organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrogen-bonded chains in 3-(5-chloro-3-meth­yl-1-phen­yl-1H-pyrazol-4-yl)-1-(4-meth­oxy­phen­yl)propenone and 3-(5-chloro-3-meth­yl-1-phen­yl-1H-pyrazol-4-yl)-1-(3,4,5-tri­meth­oxy­phen­yl)propenone

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, A.A. 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 4 May 2005; accepted 5 May 2005; online 31 May 2005)

Mol­ecules of 3-(5-chloro-3-meth­yl-1-phen­yl-1H-pyrazol-4-yl)-1-(4-methoxy­phen­yl)propenone, C20H17ClN2O2, (I)[link], are linked into C(10) chains and mol­ecules of 3-(5-chloro-3-meth­yl-1-phen­yl-1H-pyrazol-4-yl)-1-(3,4,5-trimethoxy­phen­yl)­propenone, C22H21ClN2O4, (II)[link], are linked into C(14) chains, in each case by means of a single C—H⋯O hydrogen bond.

Comment

We report here the structures of two novel chalcones, prepared by Claisen–Schmidt condensation reactions betweeen 5-chloro-4-form­yl-3-meth­yl-1-phenyl­pyrazole and meth­oxy-substituted acetophenones.

[Scheme 1]

With the exception of the unsubstituted phen­yl ring C11–C16, the mol­ecular skeleton of compound (I)[link] (Fig. 1[link]) is nearly planar, as shown by the leading torsion angles (Table 1[link]). Similarly, the mol­ecular skeleton of compound (II)[link] (Fig. 2[link]) is nearly planar, apart from the 4-meth­oxy group at one end of the mol­ecule and the unsubstituted phen­yl ring at the other end (Table 3[link]). The 4-meth­oxy group in (II)[link] has its meth­yl group twisted well out of the plane of the adjacent ar­yl ring, presumably for steric reasons, whereas the meth­yl groups of the 3- and 5-meth­oxy substituents are essentially coplanar with this ring; the dihedral angle between phen­yl ring C11–C16 and the adjacent pyrazole ring is 53.1 (2)° in (I)[link] and 40.0 (2)° in (II)[link]. Accordingly, the mol­ecules of (I)[link] and (II)[link] have no inter­nal symmetry and so are chiral, and in the absence of inversion twinning each crystal of (I)[link] thus contains only one enantiomer.

Consistent with the different conformations adopted by the meth­oxy groups in (II)[link], the pairs of exocyclic C—C—O angles at both C53 and C55 show the difference typical of those found in planar methoxy­arenes, including (I)[link], while the two C—C—O angles at C54 have values which are much more similar. Associated with this conformational difference in (II)[link], the C—O—C angles at O53 and O55 are much larger than that at O54, and the C—O distances, particularly those to the meth­oxy atoms C5n1 (n = 3, 4 or 5), show significant differences associated with the conformations. The remaining bond lengths and angles show no unusual values. In particular, there is no structural evidence for significant charge polarization.

In each of (I)[link] and (II)[link], the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond (Tables 2[link] and 4[link]). In compound (I)[link], ar­yl atom C12 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbon­yl atom O43 in the mol­ecule at (1 − x, [{1\over 2}] + y, 1 − z), so forming a C(10) chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 2}]) (Fig. 3[link]). Just one chain of this type passes through each unit cell, with no significant direction-specific inter­actions between adjacent chains. In compound (II)[link], atom C13 in the mol­ecule at (x, y, z) acts as donor to meth­oxy atom O55 in the mol­ecule at (x, y, 1 + z), thereby generating by translation a C(14) chain running parallel to the [001] direction (Fig. 4[link]). Two antiparallel chains of this type pass through each unit cell, but there are no significant direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded C(10) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, [{1\over 2}] + y, 1 − z) and (1 − x, y − [{1\over 2}], 1 − z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of (II)[link], showing the formation of a hydrogen-bonded C(14) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, 1 + z) and (x, y, z − 1), respectively.

Experimental

For the syntheses of compounds (I)[link] and (II)[link], a catalytic amount of sodium hydro­xide (one pellet) was added to a solution of 5-chloro-4-form­yl-3-meth­yl-1-phenyl­pyrazole (1 mmol) and either 4-methoxy­acetophenone (1 mmol), for (I)[link], or 3,4,5-trimethoxy­acetophenone (1 mmol), for (II)[link], in dry ethanol (10 ml). The resulting mixtures were stirred for 2 h at ambient temperature. The precipitates which formed were collected by filtration, washed with ethanol and dried, and then crystallized from ethanol, giving (I)[link] and (II)[link] in yields of 60% [m.p. 372 K for (I)[link] and 413 K for (II)[link]]. For (I)[link], MS IE m/z (%): 317 (100, M − Cl), 92 (6), 77 (23), 55 (6). For (II)[link], MS IE m/z (%): 412 (7, M+), 377 (100, M − Cl), 77 (24), 51 (8). Crystals suitable for single-crystal X-ray diffraction were grown from solutions in dimethyl­formamide.

Compound (I)[link]

Crystal data
  • C20H17ClN2O2

  • Mr = 352.81

  • Monoclinic, P 21

  • a = 12.7985 (10) Å

  • b = 4.0684 (3) Å

  • c = 16.6766 (14) Å

  • β = 95.918 (4)°

  • V = 863.71 (12) Å3

  • Z = 2

  • Dx = 1.357 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3863 reflections

  • θ = 3.7–27.7°

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.80 × 0.18 × 0.01 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.833, Tmax = 0.998

  • 11 528 measured reflections

  • 3863 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.7°

  • h = −16 → 16

  • k = −4 → 5

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.125

  • S = 1.01

  • 3863 reflections

  • 228 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0689P)2 + 0.0289P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1557 Friedel pairs

  • Flack parameter: 0.06 (7)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C54—O54 1.367 (3)
O54—C541 1.418 (3)
O54—C54—C53 116.5 (2)
O54—C54—C55 124.1 (3)
C54—O54—C541 117.9 (2)
C3—C4—C41—C42 −10.0 (5)
C4—C41—C42—C43 −178.5 (3)
C41—C42—C43—C51 179.4 (3)
C42—C43—C51—C52 −169.7 (3)
C53—C54—O54—C541 178.8 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O43i 0.95 2.50 3.409 (3) 160
Symmetry code: (i) [1-x, y+{\script{1\over 2}}, 1-z].

Compound (II)[link]

Crystal data
  • C22H21ClN2O4

  • Mr = 412.86

  • Triclinic, [P \overline 1]

  • a = 7.5118 (2) Å

  • b = 8.8121 (3) Å

  • c = 15.6709 (4) Å

  • α = 81.825 (1)°

  • β = 82.750 (2)°

  • γ = 79.459 (2)°

  • V = 1004.10 (5) Å3

  • Z = 2

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4486 reflections

  • θ = 3.2–27.5°

  • μ = 0.22 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.62 × 0.36 × 0.28 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.875, Tmax = 0.941

  • 19 609 measured reflections

  • 4486 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −9 → 9

  • k = −11 → 11

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.03

  • 4486 reflections

  • 266 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3813P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

C53—O53 1.3902 (14)
C54—O54 1.3737 (14)
C55—O55 1.3782 (14)
O53—C531 1.4482 (14)
O54—C541 1.4280 (15)
O55—C551 1.4560 (14)
C52—C53—O53 123.97 (11)
C54—C53—O53 116.69 (10)
C53—O53—C531 117.36 (9)
C53—C54—O54 121.04 (10)
C55—C54—O54 118.13 (10)
C54—O54—C541 114.74 (9)
C54—C55—O55 115.89 (10)
C56—C55—O55 123.99 (10)
C55—O55—C551 119.21 (9)
C3—C4—C41—C42 −7.7 (2)
C4—C41—C42—C43 −177.93 (10)
C41—C42—C43—C51 175.22 (10)
C42—C43—C51—C52 178.79 (10)
C52—C53—O53—C531 −1.42 (16)
C53—C54—O54—C541 −71.19 (15)
C56—C55—O55—C551 1.47 (16)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O55i 0.95 2.42 3.3203 (17) 158
Symmetry code: (i) x, y, z+1.

For compound (I)[link], the systematic absences permitted P21 and P21/m as possible space groups; P21 was selected and confirmed by the subsequent structure analysis. The absolute configuration of the mol­ecules in the crystal of (I)[link] selected for study was established (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]) by use of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter, but this has no chemical significance. Crystals of compound (II)[link] are triclinic; space group P[\overline{1}] was selected and confirmed by the subsequent structure analysis. All H atoms in (I)[link] and (II)[link] were located in difference maps, and then treated as riding atoms with C—H distances of 0.95 (CH) or 0.98 Å (CH3), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the meth­yl groups. The crystals of both compounds proved to be extremely fragile, and all attempts to cut small fragments from larger crystals resulted in shattering of the parent crystals.

For both compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT. Structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (I)[link]; WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]) for (II)[link]. For both compounds, structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); publication software: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of two novel chalcones, prepared by Claisen–Schmidt condensation reactions betweeen 5-chloro-4-formyl-3-methyl-1-phenylpyrazole and methoxy-substituted acetophenones.

With the exception of the unsubstituted phenyl ring C11–C16, the molecular skeleton of compound (I) (Fig. 1) is nearly planar, as shown by the leading torsion angles (Table 1). Similarly, the molecular skeleton of compound (II) (Fig. 2) is nearly planar, apart from the 4-methoxy group at one end of the molecule and the unsubstituted phenyl ring at the other end (Table 3). The 4-methoxy group in (II) has its methyl group twisted well out of the plane of the adjacent aryl ring, presumably for steric reasons, whereas the methyl groups in the 3- and 5-methoxy substituents are essentially coplanar with this ring: the dihedral angles between the phenyl ring C11–C16 and the adjacent pyrazole ring are 53.1 (2)° in (I) and 40.0 (2)° in (II). Accordingly, the molecules of both (I) and (II) have no internal symmetry and so are chiral, and in the absence of inversion twinning the crystals of (I) thus contain only one enantiomer.

Consistent with the different conformations adopted by the methoxy groups in (II), the pairs of exocyclic C—C—O angles at both C53 and C55 show the difference typical of those found in planar methoxyarenes, including (I), while the two C—C—O angles at C54 have values which are much more similar. Associated with this conformational difference in (II), the C—O—C angles at O53 and O55 are much larger than that at O54, and the C—O distances, particularly those to the methoxy atoms C5n1 (n = 3, 4 or 5), show significant differences associated with the conformations. The remaining bond lengths and angles show no unusual values. In particular, there is no structural evidence for significant charge polarization.

In each of (I) and (II), the molecules are linked into simple chains by a single C—H···O hydrogen bond (Tables 2 and 4). In compound (I), the aryl atom C12 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O43 in the molecule at (1 − x, 1/2 + y, 1 − z), so forming a C(10) chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/2) (Fig. 3). Just one chain of this type passes through each unit cell, with no significant direction-specific interactions between adjacent chains. In compound (II), atom C13 in the molecule at (x, y, z) acts as donor to methoxy atom O55 in the molecule at (x, y, 1 + z), thereby generating by translation a C(14) chain running parallel to the [001] direction (Fig. 4). Two anti-parallel chains of this type pass through each unit cell, but there are no significant direction-specific interactions between adjacent chains.

Experimental top

For the syntheses of compounds (I) and (II), a catalytic amount of sodium hydroxide (one pellet) was added to a solution of 5-chloro-4-formyl-3-methyl-1-phenylpyrazole (1 mmol) and either 4-methoxyacetophenone (1 mmol), for (I), or 3,4,5-trimethoxyacetophenone (1 mmol), for (II), in dry ethanol (10 ml). The resulting mixtures were stirred for 2 h at ambient temperature. The resulting precipitates were collected by filtration, washed with ethanol and dried, and then crystallized from ethanol, giving (I) and (II) in yields of 60% [m.p. 372 K for (I) and 413 K for (II)]. For (I), MS IE m/z (%): 317 (100, M–Cl), 92 (6), 77 (23), 55 (6). For (II), MS IE m/z (%): 412 (7, M+), 377 (100, M–Cl), 77 (24), 51 (8). Crystals suitable for single-crystal X-ray diffraction were grown from solutions in dimethylformamide.

Refinement top

For compound (I), the systematic absences permitted P21 and P21/m as possible space groups; P21 was selected, and confirmed by the subsequent structure analysis. The absolute configuration of the molecules in the crystal of (I) selected for study was established (Jones, 1986) by use of the Flack parameter (Flack, 1983), but this has no chemical significance. Crystals of compound (II) are triclinic; space group P1 was selected, and confirmed by the subsequent structure analysis. All H atoms in (I) and (II) were located in difference maps, and then treated as riding atoms with C—H distances of 0.95 Å (CH) or 0.98 Å (CH3), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. The crystals of both compounds proved to be extremely fragile, and all attempts to cut small fragments from larger crystals resulted in shattering of the parent crystals.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT. Program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (I); WinGX (Farrugia, 1999) and SIR92 (Altomare et al., 1993) for (II). Program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997) for (I); OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997) for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(10) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, 1/2 + y, 1 − z) and (1 − x, y − 1/2, 1 − z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a hydrogen-bonded C(14) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, 1 + z) and (x, y, z − 1), respectively.
(I) 3-(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)propenone top
Crystal data top
C20H17ClN2O2F(000) = 368
Mr = 352.81Dx = 1.357 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3863 reflections
a = 12.7985 (10) Åθ = 3.7–27.7°
b = 4.0684 (3) ŵ = 0.24 mm1
c = 16.6766 (14) ÅT = 120 K
β = 95.918 (4)°Needle, colourless
V = 863.71 (12) Å30.80 × 0.18 × 0.01 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3863 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.7°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 45
Tmin = 0.833, Tmax = 0.998l = 2121
11528 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.0289P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3863 reflectionsΔρmax = 0.24 e Å3
228 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), with 1557 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C20H17ClN2O2V = 863.71 (12) Å3
Mr = 352.81Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.7985 (10) ŵ = 0.24 mm1
b = 4.0684 (3) ÅT = 120 K
c = 16.6766 (14) Å0.80 × 0.18 × 0.01 mm
β = 95.918 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3863 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2741 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.998Rint = 0.040
11528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.17 e Å3
3863 reflectionsAbsolute structure: Flack (1983), with 1557 Friedel pairs
228 parametersAbsolute structure parameter: 0.06 (7)
1 restraint
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl50.45383 (5)0.22806 (18)0.38746 (4)0.0619 (2)
O430.36218 (15)0.3712 (6)0.68060 (11)0.0663 (6)
O540.08357 (16)1.0882 (6)0.91758 (11)0.0687 (6)
N10.29125 (15)0.5163 (6)0.30158 (12)0.0471 (5)
N20.19669 (15)0.6694 (6)0.30796 (12)0.0524 (6)
C30.18813 (18)0.6844 (7)0.38632 (15)0.0481 (6)
C40.27485 (18)0.5347 (7)0.43264 (14)0.0468 (6)
C50.33795 (18)0.4330 (7)0.37506 (14)0.0458 (6)
C110.3253 (2)0.4583 (7)0.22362 (14)0.0482 (6)
C120.4231 (2)0.5619 (8)0.20642 (16)0.0589 (7)
C130.4519 (3)0.5118 (9)0.12987 (19)0.0727 (9)
C140.3835 (3)0.3635 (9)0.07170 (18)0.0785 (10)
C150.2864 (3)0.2602 (10)0.08955 (17)0.0756 (9)
C160.2572 (2)0.3020 (7)0.16656 (16)0.0597 (8)
C310.0933 (2)0.8430 (8)0.41468 (17)0.0629 (8)
C410.29815 (19)0.4879 (7)0.51832 (15)0.0498 (7)
C420.2494 (2)0.6149 (7)0.57791 (16)0.0550 (7)
C430.2860 (2)0.5458 (7)0.66261 (15)0.0507 (6)
C510.22847 (17)0.6989 (7)0.72716 (14)0.0464 (6)
C520.2731 (2)0.6773 (8)0.80696 (15)0.0574 (7)
C530.2232 (2)0.8093 (8)0.86784 (16)0.0616 (8)
C540.1271 (2)0.9656 (7)0.85235 (15)0.0506 (7)
C550.0802 (2)0.9845 (8)0.77378 (15)0.0533 (7)
C560.1328 (2)0.8535 (7)0.71266 (15)0.0519 (7)
C5410.0139 (2)1.2554 (9)0.90362 (17)0.0704 (8)
H120.46990.66610.24660.071*
H130.51930.57990.11720.087*
H140.40360.33260.01890.094*
H150.23930.15990.04910.091*
H160.19120.22420.17990.072*
H31A0.04710.92140.36810.094*
H31B0.11501.02920.44980.094*
H31C0.05560.68260.44470.094*
H410.35600.34790.53440.060*
H420.19000.75240.56550.066*
H520.33880.56990.81900.069*
H530.25490.79370.92180.074*
H54A0.00591.44600.86880.106*
H54B0.03611.32940.95510.106*
H54C0.06691.10630.87720.106*
H550.01351.08540.76210.064*
H560.10150.87090.65860.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.0482 (3)0.0740 (5)0.0634 (4)0.0144 (4)0.0057 (3)0.0027 (4)
O430.0544 (11)0.0809 (15)0.0641 (12)0.0084 (11)0.0092 (9)0.0055 (11)
O540.0752 (13)0.0846 (15)0.0482 (11)0.0003 (11)0.0148 (9)0.0078 (10)
N10.0429 (11)0.0547 (14)0.0437 (12)0.0048 (11)0.0043 (9)0.0045 (11)
N20.0452 (11)0.0597 (15)0.0522 (13)0.0082 (11)0.0050 (9)0.0022 (12)
C30.0439 (13)0.0492 (15)0.0520 (14)0.0005 (13)0.0086 (10)0.0052 (14)
C40.0430 (13)0.0518 (16)0.0461 (14)0.0056 (12)0.0072 (10)0.0049 (13)
C50.0392 (13)0.0489 (15)0.0488 (14)0.0004 (12)0.0019 (11)0.0063 (13)
C110.0523 (14)0.0488 (15)0.0435 (13)0.0074 (13)0.0042 (11)0.0018 (12)
C120.0538 (16)0.0701 (19)0.0530 (16)0.0019 (14)0.0060 (13)0.0039 (15)
C130.0692 (19)0.088 (2)0.064 (2)0.0083 (19)0.0233 (16)0.0015 (19)
C140.091 (2)0.098 (3)0.0488 (17)0.021 (2)0.0157 (17)0.0074 (18)
C150.082 (2)0.088 (2)0.0536 (17)0.007 (2)0.0065 (14)0.0226 (19)
C160.0545 (15)0.068 (2)0.0553 (15)0.0032 (15)0.0017 (12)0.0095 (15)
C310.0491 (15)0.071 (2)0.0700 (18)0.0090 (14)0.0114 (13)0.0113 (16)
C410.0436 (14)0.0516 (16)0.0545 (16)0.0065 (13)0.0058 (11)0.0055 (14)
C420.0543 (15)0.0607 (18)0.0506 (15)0.0037 (13)0.0077 (12)0.0013 (13)
C430.0439 (14)0.0576 (16)0.0506 (15)0.0073 (13)0.0052 (11)0.0034 (14)
C510.0426 (13)0.0535 (15)0.0430 (12)0.0094 (13)0.0044 (9)0.0095 (14)
C520.0475 (14)0.069 (2)0.0543 (15)0.0028 (15)0.0012 (11)0.0007 (15)
C530.0640 (17)0.079 (2)0.0403 (14)0.0049 (16)0.0027 (12)0.0012 (15)
C540.0546 (16)0.0518 (17)0.0456 (14)0.0100 (14)0.0067 (12)0.0004 (14)
C550.0502 (15)0.0600 (18)0.0496 (15)0.0009 (14)0.0049 (12)0.0047 (14)
C560.0519 (15)0.0623 (18)0.0409 (13)0.0044 (13)0.0017 (11)0.0056 (13)
C5410.0714 (19)0.072 (2)0.0710 (19)0.000 (2)0.0245 (15)0.0087 (19)
Geometric parameters (Å, º) top
N1—C51.350 (3)C5—Cl51.695 (2)
N1—N21.375 (3)C41—C421.331 (4)
N1—C111.433 (3)C41—H410.95
C11—C161.378 (4)C42—C431.469 (4)
C11—C121.379 (4)C42—H420.95
C12—C131.380 (4)C43—O431.219 (3)
C12—H120.95C43—C511.500 (4)
C13—C141.378 (5)C51—C561.376 (4)
C13—H130.95C51—C521.396 (3)
C14—C151.373 (5)C52—C531.364 (4)
C14—H140.95C52—H520.95
C15—C161.384 (4)C53—C541.385 (4)
C15—H150.95C53—H530.95
C16—H160.95C54—O541.367 (3)
N2—C31.324 (3)C54—C551.386 (3)
C3—C41.422 (3)O54—C5411.418 (3)
C3—C311.494 (3)C541—H54A0.98
C31—H31A0.98C541—H54B0.98
C31—H31B0.98C541—H54C0.98
C31—H31C0.98C55—C561.384 (4)
C4—C51.380 (3)C55—H550.95
C4—C411.442 (3)C56—H560.95
C5—N1—N2110.75 (19)C4—C5—Cl5129.0 (2)
C5—N1—C11129.4 (2)C42—C41—C4128.6 (3)
N2—N1—C11119.84 (19)C42—C41—H41115.7
C16—C11—C12121.4 (2)C4—C41—H41115.7
C16—C11—N1118.2 (2)C41—C42—C43121.1 (3)
C12—C11—N1120.4 (2)C41—C42—H42119.5
C11—C12—C13118.8 (3)C43—C42—H42119.5
C11—C12—H12120.6O43—C43—C42121.0 (2)
C13—C12—H12120.6O43—C43—C51120.3 (2)
C14—C13—C12120.3 (3)C42—C43—C51118.6 (2)
C14—C13—H13119.8C56—C51—C52117.8 (2)
C12—C13—H13119.8C56—C51—C43123.9 (2)
C15—C14—C13120.4 (3)C52—C51—C43118.4 (2)
C15—C14—H14119.8C53—C52—C51120.5 (3)
C13—C14—H14119.8C53—C52—H52119.7
C14—C15—C16120.0 (3)C51—C52—H52119.7
C14—C15—H15120.0C52—C53—C54121.1 (2)
C16—C15—H15120.0C52—C53—H53119.4
C11—C16—C15119.1 (3)C54—C53—H53119.4
C11—C16—H16120.5O54—C54—C53116.5 (2)
C15—C16—H16120.5O54—C54—C55124.1 (3)
C3—N2—N1105.09 (19)C53—C54—C55119.4 (3)
N2—C3—C4112.1 (2)C54—O54—C541117.9 (2)
N2—C3—C31119.0 (2)O54—C541—H54A109.5
C4—C3—C31128.8 (2)O54—C541—H54B109.5
C3—C31—H31A109.5H54A—C541—H54B109.5
C3—C31—H31B109.5O54—C541—H54C109.5
H31A—C31—H31B109.5H54A—C541—H54C109.5
C3—C31—H31C109.5H54B—C541—H54C109.5
H31A—C31—H31C109.5C56—C55—C54118.6 (3)
H31B—C31—H31C109.5C56—C55—H55120.7
C5—C4—C3103.3 (2)C54—C55—H55120.7
C5—C4—C41125.0 (2)C51—C56—C55122.5 (2)
C3—C4—C41131.7 (2)C51—C56—H56118.7
N1—C5—C4108.7 (2)C55—C56—H56118.7
N1—C5—Cl5122.27 (18)
C5—N1—C11—C16126.0 (3)C41—C4—C5—N1179.7 (2)
N2—N1—C11—C1651.9 (3)C3—C4—C5—Cl5178.6 (2)
C5—N1—C11—C1255.0 (4)C41—C4—C5—Cl51.2 (4)
N2—N1—C11—C12127.1 (3)C5—C4—C41—C42170.2 (3)
C16—C11—C12—C131.1 (5)C3—C4—C41—C4210.0 (5)
N1—C11—C12—C13177.8 (3)C4—C41—C42—C43178.5 (3)
C11—C12—C13—C140.6 (5)C41—C42—C43—O430.2 (4)
C12—C13—C14—C150.9 (5)C41—C42—C43—C51179.4 (3)
C13—C14—C15—C160.6 (6)O43—C43—C51—C56169.0 (3)
C12—C11—C16—C152.5 (5)C42—C43—C51—C5611.9 (4)
N1—C11—C16—C15176.4 (3)O43—C43—C51—C529.5 (4)
C14—C15—C16—C112.2 (5)C42—C43—C51—C52169.7 (3)
C5—N1—N2—C31.4 (3)C56—C51—C52—C530.7 (4)
C11—N1—N2—C3179.7 (2)C43—C51—C52—C53179.2 (3)
N1—N2—C3—C41.6 (3)C51—C52—C53—C540.4 (5)
N1—N2—C3—C31179.3 (2)C52—C53—C54—O54179.8 (3)
N2—C3—C4—C51.1 (3)C52—C53—C54—C550.9 (5)
C31—C3—C4—C5179.8 (3)C53—C54—O54—C541178.8 (3)
N2—C3—C4—C41178.7 (3)C55—C54—O54—C5412.3 (4)
C31—C3—C4—C410.3 (5)O54—C54—C55—C56179.4 (3)
N2—N1—C5—C40.8 (3)C53—C54—C55—C561.8 (4)
C11—N1—C5—C4178.8 (3)C52—C51—C56—C550.3 (4)
N2—N1—C5—Cl5177.80 (18)C43—C51—C56—C55178.2 (3)
C11—N1—C5—Cl50.3 (4)C54—C55—C56—C511.5 (4)
C3—C4—C5—N10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O43i0.952.503.409 (3)160
Symmetry code: (i) x+1, y+1/2, z+1.
(II) 3-(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(3,4,5- trimethoxyphenyl)propenone top
Crystal data top
C22H21ClN2O4Z = 2
Mr = 412.86F(000) = 432
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5118 (2) ÅCell parameters from 4486 reflections
b = 8.8121 (3) Åθ = 3.2–27.5°
c = 15.6709 (4) ŵ = 0.22 mm1
α = 81.825 (1)°T = 120 K
β = 82.750 (2)°Block, colourless
γ = 79.459 (2)°0.62 × 0.36 × 0.28 mm
V = 1004.10 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4486 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.875, Tmax = 0.941l = 2020
19609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3813P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H21ClN2O4γ = 79.459 (2)°
Mr = 412.86V = 1004.10 (5) Å3
Triclinic, P1Z = 2
a = 7.5118 (2) ÅMo Kα radiation
b = 8.8121 (3) ŵ = 0.22 mm1
c = 15.6709 (4) ÅT = 120 K
α = 81.825 (1)°0.62 × 0.36 × 0.28 mm
β = 82.750 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3927 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.941Rint = 0.027
19609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
4486 reflectionsΔρmin = 0.24 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl50.37893 (4)0.43785 (3)0.836310 (19)0.02700 (10)
O430.39938 (13)0.22874 (10)0.54427 (6)0.0273 (2)
O530.30887 (12)0.07687 (10)0.25587 (5)0.02217 (19)
O540.12734 (11)0.34484 (11)0.17114 (5)0.0229 (2)
O550.04066 (12)0.61208 (10)0.24046 (6)0.0235 (2)
N10.25366 (13)0.75196 (12)0.80003 (6)0.0191 (2)
N20.20392 (13)0.86634 (12)0.73274 (6)0.0200 (2)
C30.21965 (15)0.79016 (14)0.66376 (7)0.0181 (2)
C40.28111 (15)0.62379 (14)0.68431 (7)0.0172 (2)
C50.30059 (15)0.60746 (14)0.77171 (8)0.0185 (2)
C110.23990 (16)0.79860 (15)0.88467 (8)0.0206 (2)
C120.17014 (18)0.70618 (16)0.95636 (8)0.0274 (3)
C130.1582 (2)0.75612 (19)1.03789 (9)0.0352 (3)
C140.2126 (2)0.89754 (19)1.04694 (9)0.0370 (4)
C150.27973 (19)0.98944 (17)0.97465 (9)0.0319 (3)
C160.29444 (17)0.94092 (15)0.89303 (8)0.0245 (3)
C310.17479 (18)0.88163 (15)0.57886 (8)0.0243 (3)
C410.31745 (15)0.49529 (14)0.63161 (7)0.0173 (2)
C420.28284 (16)0.50018 (14)0.54936 (8)0.0189 (2)
C430.32428 (15)0.35397 (14)0.50675 (7)0.0177 (2)
C510.27216 (15)0.35698 (14)0.41742 (7)0.0168 (2)
C520.31835 (15)0.21549 (14)0.37996 (7)0.0175 (2)
C530.27291 (15)0.21023 (14)0.29732 (8)0.0176 (2)
C540.18171 (15)0.34707 (14)0.25136 (7)0.0182 (2)
C550.13411 (15)0.48787 (14)0.28960 (8)0.0180 (2)
C560.17986 (15)0.49373 (14)0.37237 (7)0.0178 (2)
C5310.40305 (17)0.06335 (14)0.30160 (8)0.0226 (3)
C5410.27213 (18)0.32795 (17)0.10296 (8)0.0285 (3)
C5510.01145 (17)0.76082 (14)0.27477 (8)0.0235 (3)
H120.13180.61190.94990.033*
H130.11300.69431.08780.042*
H140.20330.93031.10280.044*
H150.31541.08490.98110.038*
H160.34061.00260.84340.029*
H31A0.06710.85120.56110.036*
H31B0.27800.86070.53480.036*
H31C0.14990.99290.58500.036*
H410.37170.39730.65870.021*
H420.23240.59570.51830.023*
H520.38000.12490.41130.021*
H53A0.52150.04530.31410.034*
H53B0.42110.14820.26560.034*
H53C0.33020.09140.35610.034*
H54A0.34330.41170.09980.043*
H54B0.22140.33330.04780.043*
H54C0.35100.22720.11450.043*
H55A0.09110.74810.32890.035*
H55B0.07620.83690.23250.035*
H55C0.09790.79760.28600.035*
H560.14970.58770.39810.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.04012 (18)0.02050 (16)0.01859 (16)0.00295 (12)0.00804 (12)0.00233 (11)
O430.0398 (5)0.0216 (5)0.0197 (4)0.0023 (4)0.0092 (4)0.0040 (4)
O530.0276 (4)0.0189 (4)0.0206 (4)0.0028 (3)0.0086 (3)0.0074 (3)
O540.0209 (4)0.0315 (5)0.0157 (4)0.0038 (4)0.0060 (3)0.0082 (4)
O550.0288 (4)0.0208 (4)0.0188 (4)0.0063 (4)0.0072 (3)0.0041 (3)
N10.0230 (5)0.0195 (5)0.0145 (5)0.0006 (4)0.0028 (4)0.0042 (4)
N20.0221 (5)0.0198 (5)0.0174 (5)0.0011 (4)0.0028 (4)0.0026 (4)
C30.0172 (5)0.0202 (6)0.0170 (6)0.0028 (4)0.0011 (4)0.0036 (4)
C40.0164 (5)0.0203 (6)0.0150 (5)0.0030 (4)0.0012 (4)0.0031 (4)
C50.0190 (5)0.0193 (6)0.0168 (6)0.0013 (4)0.0020 (4)0.0032 (4)
C110.0190 (5)0.0254 (6)0.0167 (6)0.0045 (5)0.0038 (4)0.0091 (5)
C120.0300 (7)0.0308 (7)0.0199 (6)0.0001 (5)0.0015 (5)0.0055 (5)
C130.0394 (8)0.0451 (9)0.0169 (6)0.0040 (6)0.0012 (5)0.0052 (6)
C140.0373 (8)0.0511 (9)0.0219 (7)0.0084 (7)0.0073 (6)0.0189 (6)
C150.0302 (7)0.0360 (8)0.0322 (7)0.0034 (6)0.0085 (6)0.0199 (6)
C160.0228 (6)0.0273 (7)0.0234 (6)0.0022 (5)0.0034 (5)0.0106 (5)
C310.0322 (6)0.0212 (6)0.0186 (6)0.0011 (5)0.0045 (5)0.0022 (5)
C410.0167 (5)0.0178 (6)0.0175 (6)0.0030 (4)0.0008 (4)0.0035 (4)
C420.0200 (5)0.0188 (6)0.0176 (6)0.0022 (4)0.0015 (4)0.0032 (4)
C430.0181 (5)0.0200 (6)0.0153 (5)0.0039 (4)0.0009 (4)0.0030 (4)
C510.0153 (5)0.0211 (6)0.0142 (5)0.0038 (4)0.0004 (4)0.0035 (4)
C520.0167 (5)0.0189 (6)0.0166 (5)0.0014 (4)0.0023 (4)0.0024 (4)
C530.0159 (5)0.0186 (6)0.0188 (6)0.0014 (4)0.0007 (4)0.0064 (4)
C540.0155 (5)0.0245 (6)0.0146 (5)0.0003 (4)0.0030 (4)0.0053 (4)
C550.0163 (5)0.0194 (6)0.0168 (6)0.0006 (4)0.0020 (4)0.0018 (4)
C560.0175 (5)0.0188 (6)0.0170 (6)0.0009 (4)0.0011 (4)0.0050 (4)
C5310.0266 (6)0.0172 (6)0.0240 (6)0.0001 (5)0.0059 (5)0.0037 (5)
C5410.0283 (6)0.0384 (8)0.0175 (6)0.0033 (6)0.0032 (5)0.0101 (5)
C5510.0265 (6)0.0175 (6)0.0249 (6)0.0014 (5)0.0030 (5)0.0036 (5)
Geometric parameters (Å, º) top
N1—C51.3782 (15)C42—H420.95
N1—N21.3882 (14)C43—O431.2463 (15)
N1—C111.4297 (14)C43—C511.4959 (16)
C11—C121.3955 (19)C51—C561.4168 (16)
C11—C161.4163 (18)C51—C521.4205 (16)
C12—C131.3967 (18)C52—C531.3894 (16)
C12—H120.95C52—H520.95
C13—C141.411 (2)C53—O531.3902 (14)
C13—H130.95C54—O541.3737 (14)
C14—C151.392 (2)C55—O551.3782 (14)
C14—H140.95C53—C541.4203 (16)
C15—C161.3906 (18)O53—C5311.4482 (14)
C15—H150.95O54—C5411.4280 (15)
C16—H160.95O55—C5511.4560 (14)
N2—C31.3335 (15)C531—H53A0.98
C3—C41.4566 (16)C531—H53B0.98
C3—C311.4975 (17)C531—H53C0.98
C31—H31A0.98C54—C551.4218 (16)
C31—H31B0.98C541—H54A0.98
C31—H31C0.98C541—H54B0.98
C4—C51.3802 (16)C541—H54C0.98
C4—C411.4611 (16)C55—C561.3933 (16)
C5—Cl51.7329 (12)C551—H55A0.98
C41—C421.3399 (17)C551—H55B0.98
C41—H410.95C551—H55C0.98
C42—C431.4994 (16)C56—H560.95
C5—N1—N2111.26 (9)O43—C43—C51118.80 (10)
C5—N1—C11131.25 (10)O43—C43—C42121.69 (10)
N2—N1—C11117.40 (9)C51—C43—C42119.50 (10)
C12—C11—C16121.60 (11)C56—C51—C52121.41 (10)
C12—C11—N1119.92 (11)C56—C51—C43121.80 (10)
C16—C11—N1118.46 (11)C52—C51—C43116.78 (10)
C11—C12—C13118.17 (13)C53—C52—C51119.66 (11)
C11—C12—H12120.9C53—C52—H52120.2
C13—C12—H12120.9C51—C52—H52120.2
C12—C13—C14120.66 (14)C52—C53—O53123.97 (11)
C12—C13—H13119.7C52—C53—C54119.34 (10)
C14—C13—H13119.7C54—C53—O53116.69 (10)
C15—C14—C13120.48 (12)C53—O53—C531117.36 (9)
C15—C14—H14119.8O53—C531—H53A109.5
C13—C14—H14119.8O53—C531—H53B109.5
C16—C15—C14119.72 (14)H53A—C531—H53B109.5
C16—C15—H15120.1O53—C531—H53C109.5
C14—C15—H15120.1H53A—C531—H53C109.5
C15—C16—C11119.36 (13)H53B—C531—H53C109.5
C15—C16—H16120.3C53—C54—O54121.04 (10)
C11—C16—H16120.3C55—C54—O54118.13 (10)
C3—N2—N1104.63 (9)C53—C54—C55120.71 (10)
N2—C3—C4112.35 (10)C54—O54—C541114.74 (9)
N2—C3—C31118.25 (11)O54—C541—H54A109.5
C4—C3—C31129.39 (10)O54—C541—H54B109.5
C3—C31—H31A109.5H54A—C541—H54B109.5
C3—C31—H31B109.5O54—C541—H54C109.5
H31A—C31—H31B109.5H54A—C541—H54C109.5
C3—C31—H31C109.5H54B—C541—H54C109.5
H31A—C31—H31C109.5C54—C55—O55115.89 (10)
H31B—C31—H31C109.5C56—C55—O55123.99 (10)
C5—C4—C3103.28 (10)C56—C55—C54120.11 (11)
C5—C4—C41124.34 (11)C55—O55—C551119.21 (9)
C3—C4—C41132.38 (11)O55—C551—H55A109.5
N1—C5—C4108.47 (10)O55—C551—H55B109.5
N1—C5—Cl5124.44 (9)H55A—C551—H55B109.5
C4—C5—Cl5127.04 (9)O55—C551—H55C109.5
C42—C41—C4127.28 (11)H55A—C551—H55C109.5
C42—C41—H41116.4H55B—C551—H55C109.5
C4—C41—H41116.4C55—C56—C51118.76 (10)
C41—C42—C43119.56 (11)C55—C56—H56120.6
C41—C42—H42120.2C51—C56—H56120.6
C43—C42—H42120.2
C5—N1—C11—C1238.33 (18)C4—C41—C42—C43177.93 (10)
N2—N1—C11—C12137.91 (12)C41—C42—C43—O433.89 (17)
C5—N1—C11—C16143.09 (12)C41—C42—C43—C51175.22 (10)
N2—N1—C11—C1640.67 (15)O43—C43—C51—C56177.42 (11)
C16—C11—C12—C131.20 (19)C42—C43—C51—C561.71 (16)
N1—C11—C12—C13179.73 (11)O43—C43—C51—C522.08 (16)
C11—C12—C13—C141.0 (2)C42—C43—C51—C52178.79 (10)
C12—C13—C14—C150.2 (2)C56—C51—C52—C530.16 (17)
C13—C14—C15—C160.4 (2)C43—C51—C52—C53179.66 (10)
C14—C15—C16—C110.28 (19)C51—C52—C53—O53178.65 (10)
C12—C11—C16—C150.55 (18)C51—C52—C53—C540.36 (16)
N1—C11—C16—C15179.11 (11)C52—C53—O53—C5311.42 (16)
C5—N1—N2—C30.46 (12)C54—C53—O53—C531179.54 (10)
C11—N1—N2—C3176.50 (10)C52—C53—C54—O54177.08 (10)
N1—N2—C3—C40.29 (12)O53—C53—C54—O542.01 (16)
N1—N2—C3—C31179.90 (10)C52—C53—C54—C551.05 (17)
N2—C3—C4—C50.02 (13)O53—C53—C54—C55178.03 (10)
C31—C3—C4—C5179.81 (12)C53—C54—O54—C54171.19 (15)
N2—C3—C4—C41179.90 (11)C55—C54—O54—C541112.69 (12)
C31—C3—C4—C410.3 (2)O54—C54—C55—O551.79 (15)
N2—N1—C5—C40.47 (13)C53—C54—C55—O55177.92 (10)
C11—N1—C5—C4175.95 (11)O54—C54—C55—C56177.37 (10)
N2—N1—C5—Cl5177.21 (8)C53—C54—C55—C561.23 (17)
C11—N1—C5—Cl56.37 (18)C56—C55—O55—C5511.47 (16)
C3—C4—C5—N10.26 (12)C54—C55—O55—C551179.42 (10)
C41—C4—C5—N1179.62 (10)O55—C55—C56—C51178.38 (10)
C3—C4—C5—Cl5177.34 (9)C54—C55—C56—C510.70 (17)
C41—C4—C5—Cl52.77 (17)C52—C51—C56—C550.01 (17)
C5—C4—C41—C42172.17 (12)C43—C51—C56—C55179.47 (10)
C3—C4—C41—C427.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O55i0.952.423.3203 (17)158
Symmetry code: (i) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H17ClN2O2C22H21ClN2O4
Mr352.81412.86
Crystal system, space groupMonoclinic, P21Triclinic, P1
Temperature (K)120120
a, b, c (Å)12.7985 (10), 4.0684 (3), 16.6766 (14)7.5118 (2), 8.8121 (3), 15.6709 (4)
α, β, γ (°)90, 95.918 (4), 9081.825 (1), 82.750 (2), 79.459 (2)
V3)863.71 (12)1004.10 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.240.22
Crystal size (mm)0.80 × 0.18 × 0.010.62 × 0.36 × 0.28
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.833, 0.9980.875, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11528, 3863, 2741 19609, 4486, 3927
Rint0.0400.027
(sin θ/λ)max1)0.6530.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.125, 1.01 0.033, 0.088, 1.03
No. of reflections38634486
No. of parameters228266
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.170.30, 0.24
Absolute structureFlack (1983), with 1557 Friedel pairs?
Absolute structure parameter0.06 (7)?

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), WinGX (Farrugia, 1999) and SIR92 (Altomare et al., 1993), OSCAIL and SHELXL97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
C54—O541.367 (3)O54—C5411.418 (3)
O54—C54—C53116.5 (2)C54—O54—C541117.9 (2)
O54—C54—C55124.1 (3)
C3—C4—C41—C4210.0 (5)C42—C43—C51—C52169.7 (3)
C4—C41—C42—C43178.5 (3)C53—C54—O54—C541178.8 (3)
C41—C42—C43—C51179.4 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O43i0.952.503.409 (3)160
Symmetry code: (i) x+1, y+1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
C53—O531.3902 (14)O53—C5311.4482 (14)
C54—O541.3737 (14)O54—C5411.4280 (15)
C55—O551.3782 (14)O55—C5511.4560 (14)
C52—C53—O53123.97 (11)C54—O54—C541114.74 (9)
C54—C53—O53116.69 (10)C54—C55—O55115.89 (10)
C53—O53—C531117.36 (9)C56—C55—O55123.99 (10)
C53—C54—O54121.04 (10)C55—O55—C551119.21 (9)
C55—C54—O54118.13 (10)
C3—C4—C41—C427.7 (2)C52—C53—O53—C5311.42 (16)
C4—C41—C42—C43177.93 (10)C53—C54—O54—C54171.19 (15)
C41—C42—C43—C51175.22 (10)C56—C55—O55—C5511.47 (16)
C42—C43—C51—C52178.79 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O55i0.952.423.3203 (17)158
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and JT thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds