organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Supramolecular structures of four (Z)-5-aryl­methyl­ene-2-thio­xo­thia­zolidin-4-ones: hydrogen-bonded dimers, chains of rings and sheets

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 July 2005; accepted 7 July 2005; online 23 July 2005)

In each of the four title compounds, namely (Z)-5-benzyl­idene-2-thio­xothia­zolidin-4-one, C10H7NOS2, (I), which crystallizes with Z′ = 2 in space group P21/n, (Z)-5-(4-methyl­benzyl­idene)-2-thio­xothia­zolidin-4-one, C11H9NOS2, (II), (Z)-2-thioxo-5-[4-(trifluoro­methyl)­benzyl­idene]thiaz­olidin-4-one, C11H6F3NOS2, (III), and (Z)-5-(4-methoxy­benzyl­idene)-2-thio­xothia­zolidin-4-one, C11H9NO2S2, (IV), there is a very wide C—C—C angle (ca 130°) at the methine C atom linking the two rings. Pairs of N—H⋯O hydrogen bonds link the two independent mol­ecules in (I) into a cyclic dimeric unit, and these units are further linked into complex sheets by three independent C—H⋯π(arene) hydrogen bonds. The mol­ecules of (II) are linked by paired N—H⋯O hydrogen bonds into centrosymmetric R22(8) dimers; the mol­ecules of (III) and (IV) are linked into chains of rings, which are constructed from a combination of N—H⋯S and C—H⋯O hydrogen bonds in (III), and from a combination of N—H⋯O and C—H⋯S hydrogen bonds in (IV).

Comment

As part of a programme for the synthesis of new fused heterocyclic systems of potential biological application, we have been evaluating the use of (Z)-5-aryl­methyl­ene-2-thioxothia­zolidin-4-ones as inter­mediates for cyclo­condensation reactions, and we report here the structures of four such compounds, (I)–(IV)[link], which have themselves been prepared by condensation of rhodanine (2-thio­xothia­zolidin-4-one) with ar­ylaldehydes using microwave irradiation in a solvent-free system.

The structure of (IV)[link] has been reported previously (Okazaki et al., 1998[Okazaki, M., Uchino, N., Ishihara, M. & Fukunaga, H. (1998). Bull. Chem. Soc. Jpn, 71, 1713-1718.]) using diffraction data collected at ambient temperature; however, no discussion of the supramolecular structure was given and there are no atomic coordinates deposited in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; refcode GOVXIY). Compound (I)[link] crystallizes in space group P21/n with Z′ = 2, while compounds (II)–(IV)[link] all crystallize with Z′ = 1; a careful search for possible additional symmetry in (I)[link] revealed none.

[Scheme 1]

In each of (I)–(IV)[link] (Figs. 1[link]–4[link][link][link]), the mol­ecules are nearly planar, as shown by the values of the torsion angle (Table 1[link]) defining the rotation of the ar­yl ring relative to the rest of the rigid skeleton. In addition, the meth­oxy C atom in (IV)[link] is virtually coplanar with the adjacent ar­yl ring. In each compound, there is a fairly short intra­molecular C—H⋯S contact (Table 2[link]), whose dimensions appear at first sight to suggest an attractive hydrogen-bonding inter­action forming an S(6) ring (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). However, the bond angles associated with the central C—C—C fragment are all strongly indicative of a repulsive C—H⋯S inter­action; thus, the angles at the methine C atom linking the two rings are all around 130°. Moreover, the two exocyclic angles at thia­zolidine atom C5 consistently differ by ca 10°, and the exocyclic angles at benzene atom C61 consistently differ by ca 6°, always in the sense that the larger angle is that contained within the S(6) motif. All of these bond angles are thus consistent with a highly repulsive C—H⋯S contact, and it is noteworthy that the repulsive contact is accommodated by distortion of the skeletal bond angles in preference to a rotation about the C6—C61 bond, which might at first sight appear to be the less energy-costly solution. In this respect, the behaviour of compounds (I)–(IV)[link] resembles that of a series of 5-(aryl­methyl­ene)-1,3-dimeth­ylpyrimidine-2,4,6(1H,3H,5H)-triones, whose essentially planar mol­ecular skeletons are characterized by very wide C—C—C angles (ca 137–139°) at the bridging methine C atom (Rezende et al., 2005[Rezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306-o311.]).

In each of (I)–(IV)[link], the ring angle at atom S1 is little greater than 90°, while in (IV)[link], the exocyclic bond angles at the ring C atom ipso to the meth­oxy substituent show the usual deviations from 120°.

The supramolecular structure of (I)[link] is considerably more complex than those of (II)–(IV)[link], and it is the only one of the series (I)–(IV)[link] in which C—H⋯π(arene) hydrogen bonds occur. For these reasons, we describe first (II)[link], which has the simplest supramolecular structure, then (III)[link] and (IV)[link], and finally (I)[link].

The mol­ecules of (II)[link] are linked by paired N—H⋯O hydrogen bonds (Table 2[link]) into a centrosymmetric R22(8) dimer (Fig. 5[link]), but the only direction-specific inter­action between these dimers is a dipolar carbon­yl–carbon­yl inter­action involving the C4—O4 bonds in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z). The O4⋯C4i distance is 3.042 (2) Å and the C4—O4⋯C4i angle is 81.52 (9)° [symmetry code: (i) 1 − x, 1 − y, 1 − z], so that this inter­action typifies the nearly rectangular antiparallel type II motif (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). The effect of this inter­action is to link, albeit weakly, the hydrogen-bonded dimers into a [100] chain. On the other hand, aromatic ππ stacking inter­actions and inter­molecular C—H⋯O and C—H⋯π(arene) hydrogen bonds are all absent.

The notional replacement of the meth­yl group in (II)[link] by a trifluoro­meth­yl group in (III)[link] causes a marked change in the supramolecular aggregation. The mol­ecules of (III)[link] are again linked into centrosymmetric R22(8) dimers, but now by means of paired N—H⋯S hydrogen bonds, as opposed to the N—H⋯O hydrogen bonds in (II)[link]. In addition, ar­yl atom C63 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to ketone atom O4 in the mol­ecule at (−1 + x, −1 + y, z), so generating by translation a C(8) chain running parallel to the [110] direction. The combination of the two hydrogen bonds then generates a chain of edge-fused rings along [110], in which R22(8) rings centred at (n, n[{1\over 2}], [{1\over 2}]) (n = zero or integer) alternate with R44(26) rings centred at (n + [{1\over 2}], n, [1\over 2]) (n = zero or integer) (Fig. 6[link]). The trifluoro­meth­yl groups lie on the outer edges of this chain; there are no direction-specific inter­actions between adjacent chains.

The supramolecular structure of (IV)[link] also consists of a chain of rings, but now constructed from a combination of N—H⋯O and C—H⋯S hydrogen bonds as opposed to the combination of N—H⋯S and C—H⋯O hydrogen bonds in (III)[link]. Pairs of mol­ecules are linked by N—H⋯O hydrogen bonds into a centrosymmetric R22(8) dimer, just as in compound (II)[link], and these dimers are linked by one component of a planar three-centre C—H⋯(S)2 inter­action (Table 2[link]). The shorter component in this system is probably a repulsive contact as discussed above, but the longer component appears to be attractive. Ar­yl atoms C62 in the mol­ecules at (x, y, z) and (2 − x, 1 − y, 1 − z), which form the R22(8) dimer centred at (1, [1\over2], [{1\over 2}]), act as hydrogen-bond donors, respectively, to thione atoms S2 in the mol­ecules at (1 − x, −y, 1 − z) and (1 + x, 1 + y, z), which themselves form parts of the R22(8) dimers centred at (0, −[1\over2], [1\over2]) and (2, [3\over2], [1\over2]), respectively, so generating by inversion a complex chain of rings running parallel to the [110] direction and containing S(6), R22(8) and R24(8) rings (Fig. 7[link]).

In (I)[link], where the two independent mol­ecules are related by an approximate, but not exact, twofold rotation, the mol­ecules are again linked by a pair of N—H⋯O hydrogen bonds (Table 2[link]) into a dimeric aggregate (Fig. 1[link]). These units are then linked into sheets by three independent C—H⋯π(arene) hydrogen bonds, and the formation of this sheet is very readily analysed in terms of two one-dimensional substructures, one generated by inversion and the other generated by a 21 screw axis.

In the first substructure, ar­yl atoms C163 and C266 at (x, y, z) act as hydrogen-bond donors, respectively, to ar­yl rings C261–C266 at (1 − x, 1 − y, 1 − z) and C161–C166 at (1 − x, −y, 1 − z), so generating by inversion a chain along ([{1\over 2}], y, [1\over2]) containing three types of ring, two of which are centrosymmetric (Fig. 8[link]). In the second substructure, which involves only one of the two independent mol­ecules, ar­yl atom C166 at (x, y, z) acts as a hydrogen-bond donor to the C161–C166 ar­yl ring at ([{3\over 2}]x, −[{1\over 2}] + y, [{3\over 2}] − z), so forming another [010] chain, this time generated by the 21 screw axis along ([{3\over 4}], y, [{3\over 4}]) (Fig. 9[link]). The mol­ecule at ([{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) forms part of the inversion-generated chain lying along (1, y, 1), and hence the combination of these two types of [010] chain generates a sheet parallel to (10[\overline 1]).

[Figure 1]
Figure 1
The two independent mol­ecules of (I)[link], showing the atom-labelling scheme and the N—H⋯O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecule of (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
Part of the crystal structure of (II)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 − x, 1 − y, 1 − z).
[Figure 6]
Figure 6
Part of the crystal structure of (III)[link], showing the formation of a [110] chain of R22(8) and R44(26) rings. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or an `at' sign (@) are at the symmetry positions (2 − x, 1 − y, 1 − z), (−1 + x, −1 + y, z), (1 − x, −y, 1 − z), (3 − x, 2 − y, 1 − z) and (1 + x, 1 + y, z), respectively.
[Figure 7]
Figure 7
Part of the crystal structure of (IV)[link], showing the formation of a [110] chain of rings generated by two-centre N—H⋯O and three-centre C—H⋯(S)2 inter­actions. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (2 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z) and (1 + x, 1 + y, z), respectively.
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded [010] chain generated by inversion. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded [010] chain generated by a screw axis. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), (x, −1 + y, z) and ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), respectively.

Experimental

Equimolar quantities (1 mmol of each component) of 2-thio­xothia­zolidin-4-one and the appropriate benzaldehyde 4-XC6H4CHO [where X = H for (I)[link], CH3 for (II)[link], CF3 for (III)[link] and CH3O for (IV)[link]] were placed in open Pyrex-glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by thin-layer chromatography. The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethyl­formamide to give crystals suitable for single-crystal X-ray diffraction analysis. For (I)[link] (orange crystals, m.p. 478 K, yield 58%), MS (70 eV) m/z (%): 221 (23, M+), 134 (100), 108 (40), 89 (8), 51 (4), 77 (2). For (II)[link] (orange crystals, m.p. 504 K, yield 56%), MS (70 eV) m/z (%): 235 (39, M+), 148 (100), 115 (10), 91 (9), 77 (4), 59 (9). For (III)[link] (orange crystals, m.p. 488 K, yield 62%), MS (70 eV) m/z (%): 291 (10, M+2), 290 (10, M+1), 289 (100, M+), 152 (35), 138 (11). For (IV)[link] (orange crystals, m.p. 516 K, yield 87%), MS (70 eV) m/z (%): 164 (9), 149 (61), 121 (100), 89 (17), 77 (34), 63 (12).

Compound (I)[link]

Crystal data
  • C10H7NOS2

  • Mr = 221.29

  • Monoclinic, P 21 /n

  • a = 11.7286 (3) Å

  • b = 7.0215 (2) Å

  • c = 23.7552 (6) Å

  • β = 100.2630 (12)°

  • V = 1925.00 (9) Å3

  • Z = 8

  • Dx = 1.527 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4399 reflections

  • θ = 3.0–27.5°

  • μ = 0.51 mm−1

  • T = 120 (2) K

  • Block, orange

  • 0.38 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.888, Tmax = 0.950

  • 20659 measured reflections

  • 4399 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.5°

  • h = −15 → 15

  • k = −8 → 9

  • l = −30 → 30

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.03

  • 4399 reflections

  • 253 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0403P)2 + 0.8482P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.33 e Å−3

Compound (II)[link]

Crystal data
  • C11H9NOS2

  • Mr = 235.31

  • Monoclinic, P 21 /c

  • a = 4.9428 (1) Å

  • b = 20.0473 (8) Å

  • c = 10.7834 (4) Å

  • β = 90.753 (2)°

  • V = 1068.43 (6) Å3

  • Z = 4

  • Dx = 1.463 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2450 reflections

  • θ = 3.6–27.5°

  • μ = 0.47 mm−1

  • T = 120 (2) K

  • Lath, orange

  • 0.56 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.780, Tmax = 0.964

  • 11502 measured reflections

  • 2450 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.5°

  • h = −6 → 6

  • k = −26 → 26

  • l = −13 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.05

  • 2450 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0356P)2 + 0.7076P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Compound (III)[link]

Crystal data
  • C11H6F3NOS2

  • Mr = 289.29

  • Triclinic, [P \overline 1]

  • a = 5.2859 (2) Å

  • b = 6.2263 (3) Å

  • c = 17.1885 (8) Å

  • α = 91.753 (2)°

  • β = 95.326 (3)°

  • γ = 90.129 (3)°

  • V = 562.99 (4) Å3

  • Z = 2

  • Dx = 1.707 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2566 reflections

  • θ = 3.5–27.7°

  • μ = 0.50 mm−1

  • T = 120 (2) K

  • Lath, orange

  • 0.34 × 0.18 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.849, Tmax = 0.957

  • 10662 measured reflections

  • 2566 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.7°

  • h = −6 → 6

  • k = −8 → 8

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.07

  • 2566 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0459P)2 + 0.5642P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.54 e Å−3

Compound (IV)[link]

Crystal data
  • C11H9NO2S2

  • Mr = 251.31

  • Monoclinic, P 21 /c

  • a = 5.1314 (2) Å

  • b = 10.4543 (5) Å

  • c = 20.5324 (9) Å

  • β = 91.702 (2)°

  • V = 1100.98 (8) Å3

  • Z = 4

  • Dx = 1.516 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2515 reflections

  • θ = 3.6–27.5°

  • μ = 0.47 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.44 × 0.18 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.820, Tmax = 0.963

  • 11472 measured reflections

  • 2515 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.5°

  • h = −6 → 6

  • k = −13 → 13

  • l = −26 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.04

  • 2515 reflections

  • 146 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0494P)2 + 0.5614P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °) for compounds (I)–(IV)

Parameter (I), mol 1 (I), mol 2 (II) (III) (IV)
x = 1 2 nil nil nil
Sx1—Cx2 1.753 (2) 1.7502 (19) 1.7494 (17) 1.750 (2) 1.748 (2)
Cx2—Nx3 1.363 (3) 1.366 (3) 1.370 (2) 1.358 (3) 1.367 (3)
Nx3—Cx4 1.383 (3) 1.379 (3) 1.378 (2) 1.390 (3) 1.372 (2)
Cx4—Cx5 1.477 (3) 1.478 (3) 1.483 (2) 1.487 (3) 1.474 (3)
Cx5—Sx1 1.757 (2) 1.756 (2) 1.7553 (16) 1.753 (2) 1.758 (2)
Cx2—Sx2 1.635 (2) 1.626 (2) 1.6337 (17) 1.643 (2) 1.624 (2)
Cx4—Ox4 1.225 (2) 1.224 (2) 1.2238 (19) 1.212 (2) 1.227 (2)
Cx5—Cx6 1.351 (3) 1.348 (3) 1.344 (2) 1.347 (3) 1.342 (3)
Cx6—Cx61 1.454 (3) 1.452 (3) 1.455 (2) 1.457 (3) 1.455 (3)
           
Cx5—Sx1—Cx2  92.51 (9)  92.47 (15)  92.60 (8)  92.42 (10)  92.42 (10)
Sx1—Cx5—Cx6 130.27 (16) 129.82 (16) 130.43 (13) 129.84 (17) 130.64 (16)
Cx4—Cx5—Cx6 120.19 (18) 120.79 (18) 120.26 (14) 120.43 (18) 120.14 (18)
Cx5—Cx6—Cx61 130.97 (19) 130.13 (19) 130.98 (15) 130.25 (19) 131.07 (19)
Cx6—Cx61—Cx62 124.02 (18) 124.71 (15) 123.97 (19) 124.19 (18)  
Cx6—Cx61—Cx66 117.51 (18) 118.04 (18) 117.50 (14) 118.14 (19) 118.22 (18)
Cx63—Cx64—Ox41         115.42 (18)
Cx65—Cx64—Ox41         124.70 (19)
Cx64—Ox41—Cx41         117.45 (16)
           
Cx5—Cx6—Cx61—Cx62  2.9 (3)  4.5 (3) −3.1 (3) −3.6 (4) −4.7 (3)
Cx63—Cx64—Ox41—Cx41         178.99 (17)

Table 2
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(IV)

Cg1 and Cg2 are the centroids of the C161–C166 and C261–C266 rings, respectively

Compound D—H⋯A   D—H H⋯A D⋯A D—H⋯A
(I) N13—H13⋯O24   0.95 1.94 2.829 (2) 168
  N23—H23⋯O14   0.95 1.99 2.868 (2) 165
  C162—H162⋯S11   0.95 2.56 3.281 (2) 133
  C262—H262⋯S21   0.95 2.50 3.231 (2) 134
  C163—H163⋯Cg2i   0.95 2.68 3.352 (2) 128
  C166—H166⋯Cg1ii   0.95 2.82 3.519 (2) 131
  C266—H266⋯Cg1iii   0.95 2.76 3.435 (2) 129
             
(II) N3—H3⋯O4iv   0.93 1.93 2.8507 (18) 168
  C62—H62⋯S1   0.95 2.58 3.2911 (16) 132
             
(III) N3—H3⋯S2iv   0.90 2.41 3.3048 (18) 172
  C62—H62⋯S1   0.95 2.51 3.230 (2) 133
  C63—H63⋯O4v   0.95 2.34 3.114 (2) 138
             
(IV) N3—H3⋯O4iv   0.90 1.90 2.789 (2) 169
  C62—H62⋯S1   0.95 2.57 3.288 (2) 133
  C62—H62⋯S2iii   0.95 2.86 3.588 (2) 135
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) [{3\over 2} - x, -{1 \over 2}+ y, {3\over2} - z]; (iii) 1 - x, -y, 1 - z; (iv) 2 - x, 1 - y, 1 - z; (v) -1 + x, -1 + y, z.

For compound (I)[link], the space group P21/n was uniquely assigned from the systematic absences. Likewise, the space group P21/c was uniquely assigned for both (II)[link] and (IV)[link]. Although the unit cells for (II)[link] and (IV)[link] appear to have very different dimensions and shapes, with the b parameter for (II)[link] nearly double that for (IV)[link], both cells have values of β close to 90°, so that not only are their reduced cells similar in dimensions but both are close to orthorhombic metrics. Crystals of (III)[link] are triclinic; the space group P[\overline{1}] was selected and confirmed by the successful structure analysis. All H atoms were located from difference maps and then treated as riding atoms. H atoms bonded to C atoms were assigned C—H distances of 0.95 (aromatic and methine) or 0.98 Å (meth­yl) [with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the meth­yl groups]. H atoms bonded to N atoms were allowed to ride at the N—H distances (0.90–0.93 Å) deduced from the difference maps [with Uiso(H) = 1.2Ueq(N)]. In (III)[link], the displacement parameters for the F atoms indicated some libration of the CF3 group, but it was not found necessary to model this group with more than three F-atom sites.

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of a programme for the synthesis of new fused heterocyclic systems of potential biological application, we have been evaluating the use of (Z)-5-arylmethylene-2-thioxothiazolidin-4-ones as intermediates for cyclocondensation reactions, and we report here the structures of four such compounds, which have themselves been prepared by condensation of rhodanine (2-thioxothiazolidin-4-one) with aryl aldehydes using microwave irradiation in a solvent-free system.

We report here the molecular and supramolecular structures of four (Z)-5-arylmethylene-2-thioxo-4-thiazolidines, compounds (I)–(IV). The structure of compound (IV) has been reported previously (Okazaki et al., 1998) using diffraction data collected at ambient temperature; however, no discussion of the supramolecular structure was given and there are no atomic coordinates deposited in the Cambridge Structural Database (CSD; Allen, 2002; refcode GOVXIY). Compound (I) crystallizes in space group P21/n with Z' = 2, while compounds (II)–(IV) all crystallize with Z' = 1; a careful search for possible additional symmetry in (I) revealed none.

In each of (I)–(IV) (Figs 1–4), the molecules are nearly planar, as shown by the values of the torsion angle (Table 1) defining the rotation of the aryl ring relative to the rest of the rigid skeleton. In addition, the methoxy C atom in (IV) is also virtually coplanar with the adjacent aryl ring. In each compound, there is a fairly short intramolecular C—H···S contact (Table 2), whose dimensions appear at first sight to suggest an attractive hydrogen-bonding interaction forming an S(6) ring (Bernstein et al., 1995). However, the bond angles associated with the central C—C—C fragment are all strongly indicative of a repulsive C—H···S interaction; thus, the angles at the methine C atom linking the two rings are all around 130°. Secondly, the two exocyclic angles at thiazolidine atom C5 consistently differ by ca 10°, and the exocyclic angles at phenyl atom C61 consistently differ by ca 6°, always in the sense that the larger angle is that contained within the S(6) motif. All of these bond angles are thus consistent with a highly repulsive C—H···S contact, and it is noteworthy that the repulsive contact is accommodated by distortion of the skeletal bond angles in preference to a rotation about the C6—C61 bond, which might at first sight appear to be the less energy-costly solution. In this respect, the behaviour of compounds (I)–(IV) resembles that of a series of 5-(arylmethylene)-1,3-dimethyl-pyrimidine-2,4,6(1H,3H,5H)-triones, whose essentially planar molecular skeletons are characterized by very wide C—C—C angles (ca 137–139°) at the bridging methine C atom (Rezende et al., 2005).

In each of (I)–(IV), the ring angle at atom S1 is little greater than 90°, while in (IV), the exocyclic bond angles at the ring C atom ipso to the methoxy substituent show the usual deviations from 120°.

The supramolecular structure of (I) is considerably more complex than those of (II)–(IV), and it is the only one of the series (I)–(IV) in which C—H···π(arene) hydrogen bonds occur. For these reasons, we describe first (II), which has the simplest supramolecular structure, then (III) and (IV), and finally (I).

The molecules of (II) are linked by paired N—H···O hydrogen bonds (Table 2) into a centrosymmetric R22(8) dimer (Fig. 5), but the only direction-specific interaction between these dimers is a dipolar carbonyl–carbonyl interaction involving the C4—O4 bonds in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z). The O4···C4i distance is 3.042 (2) Å and the C4—O4···C4i angle is 81.52 (9)° [symmetry code: (i) 1 − x, 1 − y, 1 − z], so that this interaction typifies the nearly rectangular antiparallel type II motif (Allen et al., 1998). The effect of this interaction is to link, albeit weakly, the hydrogen-bonded dimers into a [100] chain. On the other hand, aromatic ππ stacking interactions, and intermolecular C—H···O and C—H···π(arene) hydrogen bonds, are all absent.

The notional replacement of the methyl group in (II) by a trifluoromethyl group in (III) causes a marked change in the supramolecular aggregation. The molecules of (III) are again linked into centrosymmetric R22(8) dimers, but now by means of paired N—H···S hydrogen bonds, as opposed to the N—H···O hydrogen bonds in (II). In addition, aryl atom C63 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the ketonic atom O4 in the molecule at (−1 + x, −1 + y, z), so generating by translation a C(8) chain running parallel to the [110] direction. The combination of the two hydrogen bonds then generates a chain of edge-fused rings along [110], in which R22(8) rings centred at (n, n − 1/2, 1/2) (n = zero or integer) alternate with R44(26) rings centred at (n + 1/2, n,1/2) (n = zero or integer) (Fig. 6). The trifluoromethyl groups lie on the outer edges of this chain; there are no direction-specific interactions between adjacent chains.

The supramolecular structure of (IV) also consists of a chain of rings, but now constructed from a combination of N—H···O and C—H···S hydrogen bonds as opposed to the combination of N—H···S and C—H···O hydrogen bonds in (III). Pairs of molecules are linked by N—H···O hydrogen bonds into a centrosymmetric R22(8) dimer, just as in compound (II), and these dimers are linked by one component of a planar three-centre C—H···(S)2 interaction (Table 2). The shorter component in this system is probably a repulsive contact as discussed above, but the longer component appears to be attractive. Aryl atoms C62 in the molecules at (x, y, z) and (2 − x, 1 − y, 1 − z), which form the R22(8) dimer centred at (1,1/2, 1/2), act as hydrogen-bond donors, respectively, to thione atoms S2 in the molecules at (1 − x, −y, 1 − z) and (1 + x, 1 + y, z), which themselves form parts of the R22(8) dimers centred at (0, −0.5,1/2) and (2, 1.5,1/2), respectively, so generating by inversion a complex chain of rings running parallel to the [110] direction and containing S(6), R22(8) and R42(8) rings (Fig. 7).

In (I), where the two independent molecules are related by an approximate, but not exact, twofold rotation, the molecules are again linked by a pair of N—H···O hydrogen bonds (Table 2) into a dimeric aggregate (Fig. 1). These units are then linked into sheets by three independent C—H···π(arene) hydrogen bonds, and the formation of this sheet is very readily analysed in terms of two one-dimensional substructures, one generated by inversion and the other generated by a 21 screw axis.

In the first substructure, aryl atoms C163 and C266 at (x, y, z) act as hydrogen-bond donors, respectively, to the aryl rings C261–C266 at (1 − x, 1 − y, 1 − z) and C161–C166 at (1 − x, −y, 1 − z), so generating by inversion a chain along (1/2, y,1/2) containing three types of ring, two of them centrosymmetric (Fig. 8). In the second substructure, which involves only one of the two independent molecules, aryl atom C166 at (x, y, z) acts as a hydrogen-bond donor to the C161–C166 aryl ring at (3/2 − x, −1/2 + y, 3/2 − z), so forming another [010] chain this time generated by the 21 screw axis along (3/4, y, 3/4) (Fig. 9). The molecule at (3/2 − x, −1/2 + y, 3/2 − z) forms part of the inversion-generated chain lying along (1, y, 1), and hence the combination of these two types of [010] chain generates a sheet parallel to (10–1).

Experimental top

Equimolar quantities (1 mmol of each component) of 2-thioxothiazolidin-4-one and the appropriate benzaldehyde 4-XC6H4CHO [where X = H for (I), CH3 for (II), CF3 for (III) and CH3O for (IV)] were placed in open Pyrex-glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by thin-layer chromatography. The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. For (I) (orange crystals, m.p. 478 K, yield 58%): MS (70 eV) m/z (%), 221 (23, M+), 134 (100), 108 (40), 89 (8), 51 (4), 77 (2). For (II) (orange crystals, m.p. 504 K, yield 56%): MS (70 eV) m/z (%), 235 (39, M+), 148 (100), 115 (10), 91 (9), 77 (4), 59 (9). For (III) (orange crystals, m.p. 488 K, yield 62%): MS (70 eV) m/z (%), 291 (10, M+2), 290 (10, M+1), 289 (100, M+), 152 (35), 138 (11). For (IV) (orange crystals, m.p. 516 K, yield 87%): MS (70 eV) m/z (%), 164 (9), 149 (61), 121 (100), 89 (17), 77 (34), 63 (12).

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences. Likewise, the space group P21/c was uniquely assigned for both (II) and (IV). Although the unit cells for (II) and (IV) appear to have very different dimensions and shapes, with the b parameter for (II) nearly double that for (IV), both cells have values of β close to 90°, so that not only are their reduced cells similar in dimensions but both are close to orthorhombic metrics. Crystals of (III) are triclinic; the space group P1 was selected, and confirmed by the successful structure analysis. All H atoms were located from difference maps and then treated as riding atoms. H atoms bonded to C atoms were assigned C—H distances of 0.95 Å (aromatic and methine) or 0.98 Å (methyl) [with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups]. H atoms bonded to N atoms were allowed to ride at the N—H distances (0.90–0.93 Å) deduced from the difference maps [Uiso(H) = 1.2Ueq(N)]. In (III), the displacement parameters for the F atoms indicated some libration of the CF3 group, but it was not found necessary to model this group with more than three F-atom sites.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme and the N—H···O hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecule of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 − x, 1 − y, 1 − z).
[Figure 6] Fig. 6. Part of the crystal structure of (III), showing the formation of a [110] chain of R22(8) and R44(26) rings. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or an 'at' sign (@) are at the symmetry positions (2 − x, 1 − y, 1 − z), (−1 + x, −1 + y, z), (1 − x, −y, 1 − z), (3 − x, 2 − y, 1 − z) and (1 + x, 1 + y, z), respectively.
[Figure 7] Fig. 7. Part of the crystal structure of (IV), showing the formation of a [110] chain of rings generated by two-centre N—H···O and three-centre C—H···(S)2 interactions. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (2 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z) and (1 + x, 1 + y, z), respectively.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded [010] chain generated by inversion. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 9] Fig. 9. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded [010] chain generated by a screw axis. For clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (3/2 − x, −1/2 + y, 3/2 − z), (x, −1 + y, z) and (3/2 − x, 1/2 + y, 3/2 − z), respectively.
(I) (Z)-5-benzylidenene-2-thioxothiazolidin-4-one top
Crystal data top
C10H7NOS2F(000) = 912
Mr = 221.29Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4399 reflections
a = 11.7286 (3) Åθ = 3.0–27.5°
b = 7.0215 (2) ŵ = 0.51 mm1
c = 23.7552 (6) ÅT = 120 K
β = 100.2630 (12)°Block, orange
V = 1925.00 (9) Å30.38 × 0.20 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4399 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode3154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 89
Tmin = 0.888, Tmax = 0.950l = 3030
20659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.8482P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H7NOS2V = 1925.00 (9) Å3
Mr = 221.29Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.7286 (3) ŵ = 0.51 mm1
b = 7.0215 (2) ÅT = 120 K
c = 23.7552 (6) Å0.38 × 0.20 × 0.10 mm
β = 100.2630 (12)°
Data collection top
Nonius KappaCCD
diffractometer
4399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3154 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.950Rint = 0.048
20659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
4399 reflectionsΔρmin = 0.33 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.74536 (4)0.33315 (8)0.55716 (2)0.02152 (14)
S120.65140 (5)0.36072 (9)0.43209 (2)0.02960 (15)
O140.45534 (12)0.1532 (2)0.59074 (6)0.0241 (3)
N130.53612 (14)0.2455 (2)0.51378 (7)0.0201 (4)
C120.63481 (17)0.3097 (3)0.49728 (8)0.0199 (4)
C140.53896 (17)0.2108 (3)0.57132 (8)0.0197 (4)
C150.65520 (16)0.2546 (3)0.60411 (8)0.0173 (4)
C160.67851 (16)0.2270 (3)0.66127 (8)0.0175 (4)
C1610.78423 (16)0.2566 (3)0.70271 (8)0.0165 (4)
C1620.88665 (17)0.3321 (3)0.68943 (9)0.0186 (4)
C1630.98160 (17)0.3654 (3)0.73215 (8)0.0194 (4)
C1640.97650 (17)0.3249 (3)0.78885 (9)0.0207 (5)
C1650.87648 (17)0.2462 (3)0.80264 (9)0.0212 (5)
C1660.78146 (17)0.2127 (3)0.76022 (8)0.0188 (4)
S210.01842 (4)0.24752 (8)0.47545 (2)0.02047 (13)
S220.10145 (5)0.25644 (9)0.60130 (2)0.02745 (15)
O240.32268 (11)0.14351 (19)0.44484 (6)0.0215 (3)
N230.22954 (14)0.1831 (2)0.52127 (7)0.0197 (4)
C220.12570 (17)0.2265 (3)0.53659 (8)0.0192 (4)
C240.23332 (17)0.1680 (3)0.46376 (8)0.0180 (4)
C250.11547 (16)0.1882 (3)0.42982 (8)0.0166 (4)
C260.09572 (17)0.1611 (3)0.37272 (8)0.0174 (4)
C2610.01004 (17)0.1834 (3)0.33099 (8)0.0167 (4)
C2620.11428 (17)0.2532 (3)0.34403 (9)0.0205 (4)
C2630.20826 (17)0.2874 (3)0.30124 (9)0.0226 (5)
C2640.20135 (18)0.2534 (3)0.24443 (9)0.0239 (5)
C2650.10028 (18)0.1786 (3)0.23077 (9)0.0231 (5)
C2660.00615 (18)0.1422 (3)0.27336 (8)0.0196 (4)
H130.47290.21790.48760.024*
H160.61500.18030.67710.021*
H1620.89120.36080.65080.022*
H1631.05070.41640.72260.023*
H1641.04120.35080.81810.025*
H1650.87330.21540.84130.025*
H1660.71330.15920.77010.023*
H230.29360.17270.54830.024*
H260.16130.12120.35740.021*
H2620.12030.27720.38270.025*
H2630.27830.33460.31080.027*
H2640.26540.28120.21510.029*
H2650.09570.15220.19200.028*
H2660.06210.08860.26360.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0191 (3)0.0273 (3)0.0175 (3)0.0052 (2)0.0017 (2)0.0008 (2)
S120.0322 (3)0.0395 (3)0.0171 (3)0.0055 (3)0.0043 (2)0.0013 (2)
O140.0158 (7)0.0342 (9)0.0214 (8)0.0026 (6)0.0006 (6)0.0042 (7)
N130.0175 (9)0.0259 (9)0.0152 (8)0.0014 (8)0.0014 (7)0.0006 (7)
C120.0208 (11)0.0195 (11)0.0193 (10)0.0004 (9)0.0028 (9)0.0016 (8)
C140.0195 (11)0.0200 (11)0.0185 (10)0.0021 (8)0.0006 (9)0.0005 (8)
C150.0157 (10)0.0169 (10)0.0189 (10)0.0014 (8)0.0024 (8)0.0003 (8)
C160.0141 (10)0.0183 (10)0.0201 (10)0.0003 (8)0.0032 (8)0.0009 (8)
C1610.0161 (10)0.0157 (10)0.0176 (10)0.0032 (8)0.0025 (8)0.0013 (8)
C1620.0205 (10)0.0195 (10)0.0161 (10)0.0000 (8)0.0040 (8)0.0011 (8)
C1630.0136 (10)0.0217 (11)0.0235 (11)0.0013 (8)0.0048 (9)0.0014 (9)
C1640.0164 (10)0.0229 (11)0.0205 (11)0.0015 (9)0.0029 (9)0.0041 (9)
C1650.0258 (11)0.0220 (11)0.0154 (10)0.0037 (9)0.0023 (9)0.0007 (9)
C1660.0194 (10)0.0171 (10)0.0207 (11)0.0007 (8)0.0056 (9)0.0002 (8)
S210.0166 (3)0.0297 (3)0.0145 (3)0.0020 (2)0.0013 (2)0.0009 (2)
S220.0253 (3)0.0428 (4)0.0141 (3)0.0009 (3)0.0033 (2)0.0007 (2)
O240.0151 (7)0.0287 (8)0.0202 (7)0.0026 (6)0.0021 (6)0.0041 (6)
N230.0151 (8)0.0260 (9)0.0161 (9)0.0004 (7)0.0023 (7)0.0004 (7)
C220.0187 (10)0.0209 (11)0.0170 (10)0.0026 (8)0.0001 (8)0.0001 (8)
C240.0184 (10)0.0166 (10)0.0180 (10)0.0005 (8)0.0002 (8)0.0020 (8)
C250.0168 (10)0.0161 (10)0.0167 (10)0.0011 (8)0.0022 (8)0.0009 (8)
C260.0161 (10)0.0182 (10)0.0178 (10)0.0006 (8)0.0028 (8)0.0003 (8)
C2610.0182 (10)0.0161 (10)0.0150 (10)0.0020 (8)0.0002 (8)0.0002 (8)
C2620.0223 (11)0.0233 (11)0.0154 (10)0.0011 (9)0.0020 (8)0.0006 (9)
C2630.0135 (10)0.0282 (12)0.0255 (11)0.0002 (9)0.0015 (9)0.0014 (9)
C2640.0206 (11)0.0277 (12)0.0202 (11)0.0043 (9)0.0055 (9)0.0028 (9)
C2650.0268 (11)0.0260 (11)0.0154 (10)0.0082 (9)0.0004 (9)0.0029 (9)
C2660.0208 (10)0.0202 (10)0.0178 (10)0.0026 (9)0.0033 (8)0.0023 (8)
Geometric parameters (Å, º) top
S11—C121.753 (2)S21—C221.7502 (19)
S11—C151.757 (2)S21—C251.756 (2)
C12—N131.363 (3)C22—N231.366 (3)
C12—S121.635 (2)C22—S221.626 (2)
N13—C141.383 (3)N23—C241.379 (3)
N13—H130.8999N23—H230.8999
C14—O141.225 (2)C24—O241.224 (2)
C14—C151.477 (3)C24—C251.478 (3)
C15—C161.351 (3)C25—C261.348 (3)
C16—C1611.454 (3)C26—C2611.452 (3)
C16—H160.95C26—H260.95
C161—C1621.400 (3)C261—C2621.402 (3)
C161—C1661.406 (3)C261—C2661.408 (3)
C162—C1631.386 (3)C262—C2631.381 (3)
C162—H1620.95C262—H2620.95
C163—C1641.388 (3)C263—C2641.387 (3)
C163—H1630.95C263—H2630.95
C164—C1651.387 (3)C264—C2651.387 (3)
C164—H1640.95C264—H2640.95
C165—C1661.383 (3)C265—C2661.382 (3)
C165—H1650.95C265—H2650.95
C166—H1660.95C266—H2660.95
C12—S11—C1592.51 (9)C22—S21—C2592.47 (9)
N13—C12—S12126.53 (15)N23—C22—S22126.52 (15)
N13—C12—S11109.93 (14)N23—C22—S21109.93 (14)
S12—C12—S11123.54 (12)S22—C22—S21123.55 (12)
C12—N13—C14118.05 (17)C22—N23—C24117.95 (16)
C12—N13—H13120.7C22—N23—H23119.9
C14—N13—H13121.1C24—N23—H23122.0
O14—C14—N13123.42 (18)O24—C24—N23123.75 (17)
O14—C14—C15126.59 (18)O24—C24—C25126.30 (18)
N13—C14—C15109.99 (17)N23—C24—C25109.95 (17)
C16—C15—C14120.19 (18)C26—C25—C24120.79 (18)
C16—C15—S11130.27 (16)C26—C25—S21129.82 (16)
C14—C15—S11109.52 (14)C24—C25—S21109.39 (14)
C15—C16—C161130.97 (19)C25—C26—C261130.13 (19)
C15—C16—H16114.5C25—C26—H26114.9
C161—C16—H16114.5C261—C26—H26114.9
C162—C161—C166118.11 (17)C262—C261—C266117.85 (18)
C162—C161—C16124.34 (18)C262—C261—C26124.02 (18)
C166—C161—C16117.51 (18)C266—C261—C26118.04 (18)
C163—C162—C161120.58 (19)C263—C262—C261120.76 (19)
C163—C162—H162119.7C263—C262—H262119.6
C161—C162—H162119.7C261—C262—H262119.6
C162—C163—C164120.51 (18)C262—C263—C264120.6 (2)
C162—C163—H163119.7C262—C263—H263119.7
C164—C163—H163119.7C264—C263—H263119.7
C165—C164—C163119.67 (18)C265—C264—C263119.57 (19)
C165—C164—H164120.2C265—C264—H264120.2
C163—C164—H164120.2C263—C264—H264120.2
C166—C165—C164120.08 (19)C266—C265—C264120.22 (19)
C166—C165—H165120.0C266—C265—H265119.9
C164—C165—H165120.0C264—C265—H265119.9
C165—C166—C161121.02 (19)C265—C266—C261120.92 (19)
C165—C166—H166119.5C265—C266—H266119.5
C161—C166—H166119.5C261—C266—H266119.5
C15—S11—C12—N130.03 (15)C25—S21—C22—N232.02 (15)
C15—S11—C12—S12179.61 (14)C25—S21—C22—S22178.22 (14)
S12—C12—N13—C14179.77 (16)S22—C22—N23—C24178.43 (15)
S11—C12—N13—C140.2 (2)S21—C22—N23—C241.3 (2)
C12—N13—C14—O14179.92 (19)C22—N23—C24—O24174.54 (18)
C12—N13—C14—C150.3 (2)C22—N23—C24—C254.8 (2)
O14—C14—C15—C161.8 (3)O24—C24—C25—C266.8 (3)
N13—C14—C15—C16178.56 (18)N23—C24—C25—C26173.88 (18)
O14—C14—C15—S11179.86 (17)O24—C24—C25—S21173.38 (17)
N13—C14—C15—S110.3 (2)N23—C24—C25—S215.9 (2)
C12—S11—C15—C16178.2 (2)C22—S21—C25—C26175.2 (2)
C12—S11—C15—C140.13 (15)C22—S21—C25—C244.51 (15)
C14—C15—C16—C161179.35 (19)C24—C25—C26—C261176.19 (19)
S11—C15—C16—C1611.4 (3)S21—C25—C26—C2614.1 (3)
C15—C16—C161—C1622.9 (3)C25—C26—C261—C2624.5 (3)
C15—C16—C161—C166179.6 (2)C25—C26—C261—C266179.1 (2)
C166—C161—C162—C1631.1 (3)C266—C261—C262—C2632.6 (3)
C16—C161—C162—C163176.41 (18)C26—C261—C262—C263173.85 (19)
C161—C162—C163—C1640.2 (3)C261—C262—C263—C2640.0 (3)
C162—C163—C164—C1651.5 (3)C262—C263—C264—C2652.1 (3)
C163—C164—C165—C1661.5 (3)C263—C264—C265—C2661.5 (3)
C164—C165—C166—C1610.2 (3)C264—C265—C266—C2611.2 (3)
C162—C161—C166—C1651.1 (3)C262—C261—C266—C2653.2 (3)
C16—C161—C166—C165176.59 (18)C26—C261—C266—C265173.44 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O240.901.942.829 (2)168
N23—H23···O140.901.992.868 (2)165
C162—H162···S110.952.563.281 (2)133
C262—H262···S210.952.503.231 (2)134
C163—H163···Cg2i0.952.683.352 (2)128
C166—H166···Cg1ii0.952.823.519 (2)131
C266—H266···Cg1iii0.952.763.435 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y, z+1.
(II) (Z)-5-(4-methylbenzylidenene)-2-thioxothiazolidin-4-one top
Crystal data top
C11H9NOS2F(000) = 488
Mr = 235.31Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2450 reflections
a = 4.9428 (1) Åθ = 3.6–27.5°
b = 20.0473 (8) ŵ = 0.47 mm1
c = 10.7834 (4) ÅT = 120 K
β = 90.753 (2)°Lath, orange
V = 1068.43 (6) Å30.56 × 0.10 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2450 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2626
Tmin = 0.780, Tmax = 0.964l = 1314
11502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.7076P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H9NOS2V = 1068.43 (6) Å3
Mr = 235.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9428 (1) ŵ = 0.47 mm1
b = 20.0473 (8) ÅT = 120 K
c = 10.7834 (4) Å0.56 × 0.10 × 0.08 mm
β = 90.753 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2450 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2092 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.964Rint = 0.041
11502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2450 reflectionsΔρmin = 0.29 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43222 (8)0.49870 (2)0.19002 (4)0.01788 (12)
S20.80868 (9)0.38256 (2)0.17942 (4)0.02516 (14)
O40.7435 (2)0.56134 (6)0.49671 (10)0.0172 (3)
N30.8034 (3)0.47772 (7)0.35398 (12)0.0162 (3)
C20.7003 (3)0.45019 (8)0.24715 (15)0.0174 (3)
C40.6772 (3)0.53365 (8)0.39983 (14)0.0153 (3)
C50.4536 (3)0.55446 (8)0.31527 (14)0.0153 (3)
C60.3055 (3)0.60879 (8)0.34116 (15)0.0155 (3)
C610.0870 (3)0.64100 (8)0.27200 (15)0.0150 (3)
C620.0063 (3)0.62099 (8)0.15479 (15)0.0181 (3)
C630.2085 (3)0.65641 (9)0.09334 (15)0.0189 (3)
C640.3221 (3)0.71325 (8)0.14549 (15)0.0177 (3)
C650.2310 (3)0.73321 (8)0.26285 (15)0.0183 (3)
C660.0321 (3)0.69774 (8)0.32516 (15)0.0181 (3)
C6410.5343 (4)0.75339 (9)0.07758 (16)0.0233 (4)
H30.95210.45980.39570.019*
H60.35110.62970.41760.019*
H620.06970.58270.11680.022*
H630.27050.64160.01420.023*
H64A0.68910.76070.13180.035*
H64B0.59400.72910.00320.035*
H64C0.45810.79650.05340.035*
H650.30680.77170.30030.022*
H660.02530.71190.40530.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0186 (2)0.0177 (2)0.0173 (2)0.00201 (16)0.00356 (16)0.00289 (15)
S20.0261 (3)0.0201 (2)0.0294 (3)0.00441 (18)0.00011 (18)0.00732 (17)
O40.0173 (6)0.0187 (6)0.0155 (5)0.0020 (5)0.0020 (4)0.0007 (5)
N30.0153 (7)0.0167 (7)0.0166 (7)0.0026 (5)0.0009 (5)0.0009 (5)
C20.0163 (8)0.0167 (8)0.0193 (8)0.0022 (6)0.0014 (6)0.0017 (6)
C40.0145 (7)0.0159 (8)0.0157 (7)0.0016 (6)0.0023 (6)0.0031 (6)
C50.0152 (8)0.0161 (8)0.0146 (7)0.0019 (6)0.0010 (6)0.0001 (6)
C60.0155 (8)0.0172 (8)0.0140 (7)0.0026 (6)0.0010 (6)0.0007 (6)
C610.0133 (7)0.0145 (8)0.0171 (7)0.0012 (6)0.0005 (6)0.0014 (6)
C620.0193 (8)0.0173 (8)0.0179 (8)0.0036 (7)0.0000 (6)0.0007 (6)
C630.0192 (8)0.0222 (9)0.0153 (8)0.0007 (7)0.0019 (6)0.0006 (6)
C640.0146 (8)0.0190 (8)0.0196 (8)0.0001 (6)0.0018 (6)0.0061 (6)
C650.0173 (8)0.0148 (8)0.0227 (8)0.0002 (6)0.0011 (7)0.0004 (6)
C660.0185 (8)0.0188 (8)0.0170 (8)0.0020 (7)0.0007 (6)0.0009 (6)
C6410.0212 (9)0.0265 (9)0.0224 (9)0.0074 (7)0.0003 (7)0.0066 (7)
Geometric parameters (Å, º) top
S1—C21.7494 (17)C62—C631.387 (2)
S1—C51.7553 (16)C62—H620.95
C2—N31.370 (2)C63—C641.392 (2)
C2—S21.6337 (17)C63—H630.95
N3—C41.378 (2)C64—C651.396 (2)
N3—H30.9293C64—C6411.505 (2)
C4—O41.2238 (19)C641—H64A0.98
C4—C51.483 (2)C641—H64B0.98
C5—C61.344 (2)C641—H64C0.98
C6—C611.455 (2)C65—C661.381 (2)
C6—H60.95C65—H650.95
C61—C621.398 (2)C66—H660.95
C61—C661.406 (2)
C2—S1—C592.60 (8)C63—C62—H62119.6
N3—C2—S2126.16 (13)C61—C62—H62119.6
N3—C2—S1110.11 (12)C62—C63—C64121.18 (15)
S2—C2—S1123.73 (10)C62—C63—H63119.4
C2—N3—C4117.68 (13)C64—C63—H63119.4
C2—N3—H3122.3C63—C64—C65118.28 (15)
C4—N3—H3120.0C63—C64—C641121.56 (15)
O4—C4—N3123.90 (14)C65—C64—C641120.16 (15)
O4—C4—C5125.89 (15)C64—C641—H64A109.5
N3—C4—C5110.21 (13)C64—C641—H64B109.5
C6—C5—C4120.26 (14)H64A—C641—H64B109.5
C6—C5—S1130.43 (13)C64—C641—H64C109.5
C4—C5—S1109.31 (11)H64A—C641—H64C109.5
C5—C6—C61130.98 (15)H64B—C641—H64C109.5
C5—C6—H6114.5C66—C65—C64120.84 (15)
C61—C6—H6114.5C66—C65—H65119.6
C62—C61—C66117.75 (14)C64—C65—H65119.6
C62—C61—C6124.71 (15)C65—C66—C61121.16 (15)
C66—C61—C6117.50 (14)C65—C66—H66119.4
C63—C62—C61120.78 (15)C61—C66—H66119.4
C5—S1—C2—N32.13 (12)S1—C5—C6—C613.0 (3)
C5—S1—C2—S2178.49 (12)C5—C6—C61—C623.1 (3)
S2—C2—N3—C4177.35 (12)C5—C6—C61—C66179.27 (17)
S1—C2—N3—C43.30 (18)C66—C61—C62—C630.4 (2)
C2—N3—C4—O4177.18 (15)C6—C61—C62—C63177.27 (16)
C2—N3—C4—C52.8 (2)C61—C62—C63—C640.8 (3)
O4—C4—C5—C61.1 (3)C62—C63—C64—C651.2 (3)
N3—C4—C5—C6178.92 (14)C62—C63—C64—C641177.76 (16)
O4—C4—C5—S1179.00 (13)C63—C64—C65—C660.4 (2)
N3—C4—C5—S10.99 (16)C641—C64—C65—C66178.56 (16)
C2—S1—C5—C6179.46 (17)C64—C65—C66—C610.7 (3)
C2—S1—C5—C40.64 (12)C62—C61—C66—C651.1 (2)
C4—C5—C6—C61176.92 (16)C6—C61—C66—C65176.67 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.931.932.8507 (18)168
C62—H62···S10.952.583.2911 (16)132
Symmetry code: (i) x+2, y+1, z+1.
(III) (Z)-2-thioxo-5-(4-trifluoromethylbenzylidenene)thiazolidin-4-one top
Crystal data top
C11H6F3NOS2Z = 2
Mr = 289.29F(000) = 292
Triclinic, P1Dx = 1.707 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2859 (2) ÅCell parameters from 2566 reflections
b = 6.2263 (3) Åθ = 3.5–27.7°
c = 17.1885 (8) ŵ = 0.50 mm1
α = 91.753 (2)°T = 120 K
β = 95.326 (3)°Lath, orange
γ = 90.129 (3)°0.34 × 0.18 × 0.09 mm
V = 562.99 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2566 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.5°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.849, Tmax = 0.957l = 2222
10662 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.5642P]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C11H6F3NOS2γ = 90.129 (3)°
Mr = 289.29V = 562.99 (4) Å3
Triclinic, P1Z = 2
a = 5.2859 (2) ÅMo Kα radiation
b = 6.2263 (3) ŵ = 0.50 mm1
c = 17.1885 (8) ÅT = 120 K
α = 91.753 (2)°0.34 × 0.18 × 0.09 mm
β = 95.326 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2144 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.957Rint = 0.035
10662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
2566 reflectionsΔρmin = 0.54 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43385 (10)0.28905 (8)0.62212 (3)0.01865 (15)
S20.77871 (10)0.19479 (8)0.49752 (3)0.01955 (15)
F6410.2392 (3)0.1034 (4)0.97742 (11)0.0727 (7)
F6420.5366 (4)0.3184 (3)0.94816 (12)0.0588 (5)
F6430.5061 (4)0.0363 (3)0.88042 (10)0.0666 (6)
O40.7418 (3)0.8410 (2)0.67254 (9)0.0235 (3)
N30.7787 (3)0.5519 (3)0.58861 (10)0.0176 (4)
C20.6815 (4)0.3552 (3)0.56624 (12)0.0173 (4)
C40.6696 (4)0.6646 (3)0.64794 (11)0.0180 (4)
C50.4632 (4)0.5330 (3)0.67591 (12)0.0177 (4)
C60.3369 (4)0.6045 (3)0.73604 (12)0.0186 (4)
C610.1441 (4)0.4990 (3)0.77699 (11)0.0181 (4)
C620.0433 (4)0.2955 (3)0.75600 (12)0.0213 (4)
C630.1268 (4)0.1981 (3)0.80082 (12)0.0208 (4)
C640.2014 (4)0.3051 (3)0.86700 (12)0.0191 (4)
C650.1107 (4)0.5108 (4)0.88746 (12)0.0227 (5)
C660.0591 (4)0.6055 (3)0.84304 (12)0.0219 (4)
C6410.3695 (4)0.1919 (4)0.91817 (13)0.0232 (5)
H30.90330.60760.56320.021*
H60.38040.74620.75470.022*
H620.09210.22270.71040.026*
H630.19210.05880.78630.025*
H650.16570.58530.93190.027*
H660.12050.74610.85720.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0200 (3)0.0156 (3)0.0211 (3)0.00289 (19)0.00654 (19)0.00288 (19)
S20.0196 (3)0.0165 (3)0.0232 (3)0.00173 (19)0.0072 (2)0.0044 (2)
F6410.0348 (10)0.1186 (18)0.0683 (13)0.0058 (10)0.0024 (9)0.0704 (13)
F6420.0644 (12)0.0391 (9)0.0827 (13)0.0062 (8)0.0564 (10)0.0087 (9)
F6430.0849 (14)0.0745 (13)0.0436 (10)0.0599 (11)0.0329 (9)0.0223 (9)
O40.0303 (9)0.0174 (8)0.0234 (8)0.0051 (6)0.0063 (6)0.0034 (6)
N30.0172 (8)0.0156 (8)0.0206 (9)0.0026 (6)0.0055 (7)0.0007 (7)
C20.0174 (10)0.0163 (10)0.0184 (9)0.0004 (8)0.0021 (8)0.0012 (8)
C40.0203 (10)0.0163 (10)0.0174 (10)0.0002 (8)0.0021 (8)0.0005 (8)
C50.0201 (10)0.0145 (9)0.0185 (10)0.0006 (8)0.0011 (8)0.0010 (8)
C60.0241 (11)0.0138 (9)0.0177 (10)0.0004 (8)0.0018 (8)0.0008 (7)
C610.0198 (10)0.0171 (10)0.0175 (10)0.0006 (8)0.0023 (8)0.0016 (8)
C620.0246 (11)0.0223 (11)0.0175 (10)0.0015 (8)0.0055 (8)0.0035 (8)
C630.0249 (11)0.0174 (10)0.0199 (10)0.0039 (8)0.0015 (8)0.0009 (8)
C640.0188 (10)0.0206 (10)0.0183 (10)0.0001 (8)0.0032 (8)0.0014 (8)
C6410.0244 (11)0.0230 (11)0.0225 (11)0.0022 (9)0.0039 (9)0.0006 (9)
C650.0282 (12)0.0215 (11)0.0190 (10)0.0015 (9)0.0071 (9)0.0040 (8)
C660.0264 (11)0.0174 (10)0.0224 (10)0.0020 (8)0.0056 (9)0.0031 (8)
Geometric parameters (Å, º) top
S1—C21.750 (2)C62—C631.387 (3)
S1—C51.753 (2)C62—H620.95
C2—N31.358 (3)C63—C641.390 (3)
C2—S21.643 (2)C63—H630.95
N3—C41.390 (3)C64—C651.390 (3)
N3—H30.90C64—C6411.496 (3)
C4—O41.212 (2)C641—F6411.312 (3)
C4—C51.487 (3)C641—F6421.315 (3)
C5—C61.347 (3)C641—F6431.324 (3)
C6—C611.457 (3)C65—C661.375 (3)
C6—H60.95C65—H650.95
C61—C621.398 (3)C66—H660.95
C61—C661.407 (3)
C2—S1—C592.42 (10)C63—C62—H62119.5
N3—C2—S2126.28 (16)C61—C62—H62119.5
N3—C2—S1110.54 (14)C62—C63—C64119.74 (19)
S2—C2—S1123.18 (12)C62—C63—H63120.1
C2—N3—C4117.87 (17)C64—C63—H63120.1
C2—N3—H3119.6C63—C64—C65120.3 (2)
C4—N3—H3122.4C63—C64—C641119.20 (19)
O4—C4—N3123.34 (19)C65—C64—C641120.40 (19)
O4—C4—C5127.18 (19)F641—C641—F642106.3 (2)
N3—C4—C5109.46 (17)F641—C641—F643106.5 (2)
C6—C5—C4120.43 (18)F642—C641—F643104.9 (2)
C6—C5—S1129.84 (17)F641—C641—C64112.04 (19)
C4—C5—S1109.70 (14)F642—C641—C64113.62 (19)
C5—C6—C61130.25 (19)F643—C641—C64112.81 (18)
C5—C6—H6114.9C66—C65—C64119.56 (19)
C61—C6—H6114.9C66—C65—H65120.2
C62—C61—C66117.86 (19)C64—C65—H65120.2
C62—C61—C6123.97 (19)C65—C66—C61121.5 (2)
C66—C61—C6118.14 (19)C65—C66—H66119.2
C63—C62—C61120.95 (19)C61—C66—H66119.2
C5—S1—C2—N30.28 (16)C66—C61—C62—C632.7 (3)
C5—S1—C2—S2179.59 (14)C6—C61—C62—C63175.4 (2)
S2—C2—N3—C4179.68 (15)C61—C62—C63—C640.9 (3)
S1—C2—N3—C41.0 (2)C62—C63—C64—C651.4 (3)
C2—N3—C4—O4179.80 (19)C62—C63—C64—C641175.4 (2)
C2—N3—C4—C51.4 (2)C63—C64—C641—F64195.7 (3)
O4—C4—C5—C61.5 (3)C65—C64—C641—F64181.1 (3)
N3—C4—C5—C6176.87 (19)C63—C64—C641—F642143.7 (2)
O4—C4—C5—S1179.41 (18)C65—C64—C641—F64239.4 (3)
N3—C4—C5—S11.0 (2)C63—C64—C641—F64324.5 (3)
C2—S1—C5—C6177.2 (2)C65—C64—C641—F643158.7 (2)
C2—S1—C5—C40.45 (15)C63—C64—C65—C661.8 (3)
C4—C5—C6—C61174.8 (2)C641—C64—C65—C66175.0 (2)
S1—C5—C6—C612.6 (4)C64—C65—C66—C610.0 (3)
C5—C6—C61—C623.6 (4)C62—C61—C66—C652.2 (3)
C5—C6—C61—C66174.4 (2)C6—C61—C66—C65176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S2i0.902.413.3048 (18)172
C62—H62···S10.952.513.230 (2)133
C63—H63···O4ii0.952.343.114 (2)138
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z.
(IV) (Z)-5-(4-methoxybenzylidenene)-2-thioxothiazolidin-4-one top
Crystal data top
C11H9NO2S2F(000) = 520
Mr = 251.31Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2515 reflections
a = 5.1314 (2) Åθ = 3.6–27.5°
b = 10.4543 (5) ŵ = 0.47 mm1
c = 20.5324 (9) ÅT = 120 K
β = 91.702 (2)°Plate, orange
V = 1100.98 (8) Å30.44 × 0.18 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2515 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.820, Tmax = 0.963l = 2626
11472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.5614P]
where P = (Fo2 + 2Fc2)/3
2515 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H9NO2S2V = 1100.98 (8) Å3
Mr = 251.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1314 (2) ŵ = 0.47 mm1
b = 10.4543 (5) ÅT = 120 K
c = 20.5324 (9) Å0.44 × 0.18 × 0.08 mm
β = 91.702 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1958 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.963Rint = 0.041
11472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2515 reflectionsΔρmin = 0.40 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49040 (10)0.17896 (5)0.47167 (2)0.02484 (16)
S20.89918 (11)0.13208 (6)0.57546 (3)0.03460 (18)
O40.7371 (3)0.52015 (13)0.44266 (6)0.0243 (3)
O410.4757 (3)0.13838 (14)0.23331 (7)0.0289 (4)
N30.8353 (3)0.34500 (16)0.50587 (8)0.0217 (4)
C20.7597 (4)0.2233 (2)0.52071 (9)0.0236 (4)
C40.6926 (4)0.4095 (2)0.45883 (9)0.0209 (4)
C50.4813 (4)0.32790 (19)0.43189 (9)0.0206 (4)
C60.3223 (4)0.3718 (2)0.38385 (9)0.0214 (4)
C610.1093 (4)0.31024 (19)0.34746 (9)0.0201 (4)
C620.0401 (4)0.1812 (2)0.35433 (10)0.0250 (5)
C630.1566 (4)0.1284 (2)0.31633 (10)0.0259 (5)
C640.2914 (4)0.2021 (2)0.26983 (10)0.0232 (4)
C410.6230 (4)0.2108 (2)0.18543 (10)0.0285 (5)
C650.2320 (4)0.3311 (2)0.26308 (10)0.0230 (4)
C660.0328 (4)0.3832 (2)0.30149 (9)0.0215 (4)
H30.97550.38020.52660.026*
H60.35420.45780.37150.026*
H41A0.72330.27720.20720.043*
H41B0.74240.15370.16130.043*
H41C0.50350.25090.15520.043*
H620.13060.12970.38570.030*
H630.20120.04100.32180.031*
H650.32680.38270.23260.028*
H660.00890.47110.29650.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (3)0.0233 (3)0.0248 (3)0.0072 (2)0.0057 (2)0.0024 (2)
S20.0380 (3)0.0304 (3)0.0348 (3)0.0062 (2)0.0090 (2)0.0080 (3)
O40.0291 (8)0.0212 (8)0.0223 (7)0.0057 (6)0.0054 (6)0.0014 (6)
O410.0276 (8)0.0265 (8)0.0317 (8)0.0030 (6)0.0121 (6)0.0050 (7)
N30.0216 (8)0.0225 (9)0.0206 (8)0.0059 (7)0.0047 (7)0.0002 (7)
C20.0231 (10)0.0260 (11)0.0217 (10)0.0032 (8)0.0005 (8)0.0013 (8)
C40.0206 (10)0.0241 (11)0.0181 (9)0.0012 (8)0.0005 (8)0.0034 (8)
C50.0219 (10)0.0200 (10)0.0198 (9)0.0042 (8)0.0014 (8)0.0013 (8)
C60.0223 (10)0.0199 (10)0.0220 (10)0.0020 (8)0.0011 (8)0.0033 (8)
C610.0205 (9)0.0203 (10)0.0195 (9)0.0012 (8)0.0009 (7)0.0033 (8)
C620.0269 (10)0.0243 (11)0.0234 (10)0.0002 (9)0.0060 (8)0.0004 (8)
C630.0286 (11)0.0187 (10)0.0299 (11)0.0029 (9)0.0051 (9)0.0031 (9)
C640.0205 (10)0.0262 (11)0.0226 (10)0.0014 (8)0.0018 (8)0.0072 (8)
C410.0267 (11)0.0342 (13)0.0240 (10)0.0019 (9)0.0081 (9)0.0045 (9)
C650.0218 (10)0.0264 (11)0.0206 (10)0.0022 (8)0.0017 (8)0.0001 (8)
C660.0244 (10)0.0193 (10)0.0208 (10)0.0017 (8)0.0001 (8)0.0023 (8)
Geometric parameters (Å, º) top
S1—C21.748 (2)C62—C631.373 (3)
S1—C51.758 (2)C62—H620.95
C2—N31.367 (3)C63—C641.394 (3)
C2—S21.624 (2)C63—H630.95
N3—C41.372 (2)C64—O411.363 (2)
N3—H30.9034C64—C651.391 (3)
C4—O41.227 (2)O41—C411.438 (2)
C4—C51.474 (3)C41—H41A0.98
C5—C61.342 (3)C41—H41B0.98
C6—C611.455 (3)C41—H41C0.98
C6—H60.95C65—C661.384 (3)
C61—C661.401 (3)C65—H650.95
C61—C621.403 (3)C66—H660.95
C2—S1—C592.42 (10)C61—C62—H62119.6
N3—C2—S2125.36 (15)C62—C63—C64120.6 (2)
N3—C2—S1110.07 (14)C62—C63—H63119.7
S2—C2—S1124.57 (13)C64—C63—H63119.7
C2—N3—C4117.73 (16)O41—C64—C65124.70 (19)
C2—N3—H3120.0O41—C64—C63115.42 (18)
C4—N3—H3122.2C65—C64—C63119.87 (18)
O4—C4—N3123.68 (18)C64—O41—C41117.45 (16)
O4—C4—C5125.78 (18)O41—C41—H41A109.5
N3—C4—C5110.54 (17)O41—C41—H41B109.5
C6—C5—C4120.14 (18)H41A—C41—H41B109.5
C6—C5—S1130.64 (16)O41—C41—H41C109.5
C4—C5—S1109.21 (14)H41A—C41—H41C109.5
C5—C6—C61131.07 (19)H41B—C41—H41C109.5
C5—C6—H6114.5C66—C65—C64119.02 (19)
C61—C6—H6114.5C66—C65—H65120.5
C66—C61—C62117.57 (18)C64—C65—H65120.5
C66—C61—C6118.22 (18)C65—C66—C61122.03 (19)
C62—C61—C6124.19 (18)C65—C66—H66119.0
C63—C62—C61120.88 (19)C61—C66—H66119.0
C63—C62—H62119.6
C5—S1—C2—N30.60 (15)C5—C6—C61—C66176.8 (2)
C5—S1—C2—S2179.75 (14)C5—C6—C61—C624.7 (3)
S2—C2—N3—C4178.99 (15)C66—C61—C62—C631.2 (3)
S1—C2—N3—C41.4 (2)C6—C61—C62—C63177.29 (19)
C2—N3—C4—O4177.91 (18)C61—C62—C63—C640.2 (3)
C2—N3—C4—C51.5 (2)C62—C63—C64—O41177.61 (19)
O4—C4—C5—C62.3 (3)C62—C63—C64—C651.9 (3)
N3—C4—C5—C6178.28 (17)C65—C64—O41—C411.5 (3)
O4—C4—C5—S1178.47 (16)C63—C64—O41—C41178.99 (17)
N3—C4—C5—S11.0 (2)O41—C64—C65—C66177.37 (18)
C2—S1—C5—C6178.9 (2)C63—C64—C65—C662.1 (3)
C2—S1—C5—C40.20 (15)C64—C65—C66—C610.7 (3)
C4—C5—C6—C61177.17 (18)C62—C61—C66—C651.0 (3)
S1—C5—C6—C611.9 (3)C6—C61—C66—C65177.59 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.901.902.789 (2)169
C62—H62···S10.952.573.288 (2)133
C62—H62···S2ii0.952.863.588 (2)135
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H7NOS2C11H9NOS2C11H6F3NOS2C11H9NO2S2
Mr221.29235.31289.29251.31
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cTriclinic, P1Monoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)11.7286 (3), 7.0215 (2), 23.7552 (6)4.9428 (1), 20.0473 (8), 10.7834 (4)5.2859 (2), 6.2263 (3), 17.1885 (8)5.1314 (2), 10.4543 (5), 20.5324 (9)
α, β, γ (°)90, 100.2630 (12), 9090, 90.753 (2), 9091.753 (2), 95.326 (3), 90.129 (3)90, 91.702 (2), 90
V3)1925.00 (9)1068.43 (6)562.99 (4)1100.98 (8)
Z8424
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.510.470.500.47
Crystal size (mm)0.38 × 0.20 × 0.100.56 × 0.10 × 0.080.34 × 0.18 × 0.090.44 × 0.18 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.888, 0.9500.780, 0.9640.849, 0.9570.820, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
20659, 4399, 3154 11502, 2450, 2092 10662, 2566, 2144 11472, 2515, 1958
Rint0.0480.0410.0350.041
(sin θ/λ)max1)0.6500.6500.6540.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.03 0.033, 0.086, 1.05 0.038, 0.103, 1.07 0.038, 0.103, 1.04
No. of reflections4399245025662515
No. of parameters253137163146
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.330.33, 0.290.50, 0.540.33, 0.40

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, °) for compounds (I) - (IV) top
Parameter(I, mol1)(I, mol2)(II)(III)(IV)
x =12nilnilnil
Sx1—Cx21.753 (2)1.7502 (19)1.7494 (17)1.750 (2)1.748 (2)
Cx2—Nx31.363 (3)1.366 (3)1.370 (2)1.358 (3)1.367 (3)
Nx3—Cx41.383 (3)1.379 (3)1.378 (2)1.390 (3)1.372 (2)
Cx4—Cx51.477 (3)1.478 (3)1.483 (2)1.487 (3)1.474 (3)
Cx5—Sx11.757 (2)1.756 (2)1.7553 (16)1.753 (2)1.758 (2)
Cx2—Sx21.635 (2)1.626 (2)1.6337 (17)1.643 (2)1.624 (2)
Cx4—Ox41.225 (2)1.224 (2)1.2238 (19)1.212 (2)1.227 (2)
Cx5—Cx61.351 (3)1.348 (3)1.344 (2)1.347 (3)1.342 (3)
Cx6—Cx611.454 (3)1.452 (3)1.455 (2)1.457 (3)1.455 (3)
Cx5—Sx1—Cx2
92.51 (9)92.47 (15)92.60 (8)92.42 (10)92.42 (10)
Sx1—Cx5—Cx6
130.27 (16)129.82 (16)130.43 (13)129.84 (17)130.64 (16)
Cx4—Cx5—Cx6
120.19 (18)120.79 (18)120.26 (14)120.43 (18)120.14 (18)
Cx5—Cx6—Cx61
130.97 (19)130.13 (19)130.98 (15)130.25 (19)131.07 (19)
Cx6—Cx61—Cx62
124.34 (18)124.02 (18)124.71 (15)123.97 (19)124.19 (18)
Cx6—Cx61—Cx66
117.51 (18)118.04 (18)117.50 (14)118.14 (19)118.22 (18)
Cx63—Cx64—Ox41115.42 (18)
Cx65—Cx64—Ox41124.70 (19)
Cx64—Ox41—Cx41117.45 (16)
Cx5—Cx6—Cx61—Cx62
2.9 (3)4.5 (3)-3.1 (3)-3.6 (4)-4.7 (3)
Cx63—Cx64—Ox41—Cx41178.99 (17)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N13—H13···O240.951.942.829 (2)168
N23—H23···O140.951.992.868 (2)165
C162—H162···S110.952.563.281 (2)133
C262—H262···S210.952.503.231 (2)134
C163—H163···Cg2i0.952.683.352 (2)128
C166—H166···Cg1ii0.952.823.519 (2)131
C266—H266···Cg1iii0.952.763.435 (2)129
(II)N3—H3···O4iv0.931.932.8507 (18)168
C62—H62···S10.952.583.2911 (16)132
(III)N3—H3···S2iv0.902.413.3048 (18)172
C62—H62···S10.952.513.230 (2)133
C63—H63···O4v0.952.343.114 (2)138
(IV)N3—H3···O4iv0.901.902.789 (2)169
C62—H62···S10.952.573.288 (2)133
C62—H62···S2iii0.952.863.588 (2)135
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1.5 − x, −0.5 + y, 1.5 − z; (iii) 1 − x, −y, 1 − z; (iv) 2 − x, 1 − y, 1 − z; (v) −1 + x, −1 + y, z.

Cg1 and Cg2 are the centroids of the C161–C166 and C261–C266 rings, respectively
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. PD and JQ thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOkazaki, M., Uchino, N., Ishihara, M. & Fukunaga, H. (1998). Bull. Chem. Soc. Jpn, 71, 1713–1718.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306–o311.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds