.0 (4)
C5—C6—C7—C20.8 (5)C25—C20—C21—C221.5 (5)
C5—C6—C7—C8178.1 (3)C19—C20—C21—C22180.0 (3)
C3—C2—C7—C60.0 (5)C20—C21—C22—C231.3 (5)
C1—C2—C7—C6176.7 (3)C21—C22—C23—C240.7 (5)
C3—C2—C7—C8179.1 (3)C22—C23—C24—C250.2 (5)
C1—C2—C7—C84.2 (3)C23—C24—C25—C200.4 (5)
C6—C7—C8—C91.5 (6)C23—C24—C25—C1179.4 (3)
C2—C7—C8—C9177.5 (3)C21—C20—C25—C241.0 (5)
C6—C7—C8—C13178.9 (3)C19—C20—C25—C24179.8 (3)
C2—C7—C8—C130.0 (3)C21—C20—C25—C1179.8 (3)
C13—C8—C9—C102.5 (5)C19—C20—C25—C10.9 (4)
C7—C8—C9—C10174.7 (3)C14—C1—C25—C24178.8 (3)
C8—C9—C10—C110.6 (5)C13—C1—C25—C2455.7 (5)
C9—C10—C11—C121.4 (5)C2—C1—C25—C2461.2 (4)
C10—C11—C12—C131.4 (5)C14—C1—C25—C200.4 (3)
C11—C12—C13—C80.5 (5)C13—C1—C25—C20123.5 (3)
C11—C12—C13—C1180.0 (3)C2—C1—C25—C20119.6 (3)
C9—C8—C13—C122.5 (5)C31—C26—C27—C282.2 (5)
C7—C8—C13—C12175.3 (3)C32—C26—C27—C28176.3 (3)
C9—C8—C13—C1177.9 (3)C26—C27—C28—C290.5 (5)
C7—C8—C13—C14.3 (3)C27—C28—C29—C300.9 (5)
C14—C1—C13—C1268.8 (4)C28—C29—C30—C310.4 (5)
C25—C1—C13—C1248.0 (4)C29—C30—C31—C261.4 (5)
C2—C1—C13—C12173.2 (3)C27—C26—C31—C302.6 (5)
C14—C1—C13—C8111.6 (3)C32—C26—C31—C30175.9 (3)
C25—C1—C13—C8131.5 (3)C31—C26—C32—C3719.9 (5)
C2—C1—C13—C86.4 (3)C27—C26—C32—C37158.5 (3)
C25—C1—C14—C15178.7 (3)C31—C26—C32—C33162.0 (3)
C13—C1—C14—C1556.6 (4)C27—C26—C32—C3319.5 (5)
C2—C1—C14—C1555.2 (4)C37—C32—C33—C340.1 (5)
C25—C1—C14—C191.6 (3)C26—C32—C33—C34178.1 (3)
C13—C1—C14—C19126.4 (3)C32—C33—C34—C350.2 (5)
C2—C1—C14—C19121.8 (3)C33—C34—C35—C360.6 (5)
C19—C14—C15—C160.5 (5)C34—C35—C36—C370.8 (5)
C1—C14—C15—C16177.2 (3)C35—C36—C37—C320.6 (5)
C14—C15—C16—C170.6 (5)C33—C32—C37—C360.2 (5)
C15—C16—C17—C180.8 (5)C26—C32—C37—C36178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Cg2i0.952.653.57162
C29—H29···Cg3ii0.952.633.56163
C3—H3···C270.952.803.692 (5)157
C28—H28···C220.952.843.658 (6)147
C12—H12···C31iii0.952.873.783 (5)161
C31—H31···C19iv0.952.803.708 (5)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z; (iii) x1, y, z; (iv) x+1, y, z.
(III) 9,9'-spirobifluorene top
Crystal data top
C25H16F(000) = 1328
Mr = 316.38Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7135 reflections
a = 18.2491 (17) Åθ = 2.2–25.0°
b = 11.1522 (10) ŵ = 0.07 mm1
c = 18.6918 (17) ÅT = 115 K
β = 117.907 (2)°Block, colourless
V = 3361.7 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5925 independent reflections
Radiation source: fine-focus sealed tube4923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1621
Tmin = 0.970, Tmax = 0.987k = 1313
18394 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.075P)2 + 0.6111P]
where P = (Fo2 + 2Fc2)/3
5925 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H16V = 3361.7 (5) Å3
Mr = 316.38Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.2491 (17) ŵ = 0.07 mm1
b = 11.1522 (10) ÅT = 115 K
c = 18.6918 (17) Å0.30 × 0.20 × 0.20 mm
β = 117.907 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4923 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.987Rint = 0.027
18394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5925 reflectionsΔρmin = 0.26 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.48307 (8)0.08141 (12)0.30687 (8)0.0212 (3)
C2A0.41847 (8)0.08646 (12)0.21798 (8)0.0205 (3)
C3A0.41290 (9)0.16745 (13)0.15972 (9)0.0239 (3)
H3A0.45540.22500.17140.029*
C4A0.34386 (9)0.16308 (13)0.08359 (9)0.0270 (3)
H4A0.33960.21700.04250.032*
C5A0.28098 (9)0.08008 (13)0.06733 (9)0.0266 (3)
H5A0.23300.08030.01590.032*
C6A0.28740 (9)0.00284 (13)0.12513 (9)0.0241 (3)
H6A0.24470.06000.11340.029*
C7A0.35741 (8)0.00123 (12)0.20079 (9)0.0204 (3)
C8A0.38263 (8)0.07718 (12)0.27302 (8)0.0200 (3)
C9A0.34980 (9)0.18325 (13)0.28534 (9)0.0245 (3)
H9A0.30130.21760.24290.029*
C10A0.38924 (9)0.23759 (13)0.36064 (9)0.0262 (3)
H10A0.36810.31090.36940.031*
C11A0.45941 (9)0.18660 (13)0.42380 (9)0.0256 (3)
H11A0.48450.22400.47550.031*
C12A0.49277 (9)0.08160 (13)0.41162 (9)0.0232 (3)
H12A0.54080.04690.45440.028*
C13A0.45469 (8)0.02841 (12)0.33597 (8)0.0197 (3)
C14A0.57348 (8)0.07093 (12)0.32530 (8)0.0216 (3)
C15A0.61024 (9)0.01923 (13)0.30235 (9)0.0265 (3)
H15A0.57790.08230.26780.032*
C16A0.69603 (10)0.01529 (15)0.33115 (10)0.0324 (4)
H16A0.72260.07650.31640.039*
C17A0.74258 (9)0.07759 (15)0.38125 (10)0.0342 (4)
H17A0.80090.07850.40110.041*
C18A0.70545 (9)0.16900 (15)0.40286 (9)0.0314 (4)
H18A0.73770.23300.43640.038*
C19A0.61999 (9)0.16559 (13)0.37459 (9)0.0250 (3)
C20A0.56417 (9)0.24707 (13)0.38783 (8)0.0253 (3)
C21A0.57800 (11)0.35786 (15)0.42620 (10)0.0334 (4)
H21A0.63220.39110.45250.040*
C22A0.51153 (11)0.41903 (14)0.42552 (10)0.0354 (4)
H22A0.52000.49600.44990.043*
C23A0.43278 (11)0.36873 (14)0.38954 (10)0.0327 (4)
H23A0.38820.41070.39090.039*
C24A0.41849 (10)0.25798 (13)0.35161 (9)0.0272 (3)
H24A0.36460.22360.32730.033*
C25A0.48423 (9)0.19836 (12)0.34987 (8)0.0224 (3)
C1B0.08706 (8)0.32021 (12)0.30371 (8)0.0211 (3)
C2B0.11992 (8)0.44239 (12)0.34300 (8)0.0213 (3)
C3B0.18597 (9)0.50740 (13)0.34576 (9)0.0257 (3)
H3B0.21990.47490.32450.031*
C4B0.20147 (9)0.62072 (14)0.38020 (9)0.0294 (4)
H4B0.24650.66630.38250.035*
C5B0.15185 (9)0.66872 (13)0.41157 (9)0.0290 (4)
H5B0.16260.74730.43370.035*
C6B0.08703 (9)0.60285 (13)0.41074 (9)0.0252 (3)
H6B0.05410.63480.43330.030*
C7B0.07122 (8)0.48902 (12)0.37622 (8)0.0211 (3)
C8B0.00665 (8)0.40109 (12)0.36429 (8)0.0212 (3)
C9B0.05425 (9)0.40126 (13)0.38967 (9)0.0255 (3)
H9B0.05980.46720.41900.031*
C10B0.10633 (9)0.30303 (14)0.37106 (9)0.0280 (3)
H10B0.14730.30120.38890.034*
C11B0.10000 (9)0.20726 (14)0.32696 (9)0.0269 (3)
H11B0.13710.14140.31420.032*
C12B0.03953 (9)0.20684 (13)0.30111 (9)0.0237 (3)
H12B0.03510.14160.27070.028*
C13B0.01369 (8)0.30354 (12)0.32088 (8)0.0202 (3)
C14B0.06703 (8)0.32124 (12)0.21458 (9)0.0217 (3)
C15B0.01069 (9)0.39212 (13)0.15238 (9)0.0258 (3)
H15B0.02500.44520.16120.031*
C16B0.00736 (9)0.38404 (14)0.07670 (9)0.0301 (4)
H16B0.03130.43170.03330.036*
C17B0.06009 (10)0.30675 (15)0.06387 (9)0.0317 (4)
H17B0.05790.30370.01210.038*
C18B0.11556 (9)0.23435 (14)0.12566 (9)0.0290 (4)
H18B0.15120.18140.11670.035*
C19B0.11819 (8)0.24055 (13)0.20140 (9)0.0237 (3)
C20B0.16787 (8)0.17357 (13)0.27676 (9)0.0234 (3)
C21B0.22251 (9)0.07821 (14)0.29378 (10)0.0302 (4)
H21B0.23400.04650.25290.036*
C22B0.25995 (10)0.02992 (14)0.37091 (10)0.0324 (4)
H22B0.29780.03480.38310.039*
C23B0.24265 (9)0.07531 (14)0.43082 (10)0.0302 (4)
H23B0.26890.04150.48360.036*
C24B0.18715 (9)0.16979 (13)0.41394 (9)0.0252 (3)
H24B0.17490.20020.45460.030*
C25B0.15017 (8)0.21866 (12)0.33707 (9)0.0218 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0192 (7)0.0244 (7)0.0225 (7)0.0028 (6)0.0118 (6)0.0010 (6)
C2A0.0188 (7)0.0230 (7)0.0227 (7)0.0016 (5)0.0123 (6)0.0023 (6)
C3A0.0240 (7)0.0235 (7)0.0287 (8)0.0007 (6)0.0160 (6)0.0000 (6)
C4A0.0306 (8)0.0274 (8)0.0261 (8)0.0059 (6)0.0158 (7)0.0036 (6)
C5A0.0227 (7)0.0321 (8)0.0235 (8)0.0069 (6)0.0094 (6)0.0014 (6)
C6A0.0179 (7)0.0272 (7)0.0280 (8)0.0002 (6)0.0114 (6)0.0049 (6)
C7A0.0189 (7)0.0229 (7)0.0241 (7)0.0010 (5)0.0142 (6)0.0027 (6)
C8A0.0173 (7)0.0228 (7)0.0249 (7)0.0006 (5)0.0140 (6)0.0033 (6)
C9A0.0195 (7)0.0273 (8)0.0314 (8)0.0028 (6)0.0157 (6)0.0035 (6)
C10A0.0262 (8)0.0238 (7)0.0387 (9)0.0002 (6)0.0235 (7)0.0018 (6)
C11A0.0256 (8)0.0289 (8)0.0292 (8)0.0045 (6)0.0187 (7)0.0051 (6)
C12A0.0200 (7)0.0288 (8)0.0237 (7)0.0002 (6)0.0125 (6)0.0020 (6)
C13A0.0189 (7)0.0213 (7)0.0243 (7)0.0002 (5)0.0146 (6)0.0020 (6)
C14A0.0198 (7)0.0263 (7)0.0215 (7)0.0025 (6)0.0121 (6)0.0031 (6)
C15A0.0245 (8)0.0292 (8)0.0297 (8)0.0008 (6)0.0159 (7)0.0012 (6)
C16A0.0271 (8)0.0396 (9)0.0377 (9)0.0055 (7)0.0212 (7)0.0087 (7)
C17A0.0188 (7)0.0500 (10)0.0352 (9)0.0025 (7)0.0139 (7)0.0124 (8)
C18A0.0248 (8)0.0436 (9)0.0260 (8)0.0126 (7)0.0120 (7)0.0024 (7)
C19A0.0243 (7)0.0326 (8)0.0204 (7)0.0074 (6)0.0125 (6)0.0013 (6)
C20A0.0311 (8)0.0282 (8)0.0215 (7)0.0083 (6)0.0163 (6)0.0008 (6)
C21A0.0447 (10)0.0339 (8)0.0306 (8)0.0187 (7)0.0251 (8)0.0078 (7)
C22A0.0603 (11)0.0254 (8)0.0334 (9)0.0091 (8)0.0326 (9)0.0061 (7)
C23A0.0467 (10)0.0290 (8)0.0308 (8)0.0059 (7)0.0251 (8)0.0024 (7)
C24A0.0303 (8)0.0282 (8)0.0247 (8)0.0022 (6)0.0143 (7)0.0016 (6)
C25A0.0266 (7)0.0234 (7)0.0195 (7)0.0029 (6)0.0127 (6)0.0018 (6)
C1B0.0171 (7)0.0234 (7)0.0252 (7)0.0002 (6)0.0119 (6)0.0000 (6)
C2B0.0167 (7)0.0245 (7)0.0216 (7)0.0025 (6)0.0080 (6)0.0025 (6)
C3B0.0174 (7)0.0316 (8)0.0278 (8)0.0009 (6)0.0104 (6)0.0029 (6)
C4B0.0186 (7)0.0314 (8)0.0334 (8)0.0048 (6)0.0082 (6)0.0027 (7)
C5B0.0249 (8)0.0251 (8)0.0288 (8)0.0021 (6)0.0057 (7)0.0025 (6)
C6B0.0227 (7)0.0263 (7)0.0247 (8)0.0031 (6)0.0095 (6)0.0016 (6)
C7B0.0172 (7)0.0240 (7)0.0207 (7)0.0031 (5)0.0077 (6)0.0022 (6)
C8B0.0164 (7)0.0249 (7)0.0219 (7)0.0029 (6)0.0087 (6)0.0018 (6)
C9B0.0227 (7)0.0280 (8)0.0302 (8)0.0043 (6)0.0160 (6)0.0005 (6)
C10B0.0200 (7)0.0356 (8)0.0341 (8)0.0023 (6)0.0172 (7)0.0022 (7)
C11B0.0206 (7)0.0297 (8)0.0319 (8)0.0040 (6)0.0135 (6)0.0000 (6)
C12B0.0215 (7)0.0252 (7)0.0265 (8)0.0009 (6)0.0130 (6)0.0009 (6)
C13B0.0161 (7)0.0236 (7)0.0220 (7)0.0033 (5)0.0099 (6)0.0035 (6)
C14B0.0183 (7)0.0230 (7)0.0259 (8)0.0045 (6)0.0122 (6)0.0010 (6)
C15B0.0238 (7)0.0244 (7)0.0286 (8)0.0031 (6)0.0117 (6)0.0007 (6)
C16B0.0281 (8)0.0311 (8)0.0275 (8)0.0066 (7)0.0101 (7)0.0046 (6)
C17B0.0335 (9)0.0406 (9)0.0255 (8)0.0110 (7)0.0175 (7)0.0022 (7)
C18B0.0262 (8)0.0354 (9)0.0321 (8)0.0050 (6)0.0192 (7)0.0054 (7)
C19B0.0189 (7)0.0279 (8)0.0278 (8)0.0043 (6)0.0140 (6)0.0025 (6)
C20B0.0167 (7)0.0277 (8)0.0290 (8)0.0021 (6)0.0133 (6)0.0019 (6)
C21B0.0245 (8)0.0348 (8)0.0367 (9)0.0034 (7)0.0190 (7)0.0042 (7)
C22B0.0254 (8)0.0321 (8)0.0414 (9)0.0094 (7)0.0170 (7)0.0024 (7)
C23B0.0257 (8)0.0325 (8)0.0319 (8)0.0041 (6)0.0130 (7)0.0052 (7)
C24B0.0221 (7)0.0291 (8)0.0278 (8)0.0008 (6)0.0146 (6)0.0003 (6)
C25B0.0162 (7)0.0242 (7)0.0281 (8)0.0013 (5)0.0130 (6)0.0020 (6)
Geometric parameters (Å, º) top
C1A—C2A1.5232 (19)C1B—C25B1.5249 (19)
C1A—C14A1.5241 (19)C1B—C13B1.5271 (18)
C1A—C13A1.5257 (19)C1B—C14B1.530 (2)
C1A—C25A1.5269 (19)C1B—C2B1.5308 (19)
C2A—C3A1.381 (2)C2B—C3B1.387 (2)
C2A—C7A1.4022 (19)C2B—C7B1.401 (2)
C3A—C4A1.392 (2)C3B—C4B1.386 (2)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.393 (2)C4B—C5B1.396 (2)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.385 (2)C5B—C6B1.386 (2)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.393 (2)C6B—C7B1.392 (2)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.473 (2)C7B—C8B1.4676 (19)
C8A—C9A1.393 (2)C8B—C9B1.398 (2)
C8A—C13A1.4004 (19)C8B—C13B1.399 (2)
C9A—C10A1.385 (2)C9B—C10B1.384 (2)
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.393 (2)C10B—C11B1.387 (2)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.387 (2)C11B—C12B1.396 (2)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.384 (2)C12B—C13B1.381 (2)
C12A—H12A0.9500C12B—H12B0.9500
C14A—C15A1.384 (2)C14B—C15B1.384 (2)
C14A—C19A1.397 (2)C14B—C19B1.399 (2)
C15A—C16A1.398 (2)C15B—C16B1.390 (2)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.388 (2)C16B—C17B1.394 (2)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.385 (2)C17B—C18B1.384 (2)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.393 (2)C18B—C19B1.396 (2)
C18A—H18A0.9500C18B—H18B0.9500
C19A—C20A1.470 (2)C19B—C20B1.473 (2)
C20A—C21A1.391 (2)C20B—C21B1.389 (2)
C20A—C25A1.399 (2)C20B—C25B1.403 (2)
C21A—C22A1.386 (2)C21B—C22B1.383 (2)
C21A—H21A0.9500C21B—H21B0.9500
C22A—C23A1.388 (2)C22B—C23B1.393 (2)
C22A—H22A0.9500C22B—H22B0.9500
C23A—C24A1.387 (2)C23B—C24B1.391 (2)
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.385 (2)C24B—C25B1.382 (2)
C24A—H24A0.9500C24B—H24B0.9500
C2A—C1A—C14A116.92 (11)C25B—C1B—C13B113.10 (11)
C2A—C1A—C13A101.54 (11)C25B—C1B—C14B101.58 (11)
C14A—C1A—C13A111.72 (11)C13B—C1B—C14B116.34 (11)
C2A—C1A—C25A110.83 (11)C25B—C1B—C2B114.43 (11)
C14A—C1A—C25A101.51 (11)C13B—C1B—C2B101.11 (11)
C13A—C1A—C25A114.93 (11)C14B—C1B—C2B110.86 (11)
C3A—C2A—C7A121.20 (13)C3B—C2B—C7B120.68 (13)
C3A—C2A—C1A128.16 (13)C3B—C2B—C1B128.45 (13)
C7A—C2A—C1A110.52 (12)C7B—C2B—C1B110.83 (12)
C2A—C3A—C4A118.71 (13)C4B—C3B—C2B118.61 (14)
C2A—C3A—H3A120.6C4B—C3B—H3B120.7
C4A—C3A—H3A120.6C2B—C3B—H3B120.7
C3A—C4A—C5A120.38 (14)C3B—C4B—C5B120.89 (14)
C3A—C4A—H4A119.8C3B—C4B—H4B119.6
C5A—C4A—H4A119.8C5B—C4B—H4B119.6
C6A—C5A—C4A120.89 (13)C6B—C5B—C4B120.67 (14)
C6A—C5A—H5A119.6C6B—C5B—H5B119.7
C4A—C5A—H5A119.6C4B—C5B—H5B119.7
C5A—C6A—C7A119.07 (13)C5B—C6B—C7B118.63 (14)
C5A—C6A—H6A120.5C5B—C6B—H6B120.7
C7A—C6A—H6A120.5C7B—C6B—H6B120.7
C6A—C7A—C2A119.63 (13)C6B—C7B—C2B120.48 (13)
C6A—C7A—C8A131.88 (13)C6B—C7B—C8B131.10 (13)
C2A—C7A—C8A108.49 (12)C2B—C7B—C8B108.39 (12)
C9A—C8A—C13A119.89 (13)C9B—C8B—C13B120.11 (13)
C9A—C8A—C7A131.73 (13)C9B—C8B—C7B131.07 (13)
C13A—C8A—C7A108.33 (12)C13B—C8B—C7B108.81 (12)
C10A—C9A—C8A118.71 (13)C10B—C9B—C8B118.37 (14)
C10A—C9A—H9A120.6C10B—C9B—H9B120.8
C8A—C9A—H9A120.6C8B—C9B—H9B120.8
C9A—C10A—C11A121.12 (14)C9B—C10B—C11B121.38 (14)
C9A—C10A—H10A119.4C9B—C10B—H10B119.3
C11A—C10A—H10A119.4C11B—C10B—H10B119.3
C12A—C11A—C10A120.36 (14)C10B—C11B—C12B120.50 (14)
C12A—C11A—H11A119.8C10B—C11B—H11B119.8
C10A—C11A—H11A119.8C12B—C11B—H11B119.8
C13A—C12A—C11A118.73 (13)C13B—C12B—C11B118.39 (14)
C13A—C12A—H12A120.6C13B—C12B—H12B120.8
C11A—C12A—H12A120.6C11B—C12B—H12B120.8
C12A—C13A—C8A121.14 (13)C12B—C13B—C8B121.23 (13)
C12A—C13A—C1A128.07 (13)C12B—C13B—C1B127.94 (13)
C8A—C13A—C1A110.74 (12)C8B—C13B—C1B110.79 (12)
C15A—C14A—C19A121.37 (13)C15B—C14B—C19B120.95 (14)
C15A—C14A—C1A128.05 (13)C15B—C14B—C1B128.62 (13)
C19A—C14A—C1A110.51 (12)C19B—C14B—C1B110.36 (12)
C14A—C15A—C16A118.42 (14)C14B—C15B—C16B118.64 (14)
C14A—C15A—H15A120.8C14B—C15B—H15B120.7
C16A—C15A—H15A120.8C16B—C15B—H15B120.7
C17A—C16A—C15A120.31 (15)C15B—C16B—C17B120.69 (14)
C17A—C16A—H16A119.8C15B—C16B—H16B119.7
C15A—C16A—H16A119.8C17B—C16B—H16B119.7
C18A—C17A—C16A121.17 (14)C18B—C17B—C16B120.75 (14)
C18A—C17A—H17A119.4C18B—C17B—H17B119.6
C16A—C17A—H17A119.4C16B—C17B—H17B119.6
C17A—C18A—C19A118.88 (15)C17B—C18B—C19B118.82 (14)
C17A—C18A—H18A120.6C17B—C18B—H18B120.6
C19A—C18A—H18A120.6C19B—C18B—H18B120.6
C18A—C19A—C14A119.83 (14)C18B—C19B—C14B120.10 (14)
C18A—C19A—C20A131.31 (14)C18B—C19B—C20B131.20 (14)
C14A—C19A—C20A108.86 (12)C14B—C19B—C20B108.70 (12)
C21A—C20A—C25A120.05 (14)C21B—C20B—C25B120.06 (14)
C21A—C20A—C19A131.54 (14)C21B—C20B—C19B131.44 (14)
C25A—C20A—C19A108.35 (12)C25B—C20B—C19B108.46 (12)
C22A—C21A—C20A119.04 (15)C22B—C21B—C20B119.22 (14)
C22A—C21A—H21A120.5C22B—C21B—H21B120.4
C20A—C21A—H21A120.5C20B—C21B—H21B120.4
C21A—C22A—C23A120.56 (15)C21B—C22B—C23B120.61 (14)
C21A—C22A—H22A119.7C21B—C22B—H22B119.7
C23A—C22A—H22A119.7C23B—C22B—H22B119.7
C24A—C23A—C22A120.78 (15)C24B—C23B—C22B120.49 (14)
C24A—C23A—H23A119.6C24B—C23B—H23B119.8
C22A—C23A—H23A119.6C22B—C23B—H23B119.8
C25A—C24A—C23A118.80 (15)C25B—C24B—C23B118.95 (14)
C25A—C24A—H24A120.6C25B—C24B—H24B120.5
C23A—C24A—H24A120.6C23B—C24B—H24B120.5
C24A—C25A—C20A120.71 (13)C24B—C25B—C20B120.66 (13)
C24A—C25A—C1A128.57 (13)C24B—C25B—C1B128.75 (13)
C20A—C25A—C1A110.66 (12)C20B—C25B—C1B110.57 (12)
C14A—C1A—C2A—C3A57.28 (19)C25B—C1B—C2B—C3B59.58 (19)
C13A—C1A—C2A—C3A179.10 (13)C13B—C1B—C2B—C3B178.52 (14)
C25A—C1A—C2A—C3A58.36 (18)C14B—C1B—C2B—C3B54.56 (18)
C14A—C1A—C2A—C7A126.77 (13)C25B—C1B—C2B—C7B122.87 (13)
C13A—C1A—C2A—C7A4.95 (14)C13B—C1B—C2B—C7B0.97 (14)
C25A—C1A—C2A—C7A117.60 (12)C14B—C1B—C2B—C7B123.00 (13)
C7A—C2A—C3A—C4A1.9 (2)C7B—C2B—C3B—C4B1.6 (2)
C1A—C2A—C3A—C4A173.66 (13)C1B—C2B—C3B—C4B175.71 (14)
C2A—C3A—C4A—C5A1.3 (2)C2B—C3B—C4B—C5B0.0 (2)
C3A—C4A—C5A—C6A2.8 (2)C3B—C4B—C5B—C6B1.6 (2)
C4A—C5A—C6A—C7A1.0 (2)C4B—C5B—C6B—C7B1.5 (2)
C5A—C6A—C7A—C2A2.2 (2)C5B—C6B—C7B—C2B0.1 (2)
C5A—C6A—C7A—C8A178.85 (14)C5B—C6B—C7B—C8B177.87 (14)
C3A—C2A—C7A—C6A3.7 (2)C3B—C2B—C7B—C6B1.7 (2)
C1A—C2A—C7A—C6A172.59 (12)C1B—C2B—C7B—C6B176.11 (12)
C3A—C2A—C7A—C8A177.14 (12)C3B—C2B—C7B—C8B179.92 (12)
C1A—C2A—C7A—C8A6.58 (15)C1B—C2B—C7B—C8B2.15 (15)
C6A—C7A—C8A—C9A9.2 (3)C6B—C7B—C8B—C9B5.8 (3)
C2A—C7A—C8A—C9A171.77 (14)C2B—C7B—C8B—C9B176.19 (14)
C6A—C7A—C8A—C13A173.50 (14)C6B—C7B—C8B—C13B175.47 (14)
C2A—C7A—C8A—C13A5.53 (15)C2B—C7B—C8B—C13B2.54 (15)
C13A—C8A—C9A—C10A0.7 (2)C13B—C8B—C9B—C10B0.3 (2)
C7A—C8A—C9A—C10A177.75 (14)C7B—C8B—C9B—C10B178.33 (14)
C8A—C9A—C10A—C11A1.4 (2)C8B—C9B—C10B—C11B1.3 (2)
C9A—C10A—C11A—C12A2.0 (2)C9B—C10B—C11B—C12B1.0 (2)
C10A—C11A—C12A—C13A0.5 (2)C10B—C11B—C12B—C13B0.3 (2)
C11A—C12A—C13A—C8A1.6 (2)C11B—C12B—C13B—C8B1.3 (2)
C11A—C12A—C13A—C1A175.52 (13)C11B—C12B—C13B—C1B176.30 (13)
C9A—C8A—C13A—C12A2.2 (2)C9B—C8B—C13B—C12B1.0 (2)
C7A—C8A—C13A—C12A179.87 (12)C7B—C8B—C13B—C12B179.90 (12)
C9A—C8A—C13A—C1A175.37 (12)C9B—C8B—C13B—C1B176.96 (12)
C7A—C8A—C13A—C1A2.31 (15)C7B—C8B—C13B—C1B1.94 (15)
C2A—C1A—C13A—C12A175.90 (13)C25B—C1B—C13B—C12B55.60 (19)
C14A—C1A—C13A—C12A50.54 (19)C14B—C1B—C13B—C12B61.44 (19)
C25A—C1A—C13A—C12A64.43 (18)C2B—C1B—C13B—C12B178.42 (14)
C2A—C1A—C13A—C8A1.46 (14)C25B—C1B—C13B—C8B122.18 (13)
C14A—C1A—C13A—C8A126.82 (12)C14B—C1B—C13B—C8B120.77 (13)
C25A—C1A—C13A—C8A118.22 (13)C2B—C1B—C13B—C8B0.63 (14)
C2A—C1A—C14A—C15A60.07 (19)C25B—C1B—C14B—C15B177.33 (14)
C13A—C1A—C14A—C15A56.28 (19)C13B—C1B—C14B—C15B54.08 (19)
C25A—C1A—C14A—C15A179.24 (14)C2B—C1B—C14B—C15B60.68 (18)
C2A—C1A—C14A—C19A122.93 (13)C25B—C1B—C14B—C19B5.61 (14)
C13A—C1A—C14A—C19A120.73 (13)C13B—C1B—C14B—C19B128.87 (13)
C25A—C1A—C14A—C19A2.24 (14)C2B—C1B—C14B—C19B116.37 (13)
C19A—C14A—C15A—C16A1.4 (2)C19B—C14B—C15B—C16B1.7 (2)
C1A—C14A—C15A—C16A175.31 (14)C1B—C14B—C15B—C16B175.06 (13)
C14A—C15A—C16A—C17A0.3 (2)C14B—C15B—C16B—C17B0.4 (2)
C15A—C16A—C17A—C18A1.0 (2)C15B—C16B—C17B—C18B1.5 (2)
C16A—C17A—C18A—C19A1.1 (2)C16B—C17B—C18B—C19B0.4 (2)
C17A—C18A—C19A—C14A0.0 (2)C17B—C18B—C19B—C14B1.8 (2)
C17A—C18A—C19A—C20A179.06 (14)C17B—C18B—C19B—C20B178.01 (14)
C15A—C14A—C19A—C18A1.2 (2)C15B—C14B—C19B—C18B2.8 (2)
C1A—C14A—C19A—C18A175.99 (13)C1B—C14B—C19B—C18B174.47 (12)
C15A—C14A—C19A—C20A179.47 (13)C15B—C14B—C19B—C20B176.96 (12)
C1A—C14A—C19A—C20A3.29 (16)C1B—C14B—C19B—C20B5.72 (15)
C18A—C19A—C20A—C21A6.8 (3)C18B—C19B—C20B—C21B5.4 (3)
C14A—C19A—C20A—C21A173.99 (15)C14B—C19B—C20B—C21B174.35 (15)
C18A—C19A—C20A—C25A176.15 (15)C18B—C19B—C20B—C25B176.87 (15)
C14A—C19A—C20A—C25A3.03 (16)C14B—C19B—C20B—C25B3.35 (16)
C25A—C20A—C21A—C22A0.5 (2)C25B—C20B—C21B—C22B1.0 (2)
C19A—C20A—C21A—C22A176.18 (15)C19B—C20B—C21B—C22B178.47 (15)
C20A—C21A—C22A—C23A2.2 (2)C20B—C21B—C22B—C23B0.6 (2)
C21A—C22A—C23A—C24A1.8 (2)C21B—C22B—C23B—C24B0.2 (2)
C22A—C23A—C24A—C25A0.3 (2)C22B—C23B—C24B—C25B0.7 (2)
C23A—C24A—C25A—C20A2.0 (2)C23B—C24B—C25B—C20B0.3 (2)
C23A—C24A—C25A—C1A174.94 (14)C23B—C24B—C25B—C1B179.00 (13)
C21A—C20A—C25A—C24A1.6 (2)C21B—C20B—C25B—C24B0.5 (2)
C19A—C20A—C25A—C24A178.98 (13)C19B—C20B—C25B—C24B178.54 (13)
C21A—C20A—C25A—C1A175.85 (13)C21B—C20B—C25B—C1B178.38 (13)
C19A—C20A—C25A—C1A1.56 (16)C19B—C20B—C25B—C1B0.37 (16)
C2A—C1A—C25A—C24A51.95 (19)C13B—C1B—C25B—C24B49.85 (19)
C14A—C1A—C25A—C24A176.82 (14)C14B—C1B—C25B—C24B175.29 (14)
C13A—C1A—C25A—C24A62.44 (19)C2B—C1B—C25B—C24B65.23 (19)
C2A—C1A—C25A—C20A125.21 (13)C13B—C1B—C25B—C20B128.95 (13)
C14A—C1A—C25A—C20A0.33 (14)C14B—C1B—C25B—C20B3.51 (14)
C13A—C1A—C25A—C20A120.40 (13)C2B—C1B—C25B—C20B115.97 (13)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC25H16·C6H6C25H16·C12H10C25H16
Mr394.49470.58316.38
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/c
Temperature (K)115115115
a, b, c (Å)10.7900 (6), 18.4004 (10), 10.8403 (6)9.774 (4), 11.427 (4), 13.075 (5)18.2491 (17), 11.1522 (10), 18.6918 (17)
α, β, γ (°)90, 92.877 (1), 9071.339 (8), 83.106 (9), 67.030 (7)90, 117.907 (2), 90
V3)2149.5 (2)1273.8 (8)3361.7 (5)
Z428
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.070.070.07
Crystal size (mm)0.2 × 0.2 × 0.20.14 × 0.11 × 0.040.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.893, 0.9900.985, 0.9980.970, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14724, 4921, 3949 6971, 4476, 2416 18394, 5925, 4923
Rint0.0240.0500.027
(sin θ/λ)max1)0.6500.5960.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.02 0.079, 0.248, 0.92 0.041, 0.119, 1.05
No. of reflections492144765925
No. of parameters280335451
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.180.33, 0.290.32, 0.26

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SMART, SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.673.61172
C11—H11···C16ii0.952.743.6196 (18)154
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Cg2i0.952.653.57162
C29—H29···Cg3ii0.952.633.56163
C3—H3···C270.952.803.692 (5)157
C28—H28···C220.952.843.658 (6)147
C12—H12···C31iii0.952.873.783 (5)161
C31—H31···C19iv0.952.803.708 (5)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z; (iii) x1, y, z; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the EPSRC, UK, for funding the purchase of the diffractometer and the University of York for additional financial assistance.

References

First citationAlcazar, V. & Diederich, F. (1992). Angew. Chem. Int. Ed. Engl. 31, 1521–1523.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarkson, R. G. & Gomberg, M. (1930). J. Am. Chem. Soc. 52, 2881–2896.  CrossRef CAS Google Scholar
First citationLowden, L. J. & Chandler, D. (1974). J. Chem. Phys. 61, 5228–5241.  CrossRef CAS Web of Science Google Scholar
First citationPoriel, C., Ferrand, Y., le Maux, P., Paul, C., Rault-Berthelot, J. & Simonneaux, G. (2003). Chem. Commun. pp. 2308–2309.  Web of Science CrossRef Google Scholar
First citationSchenk, H. (1972). Acta Cryst. B28, 625–628.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShi, X. Q. & Bartell, L. S. (1988). J. Phys. Chem. 92, 5667–5673.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWilliams, J. H. (1993). Acc. Chem. Res. 26, 593–598.  CrossRef CAS Web of Science Google Scholar
First citationWong, K. T., Chien, Y. Y., Chen, R. T., Wang, C. F., Lin, Y. T., Chiang, H. H., Hsieh, P. Y., Wu, C. C., Chou, C. H., Su, Y. O., Lee, G. H. & Peng, S. M. (2002). J. Am. Chem. Soc. 124, 11576–11577.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds