organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two isomeric 10-methyl-8-phenyl-11-pyridyl-6,8-di­hydro-5H-benzo[f]pyrazolo[3,4-b]quinolines: cyclic hydrogen-bonded tetra­mers versus isolated mol­ecules

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 1 July 2005; accepted 7 July 2005; online 23 July 2005)

The mol­ecules of 10-methyl-8-phenyl-11-(3-pyrid­yl)-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, C26H20N4, (I)[link], are linked by a single C—H⋯N hydrogen bond into cyclic R[{_4^4}](12) tetra­mers generated by a [\overline{4}] axis. In isomeric 10-methyl-8-phenyl-11-(4-pyrid­yl)-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, (II)[link], which crystallizes with Z′ = 2 in space group P21212, the two independent mol­ecules are nearly enantiomeric but there are no direction-specific inter­actions between them.

Comment

We report here the structures of two isomeric 11-pyrid­yl-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinolines, (I)[link] and (II)[link]. Compound (I)[link] is a pyridyl analogue of the isostructural pair 11-(4-chloro­phen­yl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, (III) (Serrano et al., 2005a[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058-o1060.]), and 11-(4-bromo­phen­yl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, (IV) (Serrano et al., 2005b[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702-o1703.]), while compound (II)[link] is a simple positional isomer of (I)[link].

The non-aromatic carbocyclic rings in both compounds adopt screw-boat conformations, as shown by the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). For (I)[link], these are θ = 71.0 (2)° and φ = 94.3 (33)° for the atom sequence C4a/C5/C6/C6a/C11a/C11b (Fig. 1[link]), as compared with the idealized values, for an ring with equal bond distances throughout, of θ = 67.5° and φ = (60k + 30)°. In (II)[link], for the atom sequences C11a—C11b—C14a—C15—C16—C16a in mol­ecule 1 and C21a—C21b—C24a—C25—C26—C26a in mol­ecule 2 (Fig. 2[link]), the corresponding values are 69.9 (5) and 214.9 (5)°, respectively, in mol­ecule 1, and 108.8 (4) and 33.1 (5)°, respectively, in mol­ecule 2. In compounds (I)[link] and (II)[link], the mol­ecules have no inter­nal symmetry and they are chiral. For (I)[link], the space group P[\overline{4}]21c accommodates equal numbers of the two enantiomers, but for (II)[link], in space group P21212, each crystal will, in the absence of inversion twinning, contain just a single enantiomer. However, the ring-puckering parameters for compound (II)[link] show that the two independent mol­ecules are very close to being enantiomers (Fig. 2[link]), although no possible additional symmetry was detected.

[Scheme 1]

The overall conformations in (I)[link] and (II)[link] are very similar. For example, the dihedral angles between the pyrazole ring and its pendent aryl ring are 18.3 (2)° in (I)[link], and 10.7 (2) and 16.7 (2)° in (II)[link], the dihedral angles between the two pyridine rings are 66.6 (2)° in (I)[link], and 75.4 (2) and 72.4 (2)° in (II)[link], and the dihedral angles between the fused pyridine ring and the fused aryl ring are 27.3 (2)° in (I)[link] and 24.4 (2) and 26.4 (2)° in (II)[link]. The difference in the orientation of the two pendent rings, viz. one aryl and one pyridyl, is striking. The near coplanarity of the pyrazole and pendent aryl rings may be associated with the short intra­molecular C—H⋯N contacts involving these rings (Tables 1[link] and 2[link]). The modest differences between the corresponding values for the two mol­ecules in compound (II)[link] are sufficient to preclude the possibility of additional symmetry. The bond distances and angles show no unusual values.

The mol­ecules in compound (I)[link] are linked by a single C—H⋯N hydrogen bond (Table 1[link]). Aryl atom C114 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the pyridyl atom N113 in the mol­ecule at (y, 1 − x, 2 − z), while atom C114 at (y, 1 − x, 2 − z) in turn acts as donor to atom N113 at (1 − x, 1 − y, z). Propagation of this hydrogen bond thus produces a puckered R[{_4^4}](12) tetra­mer generated by the [\overline{4}] axis along ([{1\over 2}], [{1\over 2}], z) (Fig. 3[link]). A second such tetra­mer, related to the first by the action of the c-glide planes, is generated by the [\overline{4}] axis along (0, 0, z), but there are no direction-specific inter­actions between adjacent tetra­mers. By contrast, there are no direction-specific inter­actions of any kind between mol­ecules of compound (II)[link]. In particular, the pyridyl N atoms N114 and N224 have no potential hydrogen-bond donors with N⋯H distances less than 2.65 Å.

The very different space groups and patterns of supramolecular aggregation manifested by isomers (I)[link] and (II)[link] may be contrasted with their 4-haloaryl analogues (III) and (IV), which are strictly isomorphous and isostructural in space group P[\overline{1}], and where the mol­ecules are linked by C—H⋯π(arene) hydrogen bonds, although C—H⋯N hydrogen bonds, as found here for (I)[link], are absent from both (III)[link] and (IV).

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The two independent mol­ecules of (II)[link], showing the atom-labelling schemes for (a) mol­ecule 1 and (b) mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I)[link], showing the formation of a cyclic hydrogen-bonded R[{_4^4}](12) tetra­mer generated by a [\overline{4}] axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenyl­pyrazole (173 mg, 1.0 mmol), 2-tetra­lone (146 mg, 1.0 mmol) and the appropriate pyridinecarbaldehyde [pyridine-3-carbaldehyde for (I)[link] and pyridine-4-carbaldehyde for (II)] (107.0 mg, 1.0 mmol) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 4.5 min at 600 W. The reaction mixtures were then extracted with ethanol and, after removal of the solvent, the products were recrystallized from ethanol–dimethyl­formamide (1:1 v/v) to give crystals suitable for single-crystal X-ray diffraction. Compound (I)[link], yellow crystals, 55% yield, m.p. 445–446 K; MS (30 eV) m/z (%): 389 (30), 388 (100, M+), 387 (58), 373 (4). Compound (II)[link], yellow crystals, 40% yield, m.p. 493 K; MS (30 eV) m/z (%): 388 (100, M+), 373 (5).

Compound (I)[link]

Crystal data
  • C26H20N4

  • Mr = 388.46

  • Tetragonal, [P \overline 42_1 c ]

  • a = 19.2181 (6) Å

  • c = 10.8347 (2) Å

  • V = 4001.64 (19) Å3

  • Z = 8

  • Dx = 1.290 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2537 reflections

  • θ = 3.7–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.44 × 0.35 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.955, Tmax = 0.992

  • 28744 measured reflections

  • 2537 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.070

  • θmax = 27.5°

  • h = −21 → 24

  • k = −24 → 20

  • l = −11 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.05

  • 2537 reflections

  • 272 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0472P)2 + 0.2954P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Geometry of hydrogen bonds and short intramolecular contacts (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C86—H86⋯N7 0.95 2.39 3.007 (3) 123
C114—H114⋯N113i 0.95 2.49 3.417 (3) 165
Symmetry code: (i) y, 1-x, 2-z.

Compound (II)[link]

Crystal data
  • C26H20N4

  • Mr = 388.46

  • Orthorhombic, P 21 21 2

  • a = 18.6288 (8) Å

  • b = 19.1956 (8) Å

  • c = 10.8885 (3) Å

  • V = 3893.6 (3) Å3

  • Z = 8

  • Dx = 1.325 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4952 reflections

  • θ = 3.6–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.42 × 0.18 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.976, Tmax = 0.992

  • 25232 measured reflections

  • 4952 independent reflections

  • 3590 reflections with I > 2σ(I)

  • Rint = 0.075

  • θmax = 27.5°

  • h = −24 → 23

  • k = −18 → 24

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.152

  • S = 1.06

  • 4952 reflections

  • 543 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0545P)2 + 3.0251P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 2
Geometry of short intramolecular contacts (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C182—H182⋯N19 0.95 2.45 2.786 (6) 101
C186—H186⋯N17 0.95 2.34 2.980 (5) 125
C282—H282⋯N29 0.95 2.49 2.808 (5) 100
C286—H286⋯N27 0.95 2.35 2.976 (5) 123

Space group P[\overline{4}]21c for (I)[link] and P21212 for (II)[link] were both assigned uniquely from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. In the absence of significant anomalous scattering, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter was indeterminate for both compounds (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]). Hence, Friedel-equivalent reflections were merged prior to the final refinements. Accordingly, it was not possible to establish the absolute axis assignment in (I)[link] or the absolute configurations of the mol­ecules in the crystal of (II)[link] selected for data collection (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]).

For both compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); publication software: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of two isomeric 11-(pyridyl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinolines, (I) and (II). Compound (I) is a pyridyl analogue of the isostructural pair 11-(4-chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, (III) (Serrano et al., 2005a), and 11-(4-bromophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline, (IV) (Serrano et al., 2005b), while compound (II) is a simple positional isomer of (I).

The non-aromatic carbocyclic rings in both compounds adopt the screw-boat conformation, as shown by the ring-puckering parameters (Cremer & Pople, 1975; Evans & Boeyens, 1989). For (I), these are θ = 71.0 (2)° and ϕ = 94.3 (33)° for the atom sequence C4a/C5/C6/C6a/C11a/C11b (Fig. 1), as compared with the idealized values, for an ring with equal bond distances throughout, of θ = 67.5° and ϕ = (60k + 30)°. In (II), for the atom sequences C11a/C11b/C14a/C15/C16/C16a in molecule 1 and C21a/C21b/C24a/C25/C26/C26a in molecule 2 (Fig 2), the corresponding values are 69.9 (5) and 214.9 (5)°, respectively, in molecule 1, and 108.8 (4) and 33.1 (5)°, respectively, in molecule 2. In compounds (I) and (II), the molecules have no internal symmetry and they are chiral. For (I), the space group P421c accommodates equal numbers of the two enantiomers, but for (II), in space group P21212, each crystal will, in the absence of inversion twinning, contain just a single enantiomer. However, the ring-puckering parameters for compound (II) show that the two independent molecules are very close to being enantiomers (Fig. 2), although no possible additional symmetry was detected.

The overall conformations in (I) and (II) are very similar. For example, the dihedral angles between the pyrazole ring and its pendent aryl ring are 18.3 (2)° in (I), and 10.7 (2) and 16.7 (2)° in (II), the dihedral angles between the two pyridine rings are 66.6 (2)° in (I), and 75.4 (2) and 72.4 (2)° in (II), and the dihedral angles between the fused pyridine ring and the fused aryl ring are 27.3 (2)° in (I) and 24.4 (2) and 26.4 (2)° in (II). The difference in the orientation of the two pendent rings, one aryl and one pyridyl, is striking. The near coplanarity of the pyrazole and pendent aryl rings may be associated with the short intramolecular C—H···N contacts involving these rings (Tables 1 and 2). The modest differences between the corresponding values for the two molecules in compound (II) are sufficient to preclude the possibility of additional symmetry. The bond distances and angles show no unusual values.

The molecules in compound (I) are linked by a single C—H···N hydrogen bond (Table 1). Aryl atom C114 in the molecule at (x, y, z) acts as hydrogen-bond donor to the pyridyl atom N113 in the molecule at (y, 1 − x, 2 − z), while atom C114 at (y, 1 − x, 2 − z) in turn acts as donor to atom N113 at (1 − x, 1 − y, z). Propagation of this hydrogen bond thus produces a puckered R44(12) tetramer generated by the 4 axis along (1/2, 1/2, z) (Fig. 3). A second such tetramer, related to the first by the action of the c-glide planes, is generated by the 4 axis along (0, 0, z), but there are no direction-specific interactions between adjacent tetramers. By contrast, there are no direction-specific interactions of any kind between molecules of compound (II). In particular, the pyridyl N atoms N114 and N224 have no potential hydrogen-bond donors with N···H distances less than 2.65 Å.

The very different space groups and patterns of supramolecular aggregation manifested by isomers (I) and (II) may be contrasted with their 4-haloaryl analogues, (III) and (IV), which are strictly isomorphous and isostructural in space group P1, and where the molecules are linked by C—H···π(arene) hydrogen bonds, although C—H···N hydrogen bonds, as found here for (I), are absent from both (II) [(III)?] and (IV).

Experimental top

Equimolar amounts of 5-amino-3-methyl-1-phenylpyrazole (173 mg, 1.0 mmol), 2-tetralone (146 mg, 1.0 mmol) and the appropriate pyridylcarboxaldehyde [3-pyridylcarboxaldehyde for (I) and 4-pyridylcarboxaldehyde for (II)] (107.0 mg, 1.0 mmol) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 4.5 min at 600 W. The reaction mixture was then extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol–dimethylformamide (1:1 v/v) to give crystals suitable for single-crystal X-ray diffraction. Compound (I), yellow crystals, 55% yield, m.p. 445–446 K, MS (30 eV) m/z (%): 389 (30), 388 (100, M+), 387 (58), 373 (4). Compound (II), yellow crystals, 40% yield, m.p. 493 K, MS (30 eV) m/z (%): 388 (100, M+), 373 (5).

Refinement top

The space groups P421c for (I) and P21212 for (II) were both assigned uniquely from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. In the absence of significant anomalous scattering, the Flack parameter (Flack, 1983) was indeterminate for both compounds (Flack & Bernardinelli, 2000). Hence, Friedel-equivalent reflections were merged prior to the final refinements. Accordingly, it was not possible to establish the absolute axis assignment in (I) or the absolute configurations of the molecules in the crystal of (II) selected for data collection (Jones, 1986).

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The two independent molecules of (II), showing the atom-labelling scheme. (a) Molecule 1. (b) Molecule 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a cyclic hydrogen-bonded R44(12) tetramer generated by a 4 axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) 10-methyl-8-phenyl-11-(3-pyridyl)-6,8-dihydro-5H- benzo[f]pyrazolo[3,4-b]quinoline top
Crystal data top
C26H20N4Dx = 1.290 Mg m3
Mr = 388.46Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 2537 reflections
Hall symbol: P -4 2nθ = 3.7–27.5°
a = 19.2181 (6) ŵ = 0.08 mm1
c = 10.8347 (2) ÅT = 120 K
V = 4001.64 (19) Å3Lath, yellow
Z = 80.44 × 0.35 × 0.10 mm
F(000) = 1632
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2537 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
ϕ and ω scansh = 2124
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2420
Tmin = 0.955, Tmax = 0.992l = 1113
28744 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.2954P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H20N4Z = 8
Mr = 388.46Mo Kα radiation
Tetragonal, P421cµ = 0.08 mm1
a = 19.2181 (6) ÅT = 120 K
c = 10.8347 (2) Å0.44 × 0.35 × 0.10 mm
V = 4001.64 (19) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2537 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2004 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.992Rint = 0.070
28744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2537 reflectionsΔρmin = 0.20 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N70.24290 (9)0.78531 (9)0.60646 (15)0.0238 (4)
N80.24404 (9)0.67359 (9)0.50319 (17)0.0250 (4)
N90.28393 (9)0.61370 (9)0.50806 (17)0.0269 (4)
N1130.47725 (11)0.65085 (11)0.97103 (19)0.0369 (5)
C10.43867 (12)0.84834 (12)0.8828 (2)0.0282 (5)
C20.46357 (13)0.89273 (13)0.9739 (2)0.0336 (6)
C30.41896 (13)0.93873 (12)1.0321 (2)0.0316 (6)
C40.34984 (12)0.94151 (12)0.9962 (2)0.0295 (5)
C4a0.32421 (12)0.89771 (11)0.90475 (19)0.0249 (5)
C50.25044 (12)0.90444 (12)0.85856 (19)0.0285 (5)
C60.24859 (13)0.89273 (11)0.7200 (2)0.0285 (5)
C6a0.27731 (11)0.82191 (12)0.69152 (19)0.0235 (5)
C7a0.26967 (11)0.72187 (11)0.58485 (18)0.0228 (5)
C100.33329 (11)0.62421 (11)0.59064 (19)0.0250 (5)
C10a0.32778 (11)0.69279 (11)0.64186 (19)0.0227 (5)
C110.36385 (11)0.73278 (11)0.73043 (19)0.0220 (5)
C11a0.33775 (11)0.79896 (11)0.75649 (19)0.0224 (5)
C11b0.36840 (12)0.84806 (11)0.8488 (2)0.0248 (5)
C810.18668 (11)0.67654 (11)0.42073 (19)0.0241 (5)
C820.18300 (13)0.62958 (14)0.3241 (2)0.0350 (6)
C830.12723 (13)0.63231 (14)0.2439 (2)0.0391 (6)
C840.07553 (12)0.68086 (13)0.2580 (2)0.0338 (6)
C850.07955 (12)0.72783 (13)0.3542 (2)0.0335 (6)
C860.13455 (12)0.72579 (13)0.4364 (2)0.0299 (5)
C1010.38295 (13)0.56611 (12)0.6182 (2)0.0324 (6)
C1110.42608 (11)0.70082 (11)0.78941 (19)0.0235 (5)
C1120.42481 (12)0.68291 (12)0.9138 (2)0.0283 (5)
C1140.53347 (13)0.63575 (14)0.9027 (2)0.0384 (6)
C1150.53983 (12)0.65233 (12)0.7799 (2)0.0346 (6)
C1160.48531 (11)0.68560 (11)0.7219 (2)0.0269 (5)
H10.47000.81750.84270.034*
H20.51130.89150.99620.040*
H30.43560.96821.09600.038*
H40.31940.97391.03480.035*
H5A0.23230.95140.87800.034*
H5B0.22050.86970.90020.034*
H6A0.20010.89620.68970.034*
H6B0.27670.92880.67790.034*
H10A0.36880.52440.57280.049*
H10B0.38250.55630.70700.049*
H10C0.43000.57970.59290.049*
H820.21850.59580.31310.042*
H830.12460.60000.17770.047*
H840.03740.68220.20230.041*
H850.04420.76190.36400.040*
H860.13670.75780.50300.036*
H1120.38450.69410.96050.034*
H1140.57110.61220.94150.046*
H1150.58100.64110.73570.041*
H1160.48830.69790.63710.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N70.0231 (10)0.0231 (10)0.0253 (9)0.0003 (8)0.0008 (8)0.0006 (8)
N80.0241 (10)0.0227 (10)0.0284 (9)0.0039 (8)0.0037 (8)0.0030 (8)
N90.0245 (10)0.0251 (11)0.0312 (10)0.0028 (8)0.0006 (9)0.0012 (8)
N1130.0338 (13)0.0362 (13)0.0408 (11)0.0016 (10)0.0085 (10)0.0089 (10)
C10.0273 (14)0.0247 (13)0.0327 (12)0.0024 (10)0.0003 (10)0.0016 (10)
C20.0309 (14)0.0362 (15)0.0338 (13)0.0047 (11)0.0048 (11)0.0017 (11)
C30.0392 (15)0.0295 (14)0.0263 (12)0.0064 (11)0.0003 (10)0.0044 (10)
C40.0375 (15)0.0255 (13)0.0257 (12)0.0000 (11)0.0050 (11)0.0004 (10)
C4a0.0315 (13)0.0218 (12)0.0213 (10)0.0029 (10)0.0037 (10)0.0041 (9)
C50.0321 (14)0.0263 (13)0.0272 (12)0.0032 (10)0.0040 (10)0.0010 (10)
C60.0295 (12)0.0250 (13)0.0309 (13)0.0030 (10)0.0024 (10)0.0003 (10)
C6a0.0230 (11)0.0221 (12)0.0254 (11)0.0023 (10)0.0033 (9)0.0015 (9)
C7a0.0242 (12)0.0225 (12)0.0218 (10)0.0020 (9)0.0006 (9)0.0003 (9)
C100.0238 (12)0.0249 (12)0.0265 (11)0.0007 (10)0.0006 (10)0.0008 (10)
C10a0.0218 (12)0.0237 (12)0.0227 (10)0.0006 (9)0.0018 (9)0.0016 (9)
C110.0220 (12)0.0231 (12)0.0210 (11)0.0013 (9)0.0013 (9)0.0037 (9)
C11a0.0215 (11)0.0226 (11)0.0230 (11)0.0022 (9)0.0042 (9)0.0018 (9)
C11b0.0299 (13)0.0213 (12)0.0231 (10)0.0050 (10)0.0027 (10)0.0047 (9)
C810.0223 (12)0.0267 (12)0.0234 (11)0.0032 (10)0.0014 (9)0.0014 (9)
C820.0321 (14)0.0395 (15)0.0333 (13)0.0088 (12)0.0048 (11)0.0076 (11)
C830.0363 (15)0.0497 (17)0.0314 (13)0.0048 (12)0.0056 (11)0.0112 (12)
C840.0270 (13)0.0451 (15)0.0293 (12)0.0013 (12)0.0052 (10)0.0011 (11)
C850.0237 (13)0.0363 (14)0.0405 (13)0.0015 (11)0.0031 (11)0.0020 (12)
C860.0265 (13)0.0308 (13)0.0323 (12)0.0015 (11)0.0010 (10)0.0056 (11)
C1010.0308 (14)0.0237 (12)0.0427 (14)0.0034 (11)0.0054 (11)0.0041 (11)
C1110.0228 (12)0.0194 (11)0.0281 (11)0.0033 (9)0.0022 (10)0.0011 (9)
C1120.0258 (12)0.0278 (12)0.0312 (12)0.0036 (11)0.0014 (10)0.0034 (10)
C1140.0250 (14)0.0360 (15)0.0542 (16)0.0004 (11)0.0113 (13)0.0104 (13)
C1150.0254 (13)0.0304 (14)0.0479 (15)0.0032 (11)0.0038 (11)0.0014 (12)
C1160.0254 (12)0.0255 (12)0.0298 (11)0.0018 (10)0.0002 (10)0.0013 (10)
Geometric parameters (Å, º) top
C1—C21.390 (3)C83—H830.95
C1—C11b1.400 (3)C84—C851.381 (3)
C1—H10.95C84—H840.95
C2—C31.384 (3)C85—C861.383 (3)
C2—H20.95C85—H850.95
C3—C41.385 (3)C86—H860.95
C3—H30.95C7a—C10a1.393 (3)
C4—C4a1.390 (3)N9—C101.320 (3)
C4—H40.95C10—C10a1.434 (3)
C4a—C11b1.414 (3)C10—C1011.499 (3)
C4a—C51.509 (3)C101—H10A0.98
C5—C61.518 (3)C101—H10B0.98
C5—H5A0.99C101—H10C0.98
C5—H5B0.99C10a—C111.411 (3)
C6—C6a1.501 (3)C11—C11a1.396 (3)
C6—H6A0.99C11—C1111.489 (3)
C6—H6B0.99C11a—C11b1.496 (3)
C6a—N71.335 (3)C111—C1161.384 (3)
C6a—C11a1.428 (3)C111—C1121.392 (3)
N7—C7a1.344 (3)C112—N1131.334 (3)
N8—C7a1.373 (3)C112—H1120.95
N8—N91.384 (2)N113—C1141.341 (3)
N8—C811.420 (3)C114—C1151.374 (3)
C81—C821.384 (3)C114—H1140.95
C81—C861.389 (3)C115—C1161.379 (3)
C82—C831.381 (3)C115—H1150.95
C82—H820.95C116—H1160.95
C83—C841.372 (4)
C2—C1—C11b121.4 (2)C84—C85—H85119.7
C2—C1—H1119.3C86—C85—H85119.7
C11b—C1—H1119.3C85—C86—C81119.5 (2)
C3—C2—C1120.2 (2)C85—C86—H86120.3
C3—C2—H2119.9C81—C86—H86120.3
C1—C2—H2119.9N7—C7a—N8126.01 (19)
C2—C3—C4119.4 (2)N7—C7a—C10a126.41 (19)
C2—C3—H3120.3N8—C7a—C10a107.58 (18)
C4—C3—H3120.3C10—N9—N8107.26 (18)
C3—C4—C4a121.1 (2)N9—C10—C10a110.49 (19)
C3—C4—H4119.5N9—C10—C101118.61 (19)
C4a—C4—H4119.5C10a—C10—C101130.89 (19)
C4—C4a—C11b120.1 (2)C10—C101—H10A109.5
C4—C4a—C5121.2 (2)C10—C101—H10B109.5
C11b—C4a—C5118.67 (19)H10A—C101—H10B109.5
C4a—C5—C6109.71 (19)C10—C101—H10C109.5
C4a—C5—H5A109.7H10A—C101—H10C109.5
C6—C5—H5A109.7H10B—C101—H10C109.5
C4a—C5—H5B109.7C7a—C10a—C11118.47 (19)
C6—C5—H5B109.7C7a—C10a—C10104.85 (19)
H5A—C5—H5B108.2C11—C10a—C10136.7 (2)
C6a—C6—C5109.21 (19)C11a—C11—C10a117.2 (2)
C6a—C6—H6A109.8C11a—C11—C111125.29 (19)
C5—C6—H6A109.8C10a—C11—C111117.51 (18)
C6a—C6—H6B109.8C11—C11a—C6a118.3 (2)
C5—C6—H6B109.8C11—C11a—C11b124.6 (2)
H6A—C6—H6B108.3C6a—C11a—C11b117.07 (18)
N7—C6a—C11a125.5 (2)C1—C11b—C4a117.7 (2)
N7—C6a—C6115.95 (19)C1—C11b—C11a123.9 (2)
C11a—C6a—C6118.55 (19)C4a—C11b—C11a118.4 (2)
C6a—N7—C7a114.12 (18)C116—C111—C112118.3 (2)
C7a—N8—N9109.80 (17)C116—C111—C11121.39 (18)
C7a—N8—C81131.05 (18)C112—C111—C11120.3 (2)
N9—N8—C81119.15 (17)N113—C112—C111123.4 (2)
C82—C81—C86120.0 (2)N113—C112—H112118.3
C82—C81—N8119.3 (2)C111—C112—H112118.3
C86—C81—N8120.69 (19)C112—N113—C114116.9 (2)
C83—C82—C81119.4 (2)N113—C114—C115123.8 (2)
C83—C82—H82120.3N113—C114—H114118.1
C81—C82—H82120.3C115—C114—H114118.1
C84—C83—C82121.2 (2)C114—C115—C116118.8 (2)
C84—C83—H83119.4C114—C115—H115120.6
C82—C83—H83119.4C116—C115—H115120.6
C83—C84—C85119.3 (2)C115—C116—C111118.8 (2)
C83—C84—H84120.4C115—C116—H116120.6
C85—C84—H84120.4C111—C116—H116120.6
C84—C85—C86120.7 (2)
C11b—C1—C2—C31.0 (3)N9—C10—C10a—C7a1.4 (2)
C1—C2—C3—C41.9 (4)C101—C10—C10a—C7a177.0 (2)
C2—C3—C4—C4a1.5 (4)N9—C10—C10a—C11179.9 (2)
C3—C4—C4a—C11b1.6 (3)C101—C10—C10a—C111.5 (4)
C3—C4—C4a—C5175.2 (2)C7a—C10a—C11—C11a1.1 (3)
C4—C4a—C5—C6141.2 (2)C10—C10a—C11—C11a177.2 (2)
C11b—C4a—C5—C635.6 (3)C7a—C10a—C11—C111179.55 (18)
C4a—C5—C6—C6a58.4 (3)C10—C10a—C11—C1112.1 (4)
C5—C6—C6a—N7137.7 (2)C10a—C11—C11a—C6a0.7 (3)
C5—C6—C6a—C11a41.9 (3)C111—C11—C11a—C6a179.96 (19)
C11a—C6a—N7—C7a0.4 (3)C10a—C11—C11a—C11b179.01 (19)
C6—C6a—N7—C7a179.13 (18)C111—C11—C11a—C11b0.3 (3)
C7a—N8—C81—C82161.8 (2)N7—C6a—C11a—C110.1 (3)
N9—N8—C81—C8218.1 (3)C6—C6a—C11a—C11179.4 (2)
C7a—N8—C81—C8618.3 (3)N7—C6a—C11a—C11b179.82 (19)
N9—N8—C81—C86161.8 (2)C6—C6a—C11a—C11b0.3 (3)
C86—C81—C82—C830.1 (4)C2—C1—C11b—C4a4.0 (3)
N8—C81—C82—C83179.9 (2)C2—C1—C11b—C11a176.6 (2)
C81—C82—C83—C840.2 (4)C4—C4a—C11b—C14.3 (3)
C82—C83—C84—C850.1 (4)C5—C4a—C11b—C1172.6 (2)
C83—C84—C85—C860.7 (4)C4—C4a—C11b—C11a176.23 (19)
C84—C85—C86—C810.9 (4)C5—C4a—C11b—C11a6.9 (3)
C82—C81—C86—C850.6 (3)C11—C11a—C11b—C127.2 (3)
N8—C81—C86—C85179.5 (2)C6a—C11a—C11b—C1153.2 (2)
C6a—N7—C7a—N8179.3 (2)C11—C11a—C11b—C4a153.4 (2)
C6a—N7—C7a—C10a0.1 (3)C6a—C11a—C11b—C4a26.3 (3)
N9—N8—C7a—N7178.43 (19)C11a—C11—C111—C116115.0 (2)
C81—N8—C7a—N71.6 (4)C10a—C11—C111—C11665.7 (3)
N9—N8—C7a—C10a0.9 (2)C11a—C11—C111—C11267.7 (3)
C81—N8—C7a—C10a179.0 (2)C10a—C11—C111—C112111.6 (2)
C7a—N8—N9—C100.0 (2)C116—C111—C112—N1131.1 (3)
C81—N8—N9—C10179.92 (18)C11—C111—C112—N113176.4 (2)
N8—N9—C10—C10a0.9 (2)C111—C112—N113—C1140.0 (4)
N8—N9—C10—C101177.77 (19)C112—N113—C114—C1151.0 (4)
N7—C7a—C10a—C110.8 (3)N113—C114—C115—C1160.9 (4)
N8—C7a—C10a—C11179.81 (18)C114—C115—C116—C1110.2 (3)
N7—C7a—C10a—C10178.0 (2)C112—C111—C116—C1151.2 (3)
N8—C7a—C10a—C101.4 (2)C11—C111—C116—C115176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C86—H86···N70.952.393.007 (3)123
C114—H114···N113i0.952.493.417 (3)165
Symmetry code: (i) y, x+1, z+2.
(II) 10-methyl-8-phenyl-11-(4-pyridyl)-6,8-dihydro-5H- benzo[f]pyrazolo[3,4-b]quinoline top
Crystal data top
C26H20N4F(000) = 1632
Mr = 388.46Dx = 1.325 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 4952 reflections
a = 18.6288 (8) Åθ = 3.6–27.5°
b = 19.1956 (8) ŵ = 0.08 mm1
c = 10.8885 (3) ÅT = 120 K
V = 3893.6 (3) Å3Lath, yellow
Z = 80.42 × 0.18 × 0.10 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4952 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 2423
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1824
Tmin = 0.976, Tmax = 0.992l = 1414
25232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0545P)2 + 3.0251P]
where P = (Fo2 + 2Fc2)/3
4952 reflections(Δ/σ)max < 0.001
543 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C26H20N4V = 3893.6 (3) Å3
Mr = 388.46Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 18.6288 (8) ŵ = 0.08 mm1
b = 19.1956 (8) ÅT = 120 K
c = 10.8885 (3) Å0.42 × 0.18 × 0.10 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3590 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.992Rint = 0.075
25232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
4952 reflectionsΔρmin = 0.31 e Å3
543 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N170.24040 (19)0.77900 (18)0.3666 (3)0.0244 (8)
N180.23840 (18)0.66625 (18)0.2655 (3)0.0243 (8)
N190.27873 (19)0.60594 (19)0.2693 (3)0.0257 (8)
N1240.5501 (2)0.6209 (2)0.6319 (3)0.0345 (9)
C10a0.3246 (2)0.6837 (2)0.4041 (4)0.0227 (9)
C110.4417 (2)0.8361 (2)0.6466 (4)0.0269 (10)
C11a0.3382 (2)0.7901 (2)0.5171 (4)0.0235 (9)
C11b0.3702 (2)0.8398 (2)0.6088 (4)0.0241 (9)
C120.4682 (2)0.8818 (2)0.7354 (4)0.0316 (11)
C130.4243 (3)0.9317 (3)0.7864 (4)0.0325 (11)
C140.3543 (3)0.9378 (2)0.7463 (4)0.0309 (11)
C14a0.3266 (2)0.8925 (2)0.6574 (4)0.0254 (9)
C150.2524 (3)0.9024 (2)0.6097 (4)0.0302 (10)
C160.2503 (3)0.8877 (2)0.4732 (4)0.0291 (10)
C16a0.2767 (2)0.8150 (2)0.4505 (4)0.0242 (9)
C17a0.2653 (2)0.7142 (2)0.3472 (3)0.0237 (9)
C1010.3804 (2)0.5576 (2)0.3777 (5)0.0338 (11)
C1100.3296 (2)0.6153 (2)0.3519 (4)0.0244 (9)
C1110.3625 (2)0.7230 (2)0.4923 (4)0.0240 (9)
C1210.4275 (2)0.6897 (2)0.5459 (4)0.0232 (9)
C1220.4294 (2)0.6607 (2)0.6633 (4)0.0290 (10)
C1230.4914 (3)0.6271 (2)0.7008 (4)0.0324 (11)
C1250.5478 (2)0.6490 (2)0.5195 (4)0.0309 (11)
C1260.4886 (2)0.6829 (2)0.4734 (4)0.0254 (9)
C1810.1812 (2)0.6721 (2)0.1794 (3)0.0230 (9)
C1820.1736 (3)0.6213 (2)0.0893 (4)0.0319 (11)
C1830.1187 (3)0.6268 (3)0.0048 (4)0.0350 (11)
C1840.0729 (2)0.6826 (3)0.0063 (4)0.0327 (11)
C1850.0812 (3)0.7332 (3)0.0958 (4)0.0371 (12)
C1860.1341 (2)0.7283 (2)0.1826 (4)0.0292 (10)
N270.22061 (19)0.23995 (18)0.1360 (3)0.0245 (8)
N280.33362 (19)0.24184 (18)0.2434 (3)0.0246 (8)
N290.39404 (19)0.28351 (18)0.2435 (3)0.0265 (8)
N2240.3758 (2)0.5496 (2)0.1165 (4)0.0383 (10)
C20A0.3137 (2)0.3276 (2)0.1086 (4)0.0236 (9)
C210.1554 (2)0.4384 (2)0.1343 (4)0.0299 (10)
C21a0.2072 (2)0.3368 (2)0.0115 (4)0.0233 (9)
C21b0.1563 (2)0.3674 (2)0.1041 (4)0.0232 (9)
C220.1091 (3)0.4639 (2)0.2239 (4)0.0341 (11)
C230.0617 (3)0.4189 (3)0.2828 (4)0.0332 (11)
C240.0608 (2)0.3497 (2)0.2515 (4)0.0310 (10)
C24a0.1066 (2)0.3228 (2)0.1602 (4)0.0243 (9)
C250.1003 (3)0.2484 (2)0.1187 (4)0.0286 (10)
C260.1113 (2)0.2450 (2)0.0192 (4)0.0288 (10)
C26a0.1832 (2)0.2752 (2)0.0507 (4)0.0241 (9)
C27a0.2842 (2)0.2678 (2)0.1605 (4)0.0233 (9)
C2010.4418 (2)0.3862 (2)0.1431 (4)0.0325 (11)
C2100.3833 (2)0.3342 (2)0.1632 (4)0.0257 (9)
C2110.2733 (2)0.3640 (2)0.0188 (4)0.0236 (9)
C2210.3062 (2)0.4283 (2)0.0320 (4)0.0227 (9)
C2220.3354 (2)0.4315 (2)0.1502 (4)0.0279 (10)
C2230.3698 (3)0.4922 (2)0.1862 (4)0.0331 (11)
C2250.3472 (3)0.5456 (2)0.0034 (4)0.0318 (11)
C2260.3135 (2)0.4873 (2)0.0405 (4)0.0264 (10)
C2810.3289 (2)0.1829 (2)0.3225 (4)0.0234 (9)
C2820.3770 (3)0.1783 (2)0.4203 (4)0.0315 (11)
C2830.3738 (3)0.1213 (3)0.4972 (4)0.0342 (11)
C2840.3239 (3)0.0694 (2)0.4800 (4)0.0329 (11)
C2850.2760 (3)0.0749 (2)0.3829 (4)0.0362 (11)
C2860.2785 (2)0.1314 (2)0.3042 (4)0.0284 (10)
H10A0.37020.51840.32260.051*
H10B0.37480.54240.46310.051*
H10C0.42970.57370.36430.051*
H110.47270.80220.61150.032*
H120.51690.87840.76080.038*
H130.44210.96170.84880.039*
H140.32450.97330.77950.037*
H15A0.23650.95080.62540.036*
H15B0.21920.87050.65290.036*
H16A0.20060.89270.44230.035*
H16B0.28110.92150.42910.035*
H1220.38910.66390.71640.035*
H1230.49210.60730.78070.039*
H1250.58920.64530.46890.037*
H1260.48940.70160.39270.030*
H1820.20600.58320.08590.038*
H1830.11260.59140.05520.042*
H1840.03600.68660.05340.039*
H1850.04960.77200.09700.045*
H1860.13860.76290.24440.035*
H20A0.48450.37230.18940.049*
H20B0.42570.43210.17130.049*
H20C0.45340.38850.05540.049*
H210.18680.46960.09300.036*
H220.10980.51190.24490.041*
H230.03010.43600.34430.040*
H240.02850.31930.29230.037*
H25A0.13690.21950.16060.034*
H25B0.05230.23000.14000.034*
H26A0.07300.27160.06140.035*
H26B0.10880.19600.04720.035*
H2220.33180.39300.20460.034*
H2230.39070.49320.26580.040*
H2250.35060.58510.04870.038*
H2260.29490.48730.12170.032*
H2820.41160.21390.43370.038*
H2830.40680.11780.56350.041*
H2840.32230.03040.53380.039*
H2850.24110.03950.37040.043*
H2860.24560.13460.23770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.029 (2)0.029 (2)0.023 (2)0.001 (2)0.0010 (18)0.0027 (18)
C120.028 (2)0.036 (3)0.031 (2)0.005 (2)0.002 (2)0.000 (2)
C130.036 (3)0.038 (3)0.023 (2)0.010 (2)0.002 (2)0.003 (2)
C140.039 (3)0.035 (3)0.018 (2)0.000 (2)0.006 (2)0.0040 (19)
C14a0.028 (2)0.027 (2)0.021 (2)0.004 (2)0.0049 (18)0.0020 (17)
C150.036 (3)0.032 (3)0.023 (2)0.005 (2)0.0027 (19)0.0020 (18)
C160.028 (2)0.031 (3)0.028 (2)0.001 (2)0.001 (2)0.0015 (19)
C16a0.025 (2)0.028 (2)0.020 (2)0.0077 (19)0.0022 (18)0.0038 (17)
N170.026 (2)0.0255 (19)0.0215 (17)0.0000 (16)0.0017 (15)0.0013 (15)
C17a0.026 (2)0.027 (2)0.018 (2)0.001 (2)0.0052 (18)0.0029 (17)
N180.0231 (19)0.0294 (19)0.0204 (17)0.0029 (16)0.0049 (15)0.0024 (15)
C1810.023 (2)0.031 (2)0.0145 (18)0.007 (2)0.0010 (16)0.0002 (17)
C1820.033 (3)0.035 (3)0.027 (2)0.005 (2)0.004 (2)0.0052 (19)
C1830.034 (3)0.050 (3)0.022 (2)0.003 (2)0.0017 (19)0.007 (2)
C1840.027 (2)0.047 (3)0.024 (2)0.004 (2)0.0060 (19)0.003 (2)
C1850.034 (3)0.037 (3)0.040 (3)0.003 (2)0.009 (2)0.003 (2)
C1860.025 (2)0.032 (3)0.031 (2)0.005 (2)0.0036 (19)0.001 (2)
N190.0257 (19)0.029 (2)0.0221 (18)0.0021 (17)0.0000 (16)0.0001 (15)
C1100.024 (2)0.026 (2)0.023 (2)0.0020 (19)0.0029 (18)0.0019 (17)
C1010.029 (3)0.028 (2)0.044 (3)0.000 (2)0.003 (2)0.001 (2)
C10a0.025 (2)0.022 (2)0.0212 (19)0.0014 (19)0.0026 (17)0.0020 (16)
C1110.023 (2)0.030 (2)0.019 (2)0.0012 (19)0.0031 (17)0.0044 (18)
C1210.024 (2)0.024 (2)0.021 (2)0.0019 (18)0.0009 (18)0.0001 (17)
C1220.028 (2)0.034 (3)0.025 (2)0.004 (2)0.0004 (19)0.0041 (19)
C1230.029 (2)0.037 (3)0.031 (2)0.003 (2)0.004 (2)0.015 (2)
N1240.028 (2)0.043 (2)0.033 (2)0.0027 (19)0.0035 (17)0.0095 (19)
C1250.026 (2)0.040 (3)0.026 (2)0.002 (2)0.0003 (19)0.005 (2)
C1260.025 (2)0.025 (2)0.026 (2)0.0036 (19)0.0008 (18)0.0028 (18)
C11a0.024 (2)0.028 (2)0.0184 (19)0.0013 (19)0.0044 (17)0.0036 (17)
C11b0.027 (2)0.027 (2)0.0183 (19)0.0040 (19)0.0026 (17)0.0026 (17)
C210.028 (2)0.032 (3)0.029 (2)0.001 (2)0.005 (2)0.004 (2)
C220.037 (3)0.034 (3)0.032 (2)0.008 (2)0.000 (2)0.004 (2)
C230.035 (3)0.039 (3)0.026 (2)0.006 (2)0.003 (2)0.001 (2)
C240.033 (3)0.041 (3)0.019 (2)0.000 (2)0.0006 (19)0.007 (2)
C24a0.023 (2)0.032 (2)0.0187 (19)0.001 (2)0.0051 (17)0.0035 (18)
C250.032 (2)0.027 (2)0.027 (2)0.003 (2)0.0037 (19)0.0066 (19)
C260.030 (2)0.028 (2)0.028 (2)0.006 (2)0.0051 (19)0.0009 (19)
C26a0.022 (2)0.024 (2)0.026 (2)0.0023 (19)0.0042 (18)0.0064 (17)
N270.0250 (19)0.026 (2)0.0226 (17)0.0005 (16)0.0008 (15)0.0033 (15)
C27a0.026 (2)0.025 (2)0.019 (2)0.0010 (19)0.0022 (17)0.0028 (17)
N280.0250 (19)0.0257 (19)0.0230 (17)0.0000 (16)0.0032 (15)0.0051 (15)
C2810.027 (2)0.023 (2)0.020 (2)0.005 (2)0.0035 (18)0.0019 (17)
C2820.035 (3)0.031 (3)0.029 (2)0.006 (2)0.004 (2)0.0043 (19)
C2830.042 (3)0.040 (3)0.020 (2)0.002 (2)0.007 (2)0.003 (2)
C2840.042 (3)0.033 (3)0.024 (2)0.004 (2)0.006 (2)0.0041 (19)
C2850.037 (3)0.029 (3)0.044 (3)0.006 (2)0.005 (2)0.001 (2)
C2860.030 (2)0.027 (2)0.028 (2)0.004 (2)0.0048 (19)0.0006 (19)
N290.028 (2)0.0260 (19)0.0250 (18)0.0006 (17)0.0015 (16)0.0007 (15)
C2100.029 (2)0.025 (2)0.023 (2)0.002 (2)0.0011 (18)0.0001 (18)
C2010.027 (2)0.036 (3)0.034 (2)0.000 (2)0.002 (2)0.004 (2)
C20A0.026 (2)0.024 (2)0.0208 (19)0.0032 (19)0.0015 (17)0.0020 (17)
C2110.029 (2)0.022 (2)0.020 (2)0.0009 (19)0.0036 (18)0.0040 (17)
C2210.022 (2)0.023 (2)0.023 (2)0.0025 (18)0.0004 (17)0.0036 (17)
C2220.030 (2)0.029 (2)0.025 (2)0.005 (2)0.0012 (19)0.0009 (18)
C2230.042 (3)0.032 (3)0.025 (2)0.003 (2)0.011 (2)0.004 (2)
N2240.042 (2)0.029 (2)0.044 (2)0.001 (2)0.009 (2)0.0025 (19)
C2250.035 (3)0.029 (3)0.031 (2)0.001 (2)0.010 (2)0.0023 (19)
C2260.031 (2)0.029 (2)0.019 (2)0.002 (2)0.0032 (18)0.0006 (17)
C21a0.025 (2)0.023 (2)0.023 (2)0.0012 (19)0.0024 (17)0.0049 (17)
C21b0.020 (2)0.030 (2)0.0199 (19)0.0057 (19)0.0056 (17)0.0003 (17)
Geometric parameters (Å, º) top
C11—C121.395 (6)C21—C221.391 (6)
C11—C11b1.397 (6)C21—C21b1.402 (6)
C11—H110.95C21—H210.95
C12—C131.377 (6)C22—C231.391 (7)
C12—H120.95C22—H220.95
C13—C141.381 (6)C23—C241.371 (6)
C13—H130.95C23—H230.95
C14—C14a1.400 (6)C24—C24a1.409 (6)
C14—H140.95C24—H240.95
C14a—C11b1.401 (6)C24a—C21b1.402 (6)
C14a—C151.488 (6)C24a—C251.501 (6)
C15—C161.513 (6)C25—C261.517 (6)
C15—H15A0.99C25—H25A0.99
C15—H15B0.99C25—H25B0.99
C16—C16a1.500 (6)C26—C26a1.498 (6)
C16—H16A0.99C26—H26A0.99
C16—H16B0.99C26—H26B0.99
C16a—N171.330 (5)C26a—N271.344 (5)
C16a—C11a1.438 (6)C26a—C21a1.434 (6)
N17—C17a1.343 (5)N27—C27a1.327 (5)
C17a—N181.375 (5)C27a—N281.382 (5)
C17a—C10a1.396 (6)C27a—C20A1.392 (6)
N18—N191.381 (5)N28—N291.381 (5)
N18—C1811.424 (5)N28—C2811.425 (5)
C181—C1821.390 (6)C281—C2861.378 (6)
C181—C1861.390 (6)C281—C2821.395 (6)
C182—C1831.380 (6)C282—C2831.380 (6)
C182—H1820.95C282—H2820.95
C183—C1841.369 (7)C283—C2841.375 (7)
C183—H1830.95C283—H2830.95
C184—C1851.384 (6)C284—C2851.389 (6)
C184—H1840.95C284—H2840.95
C185—C1861.369 (6)C285—C2861.383 (6)
C185—H1850.95C285—H2850.95
C186—H1860.95C286—H2860.95
N19—C1101.319 (5)N29—C2101.322 (5)
C110—C10a1.433 (6)C210—C20A1.432 (6)
C110—C1011.484 (6)C210—C2011.494 (6)
C101—H10A0.98C201—H20A0.98
C101—H10B0.98C201—H20B0.98
C101—H10C0.98C201—H20C0.98
C10a—C1111.410 (6)C20A—C2111.419 (6)
C111—C11a1.392 (6)C211—C21a1.377 (6)
C111—C1211.488 (6)C211—C2211.485 (6)
C121—C1261.391 (6)C221—C2261.387 (6)
C121—C1221.395 (6)C221—C2221.399 (6)
C122—C1231.383 (6)C222—C2231.385 (6)
C122—H1220.95C222—H2220.95
C123—N1241.331 (6)C223—N2241.343 (6)
C123—H1230.95C223—H2230.95
N124—C1251.338 (5)N224—C2251.344 (6)
C125—C1261.376 (6)C225—C2261.368 (6)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
C11a—C11b1.505 (6)C21a—C21b1.504 (6)
C12—C11—C11b120.7 (4)C22—C21—C21b120.9 (4)
C12—C11—H11119.7C22—C21—H21119.5
C11b—C11—H11119.7C21b—C21—H21119.5
C13—C12—C11120.5 (4)C21—C22—C23119.9 (4)
C13—C12—H12119.8C21—C22—H22120.1
C11—C12—H12119.8C23—C22—H22120.1
C12—C13—C14119.5 (4)C24—C23—C22119.6 (4)
C12—C13—H13120.2C24—C23—H23120.2
C14—C13—H13120.2C22—C23—H23120.2
C13—C14—C14a121.0 (4)C23—C24—C24a121.6 (4)
C13—C14—H14119.5C23—C24—H24119.2
C14a—C14—H14119.5C24a—C24—H24119.2
C14—C14a—C11b119.7 (4)C21b—C24a—C24118.9 (4)
C14—C14a—C15120.3 (4)C21b—C24a—C25120.1 (4)
C11b—C14a—C15119.9 (4)C24—C24a—C25120.9 (4)
C14a—C15—C16110.1 (4)C24a—C25—C26109.2 (4)
C14a—C15—H15A109.6C24a—C25—H25A109.8
C16—C15—H15A109.6C26—C25—H25A109.8
C14a—C15—H15B109.6C24a—C25—H25B109.8
C16—C15—H15B109.6C26—C25—H25B109.8
H15A—C15—H15B108.2H25A—C25—H25B108.3
C16a—C16—C15109.1 (4)C26a—C26—C25109.3 (4)
C16a—C16—H16A109.9C26a—C26—H26A109.8
C15—C16—H16A109.9C25—C26—H26A109.8
C16a—C16—H16B109.9C26a—C26—H26B109.8
C15—C16—H16B109.9C25—C26—H26B109.8
H16A—C16—H16B108.3H26A—C26—H26B108.3
N17—C16a—C11a125.3 (4)N27—C26a—C21a125.4 (4)
N17—C16a—C16115.5 (4)N27—C26a—C26115.3 (4)
C11a—C16a—C16119.2 (4)C21a—C26a—C26119.3 (4)
C16a—N17—C17a114.4 (4)C27a—N27—C26a113.5 (4)
N17—C17a—N18126.6 (4)N27—C27a—N28125.5 (4)
N17—C17a—C10a126.3 (4)N27—C27a—C20A127.1 (4)
N18—C17a—C10a107.1 (4)N28—C27a—C20A107.4 (4)
C17a—N18—N19110.1 (3)N29—N28—C27a109.6 (3)
C17a—N18—C181130.2 (4)N29—N28—C281120.6 (3)
N19—N18—C181119.5 (3)C27a—N28—C281129.8 (4)
C182—C181—C186119.9 (4)C286—C281—C282120.2 (4)
C182—C181—N18119.0 (4)C286—C281—N28121.6 (4)
C186—C181—N18121.1 (4)C282—C281—N28118.1 (4)
C183—C182—C181119.5 (4)C283—C282—C281119.0 (4)
C183—C182—H182120.3C283—C282—H282120.5
C181—C182—H182120.3C281—C282—H282120.5
C184—C183—C182120.9 (4)C284—C283—C282121.4 (4)
C184—C183—H183119.5C284—C283—H283119.3
C182—C183—H183119.5C282—C283—H283119.3
C183—C184—C185119.1 (4)C283—C284—C285118.9 (4)
C183—C184—H184120.4C283—C284—H284120.5
C185—C184—H184120.4C285—C284—H284120.5
C186—C185—C184121.3 (5)C286—C285—C284120.6 (4)
C186—C185—H185119.4C286—C285—H285119.7
C184—C185—H185119.4C284—C285—H285119.7
C185—C186—C181119.3 (4)C281—C286—C285119.7 (4)
C185—C186—H186120.3C281—C286—H286120.1
C181—C186—H186120.3C285—C286—H286120.1
C110—N19—N18107.3 (3)C210—N29—N28107.6 (3)
N19—C110—C10a110.4 (4)N29—C210—C20A110.3 (4)
N19—C110—C101119.0 (4)N29—C210—C201118.6 (4)
C10a—C110—C101130.6 (4)C20A—C210—C201131.1 (4)
C110—C101—H10A109.5C210—C201—H20A109.5
C110—C101—H10B109.5C210—C201—H20B109.5
H10A—C101—H10B109.5H20A—C201—H20B109.5
C110—C101—H10C109.5C210—C201—H20C109.5
H10A—C101—H10C109.5H20A—C201—H20C109.5
H10B—C101—H10C109.5H20B—C201—H20C109.5
C17a—C10a—C111118.3 (4)C27a—C20A—C211118.4 (4)
C17a—C10a—C110105.1 (4)C27a—C20A—C210105.2 (4)
C111—C10a—C110136.6 (4)C211—C20A—C210136.4 (4)
C11a—C111—C10a117.6 (4)C21a—C211—C20A116.9 (4)
C11a—C111—C121125.9 (4)C21a—C211—C221126.6 (4)
C10a—C111—C121116.4 (4)C20A—C211—C221116.5 (4)
C126—C121—C122117.4 (4)C226—C221—C222116.7 (4)
C126—C121—C111118.9 (4)C226—C221—C211120.5 (4)
C122—C121—C111123.5 (4)C222—C221—C211122.7 (4)
C123—C122—C121118.6 (4)C223—C222—C221118.5 (4)
C123—C122—H122120.7C223—C222—H222120.7
C121—C122—H122120.7C221—C222—H222120.7
N124—C123—C122124.1 (4)N224—C223—C222124.6 (4)
N124—C123—H123117.9N224—C223—H223117.7
C122—C123—H123117.9C222—C223—H223117.7
C123—N124—C125117.0 (4)C223—N224—C225116.0 (4)
N124—C125—C126123.3 (4)N224—C225—C226123.3 (4)
N124—C125—H125118.4N224—C225—H225118.4
C126—C125—H125118.4C226—C225—H225118.4
C125—C126—C121119.6 (4)C225—C226—C221120.9 (4)
C125—C126—H126120.2C225—C226—H226119.6
C121—C126—H126120.2C221—C226—H226119.6
C111—C11a—C16a118.0 (4)C211—C21a—C26a118.6 (4)
C111—C11a—C11b125.9 (4)C211—C21a—C21b125.1 (4)
C16a—C11a—C11b116.0 (4)C26a—C21a—C21b116.2 (4)
C11—C11b—C14a118.6 (4)C24a—C21b—C21118.9 (4)
C11—C11b—C11a122.8 (4)C24a—C21b—C21a118.0 (4)
C14a—C11b—C11a118.6 (4)C21—C21b—C21a123.1 (4)
C11b—C11—C12—C130.6 (7)C21b—C21—C22—C231.6 (7)
C11—C12—C13—C142.1 (7)C21—C22—C23—C240.3 (7)
C12—C13—C14—C14a2.2 (7)C22—C23—C24—C24a0.3 (7)
C13—C14—C14a—C11b0.4 (6)C23—C24—C24a—C21b2.7 (6)
C13—C14—C14a—C15176.4 (4)C23—C24—C24a—C25174.3 (4)
C14—C14a—C15—C16141.1 (4)C21b—C24a—C25—C2636.2 (5)
C11b—C14a—C15—C1635.7 (6)C24—C24a—C25—C26140.7 (4)
C14a—C15—C16—C16a57.5 (5)C24a—C25—C26—C26a57.7 (5)
C15—C16—C16a—N17139.0 (4)C25—C26—C26a—N27138.1 (4)
C15—C16—C16a—C11a42.0 (5)C25—C26—C26a—C21a40.9 (5)
C11a—C16a—N17—C17a0.6 (6)C21a—C26a—N27—C27a0.5 (6)
C16—C16a—N17—C17a179.6 (3)C26—C26a—N27—C27a179.4 (4)
C16a—N17—C17a—N18179.5 (4)C26a—N27—C27a—N28179.3 (4)
C16a—N17—C17a—C10a1.3 (6)C26a—N27—C27a—C20A0.4 (6)
N17—C17a—N18—N19178.8 (4)N27—C27a—N28—N29179.0 (4)
C10a—C17a—N18—N190.3 (4)C20A—C27a—N28—N290.8 (4)
N17—C17a—N18—C1812.6 (7)N27—C27a—N28—C2812.0 (7)
C10a—C17a—N18—C181175.9 (4)C20A—C27a—N28—C281178.2 (4)
C17a—N18—C181—C182166.7 (4)N29—N28—C281—C286163.9 (4)
N19—N18—C181—C1829.2 (5)C27a—N28—C281—C28617.2 (6)
C17a—N18—C181—C18611.9 (6)N29—N28—C281—C28216.1 (5)
N19—N18—C181—C186172.2 (4)C27a—N28—C281—C282162.8 (4)
C186—C181—C182—C1830.9 (6)C286—C281—C282—C2830.6 (7)
N18—C181—C182—C183179.5 (4)N28—C281—C282—C283179.4 (4)
C181—C182—C183—C1842.0 (7)C281—C282—C283—C2840.5 (7)
C182—C183—C184—C1851.5 (7)C282—C283—C284—C2850.0 (7)
C183—C184—C185—C1860.1 (7)C283—C284—C285—C2860.4 (7)
C184—C185—C186—C1811.1 (7)C282—C281—C286—C2850.2 (6)
C182—C181—C186—C1850.7 (6)N28—C281—C286—C285179.7 (4)
N18—C181—C186—C185177.9 (4)C284—C285—C286—C2810.2 (7)
C17a—N18—N19—C1100.4 (4)C27a—N28—N29—C2100.1 (4)
C181—N18—N19—C110177.1 (3)C281—N28—N29—C210179.2 (3)
N18—N19—C110—C10a0.9 (4)N28—N29—C210—C20A1.0 (4)
N18—N19—C110—C101178.5 (4)N28—N29—C210—C201178.6 (3)
N17—C17a—C10a—C1111.1 (6)N27—C27a—C20A—C2110.4 (6)
N18—C17a—C10a—C111179.6 (4)N28—C27a—C20A—C211179.4 (3)
N17—C17a—C10a—C110179.3 (4)N27—C27a—C20A—C210178.5 (4)
N18—C17a—C10a—C1100.8 (4)N28—C27a—C20A—C2101.3 (4)
N19—C110—C10a—C17a1.1 (4)N29—C210—C20A—C27a1.4 (5)
C101—C110—C10a—C17a178.2 (4)C201—C210—C20A—C27a178.1 (4)
N19—C110—C10a—C111179.4 (5)N29—C210—C20A—C211179.0 (5)
C101—C110—C10a—C1111.3 (8)C201—C210—C20A—C2110.5 (8)
C17a—C10a—C111—C11a0.0 (6)C27a—C20A—C211—C21a0.6 (6)
C110—C10a—C111—C11a179.5 (4)C210—C20A—C211—C21a176.8 (4)
C17a—C10a—C111—C121177.0 (3)C27a—C20A—C211—C221178.7 (4)
C110—C10a—C111—C1213.5 (7)C210—C20A—C211—C2214.0 (7)
C11a—C111—C121—C126104.7 (5)C21a—C211—C221—C226109.5 (5)
C10a—C111—C121—C12672.0 (5)C20A—C211—C221—C22669.6 (5)
C11a—C111—C121—C12279.5 (6)C21a—C211—C221—C22274.8 (6)
C10a—C111—C121—C122103.8 (5)C20A—C211—C221—C222106.1 (5)
C126—C121—C122—C1230.0 (6)C226—C221—C222—C2230.7 (6)
C111—C121—C122—C123175.9 (4)C211—C221—C222—C223175.2 (4)
C121—C122—C123—N1240.4 (7)C221—C222—C223—N2241.9 (7)
C122—C123—N124—C1250.3 (7)C222—C223—N224—C2251.7 (7)
C123—N124—C125—C1260.3 (7)C223—N224—C225—C2260.3 (7)
N124—C125—C126—C1210.7 (7)N224—C225—C226—C2210.8 (7)
C122—C121—C126—C1250.5 (6)C222—C221—C226—C2250.6 (6)
C111—C121—C126—C125176.6 (4)C211—C221—C226—C225176.5 (4)
C10a—C111—C11a—C16a0.6 (5)C20A—C211—C21a—C26a1.4 (5)
C121—C111—C11a—C16a176.1 (4)C221—C211—C21a—C26a177.8 (4)
C10a—C111—C11a—C11b179.1 (4)C20A—C211—C21a—C21b179.9 (4)
C121—C111—C11a—C11b4.3 (6)C221—C211—C21a—C21b0.8 (6)
N17—C16a—C11a—C1110.3 (6)N27—C26a—C21a—C2111.5 (6)
C16—C16a—C11a—C111178.6 (4)C26—C26a—C21a—C211179.7 (4)
N17—C16a—C11a—C11b179.4 (4)N27—C26a—C21a—C21b179.9 (4)
C16—C16a—C11a—C11b1.7 (5)C26—C26a—C21a—C21b1.1 (5)
C12—C11—C11b—C14a3.1 (6)C24—C24a—C21b—C214.4 (6)
C12—C11—C11b—C11a177.6 (4)C25—C24a—C21b—C21172.6 (4)
C14—C14a—C11b—C113.0 (6)C24—C24a—C21b—C21a176.9 (4)
C15—C14a—C11b—C11173.8 (4)C25—C24a—C21b—C21a6.1 (6)
C14—C14a—C11b—C11a177.6 (4)C22—C21—C21b—C24a3.9 (6)
C15—C14a—C11b—C11a5.6 (6)C22—C21—C21b—C21a177.5 (4)
C111—C11a—C11b—C1124.8 (6)C211—C21a—C21b—C24a155.4 (4)
C16a—C11a—C11b—C11155.6 (4)C26a—C21a—C21b—C24a26.0 (5)
C111—C11a—C11b—C14a155.9 (4)C211—C21a—C21b—C2126.0 (6)
C16a—C11a—C11b—C14a23.7 (5)C26a—C21a—C21b—C21152.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C182—H182···N190.952.452.786 (6)101
C186—H186···N170.952.342.980 (5)125
C282—H282···N290.952.492.808 (5)100
C286—H286···N270.952.352.976 (5)123

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H20N4C26H20N4
Mr388.46388.46
Crystal system, space groupTetragonal, P421cOrthorhombic, P21212
Temperature (K)120120
a, b, c (Å)19.2181 (6), 19.2181 (6), 10.8347 (2)18.6288 (8), 19.1956 (8), 10.8885 (3)
α, β, γ (°)90, 90, 9090, 90, 90
V3)4001.64 (19)3893.6 (3)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.44 × 0.35 × 0.100.42 × 0.18 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.955, 0.9920.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
28744, 2537, 2004 25232, 4952, 3590
Rint0.0700.075
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.05 0.065, 0.152, 1.06
No. of reflections25374952
No. of parameters272543
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.200.26, 0.31

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C86—H86···N70.952.393.007 (3)123
C114—H114···N113i0.952.493.417 (3)165
Symmetry code: (i) y, x+1, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C182—H182···N190.952.452.786 (6)101
C186—H186···N170.952.342.980 (5)125
C282—H282···N290.952.492.808 (5)100
C286—H286···N270.952.352.976 (5)123
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JP and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds