organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Supramolecular structures of five 5-(aryl­methyl­ene)-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-triones: isolated mol­ecules, hydrogen-bonded chains and chains of fused hydrogen-bonded rings

CROSSMARK_Color_square_no_text.svg

aFacultad de Química y Biología, Universidad de Santiago, Casilla 40, Correo 33, Santiago, Chile, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 14 March 2005; accepted 16 March 2005; online 23 April 2005)

In each of the five title compounds, namely 5-benzyl­idene-1,3-dimethyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C13H12N2O3, (I)[link], 5-(3-methoxy­benzyl­idene)-1,3-dimethyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C14H14N2O4, (II)[link], 5-(4-methoxy­benzyl­idene)-1,3-dimethyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C14H14N2O4, (III)[link], 5-[4-(dimethyl­amino)benzyl­idene]-1,3-dimethyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C15H17N3O3, (IV)[link], and 5-(3,5-di-tert-butyl-4-hydroxy­benzyl­idene)-1,3-dimethyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C21H28N2O4, (V)[link], which crystallizes with Z′ = 2 in P[\overline{1}], there is a very wide C—C—C angle at the methine C atom linking the two rings, ranging from 137.1 (2)° in (I)[link] to 139.14 (14)° in (III)[link]. There is evidence for intra­molecular charge separation in (IV)[link] and, to a lesser degree, in (III)[link]. The mol­ecules of (I)[link]–(III)[link] are linked by pairs of C—H⋯O hydrogen bonds into chains of edge-fused rings, with alternating R22(14) and R22(16) rings in (I)[link], alternating R22(14) and R44(20) rings in (II)[link], with two types of R22(16) rings alternating in (III)[link]. The mol­ecules in (IV)[link] are linked by a single C—H⋯O hydrogen bond into simple C(8) chains, but there are no direction-specific inter­molecular inter­actions in (V)[link].

Comment

The title compounds, (I)[link]–(V)[link], were initially prepared as part of a study of solvatochromism (Rezende et al., 2001[Rezende, M. C., Campodonico, P., Abuin, E. & Kossanyi, J. (2001). Spectrochim. Acta A, 57, 1183-1190.], 2004[Rezende, M. C., Flores, P., Guerrero, J. & Villarroel, L. (2004). Spectrochim. Acta A, 60, 1637-1640.]), and it was considered necessary to determine their mol­ecular and supramolecular structures for subsequent comparison with their NMR and solvatochromic behaviour.

[Scheme 1]

Compounds (I)[link]–(IV)[link] (Figs. 1[link]–4[link][link][link]) all crystallize with Z′ = 1, but compound (V)[link] (Fig. 5[link]) crystallizes with Z′ = 2 in space group P[\overline{1}]; the two independent mol­ecules are very close to being mirror images of one another, but a careful search for possible additional symmetry revealed none. In each of compounds (I)[link]–(V)[link], the mol­ecules are nearly planar, as shown by the leading torsion angles (Table 1[link]), and there are short intra­molecular C—H⋯O contacts to both O4 and O6 (Table 2[link]). Of these, the dimensions of that involving O6 are suggestive of a genuine hydrogen bond. However, the bond angles at C5 and C57 give a strong indication that the H57⋯O4 contact is repulsive: the C—C—C angles at C57 are, in all cases, particularly large for fragments of this type. Similarly, the bond angles at C51 are more consistent with a repulsive H52⋯O6 contact than with a significantly attractive contact. However, it is noteworthy that these repulsive contacts are accommodated by distortion of the skeletal bond angles in preference to an evasive rotation around the C51—C57 bond, which would appear at first sight to represent a far less energy-costly resolution. In each of the meth­oxy compounds, viz. (II)[link] and (III)[link], the meth­oxy C atom is nearly coplanar with the adjacent aryl ring and the exocyclic bond angles at the aryl C atom ipso to the meth­oxy substituent, viz. C53 in (II)[link] and C54 in (III)[link], show the usual deviations from 120°.

Whereas in compounds (I)[link] and (II)[link], the C—C distances in the aryl rings are consistent with classically delocalized π electrons, in compounds (III)[link] and, particularly, (IV)[link], there is evidence for a significant contribution from polarized charge-separated forms. Thus in (IV)[link], the C52—C53 and C55—C56 distances are significantly less than the remaining distances in the aryl ring. Likewise, the C51—C57 bond in (IV)[link] is the shortest such bond observed in this series, while C57—C5 is the longest. The C4—O4 and C6—O6 bonds are also longer in (IV)[link] than in (I)[link]–(III)[link]. Finally, the C54—N54 distance is less than the quartile value (1.363 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) for bonds of this type. Taken all together, these observations provide evidence for the contribution of the polarized forms (IVa)[link] and (IVb)[link] to the overall mol­ecular–electronic structure. There are similar, although weaker, indications for the contribution of similar forms in (III)[link], not only from the distances within the aryl ring but also, in particular, the fact that the C51—C57 bond is shorter in (III)[link] than in the isomeric compound (II)[link], while C57—C5 is longer in (III)[link] than in (II)[link]. In addition, the C54—O54 bond in (III)[link] is somewhat shorter than the C53—O53 bond in (II)[link]. In compound (V)[link], the indications for charge-separation are very weak, at best.

In each of compounds (I)[link] and (II)[link], the heterocyclic ring shows a small but significant deviation from planarity, with a total puckering amplitude Q (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of 0.105 (2) Å in (I)[link] and 0.075 (2) Å in (II)[link]. The ring-puckering parameters for the atom sequence N1–C2–N3–C4–C5–C6 are θ = 51.9 (11)° and φ = 276.7 (16)° for (I)[link], and θ = 137.2 (11)° and φ = 45.9 (17)° for (II)[link]. The best single description for both of these rings is thus as half-chair conformers (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). In the two independent mol­ecules in compound (V)[link], the heterocyclic rings have effectively identical total puckering amplitudes, viz. 0.115 (3) Å in mol­ecule 1 (Fig. 5[link]a) and 0.114 (3) Å in mol­ecule 2 (Fig. 5[link]b). The ring-puckering parameters for the atom sequences Nn1–Cn2–Nn3–Cn4–Cn5–Cn6 (where n = 1 or 2) are θ = 70.0 (15)° and φ = 16.7 (14)° when n = 1, and θ = 109.5 (15)° and φ = 193.5 (14)° when n = 2, emphasizing the nearly enantiomorphous character of the two mol­ecules in the selected asymmetric unit. The best single descriptor for these ring conformations is screw-boat, for which ideally θ = 67.5° and φ = (60k + 30)°. By contrast, the heterocyclic rings in compounds (III)[link] and (IV)[link] are effectively planar.

In compounds (I)[link]–(III)[link], the mol­ecules are linked by pairs of C—H⋯O hydrogen bonds (Table 2[link]) into chains of edge-fused rings, but the details of these inter­actions are different in each case, as are the structures of the resulting chains. In compound (I)[link] (Fig. 1[link]), aryl atoms C53 and C56 in the mol­ecule at (x, y, z) act as hydrogen-bond donors to, respectively, atom O6 in the mol­ecule at (1 − x, 1 − y, 1 − z) and O4 in the mol­ecule at (1 − x, −y, 1 − z), so generating by inversion a chain of edge-fused rings running parallel to the [010] direction. There are R22(16) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at ([{1\over 2}], [{1\over 2}] + n, [{1\over 2}]) (n = zero or integer) and R22(14) rings centred at ([{1\over 2}], n, [{1\over 2}]) (n = zero or integer) (Fig. 6[link]). Two chains of this type pass through each unit cell, centred along the lines ([{1\over 2}], y, [{1\over 2}]) and (0, y, 0), but there are no direction-specific inter­actions between adjacent chains.

In compound (II)[link] (Fig. 2[link]), aryl atom C56 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R22(14) ring analogous to that in compound (I)[link], although now centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 6[link]). At the same time, atom C54 at (x, y, z) acts as donor to atom O2 in the mol­ecule at (x − 2, 1 + y, z), so generating by translation a C(11) chain running parallel to the [[\overline{2}]10] direction. The combination of the two hydrogen bonds then generates a [[\overline{2}]10] chain of centrosymmetric edge-fused R22(14) and R44(20) rings. Of the four mol­ecules which participate in the formation of an R44(20) ring, two act as double donors and two as double acceptors of hydrogen bonds (Fig. 7[link]). Again, there are no direction-specific inter­actions between adjacent chains.

The chain formation in compound (III)[link] is rather different from that in the isomeric compound, (II)[link]. In (III)[link], aryl atoms C53 and C55 in the mol­ecule at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O6 and O4 in the mol­ecules at (1 − x, −y, 1 − z) and (−x, 1 − y, 1 − z), so generating by inversion a chain of edge-fused rings along [1[\overline{1}]0] in which there are two distinct types of centrosymmetric R22(16) ring (Fig. 8[link]), one involving O4 as the sole hydrogen-bond acceptor and the other involving O6 only.

In contrast with the chain formation in compounds (I)[link]–(III)[link], that in compound (IV)[link] (Fig. 4[link]) depends upon just one inter­molecular C—H⋯O hydrogen bond. Atom C53 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O4 in the mol­ecule at (x, y, z − 1), thereby generating by translation a simple C(8) chain running parallel to the [001] direction (Fig. 9[link]). Two such chains, antiparallel to one another, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

In compound (V), there are no direction-specific inter­molecular inter­actions. In particular, neither of the hydroxyl groups participates in hydrogen-bond formation, because of the steric shielding provided by the two adjacent tert-butyl substituents. The nearest plausible donor/acceptor atoms to O154 and O254 are, respectively, O154 at (1 − x, −y, 1 − z), with O⋯Oi and O⋯Hi distances of 3.391 (2) and 3.56 Å, respectively, and O254 at (2 − x, 1 − y, 1 − z), with O⋯Oii and O⋯Hii distances of 3.010 (2) and 2.91 Å, respectively [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 2 − x, 1 − y, 1 − z].

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecule of compound (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The independent mol­ecules of compound (V)[link], showing the atom-labelling schemes for (a) mol­ecule 1 and (b) mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a [010] chain of alternating R22(14) and R22(16) rings. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a [[\overline{2}]10] chain of alternating R22(14) and R44(20) rings. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a [1[\overline{1}]0] chain containing two types of R22(16) ring. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of compound (IV)[link], showing the formation of a C(8) chain along [001]. For the sake of clarity, the H atoms not involved in this motif have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, z − 1) and (x, y, 1 + z), respectively.

Experimental

For the preparation of compounds (I)[link]–(V)[link], mixtures of N,N′-di­methyl­barbituric acid (0.50 g, 3.2 mmol) and the appropriate aryl­aldehyde (3.2 mmol) in glacial acetic acid (4 ml) were heated under reflux for 2 h, cooled and filtered. The resulting solids were washed with diethyl ether (5 ml). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in acetic acid for (I)[link] and (II)[link], in acetonitrile for (III)[link] and (IV)[link], or in ethanol for (V). For (I)[link], m.p. 430–432 K (literature value 430–431 K; Suzuki et al., 1976[Suzuki, K., Fukawa, H., Okugawa, T. & Sekiya, M. (1976). Chem. Pharm. Bull. 24, 607-612.]); for (II)[link], m.p. 406–408 K; for (III)[link], m.p. 416–418 K (literature value 417–418 K; Suzuki et al., 1976[Suzuki, K., Fukawa, H., Okugawa, T. & Sekiya, M. (1976). Chem. Pharm. Bull. 24, 607-612.]); for (IV)[link], m.p. 497–499 K (literature value 497–499 K; Rezende et al., 2001[Rezende, M. C., Campodonico, P., Abuin, E. & Kossanyi, J. (2001). Spectrochim. Acta A, 57, 1183-1190.]); for (V), m.p. 467–469 K.

Compound (I)[link]

Crystal data
  • C13H12N2O3

  • Mr = 244.25

  • Monoclinic, P 21 /n

  • a = 6.1293 (3) Å

  • b = 13.9633 (8) Å

  • c = 13.2727 (8) Å

  • β = 97.688 (4)°

  • V = 1125.74 (11) Å3

  • Z = 4

  • Dx = 1.441 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2573 reflections

  • θ = 2.9–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.34 × 0.25 × 0.09 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.954, Tmax = 0.991

  • 12 444 measured reflections

  • 2573 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 27.6°

  • h = −7 → 7

  • k = −18 → 16

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.201, S = 1.05

  • 2573 reflections

  • 165 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1092P)2 + 0.6873P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Compound (II)[link]

Crystal data
  • C14H14N2O4

  • Mr = 274.27

  • Triclinic, [P \overline 1]

  • a = 5.6946 (2) Å

  • b = 8.2994 (3) Å

  • c = 14.0411 (5) Å

  • α = 73.5580 (17)°

  • β = 87.393 (2)°

  • γ = 77.037 (2)°

  • V = 620.13 (4) Å3

  • Z = 2

  • Dx = 1.469 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2847 reflections

  • θ = 3.0–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.52 × 0.34 × 0.16 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.953, Tmax = 0.983

  • 14 859 measured reflections

  • 2847 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

  • h = −7 → 7

  • k = −10 → 10

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.132, S = 1.11

  • 2847 reflections

  • 184 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1975P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Compound (III)[link]

Crystal data
  • C14H14N2O4

  • Mr = 274.27

  • Triclinic, [P \overline 1]

  • a = 7.5906 (6) Å

  • b = 8.2989 (7) Å

  • c = 10.3010 (10) Å

  • α = 92.544 (6)°

  • β = 93.074 (5)°

  • γ = 104.456 (6)°

  • V = 626.33 (10) Å3

  • Z = 2

  • Dx = 1.454 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2860 reflections

  • θ = 3.1–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.48 × 0.44 × 0.34 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.947, Tmax = 0.964

  • 10 553 measured reflections

  • 2860 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

  • h = −9 → 9

  • k = −10 → 10

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136, S = 1.06

  • 2860 reflections

  • 184 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0773P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Compound (IV)[link]

Crystal data
  • C15H17N3O3

  • Mr = 287.32

  • Triclinic, [P \overline 1]

  • a = 8.6187 (2) Å

  • b = 8.8451 (3) Å

  • c = 9.0566 (3) Å

  • α = 82.2980 (18)°

  • β = 84.465 (2)°

  • γ = 82.365 (2)°

  • V = 675.94 (4) Å3

  • Z = 2

  • Dx = 1.412 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3073 reflections

  • θ = 3.1–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, orange

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.955, Tmax = 0.980

  • 13 410 measured reflections

  • 3073 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −11 → 11

  • k = −11 → 11

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108, S = 1.05

  • 3073 reflections

  • 194 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2209P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.009

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Compound (V)[link]

Crystal data
  • C21H28N2O4

  • Mr = 372.45

  • Triclinic, [P \overline 1]

  • a = 9.6040 (3) Å

  • b = 11.6691 (4) Å

  • c = 17.2905 (6) Å

  • α = 97.4860 (16)°

  • β = 92.5540 (18)°

  • γ = 90.006 (2)°

  • V = 1919.29 (11) Å3

  • Z = 4

  • Dx = 1.289 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8856 reflections

  • θ = 3.1–27.7°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.15 × 0.10 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.967, Tmax = 0.997

  • 39 965 measured reflections

  • 8856 independent reflections

  • 6116 reflections with I > 2σ(I)

  • Rint = 0.068

  • θmax = 27.7°

  • h = −12 → 12

  • k = −15 → 15

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.179, S = 1.05

  • 8856 reflections

  • 503 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0747P)2 + 1.5268P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond distances (Å) for compounds (I)[link]–(V)[link]

Parameter (I)[link] (II)[link] (III)[link] (IV)[link] (V)[link], molecule 1 (V)[link], molecule 2
n nil nil nil nil 1 2
Cn2—On2 1.211 (3) 1.2160 (18) 1.2166 (18) 1.2189 (14) 1.219 (3) 1.216 (3)
Cn4—On4 1.219 (3) 1.2235 (17) 1.2204 (18) 1.2273 (14) 1.217 (3) 1.224 (3)
Cn6—On6 1.211 (3) 1.2234 (18) 1.2157 (19) 1.2250 (14) 1.223 (3) 1.217 (3)
Cn5—Cn57 1.362 (3) 1.3627 (19) 1.366 (2) 1.3814 (16) 1.364 (3) 1.367 (3)
Cn57—Cn51 1.447 (3) 1.4658 (19) 1.449 (2) 1.4295 (15) 1.457 (3) 1.453 (3)
Cn51—Cn52 1.403 (3) 1.4065 (19) 1.410 (2) 1.4179 (15) 1.396 (3) 1.397 (3)
Cn52—Cn53 1.391 (3) 1.390 (2) 1.378 (2) 1.3751 (16) 1.396 (3) 1.393 (3)
Cn53—Cn54 1.387 (3) 1.396 (2) 1.402 (2) 1.4191 (16) 1.406 (3) 1.406 (3)
Cn54—Cn55 1.383 (4) 1.385 (2) 1.388 (2) 1.4211 (15) 1.414 (3) 1.412 (3)
Cn55—Cn56 1.397 (3) 1.392 (2) 1.384 (2) 1.3709 (16) 1.382 (3) 1.385 (3)
Cn56—Cn51 1.405 (3) 1.404 (2) 1.404 (2) 1.4202 (16) 1.401 (3) 1.400 (3)
Cn53—On53   1.3679 (17)        
Cn54—On54     1.3578 (17)   1.367 (3) 1.369 (3)
Cn54—Nn54       1.3545 (14)    
Cn5—Cn4—On4 123.6 (2) 122.83 (13) 123.49 (13) 123.61 (11) 127.7 (2) 123.5 (2)
Cn5—Cn6—On6 124.5 (2) 124.95 (13) 124.00 (14) 125.54 (10) 124.6 (2) 125.1 (2)
Cn4—Cn5—Cn57 115.23 (19) 114.14 (12) 114.26 (13) 114.20 (10) 113.2 (2) 113.4 (2)
Cn6—Cn5—Cn57 125.99 (19) 127.41 (13) 126.71 (13) 126.83 (10) 128.0 (2) 127.7 (2)
Cn5—Cn57—Cn51 137.1 (2) 137.62 (13) 139.14 (14) 138.79 (10) 138.5(2 138.5 (2)
Cn57—Cn51—Cn52 127.2 (2) 126.34 (13) 128.25 (14) 128.58 (10) 127.1 (2) 127.2 (2)
Cn52—Cn53—On53   123.31 (13)        
Cn54—Cn53—On53   115.69 (13)        
Cn53—Cn54—On54     115.72 (13)   121.2 (2) 118.9 (2)
Cn55—Cn54—On54     124.18 (14)   115.8 (2) 118.3 (2)
Cn5—Cn57—Cn51—Cn52 −14.6 (2) 4.1 (3) 6.1 (3) 0.9 (2) 4.5 (5) −4.6 (5)
Cn52—Cn53—On53—Cn531   −2.1 (2)        
Cn53—Cn54—On54—Cn541     176.86 (13)      

Table 2
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)[link]–(V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
Compound (I)[link]        
C52—H52⋯O6 0.95 2.17 2.867 (3) 130
C53—H53⋯O6i 0.95 2.47 3.399 (3) 167
C56—H56⋯O4ii 0.95 2.40 3.310 (3) 159
C57—H57⋯O4 0.95 2.28 2.751 (3) 110
         
Compound (II)[link]        
C52—H52⋯O6 0.95 2.07 2.855 (2) 139
C54—H54⋯O2iii 0.95 2.38 3.334 (2) 178
C56—H56⋯O4i 0.95 2.38 3.313 (2) 168
C57—H57⋯O4 0.95 2.24 2.727 (2) 111
         
Compound (III)[link]        
C52—H52⋯O6 0.95 2.11 2.889 (2) 138
C53—H53⋯O6ii 0.95 2.52 3.387 (2) 152
C55—H55⋯O4iv 0.95 2.39 3.261 (2) 152
C57—H57⋯O4 0.95 2.23 2.729 (2) 112
         
Compound (IV)[link]        
C52—H52⋯O6 0.95 2.09 2.895 (2) 141
C53—H53⋯O4v 0.95 2.53 3.381 (2) 149
C57—H57⋯O4 0.95 2.24 2.731 (2) 111
         
Compound (V)[link]        
C152—H152⋯O16 0.95 2.08 2.889 (3) 143
C157—H157⋯O14 0.95 2.21 2.709 (3) 112
C252—H252⋯O26 0.95 2.08 2.892 (3) 143
C257—H257⋯O24 0.95 2.22 2.716 (3) 112
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1-x, -y, 1-z; (iii) x-2, 1 + y, z; (iv) -x, 1-y, 1-z; (v) x, y, z-1.

For compound (I)[link], the space group P21/n was uniquely assigned from the systematic absences. Crystals of compounds (II)[link]–(IV)[link] are triclinic and for each compound, the space group P[\overline{1}] was selected and then confirmed by the structure analysis. All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl) and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(Cmethyl). There are several short intra­molecular H⋯H contacts in both mol­ecules of (V)[link]; these all involve contacts between a hydroxyl H atom and a H atom in a tert-butyl group.

For all compounds, data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); publication software: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compounds, (I)–(V), were initially prepared as part of a study of solvatochromism (Rezende et al., 2001, 2004), and it was considered necessary to determine their molecular and supramolecular structures for subsequent comparison with their NMR and solvatochromic behaviour.

Compounds (I)–(IV) (Figs. 1–4) all crystallize with Z' = 1, but compound (V) (Fig. 5) crystallizes with Z' = 2 in space group P1; the two independent molecules are very close to being mirror images of one another, but a careful search for possible additional symmetry revealed none. In each of the compounds (I)–(V), the molecules are nearly planar, as shown by the leading torsion angles (Table 1), and there are short intramolecular C—H···O contacts to both O4 and O6 (Table 2). Of these, the dimension of that involving O6 are suggestive of a genuine hydrogen bond. However, the bond angles at C5 and C57 give a strong indication that the H57···O4 contact is repulsive: the C—C—C angles at C57 are, in all cases, particularly large for fragments of this type. Similarly, the bond angles at C51 are more consistent with a repulsive H52···O6 contact than with a significantly attractive contact. However, it is noteworthy that these repulsive contacts are accommodated by distortion of the skeletal bond angles in preference to an evasive rotation around the C51—C57 bond, which would appear at first sight to represent a far less energy-costly resolution. In each of the methoxy compounds, (II) and (III), the methoxy C atom is nearly coplanar with the adjacent aryl ring and the exocyclic bond angles at the aryl C atom ipso to the methoxy substituent, C53 in (II) and C54 in (III), show the usual deviations from 120°.

Whereas in compounds (I) and (II), the C—C distances in the aryl rings are consistent with classically delocalized π electrons, in compounds (III) and, particularly, (IV), there is evidence for a significant contribution from polarized charge-separated forms. Thus in (IV), the C52—C53 and C55—C56 distances are significantly less than the remaining distances in the aryl ring. Likewise, the C51—C57 bond in (IV) is the shortest such bond observed in this series, while C57—C5 is the shortest [text missing? C5—C57 is shortest in (I)]. The C4—O4 and C6—O6 bonds are also longer in (IV) than in (I)– III). Finally, the C54—N54 distance is less than the quartile value [1.363 Å; Allen et al., 1987)] for bonds of this type. Taken all together, these observations provide evidence for the contribution of the polarized forms (IVa) and (IVb) to the overall molecular-electronic structure. There are similar, although weaker, indications for the contribution of similar forms in (III), not only from the distances within the aryl ring but also, in particular, the C51—C57 bond is shorter in (III) than in the isomeric compound (II), while C57—C5 is longer in (III) than in (II). In addition, the C54—O54 bond in (III) is somewhat shorter than the C53—O53 bond in (II). In compound (V), the indications for charge-separation are very weak, at best.

In each of compounds (I) and (II), the heterocyclic ring shows a small but significant deviation from planarity, with total puckering amplitudes Q (Cremer & Pople, 1975) of 0.105 (2) Å in (I) and 0.075 (2) Å in (II). The ring-puckering parameters for the atom sequence N1/C2/N3/C4–C6 are θ = 51.9 (11)° and ϕ = 276.7 (16)° for (I), and θ = 137.2 (11)° and ϕ = 45.9 (17)° for (II). The best single description for both of these rings is thus as half-chair conformers (Evans & Boeyens, 1989). In the two independent molecules in compound (V), the heterocyclic rings have effectively identical total puckering amplitudes, 0.115 (3) Å in molecule 1 (Fig. 5a) and 0.114 (3) Å in molecule 2 (Fig. 5b). The ring-puckering parameters for the atom sequences Nn1/Cn2/Nn3/Cn4–Cn6 (where n = 1 or 2) are θ = 70.0 (15)° and ϕ = 16.7 (14)° when n = 1, and θ = 109.5 (15)° and ϕ = 193.5 (14) when n = 2, emphasizing the nearly enantiomorphous character of the two molecules in the selected asymmetric unit. The best single descriptor for these ring conformations is screw-boat, for which ideally θ = 67.5° and ϕ = (60k + 30)°. By contrast, the heterocyclic rings in compounds (III) and (IV) are effectively planar.

In compounds (I)–(III), the molecules are linked by pairs of C—H···O hydrogen bonds (Table 2) into chains of edge-fused rings, but the details of these interactions are different in each case, as are the structures of the resulting chains. In compound (I) (Fig. 1), the aryl atoms C53 and C56 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O6 in the molecule at (1 − x, 1 − y, 1 − z) and O4 in the molecule at (1 − x, −y, 1 − z), so generating by inversion a chain of edge-fused rings running parallel to the [010] direction. There are R22(16) (Bernstein et al., 1995) rings centred at (1/2, 1/2 + n, 1/2) (n = zero or integer) and R22(14) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 6). Two chains of this type pass through each unit cell, centred along the lines (1/2, y, 1/2) and (0, y, 0), but there are no direction-specific interactions between adjacent chains.

In compound (II) (Fig. 2), the aryl atom C56 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O4 in the molecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R22(14) ring analogous to that in compound (I), although now centred at (1/2, 1/2, 1/2) (Fig. 6). At the same time, atom C54 at (x, y, z) acts as donor to atom O2 in the molecule at (x − 2, 1 + y, z), so generating by translation a C(11) chain running parallel to the [210] direction. The combination of the two hydrogen bonds then generates a [210] chain of centrosymmetric edge-fused R22(14) and R44(20) rings. Of the four molecules which participate in the formation of an R44(20) ring, two act as double donors and two as double acceptors of hydrogen bonds (Fig. 7). Again, there are no direction-specific interactions between adjacent chains.

The chain formation in compound (III) is rather different from that in the isomeric compound, (II). In (III), aryl atoms C53 and C55 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O6 and O4 in the molecules at (1 − x, −y, 1 − z) and (−x, 1 − y, 1 − z), so generating by inversion a chain of edge-fused rings along [110] in which there are two distinct types of centrosymmetric R22(16) ring (Fig. 8), one involving O4 as the sole hydrogen-bond acceptor and the other involving O6 only.

In contrast with the chain formation in compounds (I)–(III), that in compound (IV) (Fig. 4) depends upon just one intermolecular C—H···O hydrogen bond. Atom C53 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O4 in the molecule at (x, y, z − 1), thereby generating by translation a simple C(8) chain running parallel to the [001] direction (Fig. 9). Two such chains, antiparallel to one another, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

In compound (V), there are no direction-specific intermolecular interactions. In particular, neither of the hydroxyl groups participates in hydrogen-bond formation, because of the steric shielding provided by the two adjacent tert-butyl substituents. The nearest plausible donor/acceptor atoms to O154 and O254 are, respectively, O154 at (1 − x, −y, 1 − z), with O···Oi and O····Hi distances of 3.391 (2) and 3.56 Å, respectively, and O254 at (2 − x, 1 − y, 1 − z), with O···Oii and O···Hii distances of 3.010 (2) and 2.91 Å, respectively [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 2 − x, 1 − y, 1 − z].

Experimental top

For the preparation of compounds (I)–(V), a mixture of N,N'-dimethylbarbituric acid (0.50 g, 3.2 mmol) and the appropriate arylaldehyde (3.2 mmol) in glacial acetic acid (4 ml) was heated under reflux for 2 h, cooled and filtered. The resulting solids were washed with diethyl ether (5 ml). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in acetic acid, for (I) and (II), in acetonitrile, for (III) and (IV), or in ethanol, for (V). For (I), m.p. 430–432 K (literature value 430–431 K; Suzuki et al., 1976). For (II), m.p. 406–408 K. For (III), m.p. 416–418 K (literature value 417–418 K; Suzuki et al., 1976). For (IV), m.p. 497–499 K (literature value 497–499 K; Rezende et al., 2001). For (V), 467–469 K.

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences. Crystals of compounds (II)–(IV) are triclinic and for each compound, the space group P1 was selected and then confirmed by the structure analysis. All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl) and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(C methyl). There are several short intramolecular H···H contacts in both molecules of (V); these all involve contacts between a hydroxyl H atom and an H atom in a tert-butyl group.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecule of compound (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The independent molecules of compound (V), showing the atom-labelling scheme. (a) Molecule 1. (b) Molecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (I), showing the formation of an [010] chain of alternating R22(14) and R22(16) rings. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (II), showing the formation of a [210] chain of alternating R22(14) and R44(20) rings. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (III), showing the formation of a [110] chain containing two types of R22(16) ring. For the sake of clarity, the H atoms not involved in these motifs have been omitted.
[Figure 9] Fig. 9. Part of the crystal structure of compound (IV), showing the formation of a C(8) chain along [001]. For the sake of clarity, the H atoms not involved in this motif have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, z − 1) and (x, y, 1 + z), respectively.
(I) 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C13H12N2O3F(000) = 512
Mr = 244.25Dx = 1.441 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2573 reflections
a = 6.1293 (3) Åθ = 2.9–27.6°
b = 13.9633 (8) ŵ = 0.10 mm1
c = 13.2727 (8) ÅT = 120 K
β = 97.688 (4)°Plate, colourless
V = 1125.74 (11) Å30.34 × 0.25 × 0.09 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2573 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1816
Tmin = 0.954, Tmax = 0.991l = 1717
12444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1092P)2 + 0.6873P]
where P = (Fo2 + 2Fc2)/3
2573 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H12N2O3V = 1125.74 (11) Å3
Mr = 244.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1293 (3) ŵ = 0.10 mm1
b = 13.9633 (8) ÅT = 120 K
c = 13.2727 (8) Å0.34 × 0.25 × 0.09 mm
β = 97.688 (4)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2573 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1885 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.991Rint = 0.050
12444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
2573 reflectionsΔρmin = 0.30 e Å3
165 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.2148 (3)0.19028 (12)0.26161 (13)0.0339 (5)
O40.7185 (3)0.02451 (12)0.41526 (15)0.0395 (5)
O60.6561 (3)0.35847 (12)0.36333 (13)0.0361 (5)
N10.9475 (3)0.27629 (14)0.32313 (14)0.0253 (4)
N30.9667 (3)0.10727 (13)0.33945 (15)0.0273 (5)
C11.0414 (4)0.36476 (17)0.28781 (19)0.0337 (6)
C21.0535 (4)0.19140 (15)0.30520 (16)0.0245 (5)
C31.0792 (4)0.01715 (17)0.3206 (2)0.0383 (6)
C40.7840 (4)0.10227 (16)0.39016 (18)0.0274 (5)
C50.6803 (4)0.19450 (14)0.41238 (17)0.0238 (5)
C60.7532 (4)0.28282 (16)0.36596 (16)0.0248 (5)
C510.3792 (4)0.25359 (16)0.52018 (16)0.0249 (5)
C520.4022 (4)0.35324 (17)0.52969 (19)0.0336 (6)
C530.2543 (4)0.40674 (18)0.57740 (19)0.0362 (6)
C540.0833 (4)0.36195 (17)0.61757 (18)0.0334 (6)
C550.0607 (4)0.26355 (17)0.61115 (17)0.0297 (5)
C560.2075 (4)0.20982 (16)0.56350 (16)0.0254 (5)
C570.5201 (4)0.18825 (15)0.47403 (17)0.0265 (5)
H1A0.96570.38130.22030.051*
H1B1.19850.35530.28400.051*
H1C1.02270.41680.33550.051*
H3A1.12020.01660.38510.057*
H3B1.21200.03130.28960.057*
H3C0.98030.02320.27450.057*
H520.52000.38450.50330.040*
H530.27050.47430.58250.043*
H540.01810.39890.64950.040*
H550.05540.23270.63930.036*
H560.19160.14220.56010.031*
H570.49390.12370.49140.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0327 (10)0.0353 (10)0.0358 (9)0.0040 (7)0.0122 (8)0.0012 (7)
O40.0447 (10)0.0189 (9)0.0602 (12)0.0014 (7)0.0266 (9)0.0002 (8)
O60.0417 (10)0.0232 (9)0.0458 (10)0.0064 (7)0.0150 (8)0.0079 (7)
N10.0262 (10)0.0239 (10)0.0266 (9)0.0028 (7)0.0060 (8)0.0029 (8)
N30.0290 (10)0.0216 (10)0.0332 (10)0.0001 (7)0.0106 (8)0.0033 (8)
C10.0362 (13)0.0270 (13)0.0392 (13)0.0042 (10)0.0095 (11)0.0061 (10)
C20.0246 (11)0.0254 (12)0.0234 (10)0.0033 (8)0.0031 (9)0.0033 (8)
C30.0418 (14)0.0244 (13)0.0520 (16)0.0033 (10)0.0188 (12)0.0046 (11)
C40.0289 (12)0.0215 (12)0.0327 (12)0.0019 (9)0.0082 (10)0.0019 (9)
C50.0241 (11)0.0190 (11)0.0278 (11)0.0019 (8)0.0020 (9)0.0018 (8)
C60.0280 (12)0.0233 (11)0.0235 (10)0.0019 (9)0.0044 (9)0.0010 (8)
C510.0259 (11)0.0240 (11)0.0248 (10)0.0001 (9)0.0031 (9)0.0008 (8)
C520.0421 (14)0.0227 (12)0.0390 (13)0.0033 (10)0.0158 (11)0.0018 (10)
C530.0503 (16)0.0211 (12)0.0404 (14)0.0007 (11)0.0177 (12)0.0042 (10)
C540.0379 (14)0.0310 (13)0.0326 (12)0.0063 (10)0.0094 (10)0.0002 (10)
C550.0300 (12)0.0326 (13)0.0272 (11)0.0033 (10)0.0062 (9)0.0008 (10)
C560.0247 (11)0.0255 (12)0.0263 (11)0.0016 (8)0.0040 (9)0.0005 (9)
C570.0269 (12)0.0228 (12)0.0297 (12)0.0049 (8)0.0032 (10)0.0016 (8)
Geometric parameters (Å, º) top
N1—C21.388 (3)C5—C61.474 (3)
N1—C61.390 (3)C57—C511.447 (3)
N1—C11.466 (3)C57—H570.95
C1—H1A0.98C51—C521.403 (3)
C1—H1B0.98C51—C561.405 (3)
C1—H1C0.98C52—C531.391 (3)
C2—O21.211 (3)C52—H520.95
C2—N31.391 (3)C53—C541.387 (3)
N3—C41.383 (3)C53—H530.95
N3—C31.472 (3)C54—C551.383 (4)
C3—H3A0.98C54—H540.95
C3—H3B0.98C55—C561.387 (3)
C3—H3C0.98C55—H550.95
C4—O41.219 (3)C56—H560.95
C4—C51.483 (3)C6—O61.211 (3)
C5—C571.362 (3)
C2—N1—C6124.94 (19)C6—C5—C4118.8 (2)
C2—N1—C1116.89 (19)C5—C57—C51137.1 (2)
C6—N1—C1118.05 (19)C5—C57—H57111.4
N1—C1—H1A109.5C51—C57—H57111.4
N1—C1—H1B109.5C52—C51—C56117.8 (2)
H1A—C1—H1B109.5C52—C51—C57127.2 (2)
N1—C1—H1C109.5C56—C51—C57114.9 (2)
H1A—C1—H1C109.5C53—C52—C51120.7 (2)
H1B—C1—H1C109.5C53—C52—H52119.7
O2—C2—N1121.60 (19)C51—C52—H52119.7
O2—C2—N3121.20 (19)C54—C53—C52120.3 (2)
N1—C2—N3117.2 (2)C54—C53—H53119.8
C4—N3—C2124.87 (19)C52—C53—H53119.8
C4—N3—C3117.88 (19)C55—C54—C53120.0 (2)
C2—N3—C3117.25 (18)C55—C54—H54120.0
N3—C3—H3A109.5C53—C54—H54120.0
N3—C3—H3B109.5C54—C55—C56120.0 (2)
H3A—C3—H3B109.5C54—C55—H55120.0
N3—C3—H3C109.5C56—C55—H55120.0
H3A—C3—H3C109.5C55—C56—C51121.2 (2)
H3B—C3—H3C109.5C55—C56—H56119.4
O4—C4—N3119.7 (2)C51—C56—H56119.4
O4—C4—C5123.6 (2)O6—C6—N1119.3 (2)
N3—C4—C5116.69 (19)O6—C6—C5124.5 (2)
C57—C5—C6125.99 (19)N1—C6—C5116.13 (19)
C57—C5—C4115.23 (19)
C6—N1—C2—O2175.1 (2)C5—C57—C51—C5214.6 (4)
C1—N1—C2—O20.6 (3)C5—C57—C51—C56168.4 (2)
C6—N1—C2—N34.9 (3)C56—C51—C52—C532.2 (3)
C1—N1—C2—N3179.35 (19)C57—C51—C52—C53179.2 (2)
O2—C2—N3—C4179.7 (2)C51—C52—C53—C540.9 (4)
N1—C2—N3—C40.3 (3)C52—C53—C54—C550.6 (4)
O2—C2—N3—C30.1 (3)C53—C54—C55—C560.7 (3)
N1—C2—N3—C3179.9 (2)C54—C55—C56—C510.7 (3)
C2—N3—C4—O4178.6 (2)C52—C51—C56—C552.1 (3)
C3—N3—C4—O41.8 (3)C57—C51—C56—C55179.5 (2)
C2—N3—C4—C52.4 (3)C2—N1—C6—O6168.2 (2)
C3—N3—C4—C5177.2 (2)C1—N1—C6—O67.6 (3)
O4—C4—C5—C577.5 (3)C2—N1—C6—C511.9 (3)
N3—C4—C5—C57171.50 (19)C1—N1—C6—C5172.33 (18)
O4—C4—C5—C6171.4 (2)C57—C5—C6—O612.6 (4)
N3—C4—C5—C69.6 (3)C4—C5—C6—O6166.2 (2)
C6—C5—C57—C513.9 (4)C57—C5—C6—N1167.3 (2)
C4—C5—C57—C51177.3 (2)C4—C5—C6—N114.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···O60.952.172.867 (3)130
C53—H53···O6i0.952.473.399 (3)167
C56—H56···O4ii0.952.403.310 (3)159
C57—H57···O40.952.282.751 (3)110
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
(II) 5-(3-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C14H14N2O4Z = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6946 (2) ÅCell parameters from 2847 reflections
b = 8.2994 (3) Åθ = 3.0–27.5°
c = 14.0411 (5) ŵ = 0.11 mm1
α = 73.5580 (17)°T = 120 K
β = 87.393 (2)°Block, colourless
γ = 77.037 (2)°0.52 × 0.34 × 0.16 mm
V = 620.13 (4) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2847 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.953, Tmax = 0.983l = 1818
14859 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1975P]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H14N2O4γ = 77.037 (2)°
Mr = 274.27V = 620.13 (4) Å3
Triclinic, P1Z = 2
a = 5.6946 (2) ÅMo Kα radiation
b = 8.2994 (3) ŵ = 0.11 mm1
c = 14.0411 (5) ÅT = 120 K
α = 73.5580 (17)°0.52 × 0.34 × 0.16 mm
β = 87.393 (2)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2331 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.983Rint = 0.034
14859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.11Δρmax = 0.40 e Å3
2847 reflectionsΔρmin = 0.40 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.42349 (19)0.21216 (14)0.78350 (8)0.0229 (3)
O40.80218 (19)0.39336 (14)0.56112 (8)0.0219 (3)
O60.7348 (2)0.52516 (15)0.87014 (8)0.0283 (3)
O530.08023 (19)0.94132 (14)0.88183 (8)0.0229 (3)
N11.0794 (2)0.37772 (15)0.82361 (9)0.0176 (3)
N31.1177 (2)0.31209 (15)0.66925 (9)0.0163 (3)
C11.1908 (3)0.3609 (2)0.91947 (11)0.0247 (3)
C21.2196 (3)0.29547 (18)0.76031 (11)0.0171 (3)
C31.2724 (3)0.22538 (19)0.60310 (11)0.0201 (3)
C40.8841 (2)0.39762 (17)0.63921 (10)0.0157 (3)
C50.7429 (2)0.49534 (17)0.70532 (10)0.0156 (3)
C60.8439 (3)0.47119 (18)0.80436 (11)0.0174 (3)
C510.3264 (2)0.71755 (17)0.69376 (10)0.0158 (3)
C520.3138 (3)0.77225 (18)0.78032 (10)0.0170 (3)
C530.1066 (3)0.88322 (18)0.79916 (10)0.0174 (3)
C540.0896 (3)0.94345 (19)0.73268 (11)0.0194 (3)
C550.0746 (3)0.89307 (19)0.64622 (11)0.0208 (3)
C560.1309 (3)0.78161 (18)0.62601 (11)0.0184 (3)
C570.5276 (2)0.59645 (17)0.66543 (10)0.0161 (3)
C5310.2769 (3)0.8772 (2)0.95262 (11)0.0248 (3)
H1A1.14570.26540.97050.037*
H1B1.13440.46810.93830.037*
H1C1.36650.33820.91350.037*
H3A1.29970.10030.63170.030*
H3B1.42720.26010.59580.030*
H3C1.19290.25810.53780.030*
H31A0.31220.75100.97330.037*
H31B0.23310.92011.01070.037*
H520.44660.73340.82580.020*
H31C0.41970.91670.92220.037*
H540.23141.01800.74660.023*
H550.20620.93510.60010.025*
H560.13890.74880.56620.022*
H570.50020.58540.60160.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0157 (5)0.0248 (6)0.0249 (6)0.0015 (4)0.0008 (4)0.0064 (4)
O40.0203 (5)0.0267 (6)0.0201 (6)0.0004 (4)0.0006 (4)0.0126 (4)
O60.0270 (6)0.0344 (6)0.0184 (6)0.0106 (5)0.0033 (4)0.0120 (5)
O530.0222 (6)0.0268 (6)0.0184 (5)0.0043 (4)0.0003 (4)0.0119 (4)
N10.0156 (6)0.0198 (6)0.0164 (6)0.0001 (5)0.0015 (5)0.0066 (5)
N30.0142 (6)0.0166 (6)0.0178 (6)0.0004 (5)0.0015 (5)0.0072 (5)
C10.0228 (8)0.0313 (8)0.0188 (7)0.0006 (6)0.0052 (6)0.0093 (6)
C20.0163 (7)0.0155 (7)0.0186 (7)0.0033 (5)0.0014 (5)0.0037 (5)
C30.0186 (7)0.0204 (7)0.0214 (7)0.0003 (5)0.0051 (6)0.0100 (6)
C40.0143 (7)0.0150 (6)0.0178 (7)0.0020 (5)0.0013 (5)0.0055 (5)
C50.0154 (7)0.0156 (7)0.0162 (7)0.0020 (5)0.0013 (5)0.0064 (5)
C60.0170 (7)0.0154 (7)0.0178 (7)0.0008 (5)0.0013 (5)0.0049 (5)
C510.0151 (7)0.0146 (6)0.0177 (7)0.0022 (5)0.0013 (5)0.0054 (5)
C520.0167 (7)0.0176 (7)0.0159 (7)0.0010 (5)0.0003 (5)0.0053 (5)
C530.0194 (7)0.0166 (7)0.0156 (7)0.0024 (5)0.0022 (5)0.0052 (5)
C540.0149 (7)0.0194 (7)0.0229 (7)0.0001 (5)0.0019 (5)0.0074 (6)
C550.0158 (7)0.0226 (7)0.0232 (7)0.0003 (6)0.0040 (5)0.0080 (6)
C560.0179 (7)0.0191 (7)0.0189 (7)0.0017 (5)0.0007 (5)0.0080 (6)
C570.0167 (7)0.0168 (7)0.0161 (7)0.0035 (5)0.0002 (5)0.0067 (5)
C5310.0258 (8)0.0283 (8)0.0193 (7)0.0016 (6)0.0021 (6)0.0109 (6)
Geometric parameters (Å, º) top
N1—C61.3862 (18)C57—H570.95
N1—C21.3885 (18)C51—C561.404 (2)
N1—C11.4715 (18)C51—C521.4065 (19)
C1—H1A0.98C52—C531.390 (2)
C1—H1B0.98C52—H520.95
C1—H1C0.98C53—O531.3679 (17)
C2—O21.2160 (18)C53—C541.396 (2)
C2—N31.3864 (19)O53—C5311.4353 (18)
N3—C41.3820 (18)C531—H31A0.98
N3—C31.4751 (17)C531—H31B0.98
C3—H3A0.98C531—H31C0.98
C3—H3B0.98C54—C551.385 (2)
C3—H3C0.98C54—H540.95
C4—O41.2235 (17)C55—C561.392 (2)
C4—C51.4937 (19)C55—H550.95
C5—C571.3627 (19)C56—H560.95
C5—C61.4723 (19)C6—O61.2234 (18)
C57—C511.4658 (19)
C6—N1—C2125.38 (12)C51—C57—H57111.2
C6—N1—C1117.89 (12)C56—C51—C52118.89 (13)
C2—N1—C1116.73 (12)C56—C51—C57114.77 (12)
N1—C1—H1A109.5C52—C51—C57126.34 (13)
N1—C1—H1B109.5C53—C52—C51119.89 (13)
H1A—C1—H1B109.5C53—C52—H52120.1
N1—C1—H1C109.5C51—C52—H52120.1
H1A—C1—H1C109.5O53—C53—C52123.31 (13)
H1B—C1—H1C109.5O53—C53—C54115.69 (13)
O2—C2—N3121.17 (13)C52—C53—C54120.99 (13)
O2—C2—N1121.56 (13)C53—O53—C531116.67 (11)
N3—C2—N1117.27 (12)O53—C531—H31A109.5
C4—N3—C2124.70 (12)O53—C531—H31B109.5
C4—N3—C3119.28 (12)H31A—C531—H31B109.5
C2—N3—C3115.98 (11)O53—C531—H31C109.5
N3—C3—H3A109.5H31A—C531—H31C109.5
N3—C3—H3B109.5H31B—C531—H31C109.5
H3A—C3—H3B109.5C55—C54—C53119.07 (13)
N3—C3—H3C109.5C55—C54—H54120.5
H3A—C3—H3C109.5C53—C54—H54120.5
H3B—C3—H3C109.5C54—C55—C56120.89 (14)
O4—C4—N3120.32 (13)C54—C55—H55119.6
O4—C4—C5122.83 (13)C56—C55—H55119.6
N3—C4—C5116.85 (12)C55—C56—C51120.22 (13)
C57—C5—C6127.41 (13)C55—C56—H56119.9
C57—C5—C4114.14 (12)C51—C56—H56119.9
C6—C5—C4118.43 (12)O6—C6—N1118.46 (13)
C5—C57—C51137.62 (13)O6—C6—C5124.95 (13)
C5—C57—H57111.2N1—C6—C5116.59 (12)
C6—N1—C2—O2178.17 (13)C56—C51—C52—C532.2 (2)
C1—N1—C2—O20.8 (2)C57—C51—C52—C53177.57 (13)
C6—N1—C2—N31.8 (2)C51—C52—C53—O53179.66 (13)
C1—N1—C2—N3179.22 (12)C51—C52—C53—C540.8 (2)
O2—C2—N3—C4176.89 (13)C52—C53—O53—C5312.1 (2)
N1—C2—N3—C43.1 (2)C54—C53—O53—C531178.26 (13)
O2—C2—N3—C30.9 (2)O53—C53—C54—C55178.71 (13)
N1—C2—N3—C3179.14 (12)C52—C53—C54—C550.9 (2)
C2—N3—C4—O4173.64 (13)C53—C54—C55—C561.1 (2)
C3—N3—C4—O44.0 (2)C54—C55—C56—C510.4 (2)
C2—N3—C4—C57.3 (2)C52—C51—C56—C552.0 (2)
C3—N3—C4—C5175.00 (12)C57—C51—C56—C55177.77 (13)
O4—C4—C5—C577.9 (2)C2—N1—C6—O6174.09 (13)
N3—C4—C5—C57171.13 (12)C1—N1—C6—O64.8 (2)
O4—C4—C5—C6170.89 (13)C2—N1—C6—C55.0 (2)
N3—C4—C5—C610.09 (19)C1—N1—C6—C5176.08 (12)
C6—C5—C57—C513.0 (3)C57—C5—C6—O68.5 (2)
C4—C5—C57—C51178.34 (15)C4—C5—C6—O6170.06 (14)
C5—C57—C51—C56175.64 (16)C57—C5—C6—N1172.45 (13)
C5—C57—C51—C524.1 (3)C4—C5—C6—N18.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···O60.952.072.855 (2)139
C54—H54···O2i0.952.383.334 (2)178
C56—H56···O4ii0.952.383.313 (2)168
C57—H57···O40.952.242.727 (2)111
Symmetry codes: (i) x2, y+1, z; (ii) x+1, y+1, z+1.
(III) 5-(4-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C14H14N2O4Z = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5906 (6) ÅCell parameters from 2860 reflections
b = 8.2989 (7) Åθ = 3.1–27.5°
c = 10.301 (1) ŵ = 0.11 mm1
α = 92.544 (6)°T = 120 K
β = 93.074 (5)°Block, yellow
γ = 104.456 (6)°0.48 × 0.44 × 0.34 mm
V = 626.33 (10) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2860 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.947, Tmax = 0.964l = 1313
10553 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.1359P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H14N2O4γ = 104.456 (6)°
Mr = 274.27V = 626.33 (10) Å3
Triclinic, P1Z = 2
a = 7.5906 (6) ÅMo Kα radiation
b = 8.2989 (7) ŵ = 0.11 mm1
c = 10.301 (1) ÅT = 120 K
α = 92.544 (6)°0.48 × 0.44 × 0.34 mm
β = 93.074 (5)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2173 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.034
10553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2860 reflectionsΔρmin = 0.24 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.80386 (15)0.66484 (13)0.02844 (11)0.0316 (3)
O40.28789 (15)0.68329 (14)0.22215 (11)0.0324 (3)
O60.6058 (2)0.27431 (18)0.31566 (15)0.0602 (5)
O540.06981 (15)0.02267 (13)0.75913 (10)0.0300 (3)
N10.70274 (16)0.46844 (15)0.17228 (12)0.0243 (3)
N30.54470 (16)0.67320 (15)0.12473 (12)0.0237 (3)
C10.8602 (2)0.4008 (2)0.14631 (17)0.0316 (4)
C20.6911 (2)0.60604 (18)0.10441 (14)0.0238 (3)
C30.5412 (2)0.82590 (19)0.05854 (16)0.0300 (4)
C40.4109 (2)0.61423 (18)0.21020 (14)0.0244 (3)
C50.4288 (2)0.46904 (17)0.28419 (14)0.0236 (3)
C60.5818 (2)0.3956 (2)0.26236 (16)0.0301 (4)
C510.2466 (2)0.29635 (17)0.46490 (14)0.0230 (3)
C520.3482 (2)0.18855 (18)0.51359 (14)0.0256 (3)
C530.2848 (2)0.08393 (19)0.61038 (14)0.0262 (3)
C540.1182 (2)0.08340 (18)0.66308 (14)0.0241 (3)
C550.0146 (2)0.18777 (18)0.61722 (14)0.0259 (3)
C560.0794 (2)0.29082 (19)0.51902 (15)0.0262 (3)
C570.2951 (2)0.41808 (18)0.36788 (14)0.0245 (3)
C5410.0955 (2)0.0211 (2)0.82071 (16)0.0314 (4)
H1A0.85760.37050.05310.047*
H1B0.85440.30170.19580.047*
H1C0.97340.48520.17280.047*
H3A0.42870.85830.07590.045*
H3B0.54590.80540.03550.045*
H3C0.64670.91580.09110.045*
H520.46170.18800.47920.031*
H530.35460.01160.64160.031*
H54A0.08670.09080.85950.047*
H54B0.11350.10130.88890.047*
H54C0.19910.05190.75570.047*
H550.09830.18850.65250.031*
H560.00760.36090.48680.031*
H570.20730.48170.36010.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0319 (6)0.0319 (6)0.0339 (6)0.0085 (5)0.0155 (5)0.0137 (5)
O40.0325 (6)0.0333 (6)0.0379 (6)0.0161 (5)0.0123 (5)0.0154 (5)
O60.0683 (9)0.0632 (9)0.0758 (10)0.0488 (8)0.0510 (8)0.0516 (8)
O540.0361 (6)0.0305 (6)0.0265 (6)0.0097 (5)0.0130 (5)0.0134 (5)
N10.0242 (6)0.0258 (7)0.0256 (6)0.0083 (5)0.0087 (5)0.0092 (5)
N30.0255 (6)0.0231 (6)0.0240 (6)0.0062 (5)0.0064 (5)0.0102 (5)
C10.0292 (8)0.0339 (9)0.0373 (9)0.0144 (7)0.0129 (7)0.0133 (7)
C20.0254 (7)0.0234 (7)0.0223 (7)0.0048 (6)0.0049 (6)0.0044 (6)
C30.0337 (8)0.0271 (8)0.0327 (8)0.0101 (7)0.0091 (7)0.0156 (7)
C40.0247 (7)0.0247 (7)0.0248 (7)0.0064 (6)0.0054 (6)0.0065 (6)
C50.0263 (8)0.0223 (7)0.0230 (7)0.0059 (6)0.0069 (6)0.0075 (6)
C60.0338 (8)0.0317 (8)0.0295 (8)0.0128 (7)0.0137 (7)0.0133 (6)
C510.0257 (8)0.0216 (7)0.0219 (7)0.0049 (6)0.0055 (6)0.0033 (6)
C520.0267 (7)0.0280 (8)0.0238 (7)0.0083 (6)0.0066 (6)0.0062 (6)
C530.0306 (8)0.0266 (8)0.0239 (7)0.0104 (6)0.0061 (6)0.0063 (6)
C540.0307 (8)0.0208 (7)0.0202 (7)0.0036 (6)0.0068 (6)0.0053 (6)
C550.0279 (8)0.0252 (8)0.0260 (8)0.0066 (6)0.0102 (6)0.0060 (6)
C560.0296 (8)0.0243 (8)0.0271 (8)0.0092 (6)0.0076 (6)0.0064 (6)
C570.0253 (7)0.0246 (7)0.0250 (8)0.0077 (6)0.0053 (6)0.0052 (6)
C5410.0358 (9)0.0319 (8)0.0267 (8)0.0054 (7)0.0133 (7)0.0091 (6)
Geometric parameters (Å, º) top
N1—C21.3839 (19)C57—H570.95
N1—C61.3907 (19)C51—C561.404 (2)
N1—C11.4737 (19)C51—C521.410 (2)
C1—H1A0.98C52—C531.378 (2)
C1—H1B0.98C52—H520.95
C1—H1C0.98C53—C541.402 (2)
C2—O21.2166 (18)C53—H530.95
C2—N31.3832 (19)C54—O541.3578 (17)
N3—C41.3898 (19)C54—C551.388 (2)
N3—C31.4707 (18)O54—C5411.4389 (19)
C3—H3A0.98C541—H54A0.98
C3—H3B0.98C541—H54B0.98
C3—H3C0.98C541—H54C0.98
C4—O41.2204 (18)C55—C561.384 (2)
C4—C51.484 (2)C55—H550.95
C5—C571.366 (2)C56—H560.95
C5—C61.462 (2)C6—O61.2157 (19)
C57—C511.449 (2)
C2—N1—C6125.06 (13)C51—C57—H57110.4
C2—N1—C1115.35 (12)C56—C51—C52116.95 (13)
C6—N1—C1119.58 (12)C56—C51—C57114.76 (13)
N1—C1—H1A109.5C52—C51—C57128.25 (14)
N1—C1—H1B109.5C53—C52—C51120.84 (14)
H1A—C1—H1B109.5C53—C52—H52119.6
N1—C1—H1C109.5C51—C52—H52119.6
H1A—C1—H1C109.5C52—C53—C54120.54 (14)
H1B—C1—H1C109.5C52—C53—H53119.7
O2—C2—N3121.06 (14)C54—C53—H53119.7
O2—C2—N1121.46 (14)O54—C54—C55124.18 (14)
N3—C2—N1117.48 (13)O54—C54—C53115.72 (13)
C2—N3—C4124.62 (13)C55—C54—C53120.11 (13)
C2—N3—C3116.66 (12)C54—O54—C541117.61 (12)
C4—N3—C3118.52 (12)O54—C541—H54A109.5
N3—C3—H3A109.5O54—C541—H54B109.5
N3—C3—H3B109.5H54A—C541—H54B109.5
H3A—C3—H3B109.5O54—C541—H54C109.5
N3—C3—H3C109.5H54A—C541—H54C109.5
H3A—C3—H3C109.5H54B—C541—H54C109.5
H3B—C3—H3C109.5C56—C55—C54118.59 (14)
O4—C4—N3119.63 (13)C56—C55—H55120.7
O4—C4—C5123.49 (13)C54—C55—H55120.7
N3—C4—C5116.88 (13)C55—C56—C51122.96 (14)
C57—C5—C6126.71 (13)C55—C56—H56118.5
C57—C5—C4114.26 (13)C51—C56—H56118.5
C6—C5—C4119.03 (13)O6—C6—N1119.07 (15)
C5—C57—C51139.14 (14)O6—C6—C5124.00 (14)
C5—C57—H57110.4N1—C6—C5116.91 (13)
C6—N1—C2—O2178.78 (14)C56—C51—C52—C530.3 (2)
C1—N1—C2—O20.4 (2)C57—C51—C52—C53177.41 (15)
C6—N1—C2—N32.1 (2)C51—C52—C53—C540.4 (2)
C1—N1—C2—N3179.48 (12)C52—C53—C54—O54179.10 (13)
O2—C2—N3—C4179.56 (13)C52—C53—C54—C550.5 (2)
N1—C2—N3—C41.3 (2)C55—C54—O54—C5412.7 (2)
O2—C2—N3—C34.8 (2)C53—C54—O54—C541176.86 (13)
N1—C2—N3—C3176.04 (12)O54—C54—C55—C56179.73 (14)
C2—N3—C4—O4179.29 (14)C53—C54—C55—C560.1 (2)
C3—N3—C4—O44.7 (2)C54—C55—C56—C510.9 (2)
C2—N3—C4—C50.1 (2)C52—C51—C56—C551.0 (2)
C3—N3—C4—C5174.53 (12)C57—C51—C56—C55177.01 (13)
O4—C4—C5—C570.0 (2)C2—N1—C6—O6179.76 (16)
N3—C4—C5—C57179.14 (13)C1—N1—C6—O61.9 (2)
O4—C4—C5—C6179.98 (14)C2—N1—C6—C51.3 (2)
N3—C4—C5—C60.9 (2)C1—N1—C6—C5179.70 (13)
C6—C5—C57—C513.7 (3)C57—C5—C6—O61.9 (3)
C4—C5—C57—C51176.31 (17)C4—C5—C6—O6178.14 (17)
C5—C57—C51—C56176.12 (18)C57—C5—C6—N1179.81 (14)
C5—C57—C51—C526.1 (3)C4—C5—C6—N10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···O60.952.112.889 (2)138
C53—H53···O6i0.952.523.387 (2)152
C55—H55···O4ii0.952.393.261 (2)152
C57—H57···O40.952.232.729 (2)112
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
(IV) 5-[4-(dimethylamino)benzylidene]-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C15H17N3O3Z = 2
Mr = 287.32F(000) = 304
Triclinic, P1Dx = 1.412 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6187 (2) ÅCell parameters from 3073 reflections
b = 8.8451 (3) Åθ = 3.1–27.5°
c = 9.0566 (3) ŵ = 0.10 mm1
α = 82.2980 (18)°T = 120 K
β = 84.465 (2)°Block, orange
γ = 82.365 (2)°0.40 × 0.30 × 0.20 mm
V = 675.94 (4) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3073 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.955, Tmax = 0.980l = 1111
13410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2209P]
where P = (Fo2 + 2Fc2)/3
3073 reflections(Δ/σ)max = 0.009
194 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H17N3O3γ = 82.365 (2)°
Mr = 287.32V = 675.94 (4) Å3
Triclinic, P1Z = 2
a = 8.6187 (2) ÅMo Kα radiation
b = 8.8451 (3) ŵ = 0.10 mm1
c = 9.0566 (3) ÅT = 120 K
α = 82.2980 (18)°0.40 × 0.30 × 0.20 mm
β = 84.465 (2)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3073 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2698 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.980Rint = 0.027
13410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3073 reflectionsΔρmin = 0.27 e Å3
194 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.20702 (10)1.01028 (10)0.69826 (10)0.0262 (2)
O40.65055 (10)0.67888 (10)0.76453 (9)0.0254 (2)
O60.42780 (11)0.78374 (11)0.29651 (10)0.0294 (2)
N10.32498 (11)0.90026 (11)0.49595 (10)0.0185 (2)
N30.43121 (11)0.84618 (11)0.72988 (10)0.0197 (2)
N540.95303 (12)0.28701 (11)0.00057 (11)0.0209 (2)
C10.20256 (14)0.98431 (14)0.40472 (14)0.0243 (3)
C20.31355 (13)0.92388 (13)0.64509 (13)0.0188 (2)
C30.42493 (16)0.87893 (16)0.88508 (13)0.0276 (3)
C40.55241 (13)0.74064 (13)0.67884 (12)0.0184 (2)
C50.55605 (13)0.71125 (13)0.52207 (12)0.0170 (2)
C60.43704 (13)0.79591 (13)0.42844 (12)0.0183 (2)
C510.73387 (13)0.52767 (13)0.35161 (12)0.0176 (2)
C520.67780 (14)0.55360 (13)0.20713 (13)0.0208 (2)
C530.74808 (14)0.47471 (13)0.09256 (13)0.0208 (2)
C540.88152 (13)0.36372 (12)0.11323 (12)0.0180 (2)
C550.93787 (13)0.33510 (13)0.25798 (13)0.0203 (2)
C560.86589 (13)0.41446 (13)0.37098 (13)0.0192 (2)
C570.67536 (13)0.60081 (13)0.48077 (12)0.0178 (2)
C5411.08832 (15)0.17140 (14)0.02688 (14)0.0260 (3)
C5420.89585 (15)0.31354 (15)0.14836 (13)0.0242 (3)
H1A0.24751.00980.30220.036*
H1B0.16001.07920.44680.036*
H1C0.11820.92020.40410.036*
H3A0.45340.98230.88660.041*
H3B0.49890.80340.94010.041*
H3C0.31830.87300.93220.041*
H520.58910.62760.18890.025*
H530.70640.49490.00240.025*
H54A1.17030.21790.06620.039*
H54B1.12910.13230.06730.039*
H54C1.05630.08650.09940.039*
H54D0.79860.26680.14640.036*
H54E0.97530.26730.21930.036*
H54F0.87520.42430.17930.036*
H551.02600.26050.27660.024*
H560.90610.39270.46660.023*
H570.73670.56200.56240.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0253 (4)0.0280 (5)0.0243 (4)0.0047 (4)0.0009 (3)0.0077 (3)
O40.0251 (4)0.0327 (5)0.0180 (4)0.0042 (4)0.0079 (3)0.0044 (3)
O60.0292 (5)0.0384 (5)0.0192 (4)0.0116 (4)0.0099 (4)0.0092 (4)
N10.0177 (5)0.0197 (5)0.0174 (5)0.0012 (4)0.0032 (4)0.0021 (4)
N30.0212 (5)0.0233 (5)0.0148 (5)0.0002 (4)0.0023 (4)0.0048 (4)
N540.0207 (5)0.0234 (5)0.0184 (5)0.0020 (4)0.0028 (4)0.0057 (4)
C10.0211 (6)0.0263 (6)0.0240 (6)0.0061 (5)0.0064 (5)0.0029 (5)
C20.0192 (5)0.0185 (5)0.0189 (5)0.0029 (4)0.0008 (4)0.0032 (4)
C30.0315 (7)0.0351 (7)0.0169 (6)0.0001 (5)0.0025 (5)0.0091 (5)
C40.0183 (5)0.0205 (5)0.0167 (5)0.0029 (4)0.0024 (4)0.0018 (4)
C50.0166 (5)0.0197 (5)0.0150 (5)0.0026 (4)0.0023 (4)0.0021 (4)
C60.0170 (5)0.0198 (5)0.0179 (5)0.0008 (4)0.0024 (4)0.0027 (4)
C510.0163 (5)0.0186 (5)0.0177 (5)0.0019 (4)0.0023 (4)0.0010 (4)
C520.0205 (5)0.0228 (6)0.0179 (5)0.0022 (4)0.0042 (4)0.0014 (4)
C530.0216 (6)0.0230 (6)0.0169 (5)0.0013 (5)0.0047 (4)0.0009 (4)
C540.0185 (5)0.0179 (5)0.0179 (5)0.0029 (4)0.0016 (4)0.0022 (4)
C550.0199 (5)0.0206 (5)0.0200 (6)0.0022 (4)0.0059 (4)0.0026 (4)
C560.0195 (5)0.0200 (5)0.0177 (5)0.0004 (4)0.0058 (4)0.0010 (4)
C570.0173 (5)0.0204 (5)0.0157 (5)0.0028 (4)0.0037 (4)0.0000 (4)
C5410.0251 (6)0.0263 (6)0.0265 (6)0.0060 (5)0.0045 (5)0.0100 (5)
C5420.0267 (6)0.0285 (6)0.0173 (5)0.0007 (5)0.0025 (5)0.0050 (4)
Geometric parameters (Å, º) top
N1—C21.3864 (14)C51—C561.4202 (16)
N1—C61.3996 (14)C52—C531.3751 (16)
N1—C11.4641 (14)C52—H520.95
C1—H1A0.98C53—C541.4191 (16)
C1—H1B0.98C53—H530.95
C1—H1C0.98C54—N541.3545 (14)
C2—O21.2189 (14)C54—C551.4211 (15)
C2—N31.3835 (15)N54—C5421.4594 (15)
C3—N31.4673 (14)N54—C5411.4607 (15)
C3—H3A0.98C541—H54A0.98
C3—H3B0.98C541—H54B0.98
C3—H3C0.98C541—H54C0.98
N3—C41.3927 (15)C542—H54D0.98
C4—O41.2273 (14)C542—H54E0.98
C4—C51.4739 (15)C542—H54F0.98
C5—C571.3814 (16)C55—C561.3709 (16)
C5—C61.4579 (15)C55—H550.95
C57—C511.4295 (15)C56—H560.95
C57—H570.95C6—O61.2250 (14)
C51—C521.4179 (15)
C2—N1—C6125.52 (10)C53—C52—C51121.91 (11)
C2—N1—C1116.76 (9)C53—C52—H52119.0
C6—N1—C1117.58 (9)C51—C52—H52119.0
N1—C1—H1A109.5C52—C53—C54121.40 (10)
N1—C1—H1B109.5C52—C53—H53119.3
H1A—C1—H1B109.5C54—C53—H53119.3
N1—C1—H1C109.5N54—C54—C53121.88 (10)
H1A—C1—H1C109.5N54—C54—C55120.80 (10)
H1B—C1—H1C109.5C53—C54—C55117.33 (10)
O2—C2—N3121.71 (11)C54—N54—C542121.60 (10)
O2—C2—N1121.89 (11)C54—N54—C541120.30 (10)
N3—C2—N1116.40 (10)C542—N54—C541118.08 (9)
N3—C3—H3A109.5N54—C541—H54A109.5
N3—C3—H3B109.5N54—C541—H54B109.5
H3A—C3—H3B109.5H54A—C541—H54B109.5
N3—C3—H3C109.5N54—C541—H54C109.5
H3A—C3—H3C109.5H54A—C541—H54C109.5
H3B—C3—H3C109.5H54B—C541—H54C109.5
C2—N3—C4124.94 (10)N54—C542—H54D109.5
C2—N3—C3116.42 (10)N54—C542—H54E109.5
C4—N3—C3118.65 (10)H54D—C542—H54E109.5
O4—C4—N3119.10 (10)N54—C542—H54F109.5
O4—C4—C5123.61 (11)H54D—C542—H54F109.5
N3—C4—C5117.29 (10)H54E—C542—H54F109.5
C57—C5—C6126.83 (10)C56—C55—C54120.43 (11)
C57—C5—C4114.20 (10)C56—C55—H55119.8
C6—C5—C4118.96 (10)C54—C55—H55119.8
C5—C57—C51138.79 (10)C55—C56—C51122.98 (10)
C5—C57—H57110.6C55—C56—H56118.5
C51—C57—H57110.6C51—C56—H56118.5
C52—C51—C56115.94 (10)O6—C6—N1117.78 (10)
C52—C51—C57128.58 (10)O6—C6—C5125.54 (10)
C56—C51—C57115.48 (10)N1—C6—C5116.69 (10)
C6—N1—C2—O2175.54 (10)C57—C51—C52—C53179.25 (11)
C1—N1—C2—O20.01 (16)C51—C52—C53—C540.46 (18)
C6—N1—C2—N35.57 (17)C52—C53—C54—N54179.01 (11)
C1—N1—C2—N3178.88 (10)C52—C53—C54—C551.21 (17)
O2—C2—N3—C4176.96 (11)C53—C54—N54—C5420.48 (17)
N1—C2—N3—C44.16 (16)C55—C54—N54—C542179.30 (10)
O2—C2—N3—C32.79 (17)C53—C54—N54—C541178.81 (11)
N1—C2—N3—C3176.10 (10)C55—C54—N54—C5410.96 (17)
C2—N3—C4—O4179.89 (10)N54—C54—C55—C56179.27 (10)
C3—N3—C4—O40.37 (16)C53—C54—C55—C560.94 (17)
C2—N3—C4—C50.73 (16)C54—C55—C56—C510.07 (18)
C3—N3—C4—C5179.53 (10)C52—C51—C56—C550.82 (17)
O4—C4—C5—C573.43 (16)C57—C51—C56—C55179.01 (10)
N3—C4—C5—C57177.45 (10)C2—N1—C6—O6177.03 (11)
O4—C4—C5—C6177.46 (11)C1—N1—C6—O61.52 (16)
N3—C4—C5—C61.67 (15)C2—N1—C6—C53.32 (17)
C6—C5—C57—C510.7 (2)C1—N1—C6—C5178.84 (9)
C4—C5—C57—C51179.69 (13)C57—C5—C6—O61.9 (2)
C5—C57—C51—C520.9 (2)C4—C5—C6—O6179.14 (11)
C5—C57—C51—C56179.29 (13)C57—C5—C6—N1178.51 (10)
C56—C51—C52—C530.55 (17)C4—C5—C6—N10.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···O60.952.092.895 (2)141
C53—H53···O4i0.952.533.381 (2)149
C57—H57···O40.952.242.731 (2)111
Symmetry code: (i) x, y, z1.
(V) 5-[3,5-di-tert-butyl-4-hydroxybenzylidene]-1,3-dimethylpyrimidine- 2,4,6(1H,3H,5H)-trione top
Crystal data top
C21H28N2O4Z = 4
Mr = 372.45F(000) = 800
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6040 (3) ÅCell parameters from 8856 reflections
b = 11.6691 (4) Åθ = 3.1–27.7°
c = 17.2905 (6) ŵ = 0.09 mm1
α = 97.4860 (16)°T = 120 K
β = 92.5540 (18)°Plate, colourless
γ = 90.006 (2)°0.15 × 0.10 × 0.03 mm
V = 1919.29 (11) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
8856 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode6116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.1°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.967, Tmax = 0.997l = 2222
39965 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0747P)2 + 1.5268P]
where P = (Fo2 + 2Fc2)/3
8856 reflections(Δ/σ)max < 0.001
503 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C21H28N2O4γ = 90.006 (2)°
Mr = 372.45V = 1919.29 (11) Å3
Triclinic, P1Z = 4
a = 9.6040 (3) ÅMo Kα radiation
b = 11.6691 (4) ŵ = 0.09 mm1
c = 17.2905 (6) ÅT = 120 K
α = 97.4860 (16)°0.15 × 0.10 × 0.03 mm
β = 92.5540 (18)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
8856 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6116 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.997Rint = 0.068
39965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
8856 reflectionsΔρmin = 0.42 e Å3
503 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.7077 (2)0.13004 (18)0.17598 (11)0.0384 (5)
O140.37508 (19)0.23145 (17)0.00358 (11)0.0362 (5)
O160.77518 (19)0.02010 (17)0.06284 (11)0.0350 (4)
O1540.57647 (17)0.02617 (16)0.41750 (10)0.0278 (4)
N110.7265 (2)0.06075 (18)0.05909 (12)0.0268 (5)
N130.5390 (2)0.17927 (18)0.08993 (12)0.0272 (5)
C110.8516 (3)0.0028 (3)0.08424 (17)0.0393 (7)
C120.6622 (3)0.1244 (2)0.11189 (14)0.0282 (6)
C130.4561 (3)0.2335 (2)0.14836 (15)0.0347 (6)
C140.4862 (3)0.1843 (2)0.01632 (15)0.0263 (5)
C150.5708 (2)0.1302 (2)0.04306 (14)0.0228 (5)
C160.6972 (3)0.0675 (2)0.01920 (14)0.0259 (5)
C1510.5461 (2)0.1113 (2)0.19224 (14)0.0223 (5)
C1520.6621 (2)0.05066 (19)0.21618 (14)0.0219 (5)
C1530.6779 (2)0.02111 (19)0.29172 (14)0.0208 (5)
C1540.5707 (2)0.05327 (19)0.34287 (13)0.0212 (5)
C1550.4529 (2)0.1170 (2)0.32182 (14)0.0221 (5)
C1560.4446 (2)0.14450 (19)0.24639 (14)0.0216 (5)
C1570.5158 (2)0.1451 (2)0.11505 (14)0.0229 (5)
C5310.8086 (2)0.0437 (2)0.31671 (14)0.0243 (5)
C5320.9117 (3)0.0630 (2)0.25124 (16)0.0334 (6)
C5330.7702 (3)0.1643 (2)0.33773 (16)0.0302 (6)
C5340.8878 (3)0.0277 (2)0.38685 (16)0.0297 (6)
C5510.3397 (2)0.1549 (2)0.37969 (14)0.0230 (5)
C5520.2212 (2)0.2194 (2)0.34188 (15)0.0274 (5)
C5530.2728 (3)0.0480 (2)0.40766 (16)0.0295 (6)
C5540.4017 (3)0.2356 (2)0.44972 (15)0.0316 (6)
O220.7640 (2)0.62967 (18)0.17663 (11)0.0379 (5)
O241.12450 (19)0.73157 (17)0.00405 (11)0.0366 (5)
O260.73439 (19)0.52023 (17)0.06211 (10)0.0342 (4)
O2540.98200 (18)0.52583 (16)0.41712 (10)0.0300 (4)
N210.7640 (2)0.56069 (18)0.05950 (12)0.0258 (5)
N230.9465 (2)0.67948 (18)0.09033 (12)0.0260 (5)
C210.6347 (3)0.4968 (3)0.08484 (17)0.0384 (7)
C220.8201 (3)0.6242 (2)0.11278 (14)0.0266 (5)
C231.0195 (3)0.7336 (2)0.14897 (15)0.0330 (6)
C241.0108 (3)0.6840 (2)0.01701 (14)0.0257 (5)
C250.9358 (2)0.6300 (2)0.04244 (14)0.0232 (5)
C260.8055 (3)0.5676 (2)0.01895 (14)0.0252 (5)
C2510.9846 (2)0.61063 (19)0.19149 (14)0.0211 (5)
C2520.8722 (2)0.55038 (19)0.21561 (13)0.0207 (5)
C2530.8678 (2)0.52121 (19)0.29108 (14)0.0210 (5)
C2540.9822 (2)0.5542 (2)0.34276 (13)0.0219 (5)
C2551.0972 (2)0.61689 (19)0.32165 (13)0.0209 (5)
C2561.0944 (2)0.6437 (2)0.24588 (14)0.0217 (5)
C2571.0025 (2)0.6444 (2)0.11460 (14)0.0225 (5)
C6310.7412 (2)0.4561 (2)0.31593 (14)0.0236 (5)
C6320.6289 (3)0.4348 (2)0.24965 (15)0.0305 (6)
C6330.7836 (3)0.3369 (2)0.33841 (16)0.0300 (6)
C6340.6727 (3)0.5286 (2)0.38463 (15)0.0296 (6)
C6511.2204 (2)0.6555 (2)0.37934 (14)0.0239 (5)
C6521.3332 (3)0.7181 (2)0.34047 (15)0.0279 (5)
C6531.2917 (3)0.5506 (2)0.40860 (17)0.0321 (6)
C6541.1696 (3)0.7406 (2)0.44770 (15)0.0307 (6)
H11A0.93390.04640.07030.059*
H11B0.84450.02490.14090.059*
H11C0.85990.07250.05830.059*
H13A0.36370.19710.15590.052*
H13B0.50300.22350.19790.052*
H13C0.44620.31610.13030.052*
H32A0.93720.01160.23540.050*
H32B0.86830.11230.20640.050*
H32C0.99550.10070.27000.050*
H33A0.72550.21060.29200.045*
H33B0.70580.15550.38050.045*
H33C0.85490.20320.35400.045*
H34A0.97090.01450.40170.045*
H34B0.82680.04040.43110.045*
H34C0.91570.10240.37210.045*
H52A0.15150.24270.38050.041*
H52B0.17760.16860.29790.041*
H52C0.25890.28830.32300.041*
H53A0.34400.00620.43500.044*
H53B0.23320.00290.36250.044*
H53C0.19880.07300.44320.044*
H54A0.44370.30320.43140.047*
H54B0.47330.19440.47720.047*
H54C0.32790.26090.48530.047*
H1520.73220.02900.18010.026*
H1540.65000.00970.42650.033*
H1560.36690.18770.23060.026*
H1570.43400.19070.11480.027*
H21A0.55440.54640.07180.058*
H21B0.62980.42790.05820.058*
H21C0.63350.47370.14140.058*
H23A1.03240.81620.13100.049*
H23B0.96420.72360.19840.049*
H23C1.11060.69720.15670.049*
H32D0.54880.39540.26780.046*
H32E0.66710.38650.20500.046*
H32F0.59900.50890.23380.046*
H33D0.85520.34710.38100.045*
H33E0.82080.28950.29310.045*
H33F0.70190.29840.35550.045*
H34D0.63580.60000.36760.044*
H34E0.74220.54780.42760.044*
H34F0.59640.48420.40240.044*
H52D1.29210.78440.31860.042*
H52E1.37240.66480.29860.042*
H52F1.40730.74520.37940.042*
H53D1.37170.57670.44370.048*
H53E1.32380.49840.36400.048*
H53F1.22530.50980.43680.048*
H54D1.24760.76190.48530.046*
H54E1.09580.70400.47340.046*
H54F1.13310.81020.42790.046*
H2520.79650.52860.17950.025*
H2540.90940.48970.42490.036*
H2561.17010.68630.23010.026*
H2571.08460.68990.11440.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0445 (11)0.0478 (12)0.0242 (10)0.0030 (9)0.0062 (8)0.0073 (9)
O140.0399 (11)0.0439 (12)0.0262 (10)0.0153 (9)0.0019 (8)0.0101 (8)
O160.0377 (10)0.0417 (11)0.0279 (10)0.0135 (8)0.0086 (8)0.0106 (8)
O1540.0244 (9)0.0398 (10)0.0211 (9)0.0068 (7)0.0009 (7)0.0117 (7)
N110.0286 (11)0.0287 (11)0.0234 (11)0.0019 (9)0.0049 (8)0.0031 (9)
N130.0344 (12)0.0250 (11)0.0223 (11)0.0023 (9)0.0041 (9)0.0058 (8)
C110.0380 (15)0.0505 (18)0.0300 (15)0.0125 (13)0.0118 (12)0.0038 (13)
C120.0347 (14)0.0315 (14)0.0184 (12)0.0082 (11)0.0036 (10)0.0023 (10)
C130.0483 (16)0.0333 (14)0.0231 (13)0.0030 (12)0.0064 (12)0.0090 (11)
C140.0310 (13)0.0218 (12)0.0255 (13)0.0015 (10)0.0002 (10)0.0008 (10)
C150.0262 (12)0.0193 (11)0.0230 (12)0.0007 (9)0.0015 (9)0.0032 (9)
C160.0325 (13)0.0235 (12)0.0222 (13)0.0022 (10)0.0037 (10)0.0038 (10)
C1510.0240 (12)0.0197 (11)0.0229 (12)0.0020 (9)0.0015 (9)0.0023 (9)
C1520.0237 (12)0.0184 (11)0.0234 (12)0.0005 (9)0.0041 (9)0.0006 (9)
C1530.0223 (11)0.0182 (11)0.0217 (12)0.0027 (9)0.0008 (9)0.0023 (9)
C1540.0241 (12)0.0202 (11)0.0198 (12)0.0021 (9)0.0003 (9)0.0046 (9)
C1550.0227 (11)0.0207 (11)0.0227 (12)0.0036 (9)0.0016 (9)0.0034 (9)
C1560.0217 (11)0.0198 (11)0.0235 (12)0.0021 (9)0.0001 (9)0.0035 (9)
C1570.0261 (12)0.0214 (12)0.0210 (12)0.0017 (9)0.0007 (9)0.0032 (9)
C5310.0234 (12)0.0241 (12)0.0259 (13)0.0023 (9)0.0012 (9)0.0049 (10)
C5320.0287 (13)0.0386 (15)0.0343 (15)0.0107 (11)0.0052 (11)0.0095 (12)
C5330.0325 (14)0.0252 (13)0.0332 (15)0.0050 (10)0.0023 (11)0.0068 (11)
C5340.0231 (12)0.0320 (14)0.0338 (15)0.0013 (10)0.0006 (10)0.0046 (11)
C5510.0212 (11)0.0259 (12)0.0224 (12)0.0024 (9)0.0002 (9)0.0056 (10)
C5520.0247 (12)0.0329 (14)0.0254 (13)0.0071 (10)0.0040 (10)0.0062 (11)
C5530.0246 (12)0.0347 (14)0.0308 (14)0.0017 (11)0.0025 (10)0.0098 (11)
C5540.0313 (14)0.0331 (14)0.0284 (14)0.0018 (11)0.0009 (11)0.0028 (11)
O220.0427 (11)0.0488 (12)0.0227 (10)0.0029 (9)0.0067 (8)0.0087 (8)
O240.0383 (11)0.0477 (12)0.0248 (10)0.0134 (9)0.0014 (8)0.0100 (8)
O260.0344 (10)0.0428 (11)0.0265 (10)0.0139 (8)0.0050 (8)0.0110 (8)
O2540.0320 (10)0.0394 (10)0.0207 (9)0.0048 (8)0.0008 (7)0.0115 (8)
N210.0275 (11)0.0275 (11)0.0217 (11)0.0004 (8)0.0038 (8)0.0021 (8)
N230.0330 (11)0.0264 (11)0.0198 (10)0.0024 (9)0.0024 (8)0.0071 (8)
C210.0359 (15)0.0494 (18)0.0286 (15)0.0097 (13)0.0083 (12)0.0034 (13)
C220.0323 (13)0.0284 (13)0.0188 (12)0.0071 (10)0.0011 (10)0.0032 (10)
C230.0460 (16)0.0333 (14)0.0220 (13)0.0031 (12)0.0078 (11)0.0103 (11)
C240.0295 (13)0.0262 (13)0.0215 (12)0.0007 (10)0.0011 (10)0.0037 (10)
C250.0271 (12)0.0230 (12)0.0197 (12)0.0028 (10)0.0017 (9)0.0042 (9)
C260.0306 (13)0.0236 (12)0.0214 (12)0.0006 (10)0.0031 (10)0.0047 (10)
C2510.0242 (12)0.0178 (11)0.0213 (12)0.0006 (9)0.0001 (9)0.0025 (9)
C2520.0227 (11)0.0182 (11)0.0206 (12)0.0018 (9)0.0019 (9)0.0014 (9)
C2530.0216 (11)0.0187 (11)0.0227 (12)0.0023 (9)0.0008 (9)0.0024 (9)
C2540.0258 (12)0.0242 (12)0.0160 (11)0.0013 (9)0.0014 (9)0.0041 (9)
C2550.0243 (12)0.0182 (11)0.0203 (12)0.0043 (9)0.0009 (9)0.0029 (9)
C2560.0219 (11)0.0214 (12)0.0221 (12)0.0007 (9)0.0027 (9)0.0031 (9)
C2570.0243 (12)0.0207 (11)0.0229 (12)0.0005 (9)0.0013 (9)0.0041 (9)
C6310.0246 (12)0.0234 (12)0.0236 (12)0.0013 (9)0.0009 (9)0.0057 (10)
C6320.0278 (13)0.0350 (14)0.0299 (14)0.0095 (11)0.0013 (10)0.0102 (11)
C6330.0346 (14)0.0256 (13)0.0309 (14)0.0054 (11)0.0036 (11)0.0075 (11)
C6340.0269 (13)0.0313 (14)0.0311 (14)0.0016 (10)0.0034 (10)0.0053 (11)
C6510.0235 (12)0.0285 (13)0.0198 (12)0.0007 (10)0.0013 (9)0.0044 (10)
C6520.0257 (12)0.0331 (14)0.0247 (13)0.0054 (10)0.0033 (10)0.0048 (11)
C6530.0249 (13)0.0360 (15)0.0368 (16)0.0008 (11)0.0031 (11)0.0122 (12)
C6540.0334 (14)0.0340 (14)0.0235 (13)0.0033 (11)0.0010 (10)0.0003 (11)
Geometric parameters (Å, º) top
N11—C121.376 (3)N21—C221.383 (3)
N11—C161.387 (3)N21—C261.389 (3)
N11—C111.465 (3)N21—C211.468 (3)
C11—H11A0.98C21—H21A0.98
C11—H11B0.98C21—H21B0.98
C11—H11C0.98C21—H21C0.98
C12—O121.219 (3)C22—O221.216 (3)
C12—N131.389 (3)C22—N231.390 (3)
N13—C141.385 (3)N23—C241.380 (3)
N13—C131.466 (3)N23—C231.466 (3)
C13—H13A0.98C23—H23A0.98
C13—H13B0.98C23—H23B0.98
C13—H13C0.98C23—H23C0.98
C14—O141.217 (3)C24—O241.224 (3)
C14—C151.485 (3)C24—C251.486 (3)
C15—C1571.364 (3)C25—C2571.367 (3)
C15—C161.465 (3)C25—C261.462 (3)
C16—O161.223 (3)C26—O261.217 (3)
C157—C1511.457 (3)C257—C2511.453 (3)
C157—H1570.95C257—H2570.95
C151—C1521.396 (3)C251—C2521.397 (3)
C151—C1561.401 (3)C251—C2561.400 (3)
C152—C1531.396 (3)C252—C2531.393 (3)
C152—H1520.95C252—H2520.95
C153—C1541.406 (3)C253—C2541.406 (3)
C153—C5311.540 (3)C253—C6311.540 (3)
C531—C5321.531 (4)C631—C6321.534 (3)
C531—C5331.548 (3)C631—C6341.539 (4)
C531—C5341.548 (3)C631—C6331.543 (3)
C532—H32A0.98C632—H32D0.98
C532—H32B0.98C632—H32E0.98
C532—H32C0.98C632—H32F0.98
C533—H33A0.98C633—H33D0.98
C533—H33B0.98C633—H33E0.98
C533—H33C0.98C633—H33F0.98
C534—H34A0.98C634—H34D0.98
C534—H34B0.98C634—H34E0.98
C534—H34C0.98C634—H34F0.98
C154—O1541.367 (3)C254—O2541.369 (3)
C154—C1551.414 (3)C254—C2551.412 (3)
O154—H1540.8395O254—H2540.8394
C155—C1561.382 (3)C255—C2561.385 (3)
C155—C5511.537 (3)C255—C6511.542 (3)
C551—C5541.532 (3)C651—C6521.534 (3)
C551—C5521.533 (3)C651—C6531.534 (3)
C551—C5531.545 (3)C651—C6541.539 (4)
C552—H52A0.98C652—H52D0.98
C552—H52B0.98C652—H52E0.98
C552—H52C0.98C652—H52F0.98
C553—H53A0.98C653—H53D0.98
C553—H53B0.98C653—H53E0.98
C553—H53C0.98C653—H53F0.98
C554—H54A0.98C654—H54D0.98
C554—H54B0.98C654—H54E0.98
C554—H54C0.98C654—H54F0.98
C156—H1560.95C256—H2560.95
C12—N11—C16125.2 (2)C22—N21—C26125.4 (2)
C12—N11—C11116.7 (2)C22—N21—C21116.5 (2)
C16—N11—C11117.2 (2)C26—N21—C21117.2 (2)
N11—C11—H11A109.5N21—C21—H21A109.5
N11—C11—H11B109.5N21—C21—H21B109.5
H11A—C11—H11B109.5H21A—C21—H21B109.5
N11—C11—H11C109.5N21—C21—H21C109.5
H11A—C11—H11C109.5H21A—C21—H21C109.5
H11B—C11—H11C109.5H21B—C21—H21C109.5
O12—C12—N11122.2 (2)O22—C22—N21122.1 (2)
O12—C12—N13121.0 (2)O22—C22—N23121.5 (2)
N11—C12—N13116.8 (2)N21—C22—N23116.4 (2)
C14—N13—C12124.4 (2)C24—N23—C22124.5 (2)
C14—N13—C13117.0 (2)C24—N23—C23117.3 (2)
C12—N13—C13118.6 (2)C22—N23—C23118.1 (2)
N13—C13—H13A109.5N23—C23—H23A109.5
N13—C13—H13B109.5N23—C23—H23B109.5
H13A—C13—H13B109.5H23A—C23—H23B109.5
N13—C13—H13C109.5N23—C23—H23C109.5
H13A—C13—H13C109.5H23A—C23—H23C109.5
H13B—C13—H13C109.5H23B—C23—H23C109.5
O14—C14—N13119.4 (2)O24—C24—N23119.3 (2)
O14—C14—C15123.7 (2)O24—C24—C25123.5 (2)
N13—C14—C15117.0 (2)N23—C24—C25117.1 (2)
C157—C15—C16128.0 (2)C257—C25—C26127.7 (2)
C157—C15—C14113.2 (2)C257—C25—C24113.4 (2)
C16—C15—C14118.8 (2)C26—C25—C24118.9 (2)
O16—C16—N11119.0 (2)O26—C26—N21118.8 (2)
O16—C16—C15124.6 (2)O26—C26—C25125.1 (2)
N11—C16—C15116.4 (2)N21—C26—C25116.1 (2)
C15—C157—C151138.5 (2)C25—C257—C251138.5 (2)
C15—C157—H157110.7C25—C257—H257110.7
C151—C157—H157110.7C251—C257—H257110.7
C152—C151—C156118.6 (2)C252—C251—C256118.3 (2)
C152—C151—C157127.1 (2)C252—C251—C257127.2 (2)
C156—C151—C157114.3 (2)C256—C251—C257114.5 (2)
C153—C152—C151121.7 (2)C253—C252—C251122.0 (2)
C153—C152—H152119.1C253—C252—H252119.0
C151—C152—H152119.1C251—C252—H252119.0
C152—C153—C154117.3 (2)C252—C253—C254117.4 (2)
C152—C153—C531120.4 (2)C252—C253—C631120.5 (2)
C154—C153—C531122.3 (2)C254—C253—C631122.1 (2)
C532—C531—C153111.6 (2)C632—C631—C634106.6 (2)
C532—C531—C533107.0 (2)C632—C631—C253111.53 (19)
C153—C531—C533111.14 (19)C634—C631—C253110.12 (19)
C532—C531—C534106.3 (2)C632—C631—C633107.1 (2)
C153—C531—C534110.59 (19)C634—C631—C633110.2 (2)
C533—C531—C534110.1 (2)C253—C631—C633111.14 (19)
C531—C532—H32A109.5C631—C632—H32D109.5
C531—C532—H32B109.5C631—C632—H32E109.5
H32A—C532—H32B109.5H32D—C632—H32E109.5
C531—C532—H32C109.5C631—C632—H32F109.5
H32A—C532—H32C109.5H32D—C632—H32F109.5
H32B—C532—H32C109.5H32E—C632—H32F109.5
C531—C533—H33A109.5C631—C633—H33D109.5
C531—C533—H33B109.5C631—C633—H33E109.5
H33A—C533—H33B109.5H33D—C633—H33E109.5
C531—C533—H33C109.5C631—C633—H33F109.5
H33A—C533—H33C109.5H33D—C633—H33F109.5
H33B—C533—H33C109.5H33E—C633—H33F109.5
C531—C534—H34A109.5C631—C634—H34D109.5
C531—C534—H34B109.5C631—C634—H34E109.5
H34A—C534—H34B109.5H34D—C634—H34E109.5
C531—C534—H34C109.5C631—C634—H34F109.5
H34A—C534—H34C109.5H34D—C634—H34F109.5
H34B—C534—H34C109.5H34E—C634—H34F109.5
O154—C154—C153121.2 (2)O254—C254—C253118.9 (2)
O154—C154—C155115.8 (2)O254—C254—C255118.3 (2)
C153—C154—C155123.0 (2)C253—C254—C255122.8 (2)
C154—O154—H154110.8C254—O254—H254112.0
C156—C155—C154116.7 (2)C256—C255—C254116.8 (2)
C156—C155—C551121.2 (2)C256—C255—C651120.7 (2)
C154—C155—C551122.0 (2)C254—C255—C651122.5 (2)
C554—C551—C552107.9 (2)C652—C651—C653106.1 (2)
C554—C551—C155110.38 (19)C652—C651—C654107.1 (2)
C552—C551—C155111.81 (19)C653—C651—C654111.2 (2)
C554—C551—C553110.1 (2)C652—C651—C255111.66 (19)
C552—C551—C553106.50 (19)C653—C651—C255110.7 (2)
C155—C551—C553110.1 (2)C654—C651—C255109.96 (19)
C551—C552—H52A109.5C651—C652—H52D109.5
C551—C552—H52B109.5C651—C652—H52E109.5
H52A—C552—H52B109.5H52D—C652—H52E109.5
C551—C552—H52C109.5C651—C652—H52F109.5
H52A—C552—H52C109.5H52D—C652—H52F109.5
H52B—C552—H52C109.5H52E—C652—H52F109.5
C551—C553—H53A109.5C651—C653—H53D109.5
C551—C553—H53B109.5C651—C653—H53E109.5
H53A—C553—H53B109.5H53D—C653—H53E109.5
C551—C553—H53C109.5C651—C653—H53F109.5
H53A—C553—H53C109.5H53D—C653—H53F109.5
H53B—C553—H53C109.5H53E—C653—H53F109.5
C551—C554—H54A109.5C651—C654—H54D109.5
C551—C554—H54B109.5C651—C654—H54E109.5
H54A—C554—H54B109.5H54D—C654—H54E109.5
C551—C554—H54C109.5C651—C654—H54F109.5
H54A—C554—H54C109.5H54D—C654—H54F109.5
H54B—C554—H54C109.5H54E—C654—H54F109.5
C155—C156—C151122.7 (2)C255—C256—C251122.8 (2)
C155—C156—H156118.7C255—C256—H256118.6
C151—C156—H156118.7C251—C256—H256118.6
C16—N11—C12—O12167.0 (2)C26—N21—C22—O22166.8 (2)
C11—N11—C12—O121.4 (4)C21—N21—C22—O221.8 (4)
C16—N11—C12—N1315.3 (3)C26—N21—C22—N2314.9 (4)
C11—N11—C12—N13176.3 (2)C21—N21—C22—N23176.6 (2)
O12—C12—N13—C14174.9 (2)O22—C22—N23—C24175.0 (2)
N11—C12—N13—C147.4 (3)N21—C22—N23—C246.6 (4)
O12—C12—N13—C136.7 (4)O22—C22—N23—C237.1 (4)
N11—C12—N13—C13171.0 (2)N21—C22—N23—C23171.3 (2)
C12—N13—C14—O14177.7 (2)C22—N23—C24—O24177.5 (2)
C13—N13—C14—O140.7 (3)C23—N23—C24—O240.4 (4)
C12—N13—C14—C152.1 (3)C22—N23—C24—C252.6 (4)
C13—N13—C14—C15179.5 (2)C23—N23—C24—C25179.5 (2)
O14—C14—C15—C1573.9 (3)O24—C24—C25—C2573.7 (4)
N13—C14—C15—C157176.2 (2)N23—C24—C25—C257176.2 (2)
O14—C14—C15—C16175.0 (2)O24—C24—C25—C26175.3 (2)
N13—C14—C15—C164.9 (3)N23—C24—C25—C264.8 (3)
C12—N11—C16—O16168.9 (2)C22—N21—C26—O26169.1 (2)
C11—N11—C16—O160.6 (3)C21—N21—C26—O260.6 (4)
C12—N11—C16—C1512.4 (3)C22—N21—C26—C2512.5 (4)
C11—N11—C16—C15179.3 (2)C21—N21—C26—C25179.0 (2)
C157—C15—C16—O161.6 (4)C257—C25—C26—O261.6 (4)
C14—C15—C16—O16179.7 (2)C24—C25—C26—O26179.6 (2)
C157—C15—C16—N11177.0 (2)C257—C25—C26—N21176.7 (2)
C14—C15—C16—N111.8 (3)C24—C25—C26—N212.1 (3)
C16—C15—C157—C1511.2 (5)C26—C25—C257—C2511.1 (5)
C14—C15—C157—C151177.6 (3)C24—C25—C257—C251177.7 (3)
C15—C157—C151—C1524.5 (5)C25—C257—C251—C2524.6 (5)
C15—C157—C151—C156175.2 (3)C25—C257—C251—C256175.5 (3)
C156—C151—C152—C1531.1 (3)C256—C251—C252—C2531.0 (3)
C157—C151—C152—C153178.6 (2)C257—C251—C252—C253179.0 (2)
C151—C152—C153—C1541.0 (3)C251—C252—C253—C2540.4 (3)
C151—C152—C153—C531178.8 (2)C251—C252—C253—C631179.2 (2)
C152—C153—C531—C5322.5 (3)C252—C253—C631—C6321.8 (3)
C154—C153—C531—C532177.3 (2)C254—C253—C631—C632177.8 (2)
C152—C153—C531—C533116.9 (2)C252—C253—C631—C634119.9 (2)
C154—C153—C531—C53363.4 (3)C254—C253—C631—C63459.6 (3)
C152—C153—C531—C534120.6 (2)C252—C253—C631—C633117.6 (2)
C154—C153—C531—C53459.2 (3)C254—C253—C631—C63362.8 (3)
C152—C153—C154—O154178.9 (2)C252—C253—C254—O254179.3 (2)
C531—C153—C154—O1541.3 (3)C631—C253—C254—O2541.1 (3)
C152—C153—C154—C1552.5 (3)C252—C253—C254—C2551.5 (3)
C531—C153—C154—C155177.3 (2)C631—C253—C254—C255178.1 (2)
O154—C154—C155—C156179.52 (19)O254—C254—C255—C256179.7 (2)
C153—C154—C155—C1561.8 (3)C253—C254—C255—C2561.1 (3)
O154—C154—C155—C5510.9 (3)O254—C254—C255—C6510.9 (3)
C153—C154—C155—C551177.7 (2)C253—C254—C255—C651178.4 (2)
C156—C155—C551—C554117.9 (2)C256—C255—C651—C6522.6 (3)
C154—C155—C551—C55461.7 (3)C254—C255—C651—C652177.9 (2)
C156—C155—C551—C5522.2 (3)C256—C255—C651—C653120.6 (2)
C154—C155—C551—C552178.2 (2)C254—C255—C651—C65360.0 (3)
C156—C155—C551—C553120.4 (2)C256—C255—C651—C654116.1 (2)
C154—C155—C551—C55360.1 (3)C254—C255—C651—C65463.3 (3)
C154—C155—C156—C1510.4 (3)C254—C255—C256—C2510.5 (3)
C551—C155—C156—C151180.0 (2)C651—C255—C256—C251179.9 (2)
C152—C151—C156—C1551.8 (3)C252—C251—C256—C2551.5 (3)
C157—C151—C156—C155177.9 (2)C257—C251—C256—C255178.5 (2)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC13H12N2O3C14H14N2O4C14H14N2O4C15H17N3O3
Mr244.25274.27274.27287.32
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)120120120120
a, b, c (Å)6.1293 (3), 13.9633 (8), 13.2727 (8)5.6946 (2), 8.2994 (3), 14.0411 (5)7.5906 (6), 8.2989 (7), 10.301 (1)8.6187 (2), 8.8451 (3), 9.0566 (3)
α, β, γ (°)90, 97.688 (4), 9073.5580 (17), 87.393 (2), 77.037 (2)92.544 (6), 93.074 (5), 104.456 (6)82.2980 (18), 84.465 (2), 82.365 (2)
V3)1125.74 (11)620.13 (4)626.33 (10)675.94 (4)
Z4222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.110.110.10
Crystal size (mm)0.34 × 0.25 × 0.090.52 × 0.34 × 0.160.48 × 0.44 × 0.340.40 × 0.30 × 0.20
Data collection
DiffractometerBruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.9910.953, 0.9830.947, 0.9640.955, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12444, 2573, 1885 14859, 2847, 2331 10553, 2860, 2173 13410, 3073, 2698
Rint0.0500.0340.0340.027
(sin θ/λ)max1)0.6520.6500.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.201, 1.05 0.040, 0.132, 1.11 0.046, 0.136, 1.06 0.039, 0.108, 1.05
No. of reflections2573284728603073
No. of parameters165184184194
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.300.40, 0.400.27, 0.240.28, 0.27


(V)
Crystal data
Chemical formulaC21H28N2O4
Mr372.45
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.6040 (3), 11.6691 (4), 17.2905 (6)
α, β, γ (°)97.4860 (16), 92.5540 (18), 90.006 (2)
V3)1919.29 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.10 × 0.03
Data collection
DiffractometerBruker-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.967, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
39965, 8856, 6116
Rint0.068
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.179, 1.05
No. of reflections8856
No. of parameters503
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.42

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond distances (Å) for compounds (I)–(V) top
Parameter(I)(II)(III)(IV)(V, mol 1)(V, mol 2)
n =nilnilnilnil12
Cn2-On21.211 (3)1.2160 (18)1.2166 (18)1.2189 (14)1.219 (3)1.216 (3)
Cn4-On41.219 (3)1.2235 (17)1.2204 (18)1.2273 (14)1.217 (3)1.224 (3)
Cn6-On61.211 (3)1.2234 (18)1.2157 (19)1.2250 (14)1.223 (3)1.217 (3)
Cn5-Cn571.362 (3)1.3627 (19)1.366 (2)1.3814 (16)1.364 (3)1.367 (3)
Cn57-Cn511.447 (3)1.4658 (19)1.449 (2)1.4295 (15)1.457 (3)1.453 (3)
Cn51-Cn521.403 (3)1.4065 (19)1.410 (2)1.4179 (15)1.396 (3)1.397 (3)
Cn52-Cn531.391 (3)1.390 (2)1.378 (2)1.3751 (16)1.396 (3)1.393 (3)
Cn53-Cn541.387 (3)1.396 (2)1.402 (2)1.4191 (16)1.406 (3)1.406 (3)
Cn54-Cn551.383 (4)1.385 (2)1.388 (2)1.4211 (15)1.414 (3)1.412 (3)
Cn55-Cn561.397 (3)1.392 (2)1.384 (2)1.3709 (16)1.382 (3)1.385 (3)
Cn56-Cn511.405 (3)1.404 (2)1.404 (2)1.4202 (16)1.401 (3)1.400 (3)
Cn53-On531.3679 (17)
Cn54-On541.3578 (17)1.367 (3)1.369 (3)
Cn54-N541.3545 (14)
Cn5-Cn4-On4
123.6 (2)122.83 (13)123.49 (13)123.61 (11)127.7 (2)123.5 (2)
Cn5-Cn6-On6
124.5 (2)124.95 (13)124.00 (14)125.54 (10)124.6 (2)125.1 (2)
Cn4-Cn5-Cn57
115.23 (19)114.14 (12)114.26 (13)114.20 (10)113.2 (2)113.4 (2)
Cn6-Cn5-Cn57
125.99 (19)127.41 (13)126.71 (13)126.83 (10)128.0 (2)127.7 (2)
Cn5-Cn57-Cn51
137.1 (2)137.62 (13)139.14 (14)138.79 (10)138.5(2138.5 (2)
Cn57-Cn51-Cn52
127.2 (2)126.34 (13)128.25 (14)128.58 (10)127.1 (2)127.2 (2)
Cn52-Cn53-On53123.31 (13)
Cn54-Cn53-On53115.69 (13)
Cn53-Cn54-On54115.72 (13)121.2 (2)118.9 (2)
Cn55-Cn54-On54124.18 (14)115.8 (2)118.3 (2)
Cn5-Cn57-Cn51-Cn52
-14.6 (2)4.1 (3)6.1 (3)0.9 (2)4.5 (5)-4.6 (5)
Cn52-Cn53-On53-Cn531-2.1 (2)
Cn53-Cn54-On54-Cn541176.86 (13)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(V) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)C52-H52···O60.952.172.867 (3)130
C53-H53···O6i0.952.473.399 (3)167
C56-H56···O4ii0.952.403.310 (3)159
C57-H57···O40.952.282.751 (3)110
(II)C52-H52···O60.952.072.855 (2)139
C54-H54···O2iii0.952.383.334 (2)178
C56-H56···O4i0.952.383.313 (2)168
C57-H57···O40.952.242.727 (2)111
(III)C52-H52···O60.952.112.889 (2)138
C53-H53···O6ii0.952.523.387 (2)152
C55-H55···O4iv0.952.393.261 (2)152
C57-H57···O40.952.232.729 (2)112
(IV)C52-H52···O60.952.092.895 (2)141
C53-H53···O4v0.952.533.381 (2)149
C57-H57···O40.952.242.731 (2)111
(V)C152-H152···O160.952.082.889 (3)143
C157-H157···O140.952.212.709 (3)112
C252-H252···O260.952.082.892 (3)143
C257-H257···O240.952.222.716 (3)112
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z; (iii) x − 2, 1 + y, z; (iv) −x, 1 − y, 1 − z; (v) x, y, z − 1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRezende, M. C., Campodonico, P., Abuin, E. & Kossanyi, J. (2001). Spectrochim. Acta A, 57, 1183–1190.  CrossRef CAS Google Scholar
First citationRezende, M. C., Flores, P., Guerrero, J. & Villarroel, L. (2004). Spectrochim. Acta A, 60, 1637–1640.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, K., Fukawa, H., Okugawa, T. & Sekiya, M. (1976). Chem. Pharm. Bull. 24, 607–612.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds