organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Effect of substitution on the dimensionality of supramolecular aggregation in di­hydro­benzo­pyrazolo­quinolines

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 21 June 2005; accepted 24 June 2005; online 23 July 2005)

Mol­ecules of 8-methyl-10-phenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline, C21H17N3, (I)[link], are linked into cyclic centrosymmetric dimers by means of paired C—H⋯N hydrogen bonds. In each of 8-methyl-7,10-diphenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline, C27H21N3, (II)[link], and 8-methyl-7-(4-methyl­phenyl)-10-phenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline, C28H23N3, (III)[link], the mol­ecules are linked by C—H⋯π(arene) hydrogen bonds into sheets, although the detailed construction of the sheets is entirely different in (II)[link] and (III)[link]. The mol­ecules of 7-(4-methoxy­phenyl)-8-methyl-10-phenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline, C28H23N3O, (IV)[link], are linked into a complex three-dimensional framework structure by a combination of C—H⋯N, C—H⋯O and three independent C—H⋯π(arene) hydrogen bonds.

Comment

Pyrazolo[3,4-b]quinolines are of inter­est as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator, and enzyme-inhibitory activity (Quiroga et al., 2001[Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947-6953.]). We report here the structures of four dihydro­benzopyrazoloquinolines, (I)[link]–(IV)[link] (Figs. 1[link]–4[link][link][link]), synthesized by a simple solvent-free cyclo­condensation, under microwave irradiation, of 5-amino-3-methyl-1-phenyl­pyrazole and the condensation products derived from 2-tetra­lone and a range of simple aldehydes. One objective of these structure determinations was the investigation of how the introduction of different simple aryl substituents at position 7 in compounds (II)[link]–(IV)[link] influences the supramolecular aggregation compared with that in the unsubstituted compound, (I)[link]. We have recently reported the structures of the isomorphous and isostructural chloro­phenyl and bromo­phenyl analogues, compounds (V)[link] and (VI)[link] (Serrano et al., 2005a[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058-o1060.],b[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702-o1703.]).

[Scheme 1]

In each of compounds (I)[link]–(IV)[link], the bond distances within the fused heterocyclic components are consistent with aromatic delocalization within the pyridine ring, but with strong double-bond fixation in the C8—N9 bond of the pyrazole ring. The other distances and angles present no exceptional features. The non-aromatic carbocyclic ring adopts a nearly ideal screw-boat conformation (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]) in each compound, as shown by the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), given for the atom sequence C4a—C5—C6—C6a—C11a—C11b in Table 1[link]. For a six-membered ring with equal bond lengths throughout, the screw-boat conformation is characterized by θ = 67.5 or 112.5°, and φ = (60k + 30)° (k = integer).

Associated with the screw-boat conformation of the non-aromatic carbocyclic ring, the two aromatic rings linked by the bond C11a—C11b (Figs. 1[link]–4[link][link][link]) are not parallel, and they make dihedral angles ranging from 11.11 (7)° in compound (III)[link] to 15.78 (7)° in compound (II)[link] (Table 1[link]). The dihedral angles between the pyridine ring and the pendent C71–C76 aryl ring are likewise very similar for compounds (II)[link]–(IV)[link]. On the other hand, the dihedral angles between the pyrazole ring and the pendent C101–C106 aryl ring show a rather larger variation. It may be noted here that rings C71–C76 and C101–C106 participate in the hydrogen bonding in each of (II)[link]–(IV)[link], and that the hydrogen bonding may be an important factor in controlling these dihedral angles.

The supramolecular aggregation in compound (I)[link] is extremely simple and involves just one hydrogen bond (Table 2[link]). Atom C5 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H5A, to pyrazole atom N9 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric R22(16) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 5[link]). The formation of this dimer is reinforced by a ππ stacking inter­action involving the pyridine rings of the two component mol­ecules. These rings are strictly parallel, with an inter­planar spacing of 3.450 (2) Å. The ring-centroid separation is 3.729 (2) Å, corresponding to a nearly ideal ring offset of 1.415 (2) Å. There are no other direction-specific inter­actions between the mol­ecules; in particular, C—H⋯π(arene) hydrogen bonds are absent. Hence, the structure of compound (I)[link] simply consists of isolated centrosymmetric dimers.

By contrast with the structure of (I)[link], there are no C—H⋯N hydrogen bonds in the structures of either (II)[link] or (III)[link]. Instead, the mol­ecules of (II)[link] and (III)[link] are linked into sheets by C—H⋯π(arene) hydrogen bonds, a type of inter­action absent from the structure of (I)[link]. Despite crystallizing in the same space group, namely P21/c, the formation of the hydrogen-bonded sheets differs considerably between (II)[link] and (III)[link].

In compound (II)[link], the pyridine ring and the pendent C101–C106 phenyl ring act as hydrogen-bond acceptors. In the shorter of the two hydrogen bonds (Table 2[link]), atom C73 in the mol­ecule at (x, y, z) acts as donor to the C101–C106 aryl ring in the mol­ecule at (1 − x, 1 − y, −z), so generating a cyclic and centrosymmetric dimeric motif centred at ([{1\over 2}], [{1\over 2}], 0). The second of the two hydrogen bonds then links this dimer at ([{1\over 2}], [{1\over 2}], 0) to four adjacent dimers. Atoms C4 in the mol­ecules at (x, y, z) and (1 − x, 1 − y, −z) act as hydrogen-bond donors to the pyridine rings in the mol­ecules at (x, [{1\over 2}] − y, [{1\over 2}] + z) and (1 − x, [{1\over 2}] + y, −[{1\over 2}] − z), respectively, which themselves form parts of the dimers centred at ([{1\over 2}], 0, [{1\over 2}]) and ([{1\over 2}], 1, −[{1\over 2}]), respectively. Similarly, the pyridine rings at (x, y, z) and (1 − x, 1 − y, −z) accept hydrogen bonds from the C4 atoms in the mol­ecules at (x, [{1\over 2}] − y, z − [{1\over 2}]) and (1 − x, [{1\over 2}] + y, [{1\over 2}] − z), which are themselves components of dimers centred at ([{1\over 2}], 0, −[{1\over 2}]) and ([{1\over 2}], 1, [{1\over 2}]). Propagation by the space group of these two hydrogen bonds, associated with an inversion and a c-glide plane, respectively, then generates a (100) sheet in which large and small rings alternate (Fig. 6[link]).

As in (II)[link], the two-dimensional supramolecular structure of (III)[link] is built from two C—H⋯π(arene) hydrogen bonds (Table 2[link]), but now both are associated with translational symmetry operations and there are no directly connected pairs of mol­ecules which are related by inversion. Again, unlike the hydrogen bonds in (II)[link], for those in (III)[link] the two donors form parts of the same aryl ring, while the acceptors are the two aryl rings pendent from the fused ring system.

Aryl atom C73 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the C101–C106 ring in the mol­ecule at (1 − x, y − [{1\over 2}], [{3\over 2}] − z), thereby forming a chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{3\over 4}]) (Fig. 7[link]). In addition, atom C76 at (x, y, z) acts as hydrogen-bond donor to the C1/C2/C3/C4/C4a/C11b ring in the mol­ecule at (x, [{3\over 2}] − y, [{1\over 2}] + z), thus producing a chain parallel to the [001] direction and generated by the c-glide plane at y[{3\over 4}] (Fig. 8[link]). The combination of these two chains generates a (100) sheet in the form of a (4,4)-net (Fig. 9[link]).

The constitution of compound (IV)[link] differs from those of (I)[link]–(III)[link] in that it provides an additional acceptor of hydrogen bonds in the O atom of the meth­oxy substituent (Fig. 4[link]). In fact, the mol­ecules of (IV)[link] are linked by a combination of C—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds (Table 2[link]) into a rather complex three-dimensional framework. The formation of this framework can be analysed very straightforwardly in terms of the component one-dimensional substructures.

In the first such substructure, the C—H⋯N and C—H⋯O hydrogen bonds combine to generate a chain of edge-fused rings. Aryl atom C72 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to pyridine atom N11 in the mol­ecule at (1 − x, 1 − y, 1 − z), thereby generating a centrosymmetric R22(14) ring centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]). In addition, atom C2 at (x, y, z) acts as donor to atom O7 in the mol­ecule at (1 + x, y, 1 + z), so generating by translation a C(12) chain running parallel to the [101] direction. The combination of these two hydrogen bonds then generates a chain of edge-fused rings, with R22(14) rings centred at (n + [{1\over 2}], [{1\over 2}], n + [{1\over 2}]) (n = zero or integer) and R44(22) rings centred at (n, [{1\over 2}], n) (n = zero or integer) (Fig. 10[link]).

The second one-dimensional substructure also takes the form of a chain of edge-fused rings. Aryl atoms C75 in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the R22(14) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), act as hydrogen-bond donors to the C101–C106 rings in the mol­ecules at (1 − x, 1 − y, −z) and (x, y, 1 + z), respectively, which themselves form part of the R22(14) dimers centred at ([{1\over 2}], [{1\over 2}], −[{1\over 2}]) and ([{1\over 2}], [{1\over 2}], [{3\over 2}]), respectively, so forming a chain of edge-fused centrosymmetric rings running parallel to the [001] direction (Fig. 11[link]).

In addition to this [001] chain of edge-fused rings generated by inversion, there is a second substructure running parallel to [001] in the form of a simple chain generated by a c-glide plane. Aryl atom C4 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the pyridine ring in the mol­ecule at (x, [{3\over 2}] − y, [{1\over 2}] + z), producing an [001] chain generated by the c-glide plane at y = [{3\over 4}] (Fig. 12[link]).

In the final substructure, atom C103 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the pendent C71–C76 aryl ring in the mol­ecule at (1 − x, y − [{1\over 2}], [{1\over 2}] − z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) (Fig. 13[link]).

The combination of the chains along [010], [001] and [101] suffices to link all of the mol­ecules into a single three-dimensional framework, the complexity of which arises largely from the occurrence in the structure of five independent hydrogen bonds (Table 2[link]).

We briefly compare the supramolecular structures of compounds (I)[link]–(IV)[link] reported here with those of the pair of compounds, (V)[link] and (VI)[link] (see scheme), containing 4-halogenophenyl substituents, where the mol­ecular skeleton is a simple positional isomer of the skeleton in compounds (I)[link]–(IV)[link], and which are themseleves strictly isostructural in space group P[\overline{1}], as reported recently (Serrano et al., 2005a[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058-o1060.],b[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702-o1703.]). In these analogues, the mol­ecules are linked by C—H⋯π(arene) hydrogen bonds into chains of edge-fused rings. Hence, within this rather compact group of compounds, viz. (I)[link]–(VI)[link], the supra­mol­ecular aggregation ranges from finite (zero-dimensional) in compound (I)[link], via one-dimensional in compounds (V)[link] and (VI)[link] and two-dimensional in compounds (II)[link] and (III)[link], to three-dimensional in compound (IV)[link].

The differences between the 4-methyl­phenyl compound, (III)[link], and the 4-chloro­phenyl compound, (V)[link], in terms of both their space groups, namely P21/c for (III)[link] as opposed to P[\overline{1}] for (V)[link], and their supramolecular dimensionality, namely two-dimensional for (III)[link] as opposed to one-dimensional for (V)[link], is unexpected, as methyl and chloro substituents on aryl rings are generally effectively isosteric. This is well illustrated, for example, by the related series of fused heterocycles (VII)[link]–(IX)[link] (see scheme) containing, respectively, 4-methyl­phenyl, 4-­chloro­phenyl and 4-bromo­phenyl substituents, which are all isomorphous and strictly isostructural (Portilla et al., 2005[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452-o456.]).

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecule of (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
Part of the crystal structure of (I)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to those C atoms which are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (II)[link], showing the formation of a hydrogen-bonded (100) sheet generated by the combination of an inversion and a glide plane. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of (III)[link], showing the formation of a hydrogen-bonded chain along [010] generated by a 21 screw axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of (III)[link], showing the formation of a hydrogen-bonded chain along [001] generated by a glide plane. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
A stereoview of part of the crystal structure of (III)[link], showing the formation of a hydrogen-bonded (100) sheet generated by the combination of the [010] and [001] chains. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of (IV)[link], showing the formation of a chain of edge-fused rings along [101] built from C—H⋯N and C—H⋯O hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 11]
Figure 11
A stereoview of part of the crystal structure of (IV)[link], showing the formation of a chain of edge-fused rings along [001] built from C—H⋯N and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 12]
Figure 12
Part of the crystal structure of (IV)[link], showing the formation of a simple [001] chain built from C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{3\over 2}] − y, [{1\over 2}] + z) and (x, [{3\over 2}] − y, z − [{1\over 2}]), respectively.
[Figure 13]
Figure 13
Part of the crystal structure of (IV)[link], showing the formation of a simple [010] chain built from C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, y − [{1\over 2}], [{1\over 2}] − z) and (1 − x, [{1\over 2}] + y, [{1\over 2}] − z), respectively.

Experimental

For the preparation of the title compounds, equimolar quantities of 5-­amino-3-methyl-1-phenyl­pyrazole (1.0 mmol) and the corresponding methyl­ene derivative (from 2-tetralone and the appropriate aldehyde) (1.0 mmol) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 3–5 min at 600 W. The reaction mixture was extracted with ethanol and the extract was evaporated. The solid residues were recrystallized from dimethyl­formamide to give crystals suitable for single-crystal X-ray diffraction. Analysis for (I)[link]: yellow crystals (m.p. 439–440 K, yield 60%), MS (30 eV) m/z (%) = 311 (100, M+), 296 (7); for (II)[link]: yellow crystals (m.p. 494–495 K, yield 78%), MS (30 eV) m/z (%) = 388 (36), 387 (100, M+), 372 (6); for (III)[link]: yellow crystals (m.p. 484–485 K, yield 75%), MS (30 eV) m/z (%) = 402 (36), 401 (100, M+), 386 (6); for (IV)[link]: pale-brown crystals (m.p. 484–485 K, yield 60%), MS (30 eV) m/z (%) = 418 (33), 417 (100, M+), 402 (6).

Compound (I)[link]

Crystal data
  • C21H17N3

  • Mr = 311.38

  • Triclinic, [P \overline 1]

  • a = 7.0870 (2) Å

  • b = 10.1321 (4) Å

  • c = 11.7977 (5) Å

  • α = 87.501 (2)°

  • β = 73.171 (3)°

  • γ = 74.828 (2)°

  • V = 782.13 (5) Å3

  • Z = 2

  • Dx = 1.322 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3576 reflections

  • θ = 3.1–27.6°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Rod, yellow

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.954, Tmax = 0.992

  • 15116 measured reflections

  • 3576 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.6°

  • h = −8 → 9

  • k = −12 → 13

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.04

  • 3576 reflections

  • 218 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1501P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Compound (II)[link]

Crystal data
  • C27H21N3

  • Mr = 387.47

  • Monoclinic, P 21 /c

  • a = 11.5561 (4) Å

  • b = 17.6751 (7) Å

  • c = 9.8469 (3) Å

  • β = 98.599 (2)°

  • V = 1988.67 (12) Å3

  • Z = 4

  • Dx = 1.294 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4539 reflections

  • θ = 2.9–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.973, Tmax = 0.985

  • 26788 measured reflections

  • 4539 independent reflections

  • 3236 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.5°

  • h = −15 → 13

  • k = −22 → 22

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.08

  • 4539 reflections

  • 272 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0639P)2 + 0.3388P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Compound (III)[link]

Crystal data
  • C28H23N3

  • Mr = 401.49

  • Monoclinic, P 21 /c

  • a = 12.0313 (3) Å

  • b = 14.3347 (4) Å

  • c = 12.7956 (3) Å

  • β = 109.3092 (14)°

  • V = 2082.66 (9) Å3

  • Z = 4

  • Dx = 1.280 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4778 reflections

  • θ = 3.2–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.66 × 0.42 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.956, Tmax = 0.989

  • 38247 measured reflections

  • 4778 independent reflections

  • 3416 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

  • h = −15 → 15

  • k = −18 → 18

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.04

  • 4778 reflections

  • 282 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.066P)2 + 0.5056P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Compound (IV)[link]

Crystal data
  • C28H23N3O

  • Mr = 417.49

  • Monoclinic, P 21 /c

  • a = 12.9148 (3) Å

  • b = 17.5938 (5) Å

  • c = 9.8192 (2) Å

  • β = 104.3370 (17)°

  • V = 2161.64 (9) Å3

  • Z = 4

  • Dx = 1.283 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4963 reflections

  • θ = 3.3–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Plate, pale brown

  • 0.50 × 0.20 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.974, Tmax = 0.996

  • 35681 measured reflections

  • 4963 independent reflections

  • 3449 reflections with I > 2σ(I)

  • Rint = 0.062

  • θmax = 27.5°

  • h = −16 → 16

  • k = −22 → 22

  • l = −12 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.04

  • 4963 reflections

  • 291 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4296P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Ring-puckering parameters and selected dihedral angles (Å, °) for compounds (I)[link]–(IV)[link]

The ring-puckering parameters for the non-aromatic carbocyclic ring are calculated for the atom sequence C4a—C5—C6—C6a—C11a—C11b.

Parameter (I)[link] (II)[link] (III)[link] (IV)[link]
Q 0.423 (2) 0.461 (2) 0.460 (2) 0.450 (2)
θ 63.9 (2) 115.4 (2) 61.5 (2) 115.5 (2)
φ 89.6 (2) 274.1 (2) 96.6 (2) 271.6 (2)
(C1–C4/C4a/C11b)/pyridine 13.84 (7) 15.78 (7) 11.11 (7) 14.79 (7)
(C71–C76)/pyridine   63.45 (7) 65.27 (7) 60.88 (7)
(C101–C106)/pyrazole 26.21 (7) 33.16 (8) 18.56 (8) 30.30 (4)

Table 2
Hydrogen-bond geometry (Å, °) for compounds (I)[link]–(IV)[link]

Cg1–Cg4 are the centroids of rings N11/C10a/C7a/C7/C6a/C11a, C101–C106, C1–C4/C4a/C11a and C71–C76, respectively.

  D—H⋯A D—H H⋯A DA D—H⋯A
(I)[link] C5—H5A⋯N9i 0.99 2.60 3.4070 (18) 139
(II)[link] C4—H4⋯Cg1ii 0.95 2.82 3.7461 (17) 164
  C73—H73⋯Cg2iii 0.95 2.62 3.4852 (17) 152
(III)[link] C73—H73⋯Cg2iv 0.95 2.96 3.8991 (18) 168
  C76—H76⋯Cg3v 0.95 2.90 3.8349 (17) 168
(IV)[link] C2—H2⋯O7vi 0.95 2.53 3.3422 (18) 144
  C72—H72⋯N11i 0.95 2.60 3.3952 (17) 142
  C4—H4⋯Cg1v 0.95 2.84 3.7766 (17) 168
  C75—H75⋯Cg2iii 0.95 2.67 3.5605 (15) 157
  C103—H103⋯Cg4vii 0.95 2.85 3.7417 (19) 157
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) [x, \script{1 \over 2}-y, \script{1 \over 2}+z]; (iii) 1-x, 1-y, -z; (iv) [1-x, y-\script{1 \over 2}, \script{3 \over 2}-z]; (v) [x, \script{3 \over 2}-y, \script{1 \over 2}+z]; (vi) 1+x, y, 1+z; (vii) [1-x, y-\script{1 \over 2}, \script{1 \over 2}-z].

Crystals of compound (I)[link] are triclinic; space group P[\overline{1}] was selected and then confirmed by the successful structure analysis. For each of compounds (II)[link]–(IV)[link], the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. The crystals of compound (III)[link] were very fragile, and attempts to cut small fragments from larger crystals resulted in shattering.

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Pyrazolo[3,4-b]quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator, and enzyme-inhibitory activity (Quiroga et al., 2001). Here, we report the structures of four dihydrobenzopyrazoloquinolines, (I)–(IV) (Figs. 1–4), synthesized by a simple solvent-free cyclocondensation, under microwave irradiation, of 5-amino-3-methyl-1-phenylpyrazole and the condensation products derived from 2-tetralone and a range of simple aldehydes. One objective of these structure determinations was the investigation of how the introduction of different simple aryl substituents at position 7 in compounds (II)–(IV) influences the supramolecular aggregation compared with that in the unsubstituted compound, (I). We have recently reported the structures of the isomorphous and isostructural chlorophenyl and bromophenyl analogues, compounds (V) and (VI) (Serrano et al., 2005a,b).

In each of compounds (I)–(IV), the bond distances within the fused heterocyclic components are consistent with aromatic delocalization within the pyridine ring, but with strong double-bond fixation in the C8—N9 bond of the pyrazole ring. The other distances and angles present no exceptional features. The non-aromatic carbocyclic ring adopts a nearly ideal screw-boat conformation (Evans & Boeyens, 1989) in each compound, as shown by the ring-puckering parameters (Cremer & Pople, 1975), given for the atom sequence C4a/C5/C6/C6a/C11a/C11b in Table 1. For a six-membered ring with equal bond lengths throughout, the screw-boat conformation is characterized by θ = 67.5° or 112.5°, and ϕ = (60k + 30)° (k = integer).

Associated with the screw-boat conformation of the non-aromatic carbocyclic ring, the two aromatic rings linked by the bond C11a—C11b (Figs. 1–4) are not parallel, and they make dihedral angles ranging from 11.11 (7)° in compound (III) to 15.78 (7)° in compound (II) (Table 1). The dihedral angles between the pyridine ring and the pendent aryl ring C71–C76 are likewise very similar for compounds (II)–(IV). On the other hand, the dihedral angles between the pyrazole ring and the pendent aryl ring C101–C106 show a rather larger variation. It may be noted here that the rings C71–C76 and C101–C106 participate in the hydrogen bonding in each of (II)–(IV), and that the hydrogen bonding may be an important factor in controlling these dihedral angles.

The supramolecular aggregation in compound (I) is extremely simple and involves just one hydrogen bond (Table 2). Atom C5 in the molecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H5A, to pyrazole atom N9 in the molecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric R22(16) dimer centred at (1/2, 1/2, 1/2) (Fig. 5). The formation of this dimer is reinforced by a ππ stacking interaction involving the pyridine rings of the two component molecules. These rings are strictly parallel, with an interplanar spacing of 3.450 (2) Å. The ring-centroid separation is 3.729 (2) Å, corresponding to a nearly ideal ring offset of 1.415 (2) Å. There are no other direction-specific interactions between the molecules; in particular, C—H···π(arene) hydrogen bonds are absent. Hence, the structure of compound (I) simply consists of isolated centrosymmetric dimers.

By contrast with the structure of (I), there are no C—H···N hydrogen bonds in the structures of either (II) or (III). Instead, the molecules of (II) and (III) are linked into sheets by C—H···π(arene) hydrogen bonds, a type of interaction absent from the structure of (I). Despite crystallizing in the same space group, P21/c, the formation of the hydrogen-bonded sheets differs considerably between (II) and (III).

In compound (II), the pyridine ring and the pendent phenyl ring C101–C106 act as hydrogen-bond acceptors. In the shorter of the two hydrogen bonds (Table 2), atom C73 in the molecule at (x, y, z) acts as donor to the aryl ring C101–C106 in the molecule at (1 − x, 1 − y, −z), so generating a cyclic and centrosymmetric dimeric motif centred at (1/2, 1/2, 0). The second of the two hydrogen bonds then links this dimer at (1/2, 1/2, 0) to four adjacent dimers. The atoms C4 in the molecules at (x, y, z) and (1 − x, 1 − y, −z) act as hydrogen-bond donors to the pyridine rings in the molecules at (x, 1/2 − y, 1/2 + z) and (1 − x, 1/2 + y, −1/2 − z), respectively, which themselves form parts of the dimers centred at (1/2, 0, 1/2) and (1/2, 1, −1/2), respectively. Similarly, the pyridine rings at (x, y, z) and (1 − x, 1 − y, −z) accept hydrogen bonds from the atoms C4 in the molecules at (x, 1/2 − y, z − 1/2) and (1 − x, 1/2 + y, 1/2 − z), which are themselves components of dimers centred at (1/2, 0, −1/2) and (1/2, 1, 1/2). Propagation by the space group of these two hydrogen bonds, associated with an inversion and a c-glide plane, respectively, then generates a (100) sheet in which large and small rings alternate (Fig. 6).

As in (II), the two-dimensional supramolecular structure of (III) is built from two C—H···π(arene) hydrogen bonds (Table 2), but now both are associated with translational symmetry operations and there are no directly connected pairs of molecules which are related by inversion. Again, unlike the hydrogen bonds in (II), for those in (III), the two donors form parts of the same aryl ring, while the acceptors are the two aryl rings pendent from the fused ring system.

Aryl atom C73 in the molecule at (x, y, z) acts as hydrogen-bond donor to the ring C101–C106 in the molecule at (1 − x, y − 1/2, 3/2 − z), thereby forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 3/4) (Fig. 7). In addition, atom C76 at (x, y, z) acts as hydrogen-bond donor to the C1/C2/C3/C4/C4a/C11b ring in the molecule at (x, 3/2 − y, 1/2 + z), thus producing a chain parallel to the [001] direction and generated by the c-glide plane at y = 3/4 (Fig. 8). The combination of these two chains generates a (100) sheet in the form of a (4,4) net (Fig. 9).

The constitution of compound (IV) differs from those of (I)–(III) in that it provides an additional acceptor of hydrogen bonds in the O atom of the methoxy substituent (Fig. 4). In fact, the molecules of (IV) are linked by a combination of C—H···N, C—H···O and C—H···π(arene) hydrogen bonds (Table 2) into a rather complex three-dimensional framework. The formation of this framework can be analysed very straightforwardly in terms of the component one-dimensional substructures.

In the first such substructure, the C—H···N and C—H···O hydrogen bonds combine to generate a chain of edge-fused rings. Aryl atom C72 in the molecule at (x, y, z) acts as hydrogen-bond donor to pyridine atom N11 in the molecule at (1 − x, 1 − y, 1 − z), thereby generating a centrosymmetric R22(14) ring centred at (1/2, 1/2, 1/2). In addition, atom C2 at (x, y, z) acts as donor to atom O7 in the molecule at (1 + x, y, 1 + z), so generating by translation a C(12) chain running parallel to the [101] direction. The combination of these two hydrogen bonds then generates a chain of edge-fused rings, with R22(14) rings centred at (n + 1/2, 1/2, n + 1/2) (n = zero or integer) and R44(22) rings centred at (n, 1/2, n) (n = zero or integer) (Fig. 10).

The second one-dimensional substructure also takes the form of a chain of edge-fused rings. Aryl atoms C75 in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the R22(14) dimer centred at (1/2, 1/2, 1/2), act as hydrogen-bond donors to the C101–C106 rings in the molecules at (1 − x, 1 − y, −z) and (x, y, 1 + z), respectively, which themselves form part of the R22(14) dimers centred at (1/2, 1/2, −1/2) and (1/2, 1/2, 3/2), respectively, so forming a chain of edge-fused centrosymmetric rings running parallel to the [001] direction (Fig. 11).

In addition to this [001] chain of edge-fused rings generated by inversion, there is a second substructure running parallel to [001] in the form of a simple chain generated by a c-glide plane. Aryl atom C4 in the molecule at (x, y, z) acts as hydrogen-bond donor to the pyridine ring in the molecule at (x, 3/2 − y, 1/2 + z), producing an [001] chain generated by the c-glide plane at y = 3/4 (Fig. 12).

In the final substructure, atom C103 in the molecule at (x, y, z) acts as hydrogen-bond donor to the pendent aryl ring C71–C76 in the molecule at (1 − x, y − 1/2, 1/2 − z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 13).

The combination of the chains along [010], [001] and [101] suffices to link all of the molecules into a single three-dimensional framework, the complexity of which arises largely from the occurrence in the structure of five independent hydrogen bonds (Table 2).

We briefly compare the supramolecular structures of compounds (I)–(IV) reported here with those of the pair of compounds, (V) and (VI), containing 4-halogenophenyl substituents, where the molecular skeleton is a simple positional isomer of the skeleton in compounds (I)–(IV), and which are themseleves strictly isostructural in space group P1, as reported recently (Serrano et al., 2005a,b). In these analogues, the molecules are linked by C—H···π(arene) hydrogen bonds into chains of edge-fused rings. Hence, within this rather compact group of compounds, (I)–(VI), the supramolecular aggregation ranges from finite (zero-dimensional) in compound (I), via one-dimensional in compounds (V) and (VI) and two-dimensional in compounds (II) and (III), to three-dimensional in compound (IV).

The differences between the 4-methylphenyl compound, (III), and the 4-chlorophenyl compound, (V), in terms of both their space groups, namely P21/c for (III) as opposed to P1 for (V), and their supramolecular dimensionality, namely two-dimensional for (III) as opposed to one-dimensional for (V), is unexpected, as methyl and chloro substituents on aryl rings are generally effectively isosteric. This is well illustrated, for example by the related series of fused heterocycles (VII)–(IX) (see scheme) containing, respectively, 4-methylphenyl, 4-chlorophenyl and 4-bromophenyl substituents, which are all isomorphous and strictly isostructural (Portilla et al., 2005).

Experimental top

Equimolar quantities of 5-amino-3-methyl-1-phenylpyrazole (1.0 mmol) and the corresponding methylene derivative (from 2-tetralone and the appropriate aldehyde) (1.0 mmol) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 3–5 min at 600 W. The reaction mixture was extracted with ethanol and the extract was evaporated. The solid residues were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. Analysis, for (I): yellow crystals (m.p. 439–440 K, yield 60%), MS (30 eV) m/z (%) = 311 (100, M+), 296 (7); for (II), yellow crystals (m.p. 494–495 K, yield 78%), MS (30 eV) m/z (%) = 388 (36), 387 (100, M+), 372 (6); for (III), yellow crystals (m.p. 484–485 K, yield 75%), MS (30 eV) m/z (%) = 402 (36), 401 (100, M+), 386 (6); for (IV), pale-brown crystals (m.p. 484–485 K, yield 60%), MS (30 eV) m/z (%) = 418 (33), 417 (100, M+), 402 (6).

Refinement top

Crystals of compound (I) are triclinic; space group P1 was selected and then confirmed by the successful structure analysis. For each of compounds (II)–(IV), the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. The crystals of compound (III) were very fragile, and attempts to cut small fragments from larger crystals resulted in shattering.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecule of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded (100) sheet generated by a combination of an inversion and a glide plane. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain along [010] generated by a 21 screw axis. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain along [001] generated by a glide plane. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. A tereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded (100) sheet generated by the combination of the [010] and [001] chains. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of (IV), showing the formation of a chain of edge-fused rings along [101] built from C—H···N and C—H···O hydrogen bonds. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of (IV), showing the formation of a chain of edge-fused rings along [001] built from C—H···N and C—H···π(arene) hydrogen bonds. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 12] Fig. 12. Part of the crystal structure of (IV), showing the formation of a simple [001] chain built from C—H···π(arene) hydrogen bonds. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 3/2 − y, 1/2 + z) and (x, 3/2 − y, z − 1/2), respectively.
[Figure 13] Fig. 13. Part of the crystal structure of (IV), showing the formation of a simple [010] chain built from C—H···π(arene) hydrogen bonds. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, y − 1/2, 1/2 − z) and (1 − x, 1/2 + y, 1/2 − z), respectively.
(I) 8-methyl-10-phenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline top
Crystal data top
C21H17N3Z = 2
Mr = 311.38F(000) = 328
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0870 (2) ÅCell parameters from 3576 reflections
b = 10.1321 (4) Åθ = 3.1–27.6°
c = 11.7977 (5) ŵ = 0.08 mm1
α = 87.501 (2)°T = 120 K
β = 73.171 (3)°Rod, yellow
γ = 74.828 (2)°0.50 × 0.10 × 0.10 mm
V = 782.13 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3576 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1213
Tmin = 0.954, Tmax = 0.992l = 1515
15116 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1501P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H17N3γ = 74.828 (2)°
Mr = 311.38V = 782.13 (5) Å3
Triclinic, P1Z = 2
a = 7.0870 (2) ÅMo Kα radiation
b = 10.1321 (4) ŵ = 0.08 mm1
c = 11.7977 (5) ÅT = 120 K
α = 87.501 (2)°0.50 × 0.10 × 0.10 mm
β = 73.171 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2810 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.992Rint = 0.039
15116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3576 reflectionsΔρmin = 0.28 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N90.83108 (15)0.57987 (10)0.28704 (9)0.0217 (2)
N100.83152 (15)0.44571 (10)0.31468 (9)0.0200 (2)
N110.76537 (15)0.31767 (10)0.49337 (9)0.0197 (2)
C10.77407 (18)0.07787 (13)0.62078 (11)0.0231 (3)
C20.7677 (2)0.04040 (14)0.68381 (12)0.0272 (3)
C30.6828 (2)0.03104 (14)0.80610 (12)0.0295 (3)
C40.6037 (2)0.09613 (14)0.86384 (12)0.0280 (3)
C4a0.61181 (19)0.21609 (14)0.80260 (11)0.0234 (3)
C50.5240 (2)0.35489 (14)0.86468 (11)0.0260 (3)
C60.6455 (2)0.45575 (14)0.80616 (11)0.0252 (3)
C6a0.68421 (18)0.45661 (13)0.67356 (11)0.0210 (3)
C70.70232 (18)0.57262 (13)0.60931 (11)0.0213 (3)
C7a0.75017 (17)0.56198 (12)0.48612 (11)0.0202 (3)
C80.78261 (18)0.64947 (13)0.38828 (11)0.0210 (3)
C10a0.78021 (17)0.43267 (13)0.43543 (11)0.0190 (3)
C11a0.71542 (17)0.33172 (13)0.61172 (11)0.0194 (3)
C11b0.69941 (17)0.20645 (13)0.67939 (11)0.0206 (3)
C810.7624 (2)0.79962 (13)0.38979 (13)0.0275 (3)
C1010.86390 (18)0.34987 (12)0.22219 (11)0.0198 (3)
C1020.78040 (18)0.23804 (13)0.24400 (11)0.0229 (3)
C1030.8042 (2)0.15150 (13)0.15000 (12)0.0264 (3)
C1040.9089 (2)0.17522 (14)0.03539 (12)0.0271 (3)
C1050.9963 (2)0.28495 (13)0.01468 (12)0.0260 (3)
C1060.97496 (19)0.37182 (13)0.10797 (11)0.0232 (3)
H10.82960.07160.53700.028*
H20.82100.12740.64360.033*
H30.67910.11170.84990.035*
H40.54250.10170.94720.034*
H5E0.52430.34610.94850.031*
H5A0.38060.39050.86330.031*
H6E0.57000.54880.84000.030*
H6A0.77800.43180.82440.030*
H70.68260.65740.64820.026*
H81A0.78870.83150.30850.041*
H81B0.86140.81860.42580.041*
H81C0.62390.84740.43610.041*
H1030.74790.07490.16440.032*
H1020.70800.22120.32230.027*
H1040.92080.11680.02860.033*
H1051.07080.30060.06340.031*
H1061.03620.44620.09380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N90.0234 (5)0.0204 (6)0.0224 (6)0.0077 (4)0.0070 (4)0.0028 (4)
N100.0236 (5)0.0187 (5)0.0174 (5)0.0069 (4)0.0046 (4)0.0022 (4)
N110.0193 (5)0.0223 (5)0.0167 (5)0.0051 (4)0.0043 (4)0.0016 (4)
C10.0216 (6)0.0269 (7)0.0199 (6)0.0071 (5)0.0042 (5)0.0022 (5)
C20.0278 (7)0.0250 (7)0.0285 (7)0.0072 (5)0.0077 (5)0.0026 (6)
C30.0315 (7)0.0307 (8)0.0270 (7)0.0109 (6)0.0082 (6)0.0098 (6)
C40.0290 (7)0.0364 (8)0.0190 (7)0.0116 (6)0.0058 (5)0.0059 (6)
C4a0.0197 (6)0.0309 (7)0.0202 (7)0.0077 (5)0.0059 (5)0.0017 (5)
C50.0262 (7)0.0320 (7)0.0191 (7)0.0072 (5)0.0058 (5)0.0008 (5)
C60.0264 (7)0.0295 (7)0.0196 (7)0.0079 (5)0.0052 (5)0.0028 (5)
C6a0.0165 (6)0.0264 (7)0.0190 (6)0.0056 (5)0.0032 (5)0.0019 (5)
C70.0176 (6)0.0231 (6)0.0224 (7)0.0052 (5)0.0038 (5)0.0036 (5)
C7a0.0150 (6)0.0221 (6)0.0227 (7)0.0045 (5)0.0043 (5)0.0008 (5)
C80.0175 (6)0.0227 (6)0.0234 (7)0.0061 (5)0.0061 (5)0.0002 (5)
C10a0.0146 (6)0.0237 (6)0.0179 (6)0.0046 (5)0.0036 (5)0.0005 (5)
C11a0.0147 (6)0.0251 (7)0.0176 (6)0.0043 (5)0.0041 (5)0.0009 (5)
C11b0.0162 (6)0.0272 (7)0.0190 (6)0.0068 (5)0.0055 (5)0.0030 (5)
C810.0302 (7)0.0234 (7)0.0305 (8)0.0086 (5)0.0099 (6)0.0014 (6)
C1010.0201 (6)0.0209 (6)0.0181 (6)0.0034 (5)0.0067 (5)0.0001 (5)
C1020.0221 (6)0.0247 (7)0.0208 (7)0.0065 (5)0.0043 (5)0.0018 (5)
C1030.0299 (7)0.0233 (7)0.0282 (7)0.0091 (5)0.0097 (6)0.0008 (5)
C1040.0335 (7)0.0253 (7)0.0236 (7)0.0054 (6)0.0112 (6)0.0028 (5)
C1050.0316 (7)0.0262 (7)0.0185 (7)0.0060 (5)0.0060 (5)0.0020 (5)
C1060.0271 (7)0.0235 (7)0.0196 (7)0.0080 (5)0.0068 (5)0.0028 (5)
Geometric parameters (Å, º) top
C1—C21.3864 (18)C8—N91.3233 (17)
C1—C11b1.4004 (18)C8—C811.4907 (18)
C1—H10.95C81—H81A0.98
C2—C31.3900 (19)C81—H81B0.98
C2—H20.95C81—H81C0.98
C3—C41.384 (2)N9—N101.3834 (14)
C3—H30.95N10—C10a1.3741 (16)
C4—C4a1.3923 (18)N10—C1011.4202 (16)
C4—H40.95C101—C1061.3915 (17)
C4a—C11b1.4022 (17)C101—C1021.3920 (17)
C4a—C51.5064 (19)C103—C1041.3859 (19)
C5—C61.5224 (18)C103—C1021.3879 (18)
C5—H5E0.99C103—H1030.95
C5—H5A0.99C102—H1020.95
C6—C6a1.5080 (17)C104—C1051.3887 (18)
C6—H6E0.99C104—H1040.95
C6—H6A0.99C105—C1061.3884 (18)
C6a—C71.3848 (17)C105—H1050.95
C6a—C11a1.4223 (18)C106—H1060.95
C7—C7a1.3957 (17)C10a—N111.3376 (16)
C7—H70.95N11—C11a1.3415 (16)
C7a—C10a1.4028 (17)C11a—C11b1.4819 (17)
C7a—C81.4266 (17)
C2—C1—C11b120.64 (12)C8—C81—H81A109.5
C2—C1—H1119.7C8—C81—H81B109.5
C11b—C1—H1119.7H81A—C81—H81B109.5
C1—C2—C3119.65 (12)C8—C81—H81C109.5
C1—C2—H2120.2H81A—C81—H81C109.5
C3—C2—H2120.2H81B—C81—H81C109.5
C4—C3—C2119.81 (12)C8—N9—N10107.14 (10)
C4—C3—H3120.1C10a—N10—N9110.09 (10)
C2—C3—H3120.1C10a—N10—C101130.59 (10)
C3—C4—C4a121.50 (12)N9—N10—C101119.05 (10)
C3—C4—H4119.2C106—C101—C102120.18 (11)
C4a—C4—H4119.2C106—C101—N10118.95 (11)
C4—C4a—C11b118.62 (12)C102—C101—N10120.83 (11)
C4—C4a—C5121.78 (11)C104—C103—C102120.99 (12)
C11b—C4a—C5119.58 (11)C104—C103—H103119.5
C4a—C5—C6111.57 (11)C102—C103—H103119.5
C4a—C5—H5E109.3C103—C102—C101119.17 (12)
C6—C5—H5E109.3C103—C102—H102120.4
C4a—C5—H5A109.3C101—C102—H102120.4
C6—C5—H5A109.3C103—C104—C105119.54 (12)
H5E—C5—H5A108.0C103—C104—H104120.2
C6a—C6—C5112.69 (10)C105—C104—H104120.2
C6a—C6—H6E109.1C106—C105—C104120.10 (12)
C5—C6—H6E109.1C106—C105—H105120.0
C6a—C6—H6A109.1C104—C105—H105120.0
C5—C6—H6A109.1C105—C106—C101119.97 (12)
H6E—C6—H6A107.8C105—C106—H106120.0
C7—C6a—C11a118.89 (11)C101—C106—H106120.0
C7—C6a—C6122.34 (11)N11—C10a—N10126.33 (11)
C11a—C6a—C6118.66 (11)N11—C10a—C7a126.58 (11)
C6a—C7—C7a118.42 (11)N10—C10a—C7a107.08 (11)
C6a—C7—H7120.8C10a—N11—C11a114.72 (10)
C7a—C7—H7120.8N11—C11a—C6a124.08 (11)
C7—C7a—C10a117.29 (11)N11—C11a—C11b116.51 (11)
C7—C7a—C8137.65 (12)C6a—C11a—C11b119.38 (11)
C10a—C7a—C8105.05 (11)C1—C11b—C4a119.74 (11)
N9—C8—C7a110.62 (11)C1—C11b—C11a120.15 (11)
N9—C8—C81120.75 (11)C4a—C11b—C11a120.10 (11)
C7a—C8—C81128.60 (12)
C11b—C1—C2—C31.23 (18)C103—C104—C105—C1061.4 (2)
C1—C2—C3—C40.58 (19)C104—C105—C106—C1010.73 (19)
C2—C3—C4—C4a1.8 (2)C102—C101—C106—C1052.40 (18)
C3—C4—C4a—C11b1.08 (19)N10—C101—C106—C105175.44 (11)
C3—C4—C4a—C5179.30 (12)N9—N10—C10a—N11179.88 (10)
C4—C4a—C5—C6147.22 (12)C101—N10—C10a—N116.07 (19)
C11b—C4a—C5—C634.57 (15)N9—N10—C10a—C7a1.19 (13)
C4a—C5—C6—C6a48.85 (14)C101—N10—C10a—C7a175.00 (11)
C5—C6—C6a—C7149.47 (12)C7—C7a—C10a—N110.84 (17)
C5—C6—C6a—C11a34.42 (15)C8—C7a—C10a—N11179.85 (11)
C11a—C6a—C7—C7a0.15 (17)C7—C7a—C10a—N10178.08 (10)
C6—C6a—C7—C7a176.25 (11)C8—C7a—C10a—N101.23 (12)
C6a—C7—C7a—C10a1.05 (16)N10—C10a—N11—C11a179.10 (10)
C6a—C7—C7a—C8179.93 (13)C7a—C10a—N11—C11a0.38 (17)
C7—C7a—C8—N9178.21 (13)C10a—N11—C11a—C6a1.40 (16)
C10a—C7a—C8—N90.88 (13)C10a—N11—C11a—C11b179.39 (9)
C7—C7a—C8—C813.7 (2)C7—C6a—C11a—N111.18 (17)
C10a—C7a—C8—C81177.22 (11)C6—C6a—C11a—N11175.07 (11)
C7a—C8—N9—N100.17 (13)C7—C6a—C11a—C11b179.12 (10)
C81—C8—N9—N10178.10 (10)C6—C6a—C11a—C11b2.87 (16)
C8—N9—N10—C10a0.64 (12)C2—C1—C11b—C4a1.90 (18)
C8—N9—N10—C101175.27 (10)C2—C1—C11b—C11a177.28 (11)
C10a—N10—C101—C106159.94 (12)C4—C4a—C11b—C10.74 (17)
N9—N10—C101—C10626.70 (16)C5—C4a—C11b—C1177.53 (11)
C10a—N10—C101—C10222.24 (18)C4—C4a—C11b—C11a178.43 (10)
N9—N10—C101—C102151.12 (11)C5—C4a—C11b—C11a3.30 (17)
C104—C103—C102—C1010.20 (19)N11—C11a—C11b—C112.73 (16)
C106—C101—C102—C1031.92 (18)C6a—C11a—C11b—C1165.36 (11)
N10—C101—C102—C103175.87 (11)N11—C11a—C11b—C4a168.10 (10)
C102—C103—C104—C1051.8 (2)C6a—C11a—C11b—C4a13.81 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N9i0.992.603.407 (2)139
Symmetry code: (i) x+1, y+1, z+1.
(II) 8-methyl-7,10-diphenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline top
Crystal data top
C27H21N3F(000) = 816
Mr = 387.47Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4539 reflections
a = 11.5561 (4) Åθ = 2.9–27.5°
b = 17.6751 (7) ŵ = 0.08 mm1
c = 9.8469 (3) ÅT = 120 K
β = 98.599 (2)°Block, yellow
V = 1988.67 (12) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4539 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1513
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2222
Tmin = 0.973, Tmax = 0.985l = 1212
26788 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.3388P]
where P = (Fo2 + 2Fc2)/3
4539 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C27H21N3V = 1988.67 (12) Å3
Mr = 387.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5561 (4) ŵ = 0.08 mm1
b = 17.6751 (7) ÅT = 120 K
c = 9.8469 (3) Å0.40 × 0.20 × 0.20 mm
β = 98.599 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4539 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3236 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.985Rint = 0.053
26788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
4539 reflectionsΔρmin = 0.29 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N90.43577 (11)0.58317 (7)0.12922 (12)0.0246 (3)
N100.34752 (10)0.54838 (7)0.18563 (12)0.0226 (3)
N110.33013 (10)0.44465 (7)0.34202 (11)0.0203 (3)
C10.21854 (13)0.35978 (9)0.52740 (15)0.0253 (3)
C20.15848 (14)0.31124 (9)0.60241 (16)0.0304 (4)
C30.21065 (15)0.24434 (10)0.65426 (16)0.0316 (4)
C40.32201 (14)0.22656 (9)0.62946 (16)0.0305 (4)
C4a0.38337 (13)0.27438 (8)0.55394 (15)0.0257 (3)
C50.50310 (15)0.25435 (9)0.52218 (19)0.0355 (4)
C60.57792 (13)0.32386 (9)0.51646 (16)0.0292 (4)
C6a0.51771 (13)0.38214 (8)0.41929 (14)0.0227 (3)
C70.57744 (13)0.42877 (9)0.33974 (16)0.0285 (4)
C7a0.51099 (12)0.48429 (8)0.25861 (14)0.0218 (3)
C80.53342 (13)0.54537 (8)0.17123 (14)0.0236 (3)
C10a0.39155 (12)0.48847 (8)0.26655 (13)0.0203 (3)
C11a0.39426 (12)0.39257 (8)0.41779 (13)0.0198 (3)
C11b0.33103 (12)0.34207 (8)0.50193 (13)0.0209 (3)
C710.70476 (13)0.41902 (8)0.33270 (15)0.0228 (3)
C720.74131 (13)0.39804 (9)0.20979 (15)0.0252 (3)
C730.85936 (13)0.38897 (9)0.20265 (16)0.0286 (4)
C740.94184 (13)0.40076 (9)0.31732 (16)0.0289 (4)
C750.90609 (13)0.42152 (9)0.43990 (16)0.0287 (4)
C760.78855 (13)0.43018 (8)0.44813 (15)0.0268 (3)
C810.64537 (13)0.57005 (9)0.12594 (16)0.0302 (4)
C1010.23436 (12)0.58166 (8)0.16747 (14)0.0233 (3)
C1020.22464 (14)0.66001 (9)0.15294 (15)0.0296 (4)
C1030.11490 (15)0.69317 (10)0.13306 (16)0.0353 (4)
C1040.01560 (15)0.64928 (10)0.12814 (16)0.0355 (4)
C1050.02594 (14)0.57183 (11)0.14374 (17)0.0351 (4)
C1060.13507 (13)0.53746 (9)0.16269 (15)0.0285 (4)
H10.18280.40570.49290.030*
H20.08170.32370.61840.036*
H30.17000.21100.70640.038*
H40.35730.18070.66480.037*
H5A0.49520.22770.43280.043*
H5E0.54190.21960.59370.043*
H6A0.59590.34610.60950.035*
H6E0.65280.30930.48640.035*
H720.68510.38990.13040.030*
H730.88370.37450.11840.034*
H741.02270.39460.31200.035*
H750.96270.42990.51890.034*
H760.76470.44380.53310.032*
H81A0.66690.53410.05810.045*
H81B0.70750.57170.20540.045*
H81C0.63510.62050.08460.045*
H1020.29290.69040.15670.036*
H1030.10790.74650.12270.042*
H1040.05960.67230.11410.043*
H1050.04240.54180.14150.042*
H1060.14150.48410.17230.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N90.0258 (7)0.0241 (7)0.0243 (6)0.0023 (5)0.0052 (5)0.0026 (5)
N100.0231 (6)0.0214 (6)0.0237 (6)0.0003 (5)0.0044 (5)0.0035 (5)
N110.0225 (6)0.0198 (6)0.0189 (6)0.0024 (5)0.0046 (5)0.0007 (5)
C10.0253 (8)0.0266 (8)0.0245 (7)0.0029 (6)0.0045 (6)0.0030 (6)
C20.0267 (8)0.0352 (9)0.0309 (8)0.0013 (7)0.0094 (7)0.0033 (7)
C30.0353 (9)0.0325 (9)0.0283 (8)0.0046 (7)0.0094 (7)0.0055 (7)
C40.0343 (9)0.0248 (8)0.0330 (9)0.0015 (7)0.0065 (7)0.0085 (7)
C4a0.0279 (8)0.0231 (8)0.0264 (8)0.0019 (6)0.0052 (6)0.0016 (6)
C50.0318 (9)0.0262 (9)0.0510 (11)0.0064 (7)0.0141 (8)0.0098 (7)
C60.0267 (8)0.0287 (8)0.0328 (8)0.0064 (7)0.0063 (6)0.0059 (7)
C6a0.0219 (7)0.0227 (8)0.0233 (7)0.0004 (6)0.0021 (6)0.0014 (6)
C70.0252 (8)0.0289 (8)0.0328 (8)0.0042 (7)0.0086 (6)0.0051 (7)
C7a0.0229 (7)0.0232 (8)0.0194 (7)0.0017 (6)0.0038 (6)0.0001 (6)
C80.0267 (8)0.0238 (8)0.0204 (7)0.0001 (6)0.0036 (6)0.0007 (6)
C10a0.0250 (8)0.0192 (7)0.0164 (7)0.0020 (6)0.0024 (6)0.0001 (5)
C11a0.0221 (7)0.0193 (7)0.0182 (7)0.0015 (6)0.0037 (6)0.0024 (5)
C11b0.0234 (8)0.0226 (7)0.0168 (7)0.0008 (6)0.0032 (6)0.0014 (6)
C710.0225 (7)0.0200 (7)0.0264 (8)0.0022 (6)0.0051 (6)0.0037 (6)
C720.0245 (8)0.0279 (8)0.0224 (7)0.0012 (6)0.0012 (6)0.0014 (6)
C730.0299 (9)0.0321 (9)0.0260 (8)0.0014 (7)0.0114 (6)0.0015 (7)
C740.0185 (7)0.0314 (9)0.0373 (9)0.0001 (6)0.0057 (6)0.0058 (7)
C750.0281 (8)0.0257 (8)0.0297 (8)0.0026 (7)0.0042 (6)0.0004 (6)
C760.0329 (9)0.0239 (8)0.0235 (8)0.0044 (7)0.0042 (6)0.0014 (6)
C810.0280 (9)0.0320 (9)0.0312 (8)0.0029 (7)0.0067 (7)0.0057 (7)
C1010.0247 (8)0.0266 (8)0.0182 (7)0.0049 (6)0.0021 (6)0.0011 (6)
C1020.0340 (9)0.0268 (8)0.0268 (8)0.0037 (7)0.0008 (6)0.0002 (6)
C1030.0451 (10)0.0311 (9)0.0287 (8)0.0144 (8)0.0022 (7)0.0012 (7)
C1040.0328 (9)0.0480 (11)0.0266 (8)0.0179 (8)0.0079 (7)0.0060 (7)
C1050.0267 (9)0.0466 (11)0.0328 (9)0.0033 (8)0.0066 (7)0.0095 (8)
C1060.0288 (8)0.0290 (9)0.0280 (8)0.0028 (7)0.0050 (6)0.0073 (6)
Geometric parameters (Å, º) top
C1—C21.384 (2)C10a—N111.3467 (18)
C1—C11b1.396 (2)N11—C11a1.3370 (18)
C1—H10.95C11a—C11b1.483 (2)
C2—C31.389 (2)C71—C721.391 (2)
C2—H20.95C71—C761.393 (2)
C3—C41.381 (2)C72—C731.386 (2)
C3—H30.95C72—H720.95
C4—C4a1.389 (2)C73—C741.380 (2)
C4—H40.95C73—H730.95
C4a—C11b1.402 (2)C74—C751.383 (2)
C4a—C51.506 (2)C74—H740.95
C5—C61.508 (2)C75—C761.381 (2)
C5—H5A0.99C75—H750.95
C5—H5E0.99C76—H760.95
C6—C6a1.504 (2)C81—H81A0.98
C6—H6A0.99C81—H81B0.98
C6—H6E0.99C81—H81C0.98
C6a—C71.390 (2)C101—C1061.383 (2)
C6a—C11a1.436 (2)C101—C1021.395 (2)
C7—C7a1.417 (2)C102—C1031.384 (2)
C7—C711.493 (2)C102—H1020.95
C7a—C10a1.396 (2)C103—C1041.380 (3)
C7a—C81.428 (2)C103—H1030.95
C8—N91.3234 (19)C104—C1051.381 (3)
C8—C811.495 (2)C104—H1040.95
N9—N101.3769 (17)C105—C1061.387 (2)
N10—C10a1.3762 (18)C105—H1050.95
N10—C1011.4206 (18)C106—H1060.95
C2—C1—C11b120.77 (14)N11—C11a—C11b116.61 (12)
C2—C1—H1119.6C6a—C11a—C11b119.25 (12)
C11b—C1—H1119.6C1—C11b—C4a119.22 (13)
C1—C2—C3119.92 (15)C1—C11b—C11a121.02 (13)
C1—C2—H2120.0C4a—C11b—C11a119.73 (13)
C3—C2—H2120.0C72—C71—C76118.92 (14)
C4—C3—C2119.55 (15)C72—C71—C7120.05 (13)
C4—C3—H3120.2C76—C71—C7121.03 (13)
C2—C3—H3120.2C73—C72—C71120.30 (14)
C3—C4—C4a121.33 (15)C73—C72—H72119.9
C3—C4—H4119.3C71—C72—H72119.9
C4a—C4—H4119.3C74—C73—C72120.37 (14)
C4—C4a—C11b119.20 (14)C74—C73—H73119.8
C4—C4a—C5121.79 (14)C72—C73—H73119.8
C11b—C4a—C5118.97 (13)C73—C74—C75119.63 (14)
C4a—C5—C6111.46 (13)C73—C74—H74120.2
C4a—C5—H5A109.3C75—C74—H74120.2
C6—C5—H5A109.3C76—C75—C74120.36 (14)
C4a—C5—H5E109.3C76—C75—H75119.8
C6—C5—H5E109.3C74—C75—H75119.8
H5A—C5—H5E108.0C75—C76—C71120.41 (14)
C6a—C6—C5111.62 (13)C75—C76—H76119.8
C6a—C6—H6A109.3C71—C76—H76119.8
C5—C6—H6A109.3C8—C81—H81A109.5
C6a—C6—H6E109.3C8—C81—H81B109.5
C5—C6—H6E109.3H81A—C81—H81B109.5
H6A—C6—H6E108.0C8—C81—H81C109.5
C7—C6a—C11a119.63 (13)H81A—C81—H81C109.5
C7—C6a—C6122.91 (13)H81B—C81—H81C109.5
C11a—C6a—C6117.31 (13)C106—C101—C102120.23 (14)
C6a—C7—C7a117.10 (14)C106—C101—N10120.92 (14)
C6a—C7—C71122.26 (13)C102—C101—N10118.85 (14)
C7a—C7—C71120.56 (13)C103—C102—C101119.54 (15)
C10a—C7a—C7117.52 (13)C103—C102—H102120.2
C10a—C7a—C8105.29 (12)C101—C102—H102120.2
C7—C7a—C8137.00 (14)C104—C103—C102120.42 (16)
N9—C8—C7a110.29 (13)C104—C103—H103119.8
N9—C8—C81119.67 (13)C102—C103—H103119.8
C7a—C8—C81130.04 (13)C103—C104—C105119.72 (15)
C8—N9—N10107.27 (12)C103—C104—H104120.1
C10a—N10—N9110.19 (11)C105—C104—H104120.1
C10a—N10—C101130.18 (12)C104—C105—C106120.74 (16)
N9—N10—C101119.19 (12)C104—C105—H105119.6
N11—C10a—N10125.61 (13)C106—C105—H105119.6
N11—C10a—C7a127.41 (13)C101—C106—C105119.35 (15)
N10—C10a—C7a106.94 (12)C101—C106—H106120.3
C11a—N11—C10a114.20 (12)C105—C106—H106120.3
N11—C11a—C6a124.12 (13)
C11b—C1—C2—C30.6 (2)C7—C6a—C11a—N111.0 (2)
C1—C2—C3—C40.5 (2)C6—C6a—C11a—N11176.62 (13)
C2—C3—C4—C4a0.2 (2)C7—C6a—C11a—C11b179.40 (13)
C3—C4—C4a—C11b0.0 (2)C6—C6a—C11a—C11b4.9 (2)
C3—C4—C4a—C5177.88 (15)C2—C1—C11b—C4a0.3 (2)
C4—C4a—C5—C6147.16 (15)C2—C1—C11b—C11a177.95 (13)
C11b—C4a—C5—C634.9 (2)C4—C4a—C11b—C10.1 (2)
C4a—C5—C6—C6a53.40 (19)C5—C4a—C11b—C1178.00 (14)
C5—C6—C6a—C7145.07 (15)C4—C4a—C11b—C11a178.27 (13)
C5—C6—C6a—C11a39.42 (19)C5—C4a—C11b—C11a0.3 (2)
C11a—C6a—C7—C7a0.9 (2)N11—C11a—C11b—C115.48 (19)
C6—C6a—C7—C7a176.34 (14)C6a—C11a—C11b—C1165.96 (13)
C11a—C6a—C7—C71177.67 (13)N11—C11a—C11b—C4a162.81 (13)
C6—C6a—C7—C716.9 (2)C6a—C11a—C11b—C4a15.75 (19)
C6a—C7—C7a—C10a0.9 (2)C6a—C7—C71—C72114.74 (17)
C71—C7—C7a—C10a177.72 (13)C7a—C7—C71—C7261.9 (2)
C6a—C7—C7a—C8175.16 (16)C6a—C7—C71—C7664.9 (2)
C71—C7—C7a—C88.0 (3)C7a—C7—C71—C76118.49 (17)
C10a—C7a—C8—N90.27 (16)C76—C71—C72—C730.4 (2)
C7—C7a—C8—N9174.97 (17)C7—C71—C72—C73179.95 (14)
C10a—C7a—C8—C81179.29 (14)C71—C72—C73—C740.1 (2)
C7—C7a—C8—C814.6 (3)C72—C73—C74—C750.2 (2)
C7a—C8—N9—N100.51 (16)C73—C74—C75—C760.3 (2)
C81—C8—N9—N10179.88 (12)C74—C75—C76—C710.8 (2)
C8—N9—N10—C10a1.13 (15)C72—C71—C76—C750.9 (2)
C8—N9—N10—C101174.26 (12)C7—C71—C76—C75179.51 (14)
N9—N10—C10a—N11176.60 (13)C10a—N10—C101—C10638.4 (2)
C101—N10—C10a—N114.4 (2)N9—N10—C101—C106150.00 (13)
N9—N10—C10a—C7a1.29 (15)C10a—N10—C101—C102142.24 (15)
C101—N10—C10a—C7a173.44 (13)N9—N10—C101—C10229.31 (19)
C7—C7a—C10a—N111.0 (2)C106—C101—C102—C1030.3 (2)
C8—C7a—C10a—N11176.91 (13)N10—C101—C102—C103179.02 (13)
C7—C7a—C10a—N10176.86 (13)C101—C102—C103—C1040.3 (2)
C8—C7a—C10a—N100.93 (15)C102—C103—C104—C1050.3 (2)
N10—C10a—N11—C11a176.54 (13)C103—C104—C105—C1060.8 (2)
C7a—C10a—N11—C11a0.9 (2)C102—C101—C106—C1050.2 (2)
C10a—N11—C11a—C6a0.87 (19)N10—C101—C106—C105179.49 (13)
C10a—N11—C11a—C11b179.35 (12)C104—C105—C106—C1010.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.823.7461 (17)164
C73—H73···Cg2ii0.952.623.4852 (17)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
(III) 8-methyl-7-(4-methylphenyl)-10-phenyl-6,10-dihydro-5H- benzo[h]pyrazolo[3,4-b]quinoline top
Crystal data top
C28H23N3F(000) = 848
Mr = 401.49Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4778 reflections
a = 12.0313 (3) Åθ = 3.2–27.5°
b = 14.3347 (4) ŵ = 0.08 mm1
c = 12.7956 (3) ÅT = 120 K
β = 109.3092 (14)°Lath, yellow
V = 2082.66 (9) Å30.66 × 0.42 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4778 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1818
Tmin = 0.956, Tmax = 0.989l = 1616
38247 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.066P)2 + 0.5056P]
where P = (Fo2 + 2Fc2)/3
4778 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C28H23N3V = 2082.66 (9) Å3
Mr = 401.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0313 (3) ŵ = 0.08 mm1
b = 14.3347 (4) ÅT = 120 K
c = 12.7956 (3) Å0.66 × 0.42 × 0.14 mm
β = 109.3092 (14)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3416 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.989Rint = 0.059
38247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
4778 reflectionsΔρmin = 0.31 e Å3
282 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N90.30634 (11)0.65547 (9)0.73214 (10)0.0258 (3)
N100.30409 (10)0.66474 (9)0.62375 (9)0.0240 (3)
N110.43992 (10)0.64102 (9)0.52311 (9)0.0226 (3)
C10.50934 (13)0.64311 (11)0.33420 (12)0.0267 (3)
C20.54058 (15)0.63637 (11)0.23984 (13)0.0304 (4)
C30.64913 (15)0.59966 (12)0.24608 (13)0.0322 (4)
C40.72493 (14)0.56801 (12)0.34689 (13)0.0317 (4)
C4a0.69491 (13)0.57393 (11)0.44258 (12)0.0264 (3)
C50.77415 (14)0.53670 (12)0.55198 (12)0.0314 (4)
C60.76520 (13)0.59487 (12)0.64686 (13)0.0315 (4)
C6a0.63895 (12)0.60365 (11)0.64328 (12)0.0244 (3)
C70.60599 (13)0.60251 (11)0.73788 (12)0.0243 (3)
C7a0.48778 (12)0.62315 (10)0.72366 (11)0.0219 (3)
C80.41448 (13)0.63049 (10)0.79173 (12)0.0239 (3)
C10a0.41290 (12)0.64386 (10)0.61634 (11)0.0217 (3)
C11a0.55248 (12)0.61967 (10)0.53789 (12)0.0217 (3)
C11b0.58595 (12)0.61283 (10)0.43662 (12)0.0226 (3)
C710.69221 (12)0.57974 (11)0.84904 (12)0.0247 (3)
C720.74078 (13)0.49082 (12)0.87080 (12)0.0294 (4)
C730.82076 (14)0.46872 (12)0.97366 (13)0.0315 (4)
C740.85460 (13)0.53490 (12)1.05790 (12)0.0297 (4)
C750.80652 (14)0.62366 (12)1.03547 (12)0.0302 (4)
C760.72639 (13)0.64641 (11)0.93260 (12)0.0274 (3)
C770.94094 (16)0.50995 (15)1.17000 (14)0.0450 (5)
C810.44431 (14)0.61437 (12)0.91309 (12)0.0296 (4)
C1010.19686 (12)0.68698 (10)0.53990 (11)0.0235 (3)
C1020.09135 (13)0.67465 (12)0.56059 (12)0.0285 (4)
C1030.01409 (14)0.69713 (12)0.47966 (13)0.0328 (4)
C1040.01591 (14)0.73023 (12)0.37762 (13)0.0343 (4)
C1050.08906 (14)0.74071 (12)0.35707 (13)0.0329 (4)
C1060.19587 (13)0.72066 (12)0.43766 (12)0.0289 (4)
H10.43490.66860.32950.032*
H20.48760.65690.17070.036*
H30.67150.59620.18160.039*
H40.79870.54180.35060.038*
H5A0.75190.47150.56120.038*
H5E0.85670.53670.55260.038*
H6A0.79780.65780.64330.038*
H6E0.81260.56580.71780.038*
H720.71880.44460.81440.035*
H730.85290.40760.98680.038*
H750.82890.66991.09180.036*
H760.69480.70770.91930.033*
H77A0.96950.56711.21240.068*
H77B1.00760.47591.16040.068*
H77C0.90180.47061.20990.068*
H81A0.48390.66960.95360.044*
H81B0.49670.56030.93520.044*
H81C0.37190.60260.93020.044*
H1020.09160.65090.63000.034*
H1030.08600.68970.49440.039*
H1040.08850.74560.32230.041*
H1050.08810.76200.28650.039*
H1060.26760.72980.42320.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N90.0268 (7)0.0306 (8)0.0208 (6)0.0015 (5)0.0086 (5)0.0010 (5)
N100.0213 (6)0.0305 (7)0.0201 (6)0.0029 (5)0.0067 (5)0.0015 (5)
N110.0222 (6)0.0230 (7)0.0226 (6)0.0002 (5)0.0075 (5)0.0001 (5)
C10.0291 (8)0.0245 (8)0.0263 (8)0.0012 (6)0.0091 (6)0.0000 (6)
C20.0393 (9)0.0288 (9)0.0233 (8)0.0015 (7)0.0107 (7)0.0000 (6)
C30.0385 (9)0.0350 (10)0.0276 (8)0.0067 (7)0.0169 (7)0.0057 (7)
C40.0286 (8)0.0360 (10)0.0343 (9)0.0020 (7)0.0157 (7)0.0052 (7)
C4a0.0271 (8)0.0252 (8)0.0276 (8)0.0030 (6)0.0101 (6)0.0024 (6)
C50.0246 (8)0.0380 (10)0.0325 (8)0.0053 (7)0.0107 (6)0.0006 (7)
C60.0244 (8)0.0404 (10)0.0287 (8)0.0021 (7)0.0075 (6)0.0025 (7)
C6a0.0216 (7)0.0260 (8)0.0246 (7)0.0010 (6)0.0063 (6)0.0007 (6)
C70.0241 (7)0.0241 (8)0.0235 (7)0.0007 (6)0.0063 (6)0.0002 (6)
C7a0.0227 (7)0.0213 (8)0.0210 (7)0.0004 (6)0.0061 (6)0.0006 (6)
C80.0245 (7)0.0236 (8)0.0231 (7)0.0011 (6)0.0070 (6)0.0007 (6)
C10a0.0212 (7)0.0216 (8)0.0226 (7)0.0008 (6)0.0075 (6)0.0001 (6)
C11a0.0218 (7)0.0182 (8)0.0247 (7)0.0013 (6)0.0075 (6)0.0002 (6)
C11b0.0246 (7)0.0191 (8)0.0246 (7)0.0035 (6)0.0087 (6)0.0011 (6)
C710.0196 (7)0.0317 (9)0.0225 (7)0.0010 (6)0.0067 (6)0.0020 (6)
C720.0288 (8)0.0306 (9)0.0265 (8)0.0012 (7)0.0060 (6)0.0018 (6)
C730.0311 (8)0.0310 (9)0.0313 (8)0.0069 (7)0.0090 (7)0.0082 (7)
C740.0243 (8)0.0404 (10)0.0232 (7)0.0013 (7)0.0062 (6)0.0052 (7)
C750.0290 (8)0.0352 (10)0.0236 (8)0.0017 (7)0.0052 (6)0.0023 (7)
C760.0268 (8)0.0272 (9)0.0271 (8)0.0028 (6)0.0074 (6)0.0015 (6)
C770.0407 (10)0.0597 (13)0.0278 (9)0.0106 (9)0.0022 (7)0.0075 (8)
C810.0291 (8)0.0373 (10)0.0230 (7)0.0040 (7)0.0095 (6)0.0033 (6)
C1010.0212 (7)0.0236 (8)0.0232 (7)0.0025 (6)0.0043 (6)0.0012 (6)
C1020.0264 (8)0.0351 (9)0.0243 (8)0.0027 (7)0.0089 (6)0.0013 (6)
C1030.0229 (8)0.0421 (10)0.0325 (9)0.0019 (7)0.0079 (7)0.0029 (7)
C1040.0265 (8)0.0408 (10)0.0300 (8)0.0065 (7)0.0017 (6)0.0012 (7)
C1050.0337 (9)0.0358 (10)0.0264 (8)0.0054 (7)0.0062 (7)0.0064 (7)
C1060.0271 (8)0.0302 (9)0.0300 (8)0.0027 (7)0.0100 (6)0.0047 (6)
Geometric parameters (Å, º) top
C1—C21.381 (2)C75—H750.95
C1—C11b1.399 (2)C76—H760.95
C1—H10.95C77—H77A0.98
C2—C31.386 (2)C77—H77B0.98
C2—H20.95C77—H77C0.98
C3—C41.387 (2)C7a—C10a1.4026 (19)
C3—H30.95C7a—C81.434 (2)
C4—C4a1.389 (2)C8—N91.3214 (19)
C4—H40.95C8—C811.492 (2)
C4a—C11b1.403 (2)C81—H81A0.98
C4a—C51.507 (2)C81—H81B0.98
C5—C61.506 (2)C81—H81C0.98
C5—H5A0.99N9—N101.3845 (16)
C5—H5E0.99N10—C10a1.3764 (18)
C6—C6a1.510 (2)N10—C1011.4148 (18)
C6—H6A0.99C101—C1061.391 (2)
C6—H6E0.99C101—C1021.391 (2)
C6a—C71.393 (2)C102—C1031.385 (2)
C6a—C11a1.423 (2)C102—H1020.95
C7—C7a1.404 (2)C103—C1041.383 (2)
C7—C711.4933 (19)C103—H1030.95
C71—C761.391 (2)C104—C1051.381 (2)
C71—C721.391 (2)C104—H1040.95
C72—C731.386 (2)C105—C1061.386 (2)
C72—H720.95C105—H1050.95
C73—C741.392 (2)C106—H1060.95
C73—H730.95C10a—N111.3367 (18)
C74—C751.388 (2)N11—C11a1.3394 (18)
C74—C771.510 (2)C11a—C11b1.482 (2)
C75—C761.389 (2)
C2—C1—C11b120.78 (14)C74—C77—H77A109.5
C2—C1—H1119.6C74—C77—H77B109.5
C11b—C1—H1119.6H77A—C77—H77B109.5
C1—C2—C3119.99 (15)C74—C77—H77C109.5
C1—C2—H2120.0H77A—C77—H77C109.5
C3—C2—H2120.0H77B—C77—H77C109.5
C2—C3—C4119.69 (14)C10a—C7a—C7117.81 (13)
C2—C3—H3120.2C10a—C7a—C8104.73 (12)
C4—C3—H3120.2C7—C7a—C8137.46 (13)
C3—C4—C4a121.14 (15)N9—C8—C7a110.82 (12)
C3—C4—H4119.4N9—C8—C81119.65 (13)
C4a—C4—H4119.4C7a—C8—C81129.53 (13)
C4—C4a—C11b119.14 (14)C8—C81—H81A109.5
C4—C4a—C5121.88 (14)C8—C81—H81B109.5
C11b—C4a—C5118.95 (13)H81A—C81—H81B109.5
C6—C5—C4a111.16 (13)C8—C81—H81C109.5
C6—C5—H5A109.4H81A—C81—H81C109.5
C4a—C5—H5A109.4H81B—C81—H81C109.5
C6—C5—H5E109.4C8—N9—N10107.06 (12)
C4a—C5—H5E109.4C10a—N10—N9110.13 (11)
H5A—C5—H5E108.0C10a—N10—C101130.26 (12)
C5—C6—C6a111.17 (13)N9—N10—C101119.49 (11)
C5—C6—H6A109.4C106—C101—C102119.91 (14)
C6a—C6—H6A109.4C106—C101—N10120.91 (13)
C5—C6—H6E109.4C102—C101—N10119.19 (13)
C6a—C6—H6E109.4C103—C102—C101119.75 (14)
H6A—C6—H6E108.0C103—C102—H102120.1
C7—C6a—C11a119.75 (13)C101—C102—H102120.1
C7—C6a—C6123.05 (13)C104—C103—C102120.72 (15)
C11a—C6a—C6117.08 (13)C104—C103—H103119.6
C6a—C7—C7a116.88 (13)C102—C103—H103119.6
C6a—C7—C71121.50 (13)C105—C104—C103119.16 (14)
C7a—C7—C71121.62 (13)C105—C104—H104120.4
C76—C71—C72118.54 (14)C103—C104—H104120.4
C76—C71—C7121.17 (14)C104—C105—C106121.14 (15)
C72—C71—C7120.29 (13)C104—C105—H105119.4
C73—C72—C71120.87 (15)C106—C105—H105119.4
C73—C72—H72119.6C105—C106—C101119.30 (14)
C71—C72—H72119.6C105—C106—H106120.4
C72—C73—C74120.87 (15)C101—C106—H106120.4
C72—C73—H73119.6N11—C10a—N10125.85 (13)
C74—C73—H73119.6N11—C10a—C7a126.89 (13)
C75—C74—C73118.00 (14)N10—C10a—C7a107.23 (12)
C75—C74—C77121.50 (15)C10a—N11—C11a114.45 (12)
C73—C74—C77120.50 (16)N11—C11a—C6a123.97 (13)
C74—C75—C76121.50 (15)N11—C11a—C11b116.49 (12)
C74—C75—H75119.2C6a—C11a—C11b119.54 (13)
C76—C75—H75119.2C1—C11b—C4a119.25 (13)
C75—C76—C71120.22 (15)C1—C11b—C11a120.89 (13)
C75—C76—H76119.9C4a—C11b—C11a119.85 (13)
C71—C76—H76119.9
C11b—C1—C2—C30.3 (2)C8—N9—N10—C101177.07 (13)
C1—C2—C3—C41.4 (2)C10a—N10—C101—C10621.6 (2)
C2—C3—C4—C4a1.2 (3)N9—N10—C101—C106162.93 (14)
C3—C4—C4a—C11b0.1 (2)C10a—N10—C101—C102158.27 (15)
C3—C4—C4a—C5177.70 (15)N9—N10—C101—C10217.2 (2)
C4—C4a—C5—C6146.82 (15)C106—C101—C102—C1030.8 (2)
C11b—C4a—C5—C635.4 (2)N10—C101—C102—C103179.28 (14)
C4a—C5—C6—C6a54.16 (18)C101—C102—C103—C1041.1 (3)
C5—C6—C6a—C7141.78 (16)C102—C103—C104—C1050.0 (3)
C5—C6—C6a—C11a42.3 (2)C103—C104—C105—C1061.5 (3)
C11a—C6a—C7—C7a3.7 (2)C104—C105—C106—C1011.8 (3)
C6—C6a—C7—C7a172.13 (14)C102—C101—C106—C1050.6 (2)
C11a—C6a—C7—C71175.89 (14)N10—C101—C106—C105179.29 (14)
C6—C6a—C7—C718.3 (2)N9—N10—C10a—N11176.29 (14)
C6a—C7—C71—C76113.66 (17)C101—N10—C10a—N110.5 (2)
C7a—C7—C71—C7666.8 (2)N9—N10—C10a—C7a1.67 (16)
C6a—C7—C71—C7265.9 (2)C101—N10—C10a—C7a177.45 (14)
C7a—C7—C71—C72113.63 (17)C7—C7a—C10a—N114.2 (2)
C76—C71—C72—C730.5 (2)C8—C7a—C10a—N11176.11 (14)
C7—C71—C72—C73179.90 (14)C7—C7a—C10a—N10177.89 (13)
C71—C72—C73—C740.0 (2)C8—C7a—C10a—N101.82 (16)
C72—C73—C74—C750.5 (2)N10—C10a—N11—C11a179.46 (14)
C72—C73—C74—C77179.44 (15)C7a—C10a—N11—C11a3.0 (2)
C73—C74—C75—C760.4 (2)C10a—N11—C11a—C6a1.8 (2)
C77—C74—C75—C76179.49 (15)C10a—N11—C11a—C11b178.21 (13)
C74—C75—C76—C710.1 (2)C7—C6a—C11a—N115.2 (2)
C72—C71—C76—C750.6 (2)C6—C6a—C11a—N11170.92 (14)
C7—C71—C76—C75179.86 (14)C7—C6a—C11a—C11b174.82 (14)
C6a—C7—C7a—C10a0.5 (2)C6—C6a—C11a—C11b9.1 (2)
C71—C7—C7a—C10a179.94 (14)C2—C1—C11b—C4a1.0 (2)
C6a—C7—C7a—C8179.93 (17)C2—C1—C11b—C11a179.77 (14)
C71—C7—C7a—C80.4 (3)C4—C4a—C11b—C11.2 (2)
C10a—C7a—C8—N91.42 (17)C5—C4a—C11b—C1176.71 (14)
C7—C7a—C8—N9178.20 (17)C4—C4a—C11b—C11a179.97 (14)
C10a—C7a—C8—C81178.61 (15)C5—C4a—C11b—C11a2.1 (2)
C7—C7a—C8—C811.8 (3)N11—C11a—C11b—C110.8 (2)
C7a—C8—N9—N100.43 (17)C6a—C11a—C11b—C1169.21 (14)
C81—C8—N9—N10179.60 (13)N11—C11a—C11b—C4a167.97 (14)
C8—N9—N10—C10a0.77 (16)C6a—C11a—C11b—C4a12.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C73—H73···Cg2i0.952.963.8991 (18)168
C76—H76···Cg3ii0.952.903.8349 (17)168
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
(IV) 7-(4-methoxyphenyl)-8-methyl-10-phenyl-6,10-dihydro-5H- benzo[h]pyrazolo[3,4-b]quinoline top
Crystal data top
C28H23N3OF(000) = 880
Mr = 417.49Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4963 reflections
a = 12.9148 (3) Åθ = 3.3–27.5°
b = 17.5938 (5) ŵ = 0.08 mm1
c = 9.8192 (2) ÅT = 120 K
β = 104.3370 (17)°Plate, pale brown
V = 2161.64 (9) Å30.50 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4963 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2222
Tmin = 0.974, Tmax = 0.996l = 1211
35681 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4296P]
where P = (Fo2 + 2Fc2)/3
4963 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C28H23N3OV = 2161.64 (9) Å3
Mr = 417.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9148 (3) ŵ = 0.08 mm1
b = 17.5938 (5) ÅT = 120 K
c = 9.8192 (2) Å0.50 × 0.20 × 0.05 mm
β = 104.3370 (17)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4963 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3449 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.996Rint = 0.062
35681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
4963 reflectionsΔρmin = 0.27 e Å3
291 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.00309 (8)0.60663 (7)0.03830 (11)0.0377 (3)
N90.56190 (9)0.41506 (7)0.15846 (12)0.0237 (3)
N100.64399 (9)0.44956 (7)0.25661 (11)0.0209 (3)
N110.66123 (9)0.55376 (6)0.42113 (11)0.0198 (3)
C10.76553 (11)0.63739 (9)0.66044 (14)0.0250 (3)
C20.82021 (12)0.68454 (9)0.76705 (15)0.0298 (4)
C30.77204 (12)0.75040 (10)0.79858 (15)0.0322 (4)
C40.67023 (12)0.76916 (9)0.72270 (15)0.0300 (4)
C4a0.61388 (11)0.72238 (8)0.61543 (14)0.0244 (3)
C50.50473 (12)0.74353 (9)0.52858 (16)0.0308 (4)
C60.43597 (11)0.67437 (9)0.48495 (15)0.0261 (3)
C6a0.49047 (11)0.61550 (8)0.41528 (13)0.0203 (3)
C70.43553 (11)0.57136 (8)0.30262 (13)0.0202 (3)
C7a0.49543 (11)0.51598 (8)0.25225 (13)0.0198 (3)
C80.47405 (11)0.45416 (8)0.15370 (14)0.0221 (3)
C10a0.60502 (11)0.51027 (8)0.31725 (13)0.0192 (3)
C11a0.60280 (10)0.60557 (8)0.46939 (13)0.0189 (3)
C11b0.66193 (11)0.65542 (8)0.58432 (13)0.0208 (3)
C710.31912 (11)0.58090 (8)0.23634 (14)0.0206 (3)
C720.24315 (11)0.57061 (8)0.31310 (14)0.0233 (3)
C730.13443 (11)0.57765 (9)0.25071 (15)0.0254 (3)
C740.10111 (11)0.59604 (8)0.10945 (15)0.0245 (3)
C750.17600 (11)0.60728 (9)0.03142 (14)0.0255 (3)
C760.28378 (11)0.59988 (8)0.09389 (14)0.0236 (3)
C770.08224 (13)0.59641 (15)0.1150 (2)0.0576 (6)
C810.37100 (11)0.42962 (9)0.05751 (15)0.0273 (3)
C1010.74468 (11)0.41267 (8)0.29682 (14)0.0217 (3)
C1020.74869 (12)0.33419 (9)0.28130 (15)0.0285 (3)
C1030.84610 (13)0.29716 (10)0.31932 (17)0.0365 (4)
C1040.93899 (13)0.33738 (10)0.37330 (16)0.0357 (4)
C1050.93435 (12)0.41570 (10)0.38817 (16)0.0330 (4)
C1060.83735 (11)0.45363 (9)0.35031 (14)0.0258 (3)
H10.79870.59230.63880.030*
H20.89050.67180.81840.036*
H30.80900.78260.87230.039*
H40.63810.81480.74410.036*
H5A0.51180.77130.44370.037*
H5E0.46980.77780.58370.037*
H6A0.36810.68980.41900.031*
H6E0.41850.65170.56880.031*
H720.26590.55850.41020.028*
H730.08350.56990.30450.030*
H750.15300.62010.06540.031*
H760.33440.60770.03970.028*
H77A0.08080.54370.14740.086*
H77B0.15290.60790.05410.086*
H77C0.06750.63060.19620.086*
H81A0.34920.46670.01870.041*
H81B0.31590.42640.11020.041*
H81C0.38020.37970.01790.041*
H1020.68490.30620.24480.034*
H1030.84910.24360.30820.044*
H1041.00560.31170.40010.043*
H1050.99820.44350.42460.040*
H1060.83450.50720.36100.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0183 (5)0.0595 (8)0.0324 (6)0.0006 (5)0.0009 (4)0.0116 (5)
N90.0242 (7)0.0253 (7)0.0209 (6)0.0027 (5)0.0042 (5)0.0026 (5)
N100.0208 (6)0.0215 (6)0.0202 (6)0.0007 (5)0.0045 (5)0.0027 (5)
N110.0215 (6)0.0196 (6)0.0181 (6)0.0010 (5)0.0048 (4)0.0019 (4)
C10.0242 (8)0.0270 (8)0.0230 (7)0.0017 (6)0.0044 (6)0.0003 (6)
C20.0255 (8)0.0369 (9)0.0244 (8)0.0017 (7)0.0013 (6)0.0002 (6)
C30.0330 (9)0.0367 (10)0.0249 (8)0.0050 (7)0.0035 (6)0.0091 (6)
C40.0328 (9)0.0282 (9)0.0284 (8)0.0018 (7)0.0065 (6)0.0073 (6)
C4a0.0255 (8)0.0249 (8)0.0227 (7)0.0010 (6)0.0059 (6)0.0016 (6)
C50.0282 (8)0.0265 (9)0.0349 (8)0.0064 (7)0.0025 (6)0.0059 (7)
C60.0233 (8)0.0271 (9)0.0272 (8)0.0047 (6)0.0051 (6)0.0024 (6)
C6a0.0216 (7)0.0201 (8)0.0186 (7)0.0020 (6)0.0041 (5)0.0027 (5)
C70.0215 (7)0.0207 (7)0.0187 (7)0.0021 (6)0.0057 (5)0.0044 (5)
C7a0.0206 (7)0.0213 (8)0.0174 (6)0.0003 (6)0.0045 (5)0.0024 (5)
C10a0.0216 (7)0.0190 (7)0.0174 (6)0.0009 (6)0.0055 (5)0.0023 (5)
C11a0.0219 (7)0.0184 (7)0.0167 (6)0.0015 (6)0.0052 (5)0.0038 (5)
C11b0.0231 (7)0.0222 (8)0.0171 (6)0.0008 (6)0.0052 (5)0.0019 (5)
C710.0208 (7)0.0194 (7)0.0209 (7)0.0005 (6)0.0040 (5)0.0007 (5)
C720.0235 (7)0.0262 (8)0.0193 (7)0.0021 (6)0.0034 (6)0.0037 (6)
C730.0216 (7)0.0295 (8)0.0259 (7)0.0014 (6)0.0076 (6)0.0036 (6)
C740.0175 (7)0.0267 (8)0.0262 (8)0.0006 (6)0.0005 (6)0.0022 (6)
C750.0267 (8)0.0308 (9)0.0171 (7)0.0013 (6)0.0017 (6)0.0020 (6)
C760.0232 (7)0.0269 (8)0.0210 (7)0.0001 (6)0.0060 (5)0.0000 (6)
C770.0208 (9)0.1029 (18)0.0480 (11)0.0027 (10)0.0062 (8)0.0209 (11)
C80.0243 (7)0.0227 (8)0.0190 (7)0.0006 (6)0.0051 (5)0.0015 (5)
C810.0260 (8)0.0281 (8)0.0263 (8)0.0015 (7)0.0033 (6)0.0037 (6)
C1010.0235 (7)0.0243 (8)0.0189 (7)0.0052 (6)0.0081 (5)0.0022 (5)
C1020.0301 (8)0.0259 (9)0.0321 (8)0.0015 (7)0.0124 (6)0.0017 (6)
C1030.0416 (10)0.0286 (9)0.0438 (9)0.0122 (8)0.0193 (8)0.0083 (7)
C1040.0322 (9)0.0428 (11)0.0330 (9)0.0161 (8)0.0093 (7)0.0075 (7)
C1050.0243 (8)0.0443 (11)0.0297 (8)0.0050 (7)0.0050 (6)0.0025 (7)
C1060.0263 (8)0.0274 (8)0.0245 (7)0.0031 (6)0.0080 (6)0.0023 (6)
Geometric parameters (Å, º) top
C1—C21.384 (2)C75—H750.95
C1—C11b1.3980 (19)C76—H760.95
C1—H10.95O7—C771.423 (2)
C2—C31.386 (2)C77—H77A0.98
C2—H20.95C77—H77B0.98
C3—C41.381 (2)C77—H77C0.98
C3—H30.95C7a—C10a1.4047 (18)
C4—C4a1.392 (2)C7a—C81.4365 (19)
C4—H40.95C8—N91.3177 (18)
C4a—C11b1.400 (2)C8—C811.4923 (19)
C4a—C51.503 (2)C81—H81A0.98
C5—C61.505 (2)C81—H81B0.98
C5—H5A0.99C81—H81C0.98
C5—H5E0.99N9—N101.3840 (15)
C6—C6a1.5082 (19)N10—C10a1.3774 (17)
C6—H6A0.99N10—C1011.4191 (17)
C6—H6E0.99C101—C1061.384 (2)
C6a—C71.3934 (19)C101—C1021.392 (2)
C6a—C11a1.4268 (19)C102—C1031.383 (2)
C7—C7a1.408 (2)C102—H1020.95
C7—C711.4925 (19)C103—C1041.381 (2)
C71—C721.3892 (19)C103—H1030.95
C71—C761.4001 (19)C104—C1051.389 (2)
C72—C731.3914 (19)C104—H1040.95
C72—H720.95C105—C1061.387 (2)
C73—C741.3850 (19)C105—H1050.95
C73—H730.95C106—H1060.95
C74—O71.3668 (16)C10a—N111.3365 (17)
C74—C751.389 (2)N11—C11a1.3423 (18)
C75—C761.3812 (19)C11a—C11b1.4830 (19)
C2—C1—C11b120.64 (14)C74—O7—C77117.24 (12)
C2—C1—H1119.7O7—C77—H77A109.5
C11b—C1—H1119.7O7—C77—H77B109.5
C1—C2—C3119.79 (14)H77A—C77—H77B109.5
C1—C2—H2120.1O7—C77—H77C109.5
C3—C2—H2120.1H77A—C77—H77C109.5
C4—C3—C2119.95 (14)H77B—C77—H77C109.5
C4—C3—H3120.0C10a—C7a—C7117.99 (12)
C2—C3—H3120.0C10a—C7a—C8104.83 (12)
C3—C4—C4a121.09 (14)C7—C7a—C8136.89 (13)
C3—C4—H4119.5N9—C8—C7a110.56 (12)
C4a—C4—H4119.5N9—C8—C81119.77 (13)
C4—C4a—C11b119.07 (13)C7a—C8—C81129.64 (13)
C4—C4a—C5121.62 (13)C8—C81—H81A109.5
C11b—C4a—C5119.26 (12)C8—C81—H81B109.5
C4a—C5—C6111.46 (12)H81A—C81—H81B109.5
C4a—C5—H5A109.3C8—C81—H81C109.5
C6—C5—H5A109.3H81A—C81—H81C109.5
C4a—C5—H5E109.3H81B—C81—H81C109.5
C6—C5—H5E109.3C8—N9—N10107.46 (11)
H5A—C5—H5E108.0C10a—N10—N9110.01 (11)
C5—C6—C6a112.06 (12)C10a—N10—C101129.95 (11)
C5—C6—H6A109.2N9—N10—C101118.97 (11)
C6a—C6—H6A109.2C106—C101—C102120.40 (13)
C5—C6—H6E109.2C106—C101—N10120.93 (13)
C6a—C6—H6E109.2C102—C101—N10118.67 (13)
H6A—C6—H6E107.9C103—C102—C101119.59 (15)
C7—C6a—C11a119.88 (12)C103—C102—H102120.2
C7—C6a—C6122.67 (12)C101—C102—H102120.2
C11a—C6a—C6117.45 (12)C104—C103—C102120.53 (16)
C6a—C7—C7a116.65 (12)C104—C103—H103119.7
C6a—C7—C71122.92 (12)C102—C103—H103119.7
C7a—C7—C71120.43 (12)C103—C104—C105119.54 (15)
C72—C71—C76118.28 (12)C103—C104—H104120.2
C72—C71—C7121.29 (12)C105—C104—H104120.2
C76—C71—C7120.43 (12)C106—C105—C104120.61 (15)
C71—C72—C73121.39 (13)C106—C105—H105119.7
C71—C72—H72119.3C104—C105—H105119.7
C73—C72—H72119.3C101—C106—C105119.34 (15)
C74—C73—C72119.42 (13)C101—C106—H106120.3
C74—C73—H73120.3C105—C106—H106120.3
C72—C73—H73120.3N11—C10a—N10125.90 (12)
O7—C74—C73124.48 (13)N11—C10a—C7a126.98 (12)
O7—C74—C75115.51 (12)N10—C10a—C7a107.10 (11)
C73—C74—C75119.98 (13)C10a—N11—C11a114.30 (11)
C76—C75—C74120.30 (13)N11—C11a—C6a124.08 (12)
C76—C75—H75119.9N11—C11a—C11b116.21 (12)
C74—C75—H75119.9C6a—C11a—C11b119.70 (12)
C75—C76—C71120.63 (13)C1—C11b—C4a119.44 (13)
C75—C76—H76119.7C1—C11b—C11a121.13 (12)
C71—C76—H76119.7C4a—C11b—C11a119.42 (12)
C11b—C1—C2—C30.2 (2)C8—N9—N10—C10a1.90 (15)
C1—C2—C3—C40.7 (2)C8—N9—N10—C101171.27 (11)
C2—C3—C4—C4a0.9 (2)C10a—N10—C101—C10637.2 (2)
C3—C4—C4a—C11b0.2 (2)N9—N10—C101—C106155.87 (12)
C3—C4—C4a—C5177.71 (14)C10a—N10—C101—C102142.88 (14)
C4—C4a—C5—C6146.79 (14)N9—N10—C101—C10224.06 (18)
C11b—C4a—C5—C635.72 (19)C106—C101—C102—C1030.2 (2)
C4a—C5—C6—C6a52.28 (17)N10—C101—C102—C103179.74 (12)
C5—C6—C6a—C7142.94 (13)C101—C102—C103—C1040.4 (2)
C5—C6—C6a—C11a37.32 (17)C102—C103—C104—C1050.6 (2)
C11a—C6a—C7—C7a2.78 (19)C103—C104—C105—C1060.5 (2)
C6—C6a—C7—C7a176.95 (13)C102—C101—C106—C1050.1 (2)
C11a—C6a—C7—C71177.20 (12)N10—C101—C106—C105179.84 (13)
C6—C6a—C7—C713.1 (2)C104—C105—C106—C1010.2 (2)
C6a—C7—C71—C7260.70 (19)N9—N10—C10a—N11176.34 (12)
C7a—C7—C71—C72119.32 (15)C101—N10—C10a—N118.5 (2)
C6a—C7—C71—C76119.91 (15)N9—N10—C10a—C7a1.95 (14)
C7a—C7—C71—C7660.08 (19)C101—N10—C10a—C7a169.80 (13)
C76—C71—C72—C731.0 (2)C7—C7a—C10a—N112.2 (2)
C7—C71—C72—C73178.41 (13)C8—C7a—C10a—N11177.04 (13)
C71—C72—C73—C740.7 (2)C7—C7a—C10a—N10176.07 (12)
C72—C73—C74—O7177.97 (14)C8—C7a—C10a—N101.23 (14)
C72—C73—C74—C750.0 (2)N10—C10a—N11—C11a174.93 (12)
O7—C74—C75—C76178.42 (13)C7a—C10a—N11—C11a3.02 (19)
C73—C74—C75—C760.3 (2)C10a—N11—C11a—C6a0.86 (19)
C74—C75—C76—C710.1 (2)C10a—N11—C11a—C11b179.70 (11)
C72—C71—C76—C750.7 (2)C7—C6a—C11a—N112.0 (2)
C7—C71—C76—C75178.70 (13)C6—C6a—C11a—N11177.74 (13)
C73—C74—O7—C771.3 (2)C7—C6a—C11a—C11b176.79 (12)
C75—C74—O7—C77179.38 (16)C6—C6a—C11a—C11b3.46 (18)
C6a—C7—C7a—C10a0.91 (18)C2—C1—C11b—C4a0.8 (2)
C71—C7—C7a—C10a179.07 (12)C2—C1—C11b—C11a179.66 (13)
C6a—C7—C7a—C8171.79 (15)C4—C4a—C11b—C10.6 (2)
C71—C7—C7a—C88.2 (2)C5—C4a—C11b—C1176.93 (13)
C10a—C7a—C8—N90.09 (15)C4—C4a—C11b—C11a179.49 (13)
C7—C7a—C8—N9173.42 (15)C5—C4a—C11b—C11a1.9 (2)
C10a—C7a—C8—C81177.82 (13)N11—C11a—C11b—C115.23 (19)
C7—C7a—C8—C814.5 (3)C6a—C11a—C11b—C1165.87 (13)
C7a—C8—N9—N101.09 (15)N11—C11a—C11b—C4a163.62 (12)
C81—C8—N9—N10179.22 (12)C6a—C11a—C11b—C4a15.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i0.952.533.3422 (18)144
C72—H72···N11ii0.952.603.3952 (17)142
C4—H4···Cg1iii0.952.843.7766 (17)168
C75—H75···Cg2iv0.952.673.5605 (15)157
C103—H103···Cg4v0.952.853.7417 (19)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC21H17N3C27H21N3C28H23N3C28H23N3O
Mr311.38387.47401.49417.49
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)7.0870 (2), 10.1321 (4), 11.7977 (5)11.5561 (4), 17.6751 (7), 9.8469 (3)12.0313 (3), 14.3347 (4), 12.7956 (3)12.9148 (3), 17.5938 (5), 9.8192 (2)
α, β, γ (°)87.501 (2), 73.171 (3), 74.828 (2)90, 98.599 (2), 9090, 109.3092 (14), 9090, 104.3370 (17), 90
V3)782.13 (5)1988.67 (12)2082.66 (9)2161.64 (9)
Z2444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.080.08
Crystal size (mm)0.50 × 0.10 × 0.100.40 × 0.20 × 0.200.66 × 0.42 × 0.140.50 × 0.20 × 0.05
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.9920.973, 0.9850.956, 0.9890.974, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15116, 3576, 2810 26788, 4539, 3236 38247, 4778, 3416 35681, 4963, 3449
Rint0.0390.0530.0590.062
(sin θ/λ)max1)0.6510.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.04 0.048, 0.126, 1.08 0.050, 0.129, 1.04 0.044, 0.112, 1.04
No. of reflections3576453947784963
No. of parameters218272282291
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.280.28, 0.290.41, 0.310.21, 0.27

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Ring-puckering parameters and selected dihedral angles (Å, °) for compounds (I)–(IV) top
Parameter(I)(II)(III)(IV)
Q0.423 (2)0.461 (2)0.460 (2)0.450 (2)
θ63.9 (2)115.4 (2)61.5 (2)115.5 (2)
ϕ89.6 (2)274.1 (2)96.6 (2)271.6 (2)
(C1–C4,C4a,C11b)/pyridine13.84 (7)15.78 (7)11.11 (7)14.79 (7)
(C71–C76)/pyridine63.45 (7)65.27 (7)60.88 (7)
(C101–C106)/pyrazole26.21 (7)33.16 (8)18.56 (8)30.30 (4)
The ring-puckering parameters for the non-aromatic carbocyclic ring are calculated for the atom sequence C4a/C5/C6/C6a/C11a/C11b.
Hydrogen-bond geometry (Å, °) for compounds (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C5—H5A···N9i0.992.603.4070 (18)139
(II)C4—H4···Cg1ii0.952.823.7461 (17)164
C73—H73···Cg2iii0.952.623.4852 (17)152
(III)C73—H73···Cg2iv0.952.963.8991 (18)168
C76—H76···Cg3v0.952.903.8349 (17)168
(IV)C2—H2···O7vi0.952.533.3422 (18)144
C72—H72···N11i0.952.603.3952 (17)142
C4—H4···Cg1v0.952.843.7766 (17)168
C75—H75···Cg2iii0.952.673.5605 (15)157
C103—H103···Cg4vii0.952.853.7417 (19)157
Cg1–Cg4 are the centroids of the rings N11/C10a/C7a/C7/C6a/C11a, C101–C106, C1–C4/C4a/C11a and C71–C76, respectively. Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1/2 − y, 1/2 + z; (iii) 1 − x, 1 − y, −z; (iv) 1 − x, y − 1/2, 3/2 − z; (v) x, 3/2 − y, 1/2 + z; (vi) 1 + x, y, 1 + z; (vii) 1 − x, y − 1/2, 1/2 − z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and JP thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452–o456.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947–6953.  Web of Science CrossRef CAS Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds