organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two isomeric pairs of di­hydro­benzo­pyrazolo­quinazolines: centrosymmetric dimers, chains and sheets built from C—H⋯N and C—H⋯π(arene) hydrogen bonds and ππ stacking inter­actions

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 25 April 2005; accepted 26 April 2005; online 20 May 2005)

Mol­ecules of 5-meth­yl-2-phen­yl-6,7-dihydro­benzo­[h]­pyrazolo­[1,5-a]quinazoline, C21H17N3, (I), are linked into chains by a combination of a C—H⋯π(arene) hydrogen bond and a ππ stacking inter­action; in the closely related 5-meth­yl-2-(4-methyl­phen­yl)-6,7-dihydro­benzo[h]pyrazolo[1,5-a]quinazoline, C22H19N3, (II), there are no hydrogen bonds and the mol­ecules are linked into centrosymmetric dimers by a ππ stacking inter­action. 7-Meth­yl-10-phen­yl-5,6-dihydro­benzo[h]pyrazolo[5,1-b]quinazoline, C21H17N3, (III), is isomeric with (I), and the mol­ecules of (III) are linked into sheets by a combination of C—H⋯N and C—H⋯π(arene) hydrogen bonds. 7-Meth­yl-10-(4-methyl­phen­yl)-5,6-dihydro­benzo[h]pyrazolo[5,1-b]quinazoline, C22H19N3, (IV), is isomeric with (II), and mol­ecules of (IV) are linked into centrosymmetric dimers by a C—H⋯π(arene) hydrogen bond, augmented by ππ stacking inter­actions.

Comment

As part of a wider study of fused quinazoline systems, which are important pharmacophores (Fry et al., 1994[Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093-1095.]), we have recently reported the structures of two pyrazoloquinazolinones (Low et al., 2004[Low, J. N., Cobo, J., Quiroga, J., Portilla, J. & Glidewell, C. (2004). Acta Cryst. C60, o604-o607.]). Similar systems have been shown to be potent amino-acid antagonists (McQuaid et al., 1992[McQuaid, L., Smith, E., South, K., Mitch, C. H., Schoepp, D., True, R., Calligaro, D., O'Malley, P., Lodge, D. & Ornstein, P. (1992). J. Med. Chem. 35, 3319-3324.]), as well as being immunosuppressants and anti-inflammatory, anti-asthmatic and anti-allergenic agents (Casey et al., 1980[Casey, F. B., Abboa-Offei, B. E. & Marretta, J. (1980). J. Pharmacol. Exp. Ther. 213, 432-436.]). We describe here two isomeric pairs of dihydro­benzopyrazoloquinazolines; the benzo[h]pyrazolo[1,5-a]quinazolines (I)[link] and (II)[link] (see scheme) zare isomeric with the benzo[h]pyrazolo[5,1-b]quinazolines (III)[link] and (IV)[link]. Each pair of isomers was obtained from the corresponding 5-amino­pyrazole and 2-acetyl­tetra­lone using solvent-free cyclo­condensation reactions under microwave irradiation.

[Scheme 1]

The corresponding bond lengths within the heterobicyclic fragments in (I)–(IV)[link] [Figs. 1[link]–4[link][link][link], where the atom-numbering in (III)[link] and (IV)[link] is necessarily different from that in (I)[link] and (II)[link]] are very similar (Table 4[link]), but the patterns of these bond distances show some inter­esting properties. In each of (I)–(IV)[link], the N1—C2 bond, which is formally a double bond, is not significantly shorter than either the C3A—N4 bonds, or the C11B—N11C bonds in (I)[link] and (II)[link] or the C11—N11A bond in (IV)[link], all of which are formally single bonds; at the same time, the cross-ring bonds are by far the longest C—N bonds in either mol­ecule. These observations, together with the clear bond fixation in the pyrimidine ring, suggest that the ten π electrons of the pyrazolopyrimidine units are not fully delocalized around the periphery, but instead adopt a more characteristic arrangement reminiscent of that in naphthalene.

In each compound, the non-aromatic carbocyclic ring, containing atoms C6 and C7 in (I)[link] and (II)[link], and C9 and C10 in (III)[link] and (IV)[link], adopts a screw-boat conformation. The total puckering amplitudes Q (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are all very similar, at 0.476 (2), 0.467 (3), 0.426 (2) and 0.476 (2) Å for (I)–(IV)[link], respectively, and the ring-puckering parameters in (I)[link] and (II)[link] are, for the atom sequence C5A—C6—C7—C11A—C11B, θ = 68.9 (2)° and φ = 93.6 (2)° for (I)[link], and θ = 68.1 (4)° and φ = 99.4 (4)° for (II)[link]; these parameters are θ = 67.8 (2)° and φ = 202.5 (2)° for (III)[link], and θ = 65.8 (2)° and φ = 211.5 (2)° for (IV)[link], for the atom-sequence C4A—C4B—C8A—C9—C10—C10A. The ideal parameters for this conformation are θ = 67.5° and φ = (60n + 30)°, so that n = 1 in each of (I)[link] and (II)[link], and n = 3 in each of (III)[link] and (IV)[link] (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). Associated with these ring puckerings, the pyrimidine rings are not coplanar with the adjacent ar­yl rings, with dihedral angles between these rings of 24.83 (7)° in (I)[link], 22.4 (2)° in (II)[link], 18.75 (5)° in (III)[link] and 18.45 (5)° in (IV)[link]. By contrast, the pendent ar­yl ring C21–C26 is nearly coplanar with the pyrazole ring in each of (I)–(III)[link], where the relevant dihedral angles are 2.21 (8), 0.6 (2) and 1.11 (6)°, respectively, although this angle is 14.71 (6)° in (IV)[link].

Despite the close similarity between compounds (I)–(IV)[link] (Figs. 1[link]–4[link][link][link]) in terms both of their overall constitutions and of their detailed mol­ecular geometries, there are some significant variations in the nature of the supramolecular aggregation. In (I)[link], the mol­ecules are linked into chains by a single C—H⋯π(arene) hydrogen bond (Table 1[link]), and the chain formation is reinforced by a ππ stacking inter­action. Atom C6 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via H6A, to the pyrimidine ring of the mol­ecule at ([{1\over 2}] + x, [{1\over 2}] − y, 1 − z), so forming a chain running parallel to the [100] direction and generated by the 21 screw axis along (x, [{1\over 4}], [{1\over 2}]) (Fig. 5[link]). Within this chain, the pyrimidine ring in the mol­ecule at (x, y, z) and the C21–C26 ar­yl ring of the mol­ecule at (1 + x, y, z) are almost parallel, with a dihedral angle of only 3.3 (2)° between them; the inter­planar spacing is ca 3.46 Å, and the ring-centroid separation is 3.630 (2) Å, corresponding to a ring offset of ca 1.10 Å. Four chains of this type pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains; in particular, C—H⋯N hydrogen bonds are absent.

By contrast, in the very closely related (II)[link], there are no hydrogen bonds at all, and the mol­ecules are simply linked into centrosymmetric dimers by a single ππ stacking inter­action. The ar­yl rings (C7A/C8/C9/C10/C11/C11A) (Fig. 2[link]) in the mol­ecules at (x, y, z) and (1 − x, 1 − y, −z) are strictly parallel, with an inter­planar spacing of 3.434 (2) Å; the ring-centroid separation is 3.635 (2) Å, corresponding to a ring offset of 1.190 (2) Å (Fig. 6[link]).

Compound (III)[link] is an isomer of (I)[link], but the supramolecular aggregation is entirely different. The mol­ecules are linked by a combination of C—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 2[link]) into sheets of some complexity, whose formation is, however, readily analysed in terms of two one-dimensional substructures. One substructure, involving two types of hydrogen bond, takes the form of a chain of edge-fused rings. Atom C9 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via H9B, to atom N1 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(14) ring centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 7[link]). In addition, atom C10 in the mol­ecule at (x, y, z), part of the R22(14) dimer at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), acts as a hydrogen-bond donor, via H10B, to the C21–C26 ar­yl ring of the mol­ecule at (2 − x, 1 − y, 1 − z), which itself forms part of the R22(14) dimer centred at (1, [{1\over 2}], [{1\over 2}]). Propagation by inversion of these two hydrogen bonds then generates a chain of edge-fused rings along (x, [{1\over 2}], [{1\over 2}]) (Fig. 7[link]). In the second one-dimensional substructure, atom C5 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the C21–C26 ar­yl ring in the mol­ecule at (x, [{3\over 2}] − y, −[{1\over 2}] + z), so forming a chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.75 (Fig. 8[link]). The rings of type C21–C26 thus accept a C—H⋯π(arene) hydrogen bond on each face. The combination of [100] and [001] chains then generates a complex sheet parallel to (010).

In (IV)[link], which is an isomer of (II)[link], the mol­ecules are again linked into centrosymmetric dimers, but this time the dimer formation is dominated by a C—H⋯π(arene) hydrogen bond (Table 3[link]). Atom C10 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via H10B, to the C21–C26 ar­yl ring of the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 9[link]). In addition, there are a number of ππ stacking inter­actions, which assist in the stabilization of this dimer. The two pyrazole rings within the dimer are strictly parallel, with an inter­planar spacing of 3.410 (2) Å; the ring-centroid separation is 3.704 (2) Å, corresponding to a ring offset of 1.446 (2) Å. The pyrazole ring in the mol­ecule at (x, y, z) is nearly parallel to the pyrimidine ring of the mol­ecule at (1 − x, 1 − y, 1 − z); the dihedral angle between these planes is only 1.3 (2)°, and the inter­planar spacing is ca 3.42 Å. The corresponding ring-centroid separation is 3.704 (2) Å, giving a ring offset here of ca 1.42 Å. Thus, the pyrazole ring in each component of the dimer overlaps equally the pyrazole and pyrimidine rings of the other component (Fig. 9[link]).

The pairs of isomers (I)[link]/(III)[link] and (III)[link]/(IV)[link] may be briefly compared with the corresponding pair of isomers (V)[link] and (VI)[link] (see scheme) containing 4-chloro­phen­yl substituents (Low et al., 2004[Low, J. N., Cobo, J., Quiroga, J., Portilla, J. & Glidewell, C. (2004). Acta Cryst. C60, o604-o607.]). Neither of the 4-chloro­phen­yl compounds (V)[link] or (VI)[link] is isomorphous with the corresponding 4-methyl­phen­yl compound. In (V)[link], which crystallizes in the space group [P\overline1] with Z′ = 2, the mol­ecules are linked into chains by ππ stacking inter­actions, whereas in (VI)[link], which has Z′ = 1 in [P\overline1], the mol­ecules are linked into isolated centrosymmetric dimers by means of paired C—H⋯π(arene) hydrogen bonds.

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecule of (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
Stereoview of part of the crystal structure of (I)[link], showing the formation of a [100] chain built from C—H⋯π(arene) hydrogen bonds and ππ stacking inter­actions. For clarity, H atoms bonded to C atoms that are not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of (II)[link], showing the formation of a centrosymmetric π-stacked dimer. For clarity, all H atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 7]
Figure 7
Part of the crystal structure of (III)[link], showing the formation of a [100] chain of edge-fused rings. For clarity, H atoms bonded to C atoms not involved in hydrogen bonding have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (2 − x, 1 − y, 1 − z) and (−1 + x, y, z), respectively.
[Figure 8]
Figure 8
Part of the crystal structure of (III)[link], showing the formation of a [001] chain. For clarity, H atoms that are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [3 \over 2] − y, −[{1\over 2}] + z) and (x, [3 \over 2] − y, [{1\over 2}] + z), respectively.
[Figure 9]
Figure 9
Part of the crystal structure of (IV)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, H atoms bonded to the C atoms that are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

For the synthesis of the isomeric pair of compounds (I)[link] and (III)[link], equimolar amounts of 5-amino-3-phen­yl-1H-pyrazole (2.6 mmol) and 2-acetyl­tetra­lone (2.6 mmol) were placed in Pyrex glass open vessels and irradiated in a domestic microwave oven for 1.5 min (at 600 Watts). The reaction mixture was treated with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane/eth­yl acetate (3:1 v/v) as eluant. The first fraction eluted contained compound (III)[link] (yield 20%, m.p. 430–431 K, brown crystals). MS (EI 30 eV) m/z (%): 311 (100, M+), 296 (3), 269 (8). The second fraction (main product) contained (I)[link] (yield 74%, m.p. 450–451 K, yellow crystals). MS (EI 30 eV) m/z (%): 311 (100, M+), 296 (4), 269 (12). For the synthesis of the isomeric pair of compounds (II)[link] and (IV)[link], equimolar amounts of 5-amino-3-(4-methyl­phen­yl)-1H-pyrazole (2.6 mmol) and 2-acetyl­tetra­lone (2.6 mmol) were placed in Pyrex glass open vessels and irradiated in a domestic microwave oven for 1.5 min (at 600 Watts). The reaction mixture was treated with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane/eth­yl acetate (3:1 v/v) as eluant. The first fraction eluted contained compound (IV)[link] (yield 17%, m.p. 453–454 K, brown crystals). MS (EI 30 eV) m/z (%): 325 (100, M+), 310 (7), 283 (10). The second fraction (main product) contained (II)[link] (yield 71%, m.p. 478–479 K, yellow crystals). MS (EI 30 eV) m/z (%): 325 (100, M+), 310 (9), 283 (12). Crystals suitable for single-crystal X-ray diffraction were selected directly from the samples purified by chromatography as described.

Compound (I)[link]

Crystal data
  • C21H17N3

  • Mr = 311.38

  • Orthorhombic, P b c a

  • a = 7.6223 (2) Å

  • b = 16.7937 (7) Å

  • c = 24.4900 (9) Å

  • V = 3134.88 (19) Å3

  • Z = 8

  • Dx = 1.319 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3577 reflections

  • θ = 3.1–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Needle, yellow

  • 0.90 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.923, Tmax = 0.995

  • 19 065 measured reflections

  • 3577 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.056

  • θmax = 27.5°

  • h = −9 → 9

  • k = −20 → 21

  • l = −30 → 31

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.07

  • 3577 reflections

  • 218 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0634P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the pyrimidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6ACg1i 0.99 2.75 3.644 (2) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Compound (II)[link]

Crystal data
  • C22H19N3

  • Mr = 325.40

  • Monoclinic, P 21 /n

  • a = 7.2767 (13) Å

  • b = 29.924 (6) Å

  • c = 8.0463 (12) Å

  • β = 112.590 (6)°

  • V = 1617.6 (5) Å3

  • Z = 4

  • Dx = 1.336 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2701 reflections

  • θ = 3.1–25.0°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.978, Tmax = 0.991

  • 7247 measured reflections

  • 2701 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 25.0°

  • h = −8 → 8

  • k = −35 → 34

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.248

  • S = 1.05

  • 2701 reflections

  • 228 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1774P)2 + 0.6771P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.007

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Compound (III)[link]

Crystal data
  • C21H17N3

  • Mr = 311.38

  • Monoclinic, P 21 /c

  • a = 8.1092 (1) Å

  • b = 11.7265 (2) Å

  • c = 16.3486 (3) Å

  • β = 90.9010 (12)°

  • V = 1554.44 (4) Å3

  • Z = 4

  • Dx = 1.331 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3555 reflections

  • θ = 3.1–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Plate, brown

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.981, Tmax = 0.992

  • 28 824 measured reflections

  • 3555 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.5°

  • h = −10 → 9

  • k = −15 → 15

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.04

  • 3555 reflections

  • 218 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0488P)2 + 0.5945P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg2 is the centroid of ring C21–C26.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg2ii 0.95 2.67 3.5129 (12) 148
C9—H9B⋯N1iii 0.99 2.58 3.4003 (14) 140
C10—H10BCg2iv 0.99 2.55 3.4676 (12) 154
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.

Compound (IV)[link]

Crystal data
  • C22H19N3

  • Mr = 325.40

  • Monoclinic, P 21 /c

  • a = 7.9037 (7) Å

  • b = 13.1038 (10) Å

  • c = 16.0576 (13) Å

  • β = 99.199 (6)°

  • V = 1641.7 (2) Å3

  • Z = 4

  • Dx = 1.317 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3765 reflections

  • θ = 3.0–27.6°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, brown

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.956, Tmax = 0.973

  • 22 738 measured reflections

  • 3765 independent reflections

  • 3274 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.6°

  • h = −10 → 10

  • k = −17 → 16

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.06

  • 3765 reflections

  • 229 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0742P)2 + 0.428P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.073 (7)

Table 3
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg2 is the centroid of ring C21–C26.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10BCg2iii 0.99 2.80 3.691 (2) 151
Symmetry code: (iii) -x+1, -y+1, -z+1.

Table 4
Selected bond lengths (Å) for compounds (I)–(IV)

  (I) (II)   (III) (IV)
N1—C2 1.3493 (19) 1.349 (3) N1—C2 1.3524 (14) 1.3446 (15)
C2—C3 1.397 (2) 1.392 (4) C2—C3 1.4000 (15) 1.3989 (15)
C3—C3A 1.383 (2) 1.380 (4) C3—C3A 1.3878 (15) 1.3863 (16)
C3A—N4 1.3550 (17) 1.361 (3) C3A—N4 1.3467 (14) 1.3504 (14)
N4—C5 1.3252 (19) 1.318 (4) N4—C4A 1.3259 (14) 1.3201 (15)
C5—C5A 1.428 (2) 1.425 (4) C4A—C10A 1.4344 (15) 1.4350 (15)
C5A—C11B 1.3790 (19) 1.385 (4) C10A—C11 1.3723 (15) 1.3685 (15)
C11B—N11C 1.3808 (18) 1.383 (3) C11—N11A 1.3726 (14) 1.3662 (14)
N11C—N1 1.3626 (16) 1.361 (3) N11A—N1 1.3595 (12) 1.3534 (12)
C3A—N11C 1.3957 (19) 1.386 (4) C3A—N11A 1.3905 (14) 1.3854 (14)

The space groups Pbca, P21/n, P21/c and P21/c for compounds (I)–(IV)[link], respectively, were all uniquely assigned from the systematic absences. All H atoms were located from difference maps in fully ordered sites; they were then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (meth­yl) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the meth­yl groups. Compound (I)[link] crystallized in the form of long very fine needles. All attempts to cut suitably small fragments from these needles caused irretrievable shattering, and hence the shortest needle in the sample was selected for data collection without modification.

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of a wider study of fused quinazoline systems, which are important pharmacophores (Fry et al., 1994), we have recently reported the structures of two pyrazoloquinazolinone (Low et al., 2004). Similar systems have been shown to be potent amino-acid antagonists (McQuaid et al., 1992), as well as being immunosuppressants and anti-inflammatory, anti-asthmatic and anti-allergenic agents (Casey et al., 1980). We describe here two isomeric pairs of dihydrobenzopyrazoloquinazolines: the benzo[h]pyrazolo[1,5-a]quinazolines (I) and (II) are isomeric with the benzo[h]pyrazolo[5,1-b]quinazolines (III) and (IV). Each pair of isomers was obtained from the corresponding 5-aminopyrazole and 2-acetyltetralone using solvent-free cyclocondensation reactions under microwave irradiation.

The corresponding bond lengths within the heterobicyclic fragments in (I)–(IV) [Figs. 1–4, where the atom-numbering is necessarily different in (III) and (IV) from that in (I) and (II)] are very similar (Table 1), but the patterns of these bond distances show some interesting properties. In each of (I)–(IV), the N1—C2 bond, which is formally a double bond, is not significantly shorter than either the C3A—N4 bonds, or the C11B—N11C bonds in (I) and (II) or the C11—N11A bond in (IV), all of which are formally single bonds; at the same time the cross-ring bonds are by far the longest C—N bond in either molecule. These observations, together with the clear bond fixation in the pyrimidine ring, suggest that the ten π electrons of the pyrazolopyrimidine units are not fully delocalized around the periphery, but instead adopt a more characteristic arrangement reminiscent of that in naphthalene.

In each compound, the non-aromatic carbocyclic ring, containing atoms C6 and C7 in (I) and (II), and C9 and C10 in (III) and (IV), adopts a screw-boat conformation. The total puckering amplitudes Q (Cremer & Pople, 1975) are all very similar, at 0.476 (2), 0.467 (3), 0.426 (2) and 0.476 (2) Å for (I)–(IV), respectively, and the ring-puckering parameters in (I) and (II), are, for the atom sequence C5A—C6—C7—C11A—C11B, θ = 68.9 (2) and ϕ = 93.6 (2) for (I), and θ = 68.1 (4) and ϕ = 99.4 (4) for (II); in (III) and (IV), these parameters are θ = 67.8 (2) and ϕ = 202.5 (2) for (III), and θ = 65.8 (2) and ϕ = 211.5 (2) for (IV), for the atom-sequence C4A—C4B—C8A—C9—C10—C10A. The ideal parameters for this conformation are θ = 67.5 and ϕ = (60n + 30)°, so that n = 1 in each of (I) and (II), and n = 3 in each of (III) and (IV) (Evans & Boeyens, 1989). Associated with these ring puckerings, the pyrimidine rings are not coplanar with the adjacent aryl rings, with dihedral angles between these rings of 24.83 (7)° in (I), 22.4 (2)° in (II), 18.75 (5)° in (III) and 18.45 (5)° in (IV). By contrast, the pendent aryl ring C21–C26 is nearly coplanar with the pyrazole ring in each of (I)–(III), where the relevant dihedral angles are 2.21 (8), 0.6 (2) and 1.11 (6)°, respectively, although this angle is 14.71 (6) in (IV).

Despite the close similarity between compounds (I)–(IV) (Figs. 1 − 4) in terms both of their overall constitutions and of their detailed molecular geometries, there are some significant variations in the nature of the supramolecular aggregation. In (I), the molecules are linked into chains by a single C—H···π(arene) hydrogen bond (Table 2), and the chain formation is reinforced by a ππ stacking interaction. Atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H6A, to the pyrimidine ring of the molecule at (1/2 + x, 1/2 − y, 1 − z), so forming a chain running parallel to the [100] direction and generated by the 21 screw axis along (x, 1/4, 1/2) (Fig. 5). Within this chain, the pyrimidine ring in the molecule at (x, y, z) and the aryl ring C21–C26 of the molecule at (1 + x, y, z) are almost parallel, with a dihedral angle of only 3.3 (2)° between them; the interplanar spacing is ca 3.46 Å, and the ring-centroid separation is 3.630 (2) Å, corresponding to a ring offset of ca 1.10 Å. Four chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains; in particular C—H···N hydrogen bonds are absent.

By contrast, in the very closely related (II), there are no hydrogen bonds at all, and the molecules are simply linked into centrosymmetric dimers by a single ππ stacking interaction. The aryl rings (C7A/C8/C9/C10/C11/C11A) (Fig. 2) in the molecules at (x, y, z) and (1 − x, 1 − y, − z) are strictly parallel with an interplanar spacing of 3.434 (2) Å; the ring-centroid separation is 3.635 (2) Å, corresponding to a ring offset of 1.190 (2) Å (Fig. 6).

Compound (III) is an isomer of (I), but the supramolecular aggregation is entirely different. The molecules are linked by a combination of C—H···N and C—H···π(arene) hydrogen bonds (Table 3) into sheets of some complexity, whose formation is, however, readily analysed in terms of two one-dimensional substructures. One substructure, involving two types of hydrogen bond, takes the form of a chain of edge-fused rings. Atom C9 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H9B, to atom N1 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(14) ring centred at (1/2, 1/2, 1/2) (Fig. 7). In addition, atom C10 in the molecule at (x, y, z), part of the R22(14) dimer at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor, via H10B, to the aryl ring C21–C26 of the molecule at (2 − x, 1 − y, 1 − z), which itself forms part of the R22(14) dimer centred at (1, 1/2, 1/2). Propagation by inversion of these two hydrogen bonds then generates a chain of edge-fused rings along (x, 1/2, 1/2) (Fig. 7). In the second one-dimensional substructure, atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the aryl ring C21–C26 in the molecule at (x, 3/2 − y, −1/2 + z), so forming a chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.75 (Fig. 8). The rings of type C21–C26 thus accept a C—H···π(arene) hydrogen bond on each face. The combination of [100] and [001] chains then generates a complex sheet parallel to (010).

In (IV), which is an isomer of (II), the molecules are again linked into centrosymmetric dimers, but this time the dimer formation is dominated by a C—H···π(arene) hydrogen bond (Table 4). Atom C10 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H10B, to the aryl ring C21–C26 of the molecule at (1 − x, 1 − y, 1 − z), so generating a dimer centred at (1/2, 1/2, 1/2) (Fig. 9). In addition, there are a number of ππ stacking interactions, which assist in the stabilization of this dimer. The two pyrazole rings within the dimer are strictly parallel, with an interplanar spacing of 3.410 (2) Å; the ring-centroid separation is 3.704 (2) Å, corresponding to a ring offset of 1.446 (2) Å. The pyrazole ring in the molecule at (x, y, z) is nearly parallel to the pyrimidine ring of the molecule at (1 − x, 1 − y, 1 − z); the dihedral angle between these planes is only 1.3 (2)°, and the interplanar spacing is ca 3.42 Å. The corresponding ring-centroid separation is 3.704 (2) Å, giving a ring offset here of ca 1.42 Å. Thus the pyrazole ring in each component of the dimer overlaps equally the pyrazole and pyrimidine rings of the other component (Fig. 9).

The pairs of isomers (I) and (III), and (III) and (IV), may be briefly compared with the corresponding pair of isomers (V) and (VI) containing 4-chlorophenyl substituents (Low et al., 2004). Neither of the 4-chlorophenyl compounds (V) or (VI) is isomorphous with the corresponding 4-methylphenyl compound. In (V), which crystallizes in space group P-1 with Z' = 2, the molecules are linked into chains by ππ stacking interactions, whereas in (VI), which has Z' = 1 in P-1, the molecules are linked into isolated centrosymmetric dimers by means of paired C—H···π(arene) hydrogen bonds.

Experimental top

For the synthesis of the isomeric pair of compounds (I) and (III), equimolar amounts of 5-amino-3-phenyl-1H-pyrazole (2.6 mmol) and 2-acetyltetralone (2.6 mmol) were placed into Pyrex glass open vessels and irradiated in a domestic microwave oven for 1.5 min (at 600 watts). The reaction mixture was treated with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane/ethyl acetate (3:1, v/v) as eluant. The first fraction eluted contained compound (III) (20%, m.p. 430–431 K, brown crystals). MS: (EI 30 eV) m/z (%): 311 (100, M+), 296 (3), 269 (8). The second fraction (main product) contained (I) (74%, m.p. 450–451 K, yellow crystals). MS: (EI 30 eV) m/z (%): 311 (100, M+), 296 (4), 269 (12). For the synthesis of the isomeric pair of compounds (II) and (IV), equimolar amounts of 5-amino-3-(4-methylphenyl)-1H-pyrazole (2.6 mmol) and 2-acetyltetralone (2.6 mmol) were placed into Pyrex glass open vessels and irradiated in a domestic microwave oven for 1.5 min (at 600 watts). The reaction mixture was treated with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane/ethyl acetate (3:1, v/v) as eluant. The first fraction eluted contained compound (IV) (17% yield, m.p. 453–454 K, brown crystals). MS: (EI 30 eV) m/z (%): 325 (100, M+), 310 (7), 283 (10). The second fraction (main product) contained (II) (71%, m.p. 478–479 K, yellow crystals). MS: (EI 30 eV) m/z (%): 325 (100, M+), 310 (9), 283 (12). Crystals suitable for single-crystal X-ray diffraction were selected directly from the samples purified by chromatography as described.

Refinement top

The space groups Pbca, P21/n, P21/c and P21/c, for compounds (I)–(IV), respectively, were all uniquely assigned from the systematic absences. All H atoms were located from difference maps in fully ordered sites; they were then treated as riding atoms, with C—H distances of 0.95 Å (aromatic), 0.98 Å (methyl) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. Compound (I) crystallized in the form of long very fine needles. All attempts to cut suitably small fragments from these needles caused irretrievable shattering, and hence the shortest needle in the sample was selected for data collection without modification.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecule of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. Stereoview of part of the crystal structure of (I), showing the formation of a [100] chain built from C—H···π(arene) hydrogen bonds and ππ stacking interactions. For clarity, H atoms bonded to C atoms that are not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of a centrosymmetric π-stacked dimer. For clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the formation of a [100] chain of edge-fused rings. For clarity, H atoms bonded to C atoms not involved in hydrogen bonding have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand are at the symmetry positions (1 − x, 1 − y, 1 − z), (2 − x, 1 − y, 1 − z) and (−1 + x, y, z), respectively.
[Figure 8] Fig. 8. Part of the crystal structure of (III), showing the formation of a [001] chain. For clarity, H atoms that are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1.5 − y, −1/2 + z) and (x, 1.5 − y, 1/2 + z), respectively.
[Figure 9] Fig. 9. Part of the crystal structure of (IV), showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, H atoms bonded to the C atoms that are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
(I) 5-methyl-2-phenyl-6,7-dihydrobenzo[h]pyrazolo[1,5-a]quinazoline top
Crystal data top
C21H17N3F(000) = 1312
Mr = 311.38Dx = 1.319 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3577 reflections
a = 7.6223 (2) Åθ = 3.1–27.5°
b = 16.7937 (7) ŵ = 0.08 mm1
c = 24.4900 (9) ÅT = 120 K
V = 3134.88 (19) Å3Needle, yellow
Z = 80.90 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3577 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2021
Tmin = 0.923, Tmax = 0.995l = 3031
19065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H17N3V = 3134.88 (19) Å3
Mr = 311.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6223 (2) ŵ = 0.08 mm1
b = 16.7937 (7) ÅT = 120 K
c = 24.4900 (9) Å0.90 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3577 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2438 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.995Rint = 0.056
19065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3577 reflectionsΔρmin = 0.30 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.01251 (15)0.33670 (7)0.37101 (5)0.0209 (3)
N40.28124 (15)0.41165 (7)0.47846 (5)0.0209 (3)
N11C0.15802 (14)0.33803 (7)0.40332 (5)0.0193 (3)
C20.08708 (18)0.39702 (9)0.39008 (6)0.0192 (4)
C30.00880 (18)0.43662 (9)0.43391 (6)0.0200 (3)
C3A0.14982 (18)0.39853 (9)0.44230 (6)0.0190 (3)
C50.41609 (18)0.36189 (9)0.47694 (6)0.0205 (4)
C5A0.42683 (17)0.29678 (9)0.43961 (6)0.0200 (3)
C60.57990 (18)0.23944 (9)0.44032 (6)0.0233 (4)
C70.5217 (2)0.15703 (9)0.42202 (6)0.0234 (4)
C7A0.42626 (18)0.16023 (9)0.36853 (6)0.0205 (4)
C80.44793 (19)0.10194 (10)0.32900 (6)0.0246 (4)
C90.36542 (19)0.10799 (10)0.27866 (6)0.0259 (4)
C100.25866 (19)0.17226 (9)0.26787 (6)0.0248 (4)
C110.23024 (18)0.22987 (10)0.30731 (6)0.0229 (4)
C11A0.31259 (17)0.22457 (9)0.35810 (6)0.0194 (3)
C11B0.29801 (17)0.28598 (9)0.40077 (6)0.0188 (3)
C210.25661 (18)0.41376 (9)0.36330 (6)0.0196 (3)
C220.36595 (19)0.47444 (9)0.38243 (6)0.0225 (4)
C230.52454 (19)0.48996 (9)0.35707 (6)0.0243 (4)
C240.57673 (19)0.44537 (10)0.31237 (6)0.0249 (4)
C250.46965 (19)0.38538 (10)0.29298 (6)0.0260 (4)
C260.31080 (18)0.36924 (9)0.31827 (6)0.0222 (4)
C510.56220 (18)0.37785 (10)0.51634 (6)0.0278 (4)
H30.05480.48050.45380.024*
H6A0.62880.23630.47770.028*
H6B0.67330.25920.41570.028*
H7A0.62580.12220.41840.028*
H7B0.44380.13360.45010.028*
H80.52030.05720.33650.029*
H90.38250.06800.25180.031*
H100.20420.17710.23310.030*
H110.15420.27330.29980.028*
H220.33110.50530.41310.027*
H230.59790.53140.37040.029*
H240.68580.45600.29510.030*
H250.50500.35500.26220.031*
H260.23840.32760.30480.027*
H51A0.55250.43240.53010.042*
H51B0.67510.37120.49780.042*
H51C0.55460.34030.54690.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0167 (6)0.0228 (8)0.0231 (7)0.0008 (5)0.0027 (5)0.0011 (6)
N40.0198 (6)0.0230 (8)0.0198 (7)0.0011 (5)0.0006 (5)0.0015 (6)
N11C0.0165 (6)0.0208 (8)0.0206 (7)0.0003 (5)0.0014 (5)0.0002 (6)
C20.0182 (7)0.0186 (9)0.0209 (8)0.0005 (6)0.0026 (6)0.0031 (7)
C30.0206 (7)0.0172 (9)0.0222 (8)0.0011 (6)0.0015 (6)0.0004 (7)
C3A0.0215 (7)0.0176 (9)0.0178 (8)0.0013 (6)0.0017 (6)0.0019 (7)
C50.0204 (7)0.0218 (9)0.0194 (8)0.0015 (6)0.0005 (6)0.0036 (7)
C60.0205 (7)0.0235 (10)0.0258 (9)0.0034 (6)0.0018 (7)0.0033 (7)
C70.0218 (8)0.0216 (9)0.0268 (9)0.0043 (6)0.0016 (7)0.0033 (7)
C7A0.0172 (7)0.0199 (9)0.0245 (9)0.0015 (6)0.0039 (6)0.0027 (7)
C80.0240 (8)0.0177 (9)0.0320 (9)0.0008 (6)0.0061 (7)0.0001 (7)
C90.0253 (8)0.0232 (10)0.0293 (9)0.0050 (7)0.0068 (7)0.0058 (7)
C100.0216 (8)0.0282 (10)0.0247 (8)0.0045 (7)0.0004 (7)0.0025 (7)
C110.0194 (7)0.0232 (9)0.0262 (8)0.0015 (6)0.0017 (7)0.0026 (7)
C11A0.0164 (7)0.0189 (9)0.0229 (8)0.0018 (6)0.0033 (6)0.0006 (7)
C11B0.0180 (7)0.0164 (9)0.0221 (8)0.0012 (6)0.0030 (6)0.0034 (7)
C210.0183 (7)0.0195 (9)0.0209 (8)0.0015 (6)0.0030 (6)0.0031 (7)
C220.0224 (7)0.0205 (9)0.0247 (9)0.0001 (7)0.0007 (6)0.0010 (7)
C230.0213 (7)0.0220 (9)0.0294 (9)0.0024 (6)0.0003 (7)0.0005 (7)
C240.0175 (7)0.0296 (10)0.0275 (9)0.0010 (6)0.0026 (7)0.0031 (8)
C250.0230 (7)0.0316 (10)0.0234 (9)0.0026 (7)0.0011 (7)0.0018 (7)
C260.0210 (7)0.0220 (9)0.0235 (9)0.0010 (6)0.0028 (6)0.0016 (7)
C510.0249 (8)0.0309 (11)0.0277 (9)0.0023 (7)0.0047 (7)0.0031 (8)
C5A0.0193 (7)0.0209 (9)0.0199 (8)0.0006 (6)0.0007 (6)0.0028 (7)
Geometric parameters (Å, º) top
N1—C21.3493 (19)C51—H51B0.98
N1—N11C1.3626 (16)C51—H51C0.98
C2—C31.397 (2)C5A—C11B1.3790 (19)
C2—C211.476 (2)C5A—C61.513 (2)
C21—C261.395 (2)C6—C71.521 (2)
C21—C221.397 (2)C6—H6A0.99
C22—C231.384 (2)C6—H6B0.99
C22—H220.95C7—C7A1.499 (2)
C23—C241.385 (2)C7—H7A0.99
C23—H230.95C7—H7B0.99
C24—C251.381 (2)C7A—C81.387 (2)
C24—H240.95C7A—C11A1.408 (2)
C25—C261.387 (2)C8—C91.388 (2)
C25—H250.95C8—H80.95
C26—H260.95C9—C101.377 (2)
C3—C3A1.383 (2)C9—H90.95
C3—H30.95C10—C111.384 (2)
C3A—N41.3550 (17)C10—H100.95
C3A—N11C1.3957 (19)C11—C11A1.3960 (19)
N4—C51.3252 (19)C11—H110.95
C5—C5A1.428 (2)C11A—C11B1.472 (2)
C5—C511.4976 (19)C11B—N11C1.3808 (18)
C51—H51A0.98
C2—N1—N11C104.16 (12)C11B—C5A—C6118.24 (14)
N1—C2—C3112.53 (12)C5—C5A—C6121.63 (13)
N1—C2—C21118.79 (13)C5A—C6—C7110.54 (12)
C3—C2—C21128.67 (13)C5A—C6—H6A109.5
C26—C21—C22118.64 (13)C7—C6—H6A109.5
C26—C21—C2120.56 (13)C5A—C6—H6B109.5
C22—C21—C2120.80 (13)C7—C6—H6B109.5
C23—C22—C21120.52 (14)H6A—C6—H6B108.1
C23—C22—H22119.7C7A—C7—C6111.49 (13)
C21—C22—H22119.7C7A—C7—H7A109.3
C22—C23—C24120.26 (15)C6—C7—H7A109.3
C22—C23—H23119.9C7A—C7—H7B109.3
C24—C23—H23119.9C6—C7—H7B109.3
C25—C24—C23119.78 (14)H7A—C7—H7B108.0
C25—C24—H24120.1C8—C7A—C11A119.22 (14)
C23—C24—H24120.1C8—C7A—C7121.79 (13)
C24—C25—C26120.34 (15)C11A—C7A—C7118.99 (14)
C24—C25—H25119.8C7A—C8—C9120.97 (15)
C26—C25—H25119.8C7A—C8—H8119.5
C25—C26—C21120.46 (14)C9—C8—H8119.5
C25—C26—H26119.8C10—C9—C8119.72 (15)
C21—C26—H26119.8C10—C9—H9120.1
C3A—C3—C2105.51 (13)C8—C9—H9120.1
C3A—C3—H3127.2C9—C10—C11120.41 (15)
C2—C3—H3127.2C9—C10—H10119.8
N4—C3A—C3131.92 (14)C11—C10—H10119.8
N4—C3A—N11C122.16 (12)C10—C11—C11A120.45 (14)
C3—C3A—N11C105.91 (12)C10—C11—H11119.8
C5—N4—C3A116.91 (13)C11A—C11—H11119.8
N4—C5—C5A123.05 (13)C11—C11A—C7A119.16 (14)
N4—C5—C51116.48 (14)C11—C11A—C11B123.62 (13)
C5A—C5—C51120.46 (13)C7A—C11A—C11B117.06 (13)
C5—C51—H51A109.5C5A—C11B—N11C115.84 (14)
C5—C51—H51B109.5C5A—C11B—C11A121.87 (13)
H51A—C51—H51B109.5N11C—C11B—C11A122.26 (13)
C5—C51—H51C109.5N1—N11C—C11B126.33 (13)
H51A—C51—H51C109.5N1—N11C—C3A111.88 (11)
H51B—C51—H51C109.5C11B—N11C—C3A121.76 (12)
C11B—C5A—C5120.11 (13)
N11C—N1—C2—C30.21 (16)C6—C7—C7A—C11A37.86 (17)
N11C—N1—C2—C21179.00 (12)C11A—C7A—C8—C92.8 (2)
N1—C2—C21—C261.5 (2)C7—C7A—C8—C9176.70 (13)
C3—C2—C21—C26177.52 (14)C7A—C8—C9—C100.8 (2)
N1—C2—C21—C22178.52 (13)C8—C9—C10—C111.4 (2)
C3—C2—C21—C222.4 (2)C9—C10—C11—C11A1.5 (2)
C26—C21—C22—C230.1 (2)C10—C11—C11A—C7A0.6 (2)
C2—C21—C22—C23179.85 (14)C10—C11—C11A—C11B175.92 (14)
C21—C22—C23—C240.0 (2)C8—C7A—C11A—C112.7 (2)
C22—C23—C24—C250.2 (2)C7—C7A—C11A—C11176.84 (13)
C23—C24—C25—C260.4 (2)C8—C7A—C11A—C11B178.34 (13)
C24—C25—C26—C210.5 (2)C7—C7A—C11A—C11B1.20 (19)
C22—C21—C26—C250.3 (2)C5—C5A—C11B—N11C4.0 (2)
C2—C21—C26—C25179.62 (14)C6—C5A—C11B—N11C177.56 (12)
N1—C2—C3—C3A0.29 (17)C5—C5A—C11B—C11A173.84 (13)
C21—C2—C3—C3A178.83 (14)C6—C5A—C11B—C11A4.6 (2)
C2—C3—C3A—N4178.97 (15)C11—C11A—C11B—C5A153.69 (14)
C2—C3—C3A—N11C0.24 (16)C7A—C11A—C11B—C5A21.7 (2)
C3—C3A—N4—C5177.91 (15)C11—C11A—C11B—N11C24.0 (2)
N11C—C3A—N4—C53.0 (2)C7A—C11A—C11B—N11C160.56 (13)
C3A—N4—C5—C5A0.1 (2)C2—N1—N11C—C11B178.19 (13)
C3A—N4—C5—C51178.86 (12)C2—N1—N11C—C3A0.05 (15)
N4—C5—C5A—C11B3.8 (2)C5A—C11B—N11C—N1176.91 (13)
C51—C5—C5A—C11B175.18 (13)C11A—C11B—N11C—N15.3 (2)
N4—C5—C5A—C6177.86 (14)C5A—C11B—N11C—C3A1.1 (2)
C51—C5—C5A—C63.2 (2)C11A—C11B—N11C—C3A176.77 (13)
C11B—C5A—C6—C732.38 (19)N4—C3A—N11C—N1179.18 (12)
C5—C5A—C6—C7149.21 (14)C3—C3A—N11C—N10.12 (16)
C5A—C6—C7—C7A52.08 (16)N4—C3A—N11C—C11B2.6 (2)
C6—C7—C7A—C8141.67 (14)C3—C3A—N11C—C11B178.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cg1i0.992.753.644 (2)150
Symmetry code: (i) x+1/2, y+1/2, z+1.
(II) 5-methyl-2-(4-methylphenyl)-6,7-dihydrobenzo[h]pyrazolo[1,5-a]quinazoline top
Crystal data top
C22H19N3F(000) = 688
Mr = 325.40Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2701 reflections
a = 7.2767 (13) Åθ = 3.1–25.0°
b = 29.924 (6) ŵ = 0.08 mm1
c = 8.0463 (12) ÅT = 120 K
β = 112.590 (6)°Block, colourless
V = 1617.6 (5) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2701 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3534
Tmin = 0.978, Tmax = 0.991l = 99
7247 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1774P)2 + 0.6771P]
where P = (Fo2 + 2Fc2)/3
2701 reflections(Δ/σ)max = 0.007
228 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C22H19N3V = 1617.6 (5) Å3
Mr = 325.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2767 (13) ŵ = 0.08 mm1
b = 29.924 (6) ÅT = 120 K
c = 8.0463 (12) Å0.18 × 0.16 × 0.12 mm
β = 112.590 (6)°
Data collection top
Nonius KappaCCD
diffractometer
2701 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2214 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.051
7247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
2701 reflectionsΔρmin = 0.42 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5431 (3)0.62431 (7)0.6510 (3)0.0289 (6)
N40.4314 (3)0.70310 (7)0.2935 (3)0.0301 (6)
N11C0.4648 (3)0.63761 (8)0.4759 (3)0.0283 (6)
C20.6238 (4)0.66192 (8)0.7423 (4)0.0284 (7)
C30.5983 (4)0.69862 (9)0.6292 (4)0.0292 (7)
C3A0.4965 (4)0.68268 (9)0.4572 (4)0.0286 (7)
C50.3476 (4)0.67781 (10)0.1501 (4)0.0291 (7)
C5A0.3184 (4)0.63099 (9)0.1613 (3)0.0289 (7)
C60.2259 (4)0.60282 (9)0.0059 (4)0.0335 (7)
C70.2964 (4)0.55469 (10)0.0288 (4)0.0359 (7)
C7A0.2711 (4)0.53619 (9)0.1936 (4)0.0309 (7)
C80.2127 (4)0.49270 (10)0.2001 (4)0.0366 (7)
C90.1980 (4)0.47564 (10)0.3553 (4)0.0377 (8)
C100.2398 (4)0.50283 (9)0.5041 (4)0.0358 (7)
C110.2991 (4)0.54636 (9)0.5005 (4)0.0320 (7)
C11A0.3171 (4)0.56393 (9)0.3458 (4)0.0297 (7)
C11B0.3700 (4)0.61068 (9)0.3278 (3)0.0277 (7)
C210.7238 (4)0.65994 (9)0.9403 (4)0.0280 (7)
C220.8076 (4)0.69814 (9)1.0405 (4)0.0303 (7)
C230.8994 (4)0.69596 (9)1.2260 (4)0.0329 (7)
C240.9108 (4)0.65619 (9)1.3191 (4)0.0324 (7)
C250.8269 (4)0.61836 (10)1.2178 (4)0.0339 (7)
C260.7355 (4)0.61990 (9)1.0334 (4)0.0291 (7)
C510.2770 (4)0.70083 (9)0.0291 (4)0.0326 (7)
C2411.0099 (5)0.65437 (11)1.5209 (4)0.0403 (8)
H30.64170.72840.66330.035*
H6A0.26170.61530.10330.040*
H6B0.07920.60370.04610.040*
H7A0.21940.53620.07720.043*
H7B0.43850.55310.04610.043*
H80.18200.47410.09730.044*
H90.15940.44550.35900.045*
H100.22760.49140.60960.043*
H110.32800.56470.60380.038*
H220.80150.72580.98080.036*
H230.95610.72231.29160.039*
H24A1.10240.67951.56400.060*
H24B1.08320.62621.55720.060*
H24C0.90870.65621.57320.060*
H250.83310.59071.27780.041*
H260.67960.59340.96840.035*
H51A0.13300.69660.09090.049*
H51B0.34510.68810.10220.049*
H51C0.30650.73280.01120.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0338 (13)0.0272 (13)0.0258 (12)0.0009 (10)0.0117 (10)0.0002 (9)
N40.0368 (13)0.0302 (13)0.0256 (13)0.0030 (10)0.0143 (10)0.0028 (10)
N11C0.0346 (13)0.0274 (13)0.0233 (12)0.0008 (9)0.0118 (10)0.0007 (10)
C20.0308 (14)0.0264 (15)0.0319 (15)0.0006 (11)0.0164 (12)0.0054 (11)
C30.0363 (15)0.0255 (14)0.0285 (14)0.0005 (11)0.0156 (12)0.0012 (11)
C3A0.0354 (15)0.0256 (14)0.0281 (15)0.0032 (11)0.0159 (12)0.0015 (11)
C50.0326 (15)0.0309 (15)0.0279 (15)0.0034 (11)0.0161 (12)0.0021 (11)
C5A0.0296 (15)0.0351 (16)0.0231 (14)0.0040 (11)0.0115 (12)0.0004 (11)
C60.0373 (16)0.0367 (17)0.0267 (14)0.0008 (12)0.0125 (12)0.0020 (12)
C70.0382 (17)0.0364 (17)0.0319 (16)0.0011 (12)0.0124 (13)0.0100 (13)
C7A0.0301 (15)0.0306 (15)0.0292 (15)0.0022 (11)0.0082 (12)0.0038 (12)
C80.0357 (16)0.0270 (16)0.0419 (17)0.0026 (12)0.0091 (13)0.0071 (13)
C90.0355 (16)0.0270 (16)0.0433 (18)0.0002 (12)0.0071 (13)0.0010 (13)
C100.0342 (16)0.0337 (16)0.0364 (16)0.0009 (12)0.0101 (13)0.0025 (13)
C110.0362 (16)0.0282 (15)0.0317 (15)0.0012 (11)0.0131 (13)0.0005 (12)
C11A0.0267 (14)0.0283 (15)0.0321 (15)0.0034 (11)0.0090 (11)0.0007 (11)
C11B0.0275 (14)0.0301 (15)0.0257 (14)0.0023 (11)0.0103 (12)0.0040 (11)
C210.0290 (14)0.0289 (15)0.0291 (15)0.0027 (11)0.0145 (12)0.0018 (11)
C220.0380 (16)0.0263 (15)0.0274 (15)0.0009 (11)0.0135 (12)0.0009 (11)
C230.0397 (17)0.0319 (16)0.0284 (15)0.0032 (12)0.0147 (13)0.0060 (12)
C240.0337 (16)0.0372 (17)0.0288 (16)0.0028 (12)0.0146 (13)0.0017 (12)
C250.0416 (17)0.0324 (16)0.0303 (15)0.0031 (12)0.0167 (13)0.0067 (12)
C260.0344 (15)0.0249 (14)0.0304 (15)0.0003 (11)0.0150 (12)0.0016 (11)
C510.0406 (16)0.0358 (16)0.0240 (15)0.0044 (12)0.0153 (13)0.0014 (12)
C2410.0464 (18)0.0471 (19)0.0281 (16)0.0025 (14)0.0151 (14)0.0004 (13)
Geometric parameters (Å, º) top
N1—C21.349 (3)C5—C511.499 (4)
N1—N11C1.361 (3)C51—H51A0.98
C2—C31.392 (4)C51—H51B0.98
C2—C211.477 (4)C51—H51C0.98
C21—C221.397 (4)C5A—C11B1.385 (4)
C21—C261.398 (4)C5A—C61.509 (4)
C22—C231.383 (4)C6—C71.518 (4)
C22—H220.95C6—H6A0.99
C23—C241.392 (4)C6—H6B0.99
C23—H230.95C7—C7A1.512 (4)
C24—C251.391 (4)C7—H7A0.99
C24—C2411.503 (4)C7—H7B0.99
C241—H24A0.98C7A—C81.376 (4)
C241—H24B0.98C7A—C11A1.409 (4)
C241—H24C0.98C8—C91.391 (4)
C25—C261.374 (4)C8—H80.95
C25—H250.95C9—C101.381 (4)
C26—H260.95C9—H90.95
C3—C3A1.380 (4)C10—C111.376 (4)
C3—H30.95C10—H100.95
C3A—N41.361 (3)C11—C11A1.403 (4)
C3A—N11C1.386 (4)C11—H110.95
N4—C51.318 (4)C11A—C11B1.473 (4)
C5—C5A1.425 (4)C11B—N11C1.383 (3)
C2—N1—N11C104.0 (2)H51A—C51—H51C109.5
N1—C2—C3112.4 (3)H51B—C51—H51C109.5
N1—C2—C21119.0 (2)C11B—C5A—C5120.1 (2)
C3—C2—C21128.6 (2)C11B—C5A—C6118.7 (2)
C22—C21—C26118.0 (3)C5—C5A—C6121.2 (2)
C22—C21—C2121.0 (2)C5A—C6—C7111.2 (2)
C26—C21—C2121.0 (2)C5A—C6—H6A109.4
C23—C22—C21120.5 (3)C7—C6—H6A109.4
C23—C22—H22119.8C5A—C6—H6B109.4
C21—C22—H22119.8C7—C6—H6B109.4
C22—C23—C24121.7 (3)H6A—C6—H6B108.0
C22—C23—H23119.1C7A—C7—C6111.2 (2)
C24—C23—H23119.1C7A—C7—H7A109.4
C25—C24—C23117.3 (3)C6—C7—H7A109.4
C25—C24—C241121.6 (3)C7A—C7—H7B109.4
C23—C24—C241121.1 (3)C6—C7—H7B109.4
C24—C241—H24A109.5H7A—C7—H7B108.0
C24—C241—H24B109.5C8—C7A—C11A119.9 (3)
H24A—C241—H24B109.5C8—C7A—C7121.5 (3)
C24—C241—H24C109.5C11A—C7A—C7118.5 (3)
H24A—C241—H24C109.5C7A—C8—C9120.8 (3)
H24B—C241—H24C109.5C7A—C8—H8119.6
C26—C25—C24121.8 (3)C9—C8—H8119.6
C26—C25—H25119.1C10—C9—C8119.7 (3)
C24—C25—H25119.1C10—C9—H9120.2
C25—C26—C21120.8 (2)C8—C9—H9120.2
C25—C26—H26119.6C11—C10—C9120.4 (3)
C21—C26—H26119.6C11—C10—H10119.8
C3A—C3—C2105.6 (2)C9—C10—H10119.8
C3A—C3—H3127.2C10—C11—C11A120.7 (3)
C2—C3—H3127.2C10—C11—H11119.7
N4—C3A—C3132.0 (3)C11A—C11—H11119.7
N4—C3A—N11C122.1 (2)C11—C11A—C7A118.6 (3)
C3—C3A—N11C106.0 (2)C11—C11A—C11B124.1 (2)
C5—N4—C3A117.5 (2)C7A—C11A—C11B117.3 (2)
N4—C5—C5A122.6 (2)N11C—C11B—C5A115.9 (2)
N4—C5—C51116.8 (3)N11C—C11B—C11A122.1 (2)
C5A—C5—C51120.6 (2)C5A—C11B—C11A121.9 (2)
C5—C51—H51A109.5N1—N11C—C11B126.4 (2)
C5—C51—H51B109.5N1—N11C—C3A112.1 (2)
H51A—C51—H51B109.5C11B—N11C—C3A121.5 (2)
C5—C51—H51C109.5
N11C—N1—C2—C30.1 (3)C6—C7—C7A—C8142.1 (3)
N11C—N1—C2—C21179.9 (2)C6—C7—C7A—C11A40.6 (3)
N1—C2—C21—C22179.3 (2)C11A—C7A—C8—C90.1 (4)
C3—C2—C21—C220.5 (4)C7—C7A—C8—C9177.3 (3)
N1—C2—C21—C260.0 (4)C7A—C8—C9—C100.9 (4)
C3—C2—C21—C26179.8 (3)C8—C9—C10—C111.1 (4)
C26—C21—C22—C230.2 (4)C9—C10—C11—C11A0.3 (4)
C2—C21—C22—C23179.4 (2)C10—C11—C11A—C7A0.7 (4)
C21—C22—C23—C240.4 (4)C10—C11—C11A—C11B176.9 (3)
C22—C23—C24—C250.4 (4)C8—C7A—C11A—C110.9 (4)
C22—C23—C24—C241179.6 (3)C7—C7A—C11A—C11178.2 (2)
C23—C24—C25—C260.3 (4)C8—C7A—C11A—C11B177.3 (2)
C241—C24—C25—C26179.8 (3)C7—C7A—C11A—C11B5.3 (4)
C24—C25—C26—C210.1 (4)C5—C5A—C11B—N11C5.4 (4)
C22—C21—C26—C250.0 (4)C6—C5A—C11B—N11C176.3 (2)
C2—C21—C26—C25179.3 (2)C5—C5A—C11B—C11A171.3 (2)
N1—C2—C3—C3A0.4 (3)C6—C5A—C11B—C11A6.9 (4)
C21—C2—C3—C3A179.8 (3)C11—C11A—C11B—N11C20.4 (4)
C2—C3—C3A—N4179.8 (3)C7A—C11A—C11B—N11C163.4 (2)
C2—C3—C3A—N11C0.5 (3)C11—C11A—C11B—C5A156.2 (3)
C3—C3A—N4—C5175.9 (3)C7A—C11A—C11B—C5A20.0 (4)
N11C—C3A—N4—C54.5 (4)C2—N1—N11C—C11B178.0 (2)
C3A—N4—C5—C5A1.9 (4)C2—N1—N11C—C3A0.3 (3)
C3A—N4—C5—C51180.0 (2)C5A—C11B—N11C—N1174.4 (2)
N4—C5—C5A—C11B3.1 (4)C11A—C11B—N11C—N18.8 (4)
C51—C5—C5A—C11B174.9 (2)C5A—C11B—N11C—C3A3.1 (4)
N4—C5—C5A—C6178.7 (2)C11A—C11B—N11C—C3A173.7 (2)
C51—C5—C5A—C63.3 (4)N4—C3A—N11C—N1179.7 (2)
C11B—C5A—C6—C729.1 (3)C3—C3A—N11C—N10.5 (3)
C5—C5A—C6—C7152.7 (2)N4—C3A—N11C—C11B1.9 (4)
C5A—C6—C7—C7A51.1 (3)C3—C3A—N11C—C11B178.3 (2)
(III) 7-methyl-10-phenyl-5,6-dihydrobenzo[h]pyrazolo[5,1-b]quinazoline top
Crystal data top
C21H17N3F(000) = 656
Mr = 311.38Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3555 reflections
a = 8.1092 (1) Åθ = 3.1–27.5°
b = 11.7265 (2) ŵ = 0.08 mm1
c = 16.3486 (3) ÅT = 120 K
β = 90.9010 (12)°Plate, colourless
V = 1554.44 (4) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3555 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.981, Tmax = 0.992l = 2121
28824 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.5945P]
where P = (Fo2 + 2Fc2)/3
3555 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H17N3V = 1554.44 (4) Å3
Mr = 311.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1092 (1) ŵ = 0.08 mm1
b = 11.7265 (2) ÅT = 120 K
c = 16.3486 (3) Å0.40 × 0.10 × 0.10 mm
β = 90.9010 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3093 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.992Rint = 0.031
28824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3555 reflectionsΔρmin = 0.32 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85654 (11)0.58979 (8)0.55831 (5)0.0188 (2)
N40.76088 (11)0.60222 (8)0.34562 (6)0.0189 (2)
N11A0.78931 (11)0.55129 (8)0.48679 (5)0.0171 (2)
C20.92082 (13)0.69230 (9)0.53834 (7)0.0183 (2)
C30.89577 (13)0.71948 (9)0.45569 (7)0.0198 (2)
C3A0.81234 (13)0.62674 (9)0.42235 (7)0.0182 (2)
C4A0.68292 (13)0.50390 (9)0.33459 (7)0.0176 (2)
C4B0.63775 (13)0.47265 (9)0.24966 (7)0.0183 (2)
C50.71329 (14)0.52691 (10)0.18390 (7)0.0215 (2)
C60.67266 (15)0.49642 (10)0.10424 (7)0.0248 (3)
C70.55726 (15)0.41084 (10)0.08958 (7)0.0253 (3)
C80.48325 (14)0.35596 (10)0.15466 (7)0.0240 (3)
C8A0.52146 (13)0.38610 (9)0.23521 (7)0.0198 (2)
C90.43669 (14)0.33154 (10)0.30641 (7)0.0230 (2)
C100.55098 (13)0.31851 (9)0.38116 (7)0.0209 (2)
C10A0.64606 (13)0.42660 (9)0.39980 (7)0.0180 (2)
C110.70445 (13)0.45079 (9)0.47711 (7)0.0179 (2)
C211.00659 (12)0.76117 (10)0.60137 (7)0.0195 (2)
C221.07259 (14)0.86745 (10)0.58141 (7)0.0236 (2)
C231.15208 (15)0.93325 (11)0.64056 (8)0.0287 (3)
C241.16804 (15)0.89386 (11)0.72008 (8)0.0301 (3)
C251.10529 (14)0.78744 (11)0.74041 (7)0.0277 (3)
C261.02496 (13)0.72146 (10)0.68166 (7)0.0227 (2)
C1110.68716 (15)0.37708 (10)0.55087 (7)0.0240 (2)
H30.92880.78700.42830.024*
H50.79280.58490.19390.026*
H60.72350.53390.05970.030*
H70.52910.38990.03500.030*
H80.40540.29700.14410.029*
H9A0.39550.25540.28980.028*
H9B0.34040.37860.32150.028*
H10A0.48460.29770.42920.025*
H10B0.62980.25570.37130.025*
H11A0.58340.39500.57800.036*
H11B0.77980.39110.58880.036*
H11C0.68700.29680.53430.036*
H221.06300.89490.52690.028*
H231.19571.00570.62640.034*
H241.22160.93930.76060.036*
H251.11750.75970.79480.033*
H260.98220.64890.69610.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0192 (4)0.0210 (5)0.0162 (4)0.0008 (3)0.0007 (3)0.0025 (4)
N40.0202 (4)0.0185 (5)0.0181 (5)0.0009 (3)0.0000 (3)0.0008 (3)
N11A0.0179 (4)0.0174 (4)0.0159 (4)0.0009 (3)0.0010 (3)0.0002 (3)
C20.0158 (5)0.0198 (5)0.0194 (5)0.0018 (4)0.0014 (4)0.0022 (4)
C30.0214 (5)0.0183 (5)0.0198 (5)0.0020 (4)0.0001 (4)0.0006 (4)
C3A0.0183 (5)0.0183 (5)0.0180 (5)0.0008 (4)0.0015 (4)0.0014 (4)
C4A0.0156 (5)0.0175 (5)0.0199 (5)0.0014 (4)0.0014 (4)0.0006 (4)
C4B0.0180 (5)0.0173 (5)0.0197 (5)0.0023 (4)0.0005 (4)0.0018 (4)
C50.0221 (5)0.0211 (5)0.0214 (6)0.0003 (4)0.0000 (4)0.0012 (4)
C60.0288 (6)0.0260 (6)0.0196 (6)0.0019 (5)0.0010 (4)0.0000 (4)
C70.0303 (6)0.0249 (6)0.0205 (6)0.0045 (5)0.0046 (4)0.0052 (5)
C80.0233 (5)0.0206 (6)0.0277 (6)0.0007 (4)0.0046 (4)0.0051 (5)
C8A0.0181 (5)0.0174 (5)0.0239 (6)0.0022 (4)0.0005 (4)0.0018 (4)
C90.0205 (5)0.0214 (5)0.0271 (6)0.0040 (4)0.0001 (4)0.0025 (5)
C100.0217 (5)0.0171 (5)0.0241 (6)0.0025 (4)0.0021 (4)0.0006 (4)
C10A0.0163 (5)0.0168 (5)0.0209 (5)0.0014 (4)0.0024 (4)0.0001 (4)
C110.0171 (5)0.0163 (5)0.0203 (5)0.0015 (4)0.0028 (4)0.0005 (4)
C210.0153 (5)0.0224 (5)0.0207 (5)0.0018 (4)0.0007 (4)0.0039 (4)
C220.0226 (5)0.0237 (6)0.0245 (6)0.0006 (4)0.0009 (4)0.0023 (5)
C230.0265 (6)0.0240 (6)0.0354 (7)0.0031 (5)0.0031 (5)0.0055 (5)
C240.0275 (6)0.0334 (7)0.0293 (6)0.0021 (5)0.0048 (5)0.0114 (5)
C250.0253 (6)0.0370 (7)0.0208 (6)0.0006 (5)0.0018 (4)0.0054 (5)
C260.0198 (5)0.0271 (6)0.0213 (6)0.0001 (4)0.0015 (4)0.0022 (4)
C1110.0296 (6)0.0217 (5)0.0207 (6)0.0010 (4)0.0022 (4)0.0035 (4)
Geometric parameters (Å, º) top
N1—C21.3524 (14)C4B—C8A1.4029 (15)
N1—N11A1.3595 (12)C5—C61.3853 (16)
C2—C31.4000 (15)C5—H50.95
C2—C211.4748 (15)C6—C71.3904 (17)
C21—C221.3970 (16)C6—H60.95
C21—C261.3985 (16)C7—C81.3879 (17)
C22—C231.3880 (17)C7—H70.95
C22—H220.95C8—C8A1.3937 (16)
C23—C241.3838 (19)C8—H80.95
C23—H230.95C8A—C91.5040 (16)
C24—C251.3900 (19)C9—C101.5297 (16)
C24—H240.95C9—H9A0.99
C25—C261.3879 (16)C9—H9B0.99
C25—H250.95C10—C10A1.5121 (15)
C26—H260.95C10—H10A0.99
C3—C3A1.3878 (15)C10—H10B0.99
C3—H30.95C10A—C111.3723 (15)
C3A—N41.3467 (14)C11—N11A1.3726 (14)
C3A—N11A1.3905 (14)C11—C1111.4922 (15)
N4—C4A1.3259 (14)C111—H11A0.98
C4A—C10A1.4344 (15)C111—H11B0.98
C4A—C4B1.4766 (15)C111—H11C0.98
C4B—C51.3987 (16)
C2—N1—N11A103.79 (9)C5—C6—H6120.1
N1—C2—C3112.63 (10)C7—C6—H6120.1
N1—C2—C21119.83 (10)C8—C7—C6120.03 (11)
C3—C2—C21127.54 (10)C8—C7—H7120.0
C22—C21—C26118.74 (10)C6—C7—H7120.0
C22—C21—C2120.23 (10)C7—C8—C8A120.96 (11)
C26—C21—C2121.03 (10)C7—C8—H8119.5
C23—C22—C21120.57 (11)C8A—C8—H8119.5
C23—C22—H22119.7C8—C8A—C4B118.77 (10)
C21—C22—H22119.7C8—C8A—C9121.74 (10)
C24—C23—C22120.30 (12)C4B—C8A—C9119.45 (10)
C24—C23—H23119.8C8A—C9—C10112.47 (9)
C22—C23—H23119.8C8A—C9—H9A109.1
C23—C24—C25119.68 (11)C10—C9—H9A109.1
C23—C24—H24120.2C8A—C9—H9B109.1
C25—C24—H24120.2C10—C9—H9B109.1
C26—C25—C24120.31 (12)H9A—C9—H9B107.8
C26—C25—H25119.8C10A—C10—C9112.20 (9)
C24—C25—H25119.8C10A—C10—H10A109.2
C25—C26—C21120.39 (11)C9—C10—H10A109.2
C25—C26—H26119.8C10A—C10—H10B109.2
C21—C26—H26119.8C9—C10—H10B109.2
C3A—C3—C2105.26 (10)H10A—C10—H10B107.9
C3A—C3—H3127.4C11—C10A—C4A118.75 (10)
C2—C3—H3127.4C11—C10A—C10121.76 (10)
N4—C3A—C3132.47 (10)C4A—C10A—C10119.43 (10)
N4—C3A—N11A121.77 (10)C10A—C11—N11A116.66 (10)
C3—C3A—N11A105.75 (9)C10A—C11—C111126.10 (10)
C4A—N4—C3A116.90 (9)N11A—C11—C111117.23 (10)
N4—C4A—C10A123.56 (10)N1—N11A—C11125.29 (9)
N4—C4A—C4B117.03 (10)N1—N11A—C3A112.56 (9)
C10A—C4A—C4B119.38 (10)C11—N11A—C3A122.14 (9)
C5—C4B—C8A120.07 (10)C11—C111—H11A109.5
C5—C4B—C4A120.31 (10)C11—C111—H11B109.5
C8A—C4B—C4A119.60 (10)H11A—C111—H11B109.5
C6—C5—C4B120.30 (11)C11—C111—H11C109.5
C6—C5—H5119.8H11A—C111—H11C109.5
C4B—C5—H5119.8H11B—C111—H11C109.5
C5—C6—C7119.86 (11)
N11A—N1—C2—C30.03 (11)C6—C7—C8—C8A0.69 (18)
N11A—N1—C2—C21179.71 (9)C7—C8—C8A—C4B0.57 (17)
N1—C2—C21—C22179.65 (10)C7—C8—C8A—C9177.04 (10)
C3—C2—C21—C220.73 (17)C5—C4B—C8A—C80.10 (16)
N1—C2—C21—C260.96 (15)C4A—C4B—C8A—C8178.52 (10)
C3—C2—C21—C26178.67 (10)C5—C4B—C8A—C9177.76 (10)
C26—C21—C22—C231.22 (17)C4A—C4B—C8A—C93.82 (15)
C2—C21—C22—C23179.37 (10)C8—C8A—C9—C10145.98 (10)
C21—C22—C23—C240.49 (18)C4B—C8A—C9—C1036.44 (14)
C22—C23—C24—C250.57 (19)C8A—C9—C10—C10A47.06 (13)
C23—C24—C25—C260.88 (18)N4—C4A—C10A—C114.95 (16)
C24—C25—C26—C210.14 (17)C4B—C4A—C10A—C11172.98 (9)
C22—C21—C26—C250.90 (16)N4—C4A—C10A—C10177.76 (10)
C2—C21—C26—C25179.69 (10)C4B—C4A—C10A—C104.31 (15)
N1—C2—C3—C3A0.81 (12)C9—C10—C10A—C11154.77 (10)
C21—C2—C3—C3A178.84 (10)C9—C10—C10A—C4A28.02 (14)
C2—C3—C3A—N4177.15 (11)C4A—C10A—C11—N11A2.66 (14)
C2—C3—C3A—N11A1.28 (11)C10—C10A—C11—N11A179.89 (9)
C3—C3A—N4—C4A179.99 (11)C4A—C10A—C11—C111176.02 (10)
N11A—C3A—N4—C4A1.80 (15)C10—C10A—C11—C1111.21 (17)
C3A—N4—C4A—C10A2.57 (15)C2—N1—N11A—C11177.88 (9)
C3A—N4—C4A—C4B175.40 (9)C2—N1—N11A—C3A0.90 (11)
N4—C4A—C4B—C517.36 (15)C10A—C11—N11A—N1179.86 (9)
C10A—C4A—C4B—C5160.70 (10)C111—C11—N11A—N11.06 (15)
N4—C4A—C4B—C8A164.22 (10)C10A—C11—N11A—C3A1.47 (15)
C10A—C4A—C4B—C8A17.72 (15)C111—C11—N11A—C3A179.72 (9)
C8A—C4B—C5—C60.65 (17)N4—C3A—N11A—N1177.22 (9)
C4A—C4B—C5—C6179.05 (10)C3—C3A—N11A—N11.41 (12)
C4B—C5—C6—C70.53 (17)N4—C3A—N11A—C113.96 (16)
C5—C6—C7—C80.13 (18)C3—C3A—N11A—C11177.41 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.952.673.5129 (12)148
C9—H9B···N1ii0.992.583.4003 (14)140
C10—H10B···Cg2iii0.992.553.4676 (12)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
(IV) 7-methyl-10-(4-methylphenyl)-5,6-dihydrobenzo[h]pyrazolo[5,1-b]quinazoline top
Crystal data top
C22H19N3F(000) = 688
Mr = 325.40Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3765 reflections
a = 7.9037 (7) Åθ = 3.0–27.6°
b = 13.1038 (10) ŵ = 0.08 mm1
c = 16.0576 (13) ÅT = 120 K
β = 99.199 (6)°Block, colourless
V = 1641.7 (2) Å30.50 × 0.40 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3765 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1716
Tmin = 0.956, Tmax = 0.973l = 2020
22738 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.428P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3765 reflectionsΔρmax = 0.34 e Å3
229 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.073 (7)
Crystal data top
C22H19N3V = 1641.7 (2) Å3
Mr = 325.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9037 (7) ŵ = 0.08 mm1
b = 13.1038 (10) ÅT = 120 K
c = 16.0576 (13) Å0.50 × 0.40 × 0.35 mm
β = 99.199 (6)°
Data collection top
Nonius KappaCCD
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3274 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.973Rint = 0.027
22738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3765 reflectionsΔρmin = 0.35 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74444 (12)0.44617 (7)0.52224 (6)0.0203 (2)
N40.44894 (12)0.37404 (7)0.34171 (6)0.0202 (2)
N11A0.65771 (12)0.45686 (7)0.44295 (6)0.0187 (2)
C20.68492 (14)0.35794 (9)0.54903 (7)0.0192 (2)
C30.56190 (14)0.31223 (8)0.48812 (7)0.0210 (3)
C3A0.54494 (14)0.37725 (8)0.41919 (7)0.0194 (2)
C4A0.46959 (14)0.44971 (8)0.29000 (7)0.0191 (2)
C4B0.36985 (14)0.44632 (8)0.20386 (7)0.0198 (2)
C50.22472 (15)0.38455 (9)0.18588 (7)0.0232 (3)
C60.13228 (16)0.38101 (9)0.10509 (8)0.0264 (3)
C70.18450 (16)0.43864 (10)0.04148 (8)0.0286 (3)
C80.32678 (16)0.50122 (10)0.05912 (7)0.0265 (3)
C8A0.42110 (15)0.50573 (9)0.13996 (7)0.0220 (3)
C90.57841 (16)0.57172 (9)0.15953 (7)0.0247 (3)
C100.59296 (16)0.61671 (9)0.24758 (7)0.0231 (3)
C10A0.58466 (14)0.53370 (8)0.31183 (7)0.0193 (2)
C110.68012 (14)0.53641 (8)0.39081 (7)0.0196 (2)
C210.75595 (14)0.32200 (9)0.63415 (7)0.0196 (2)
C220.73223 (15)0.22205 (9)0.65925 (7)0.0235 (3)
C230.80544 (16)0.18862 (9)0.73872 (8)0.0254 (3)
C240.90153 (15)0.25365 (10)0.79602 (7)0.0245 (3)
C250.92194 (15)0.35438 (10)0.77143 (7)0.0242 (3)
C260.85144 (15)0.38777 (9)0.69163 (7)0.0222 (3)
C1110.80608 (16)0.61512 (9)0.42673 (7)0.0255 (3)
C2410.98197 (18)0.21667 (11)0.88195 (8)0.0342 (3)
H30.50270.25000.49300.025*
H50.18920.34470.22940.028*
H60.03320.33910.09330.032*
H70.12260.43520.01430.034*
H80.36050.54160.01550.032*
H9A0.57230.62760.11760.030*
H9B0.68160.53040.15540.030*
H10A0.70280.65400.26150.028*
H10B0.49850.66590.24940.028*
H11A0.80860.67010.38560.038*
H11B0.92010.58420.44000.038*
H11C0.77260.64310.47830.038*
H220.66530.17640.62160.028*
H230.78950.11980.75430.030*
H24A0.91930.24490.92460.051*
H24B1.10170.23910.89370.051*
H24C0.97730.14200.88350.051*
H250.98510.40070.81000.029*
H260.86840.45640.67580.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0215 (5)0.0236 (5)0.0149 (4)0.0007 (4)0.0003 (4)0.0011 (4)
N40.0221 (5)0.0211 (5)0.0167 (5)0.0007 (4)0.0007 (4)0.0003 (4)
N11A0.0194 (5)0.0207 (5)0.0152 (4)0.0002 (3)0.0000 (4)0.0004 (3)
C20.0199 (5)0.0217 (5)0.0163 (5)0.0014 (4)0.0036 (4)0.0001 (4)
C30.0235 (6)0.0207 (5)0.0183 (5)0.0016 (4)0.0019 (4)0.0003 (4)
C3A0.0200 (5)0.0192 (5)0.0186 (5)0.0005 (4)0.0024 (4)0.0013 (4)
C4A0.0197 (5)0.0201 (5)0.0173 (5)0.0014 (4)0.0023 (4)0.0007 (4)
C4B0.0213 (5)0.0195 (5)0.0178 (5)0.0034 (4)0.0011 (4)0.0011 (4)
C50.0246 (6)0.0221 (6)0.0217 (6)0.0012 (4)0.0001 (4)0.0004 (4)
C60.0244 (6)0.0264 (6)0.0261 (6)0.0010 (4)0.0032 (5)0.0037 (5)
C70.0287 (6)0.0341 (7)0.0202 (6)0.0059 (5)0.0045 (5)0.0033 (5)
C80.0290 (6)0.0315 (6)0.0183 (6)0.0051 (5)0.0018 (5)0.0030 (5)
C8A0.0227 (6)0.0238 (6)0.0190 (5)0.0039 (4)0.0020 (4)0.0000 (4)
C90.0259 (6)0.0289 (6)0.0191 (5)0.0010 (5)0.0028 (4)0.0043 (5)
C100.0267 (6)0.0214 (6)0.0205 (6)0.0022 (4)0.0017 (4)0.0025 (4)
C10A0.0206 (5)0.0194 (5)0.0178 (5)0.0010 (4)0.0032 (4)0.0003 (4)
C110.0204 (5)0.0190 (5)0.0193 (5)0.0005 (4)0.0032 (4)0.0001 (4)
C210.0189 (5)0.0239 (6)0.0165 (5)0.0019 (4)0.0040 (4)0.0002 (4)
C220.0245 (6)0.0250 (6)0.0206 (5)0.0019 (4)0.0025 (4)0.0003 (4)
C230.0273 (6)0.0258 (6)0.0232 (6)0.0012 (5)0.0046 (5)0.0047 (5)
C240.0221 (6)0.0330 (6)0.0182 (5)0.0017 (5)0.0029 (4)0.0038 (5)
C250.0239 (6)0.0295 (6)0.0187 (5)0.0007 (5)0.0016 (4)0.0013 (4)
C260.0234 (6)0.0234 (6)0.0196 (5)0.0002 (4)0.0032 (4)0.0008 (4)
C1110.0281 (6)0.0249 (6)0.0218 (6)0.0057 (4)0.0011 (4)0.0002 (4)
C2410.0371 (7)0.0416 (8)0.0215 (6)0.0019 (6)0.0026 (5)0.0093 (5)
Geometric parameters (Å, º) top
N1—C21.3446 (15)C9—H9B0.99
N1—N11A1.3534 (12)C10—C10A1.5078 (15)
C2—C31.3989 (15)C10—H10A0.99
C2—C211.4695 (15)C10—H10B0.99
C3—C3A1.3863 (16)C10A—C111.3685 (15)
C3—H30.95C11—N11A1.3662 (14)
C3A—N41.3504 (14)C11—C1111.4845 (15)
C3A—N11A1.3854 (14)C111—H11A0.98
N4—C4A1.3201 (14)C111—H11B0.98
C4A—C10A1.4350 (15)C111—H11C0.98
C4A—C4B1.4792 (15)C21—C221.3918 (16)
C4B—C51.3959 (16)C21—C261.3934 (16)
C4B—C8A1.3985 (16)C22—C231.3853 (16)
C5—C61.3842 (16)C22—H220.95
C5—H50.95C23—C241.3879 (18)
C6—C71.3852 (19)C23—H230.95
C6—H60.95C24—C251.3945 (18)
C7—C81.3840 (18)C24—C2411.5042 (15)
C7—H70.95C241—H24A0.98
C8—C8A1.3910 (15)C241—H24B0.98
C8—H80.95C241—H24C0.98
C8A—C91.5059 (17)C25—C261.3841 (16)
C9—C101.5191 (16)C25—H250.95
C9—H9A0.99C26—H260.95
C2—N1—N11A103.86 (9)C9—C10—H10B109.5
N1—C2—C3112.59 (10)H10A—C10—H10B108.1
N1—C2—C21118.16 (10)C11—C10A—C4A118.70 (10)
C3—C2—C21129.24 (11)C11—C10A—C10122.51 (10)
C3A—C3—C2105.23 (10)C4A—C10A—C10118.77 (10)
C3A—C3—H3127.4N11A—C11—C10A116.22 (10)
C2—C3—H3127.4N11A—C11—C111115.88 (10)
N4—C3A—N11A121.28 (10)C10A—C11—C111127.90 (10)
N4—C3A—C3133.22 (10)C11—C111—H11A109.5
N11A—C3A—C3105.49 (9)C11—C111—H11B109.5
C4A—N4—C3A116.64 (9)H11A—C111—H11B109.5
N4—C4A—C10A124.03 (10)C11—C111—H11C109.5
N4—C4A—C4B117.68 (10)H11A—C111—H11C109.5
C10A—C4A—C4B118.27 (10)H11B—C111—H11C109.5
C5—C4B—C8A119.73 (10)C22—C21—C26118.29 (10)
C5—C4B—C4A120.55 (10)C22—C21—C2121.45 (10)
C8A—C4B—C4A119.72 (10)C26—C21—C2120.25 (10)
C6—C5—C4B120.43 (11)C23—C22—C21120.57 (11)
C6—C5—H5119.8C23—C22—H22119.7
C4B—C5—H5119.8C21—C22—H22119.7
C5—C6—C7119.87 (11)C22—C23—C24121.35 (11)
C5—C6—H6120.1C22—C23—H23119.3
C7—C6—H6120.1C24—C23—H23119.3
C8—C7—C6120.02 (11)C23—C24—C25117.99 (11)
C8—C7—H7120.0C23—C24—C241121.10 (12)
C6—C7—H7120.0C25—C24—C241120.91 (11)
C7—C8—C8A120.85 (11)C24—C241—H24A109.5
C7—C8—H8119.6C24—C241—H24B109.5
C8A—C8—H8119.6H24A—C241—H24B109.5
C8—C8A—C4B119.09 (11)C24—C241—H24C109.5
C8—C8A—C9121.37 (11)H24A—C241—H24C109.5
C4B—C8A—C9119.53 (10)H24B—C241—H24C109.5
C8A—C9—C10110.75 (10)C26—C25—C24120.91 (11)
C8A—C9—H9A109.5C26—C25—H25119.5
C10—C9—H9A109.5C24—C25—H25119.5
C8A—C9—H9B109.5C25—C26—C21120.87 (11)
C10—C9—H9B109.5C25—C26—H26119.6
H9A—C9—H9B108.1C21—C26—H26119.6
C10A—C10—C9110.60 (9)N1—N11A—C11124.04 (9)
C10A—C10—H10A109.5N1—N11A—C3A112.83 (9)
C9—C10—H10A109.5C11—N11A—C3A123.12 (9)
C10A—C10—H10B109.5
N11A—N1—C2—C30.06 (12)C4B—C4A—C10A—C102.64 (15)
N11A—N1—C2—C21179.01 (9)C9—C10—C10A—C11143.18 (11)
N1—C2—C3—C3A0.05 (13)C9—C10—C10A—C4A38.18 (14)
C21—C2—C3—C3A178.86 (11)C4A—C10A—C11—N11A0.36 (15)
C2—C3—C3A—N4178.92 (12)C10—C10A—C11—N11A179.00 (10)
C2—C3—C3A—N11A0.03 (12)C4A—C10A—C11—C111180.00 (11)
N11A—C3A—N4—C4A0.69 (16)C10—C10A—C11—C1111.36 (18)
C3—C3A—N4—C4A178.07 (12)N1—C2—C21—C22164.81 (11)
C3A—N4—C4A—C10A0.73 (16)C3—C2—C21—C2213.94 (18)
C3A—N4—C4A—C4B178.15 (9)N1—C2—C21—C2614.34 (16)
N4—C4A—C4B—C518.83 (16)C3—C2—C21—C26166.91 (11)
C10A—C4A—C4B—C5162.22 (10)C26—C21—C22—C231.51 (17)
N4—C4A—C4B—C8A161.36 (10)C2—C21—C22—C23177.65 (11)
C10A—C4A—C4B—C8A17.59 (15)C21—C22—C23—C241.15 (18)
C8A—C4B—C5—C60.62 (17)C22—C23—C24—C250.29 (18)
C4A—C4B—C5—C6179.57 (10)C22—C23—C24—C241179.47 (11)
C4B—C5—C6—C70.36 (18)C23—C24—C25—C261.35 (18)
C5—C6—C7—C81.33 (19)C241—C24—C25—C26178.41 (11)
C6—C7—C8—C8A1.32 (19)C24—C25—C26—C210.99 (18)
C7—C8—C8A—C4B0.33 (18)C22—C21—C26—C250.45 (17)
C7—C8—C8A—C9178.62 (11)C2—C21—C26—C25178.72 (10)
C5—C4B—C8A—C80.64 (16)C2—N1—N11A—C11178.95 (10)
C4A—C4B—C8A—C8179.55 (10)C2—N1—N11A—C3A0.04 (12)
C5—C4B—C8A—C9179.61 (11)C10A—C11—N11A—N1178.40 (10)
C4A—C4B—C8A—C90.58 (16)C111—C11—N11A—N11.28 (16)
C8—C8A—C9—C10144.51 (11)C10A—C11—N11A—C3A0.40 (16)
C4B—C8A—C9—C1036.54 (15)C111—C11—N11A—C3A179.92 (10)
C8A—C9—C10—C10A53.49 (13)N4—C3A—N11A—N1179.05 (9)
N4—C4A—C10A—C110.21 (17)C3—C3A—N11A—N10.01 (13)
C4B—C4A—C10A—C11178.67 (10)N4—C3A—N11A—C110.13 (17)
N4—C4A—C10A—C10178.48 (10)C3—C3A—N11A—C11178.93 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg2i0.992.803.691 (2)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC21H17N3C22H19N3C21H17N3C22H19N3
Mr311.38325.40311.38325.40
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)7.6223 (2), 16.7937 (7), 24.4900 (9)7.2767 (13), 29.924 (6), 8.0463 (12)8.1092 (1), 11.7265 (2), 16.3486 (3)7.9037 (7), 13.1038 (10), 16.0576 (13)
α, β, γ (°)90, 90, 9090, 112.590 (6), 9090, 90.9010 (12), 9090, 99.199 (6), 90
V3)3134.88 (19)1617.6 (5)1554.44 (4)1641.7 (2)
Z8444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.080.08
Crystal size (mm)0.90 × 0.08 × 0.060.18 × 0.16 × 0.120.40 × 0.10 × 0.100.50 × 0.40 × 0.35
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.923, 0.9950.978, 0.9910.981, 0.9920.956, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
19065, 3577, 2438 7247, 2701, 2214 28824, 3555, 3093 22738, 3765, 3274
Rint0.0560.0510.0310.027
(sin θ/λ)max1)0.6500.5950.6490.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.07 0.078, 0.248, 1.05 0.039, 0.102, 1.04 0.045, 0.124, 1.06
No. of reflections3577270135553765
No. of parameters218228218229
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.300.36, 0.420.25, 0.320.34, 0.35

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cg1i0.992.753.644 (2)150
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.952.673.5129 (12)148
C9—H9B···N1ii0.992.583.4003 (14)140
C10—H10B···Cg2iii0.992.553.4676 (12)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg2i0.992.803.691 (2)151
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for compounds (I) - (IV) top
Parameter(I)(II)Parameter(III)(IV)
N1-C21.3493 (19)1.349 (3)N1-C21.3524 (14)1.3446 (15)
C2-C31.397 (2)1.392 (4)C2-C31.4000 (15)1.3989 (15)
C3-C3A1.383 (2)1.380 (4)C3-C3A1.3878 (15)1.3863 (16)
C3A-N41.3550 (17)1.361 (3)C3A-N41.3467 (14)1.3504 (14)
N4-C51.3252 (19)1.318 (4)N4-C4A1.3259 (14)1.3201 (15)
C5-C5A1.428 (2)1.425 (4)C4A-C10A1.4344 (15)1.4350 (15)
C5A-C11B1.3790 (19)1.385 (4)C10A-C111.3723 (15)1.3685 (15)
C11B-N11C1.3808 (18)1.383 (3)C11-N11A1.3726 (14)1.3662 (14)
N11C-N11.3626 (16)1.361 (3)N11A-N11.3595 (12)1.3534 (12)
C3A-N11C1.3957 (19)1.386 (4)C3A-N11A1.3905 (14)1.3854 (14)
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JQ and JP thank COLCIENCIAS and Universidad del Valle for financial support. JC and MN thank Consejeria de Educación (Junta de Andalucía, Spain) for financial support.

References

First citationCasey, F. B., Abboa-Offei, B. E. & Marretta, J. (1980). J. Pharmacol. Exp. Ther. 213, 432–436.  CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093–1095.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLow, J. N., Cobo, J., Quiroga, J., Portilla, J. & Glidewell, C. (2004). Acta Cryst. C60, o604–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMcQuaid, L., Smith, E., South, K., Mitch, C. H., Schoepp, D., True, R., Calligaro, D., O'Malley, P., Lodge, D. & Ornstein, P. (1992). J. Med. Chem. 35, 3319–3324.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds