metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Twisted [(R3P)PdX] groups above dicarbaborane ligands: 4-di­methyl­sulfido-3-iodo-3-tri­phenyl­phosphine-closo-3-pallada-1,2-dicarbadodeca­borane and 3-di­methyl­phenyl­phos­phine-3-chloro-4-di­methyl­sulfido-closo-3-pallada-1,2-dicarbadodeca­borane

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, cDepartment of Chemistry, University of Leeds, Leeds LS2 9JT, England, dDepartment of Chemistry, University College Cork, National University of Ireland, Cork, Ireland, and eIntel Ireland Ltd, Leixlip, Co. Kildare, Ireland
*Correspondence e-mail: t.spalding@ucc.ie

(Received 7 July 2005; accepted 11 July 2005; online 23 July 2005)

The structural analyses of [3-(PPh3)-3-I-4-(SMe2)-closo-3,1,2-PdC2B9H10] or [Pd(C4H16B9S)I(C18H15P)], (I)[link], and [3-(PPhMe2)-3-Cl-4-(SMe2)-closo-3,1,2-PdC2B9H10] or [Pd(C4H16B9S)Cl(C8H11P)], (II)[link], show that in comparison with [3-(PR3)2-closo-3,1,2-PdC2B9H11] the presence of the 4-SMe2 group causes the [PdX(PR3)] unit (X = halogen) to twist about an axis passing through the Pd atom and the directly opposite B atom of the carbaborane ligand. The halogen atoms are located almost directly above a C atom in the C2B3 face, and the conformations of the [PdX(PR3)] units above the C2B3 faces are not those predicted from mol­ecular orbital calculations of the closo-3,1,2-PdC2B9 system. The fact that the variation from the predicted conformation is greater in the case of (I)[link] than in (II)[link] may be ascribed to the greater steric inter­actions induced by the I atom in (I)[link] compared with the Cl atom in (II)[link].

Comment

The factors affecting the conformation of LMX units (L and X may be phosphines or other ligands) above the faces of 11-atom heteroborane ligands in metalloheteroborane clusters, such as [3,3-(PR3)2-closo-3,1,2-MC2B9H11], (III) (M = Pd or Pt), have been subject to both experimental (O′Connell et al., 1995[O'Connell, D., Spalding, T. R., Ferguson, G., Gallagher, J. F. & Kennedy, J. D. (1995). J. Organomet. Chem. 503, C12-C15.], 1996[O'Connell, D., Patterson, J. C., Spalding, T. R., Ferguson, G., Gallagher, J. F., Li, Y., Kennedy, J. D., Macias, R., Thornton-Pett, M. & Holub, J. (1996). J. Chem. Soc. Dalton Trans. pp. 3323-3333.]) and theoretical (Mingos et al., 1978[Mingos, D. M. P., Forsyth, M. I. & Welch, A. J. (1978). J. Chem. Soc. Dalton Trans. pp. 1363-1374.]) studies. We have now continued these studies to obtain information about the effect that a substituent on a B atom in the C2B3 face adjacent to the Pd atom would have on the structure of the metalloheteroborane. We synthesized two palladium complexes with the [9-SMe2-nido-7,8-C2B9H10] dicarbaborane fragment as a ligand, namely [3-(PPh3)-3-I-4-(SMe2)-closo-3,1,2-PdC2B9H10], (I)[link], and [3-(PPhMe2)-3-Cl-4-(SMe2)-closo-3,1,2-PdC2B9H10], (II)[link], which are isoelectronic in cluster terms (Wade, 1976[Wade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-63]) with [3-(PR3)2-closo-3,1,2-PdC2B9H11], (III). In complex (III), which is a [closo-3,1,2-MC2B9H11] species that contains `C atoms adjacent' [nido-7,8-C2B9H11] ligand fragments and no replacements of boron-bound exo H atoms by bulkier groups, the conformation of the P—Pd—P plane is aligned approximately parallel to the C—C vector in the C2B3 face to which the Pd atom is attached, as shown in the scheme (diagram 1a[link]). This alignment is expected on the basis of the

[Scheme 1]
[Scheme 2]
results of mol­ecular orbital calculations (Mingos et al., 1978[Mingos, D. M. P., Forsyth, M. I. & Welch, A. J. (1978). J. Chem. Soc. Dalton Trans. pp. 1363-1374.]). The alternative `perpendicular' conformation is expected for [closo-2,1,7-MC2B9H11] species that have `C atoms apart' [nido-7,9-C2B9H11] fragments as ligands (see diagram 1b[link]) (Mingos et al., 1978[Mingos, D. M. P., Forsyth, M. I. & Welch, A. J. (1978). J. Chem. Soc. Dalton Trans. pp. 1363-1374.]).

Compounds (I)[link] and (II)[link] have closo 12-vertex PdC2B9 geometries based on distorted icosa­hedra with the Pd and C atoms adjacent, as shown in Figs. 1[link] and 2[link]. Selected inter­atomic distances and angles are given in Table 1[link]. In both (I)[link] and (II)[link], the substitution of a BSMe2 group for a BH(exo) unit causes marked twisting of the [PdX(PR3)] group (X = I or Cl) above the C2B3 face (see diagram 1c[link]). The orientations of the [PdI(PPh3)] and [PdCl(PPhMe2)] units above the C2B3 faces are clearly shown in Figs. 3[link] and 4[link]. The conformations of the Pd—X and Pd—P vectors above the C2B3 faces have become more like the `perpendicular' conformation that is expected for [closo-2,1,7-MC2B9H11] species. It is noticeable that the twisting of the X—Pd—PR3 unit away from the SMe2 ligand is somewhat greater in (I)[link] than in (II)[link], as can be seen in the angles between the X—Pd and B4—S1 vectors when they are projected onto the plane of the C2B3 face; these are 71.7 (2)° in (I)[link] and 53.7 (2)° in (II)[link]. This difference is also seen in the comparison between the S1—B4—Pd3—X twist angle, which is larger in (I)[link], at −48.5 (3)°, with a smaller corresponding angle in (II)[link] of −29.16 (9)°. All these values would be expected to be close to zero in the absence of substitution at B4. The difference in these pairs of angles is probably due to the steric inter­actions in the X—Pd3—C1—B4—S1(Me2) region and, in particular, the difference in the effective radii of I and Cl, although the differential bulk of the PPh3 versus the PPhMe2 ligands will also affect the conformations, as will the locations of the meth­yl groups of the SMe2 ligand attached at atom B4.

The Pd—C distances of 2.274 (6) and 2.467 (6) Å in (I)[link] are significantly different, with the Pd—C1 bond considerably shorter than the Pd—C2 bond. Atom C1 is adjacent to the SMe2-substituted B4 atom, and the shorter Pd—C distance may be an artefact of this configuration if extra electron density due to the presence of the S atom is available in the Pd—B4—C1 region compared with the Pd—B7—C2 region. The Pd—C distances in (II)[link], at 2.304 (2) and 2.478 (2) Å, are similar to those in (I)[link]. The Pd—C distances in (I)[link] and (II)[link] span those observed in the cation of [3-(η2,η2-C8H12)-4-SMe2-closo-3,1,2-PdC2B9H10]BF4 [2.371 (4) and 2.434 (4) Å; Douek & Welch, 1993[Douek, N. L. & Welch, A. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1917-1925.]]. A search of the May 2005 release of the Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for palladacarbaboranes resulted in 11 unique hits that yielded Pd—C distances in a wide range from 2.187 (5) Å in the 13-vertex bis­(diphenyl­phosphino)ethane derivative [4-(dppe)-closo-4,1,6-PdC2B10H12] (Alcock et al., 1987[Alcock, N. W., Taylor, J. G. & Wallbridge, M. G. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1805-1811.]; CSD refcode FODFOT) to 2.634 (7) Å in [1-(5-MeC4H2S)-3,3-(PMe2Ph)2-closo-3,1,2-PdC2B9H10] (Michaelidou et al., 1997[Michaelidou, D. M., Mingos, D. M. P., Williams, D. J. & White, A. J. P. (1997). J. Organomet. Chem. 528, 135-141.]; CSD refcode RUSWIL). It is noteworthy that, in the latter compound, which has a 5-methyl­thio­phen­yl substituent on atom C1, the conformation of the plane containing the P—Pd—P unit and the C—C vector is near to the `parallel' type; the angle between the C—C vector and the plane containing the P—Pd—P unit projected onto the B3C2 plane is 26° rather than 0°.

The SMe2 group has slightly different orientations in (I)[link] and (II)[link], quantified by the values of the Pd3—B4—S1—C3 torsion angles [−85.0 (4)° in (I)[link] and −54.19 (13)° in (II)]. Presumably, this difference arises from packing effects. Examination of the inter­molecular distances shows that there are no ππ or C—H⋯π inter­actions in the crystal structures of (I)[link] and (II)[link]. In (I)[link], there is a weak intra­molecular C16—H16⋯I1 inter­action (see Table 2[link]). In (II)[link], there are no significant intra­molecular inter­actions; the inversion-related shortest inter­molecular inter­actions are shown in Fig. 5[link] with pairs of C—H⋯Cl inter­actions leading to a weakly linked dimer (see Table 2[link]). Such attractive inter­actions are consistent with the well known greater polarity and H-atom acidic character of carbaborane cluster CH(exo) units.

[Figure 1]
Figure 1
A view of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A view of the P—Pd—I unit above the C2B3 face with the SMe2 ligand at B4 in (I)[link].
[Figure 4]
Figure 4
A view of the P—Pd—Cl unit above the C2B3 face with the SMe2 ligand at B4 in (II)[link].
[Figure 5]
Figure 5
A view of a pair of mol­ecules of (II)[link], linked by weak C—H⋯Cl inter­actions. [Symmetry code: (i) 1 − x, 1 − y, −z.]

Experimental

Reactions were carried out under an inert atmosphere, and products were isolated and manipulated in air. The reagents Tl[9-SMe2-7,8-nido-C2B9H10] (Hamilton & Welch, 1991[Hamilton, E. J. M. & Welch, A. J. (1991). Polyhedron, 10, 471-476.]), [Pd(PPhMe2)2Cl2] (Jenkins & Shaw, 1966[Jenkins, J. M. & Shaw, B. L. (1966). J. Chem. Soc. A, pp. 770-777.]) and [Pd(PPh3)2I2] (Bailey & Mason, 1968[Bailey, N. A. & Mason, R. (1968). J. Chem. Soc. A, pp. 2594-2605.]) were prepared according to literature methods. For the synthesis of (I)[link], a solution of [Pd(PPh3)2I2] (0.044 g, 0.05 mmol) in CH2Cl2 (10 ml) was added to a solution of Tl[9-SMe2-7,8-nido-C2B9H10] (0.02 g, 0.05 mmol) in CH2Cl2 (10 ml). The mixture was heated at reflux temperature for 2.5 h. The dark-green solution was concentrated under reduced pressure (rotatory film evaporator, 298 K) and subjected to preparative thin-layer chromatography (TLC; CH2Cl2–hexane, 3:2). The major band was extracted into CH2Cl2 and recrystallized from CH2Cl2–hexane (3:2) as dark-green block-shaped crystals of (I)[link] (0.028 g, 81.3%). Analysis found: C 38.4, H 5.0, I 18.1%; C22H31B9IPPdS requires: C 38.35, H 4.5, I 18.4%. For the synthesis of (II)[link], a solution of [Pd(PPhMe2)2Cl2] (0.1365 g, 0.301 mmol) in toluene (20 ml) was added to a solution of Tl[9-SMe2-7,8-nido-C2B9H10] (0.121 g, 0.304 mmol) in toluene (30 ml). The mixture was stirred at room temperature for 20 h. The purple solution was concentrated under reduced pressure (rotatory film evaporator, 308 K) and subjected to preparative TLC (CH2Cl2–hexa­ne, 4:1). The major band was extracted into CH2Cl2 and recrystallized from CH2Cl2–hexa­ne (1:1), affording purple crystals of (II)[link] (0.143 g, 75.9%). Analysis found: C 30.7, H 5.9, S 6.85%; C12H27B9ClPPdS requires: C 30.4, H 5.8, S 6.8%. For details of the IR and NMR spectra for (I)[link] and (II)[link], see the archived CIF.

Compound (I)[link]

Crystal data
  • [Pd(C4H16B9S)I(C18H15P)]

  • Mr = 689.12

  • Orthorhombic, P b c a

  • a = 10.9576 (5) Å

  • b = 16.8316 (10) Å

  • c = 30.2015 (17) Å

  • V = 5570.2 (5) Å3

  • Z = 8

  • Dx = 1.643 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 9.9–16.0°

  • μ = 1.92 mm−1

  • T = 294 (1) K

  • Block, dark green

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • θ/2θ scans

  • Absorption correction: ψ scan(ABSCOR in NRCVAX; Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.])Tmin = 0.708, Tmax = 0.751

  • 6057 measured reflections

  • 6057 independent reflections

  • 3546 reflections with I > 2σ(I)

  • Rint = 0.0

  • θmax = 27.0°

  • h = 0 → 13

  • k = 0 → 21

  • l = 0 → 38

  • 3 standard reflections every 250 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.162

  • S = 1.00

  • 6057 reflections

  • 318 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1025P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.93 e Å−3

Compound (II)[link]

Crystal data
  • [Pd(C4H16B9S)Cl(C8H11P)]

  • Mr = 473.54

  • Monoclinic, P 21 /n

  • a = 12.8117 (8) Å

  • b = 9.2670 (7) Å

  • c = 18.2948 (10) Å

  • β = 96.567 (5)°

  • V = 2157.8 (2) Å3

  • Z = 4

  • Dx = 1.458 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 10.0–16.5°

  • μ = 1.15 mm−1

  • T = 294 (1) K

  • Block, purple

  • 0.33 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • θ/2θ scans

  • Absorption correction: ψ scan(ABSCOR in NRCVAX; Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.])Tmin = 0.684, Tmax = 0.760

  • 6506 measured reflections

  • 6265 independent reflections

  • 5023 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 30.0°

  • h = 0 → 18

  • k = 0 → 13

  • l = −25 → 25

  • 3 standard reflections every 250 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.03

  • 6265 reflections

  • 231 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0335P)2 + 0.6303P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.51 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00185 (18)

Table 1
Selected bond distances (Å) and angles (°) for compounds (I) and (II)

X = I1 in (I) and Cl1 in (II).

  (I) (II)
Pd3—X 2.6739 (7) 2.3751 (5)
Pd3—P1 2.2507 (17) 2.2275 (5)
Pd3—C1 2.274 (6) 2.304 (2)
Pd3—C2 2.467 (6) 2.478 (2)
Pd3—B4 2.315 (7) 2.278 (2)
Pd3—B7 2.269 (8) 2.212 (2)
Pd3—B8 2.254 (7) 2.229 (2)
S1—B4 1.899 (7) 1.896 (2)
C1—C2 1.584 (9) 1.561 (2)
C1—B4 1.693 (8) 1.697 (3)
C2—B7 1.644 (10) 1.686 (3)
B4—B8 1.766 (10) 1.764 (3)
     
X—Pd3—P1  95.06 (5)  92.00 (2)
X—Pd3—C1  90.64 (16)  97.52 (5)
X—Pd3—C2 106.07 (16) 116.77 (5)
X—Pd3—B4 110.47 (16) 108.25 (5)
X—Pd3—B7 143.2 (2) 148.67 (6)
X—Pd3—B8 155.09 (19) 148.67 (6)
P1—Pd3—C1 169.28 (16) 163.51 (5)
P1—Pd3—C2 130.57 (16) 125.64 (4)
P1—Pd3—B4 140.80 (16) 144.32 (5)
P1—Pd3—B7 100.3 (2)  95.72 (6)
P1—Pd3—B8 102.97 (19) 103.23 (6)
Pd3—B4—S1 104.2 (3) 106.64 (9)

Table 2
Hydrogen bond parameters (Å, °) for compounds (I) and (II)

  D—H⋯A D—H H⋯A D⋯A D—H⋯A
(I) C16—H16⋯I1 0.86 2.98 3.831 (9) 153
(II) C2—H2⋯Cl1i 0.86 2.60 3.540 (2) 142
Symmetry code: (i) 1-x, 1-y, -z.

Mol­ecule (I)[link] crystallized in the orthorhombic system; space group Pbca was assigned from the systematic absences. Mol­ecule (II)[link] crystallized in the monoclinic system; space group P21/n was assigned from the systematic absences. In both compounds, H atoms were treated as riding atoms, with C—H distances of 0.93, 0.96 and 1.10 Å, and B—H distances of 1.10 Å, and with Uiso(H) values set at 1.2Ueq(C,B) or 1.5Ueq(methyl C). The maxima and minima in the final difference maps for (I)[link] were adjacent to the I atom.

For both compounds, data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.]) with profile analysis; cell refinement: DIFRAC; data reduction: DATRD2 in NRCVAX94 (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) in WinGX (Version 1.70.01; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The factors affecting the conformation of (LMX) units (L and X may be phosphines or other ligands) above the faces of 11-atom heteroborane ligands in metallaheteroborane clusters such as [3,3-(PR3)2-closo-3,1,2-MC2B9H11], (III) (M = Pd or Pt), have been subject to both experimental (O'Connell et al., 1995, 1996) and theoretical (Mingos et al., 1978) studies. We have now continued these studies to obtain information about the effect that a substituent on a B atom in the C2B3 face adjacent to the Pd atom would have on the structure of the metallaheteroborane. We synthesized two palladium complexes with the [9-SMe2-nido-7,8-C2B9H10] dicarbaborane fragment as a ligand, namely [3-(PPh3)-3-I-4-(SMe2)-closo-3,1,2-PdC2B9H10], (I), and [3-(PPhMe2)-3-Cl-4-(SMe2)-closo-3,1,2-PdC2B9H10], (II), which are isoelectronic in cluster terms (Wade, 1996) with [3-(PR3)2-closo-3,1,2-PdC2B9H11], (III). In complex (III), which is a [closo-3,1,2-MC2B9H11] species that contains `C atoms c-adjacent' [nido-7,8-C2B9H11] ligand fragments and no replacements of boron-bound exo H atoms by bulkier groups, the conformation of the P—Pd—P plane is aligned approximately parallel to the C—C vector in the C2B3 face to which the Pd atom is attached, as shown in the first scheme below (1a). This alignment is expected on the basis of the results of molecular orbital calculations (Mingos et al., 1978). The alternative `perpendicular' conformation is expected for [closo-2,1,7-MC2B9H11] species that have `C atoms c-apart' [nido-7,9-C2B9H11] fragments as ligands (see diagram 1b) (Mingos et al., 1978).

Compounds (I) and (II) have closo 12-vertex PdC2B9 geometries based on distorted icosahedra with the Pd and C atoms adjacent, as shown in Figs. 1 and 2. Selected interatomic distances and angles are given in Table 1. In both [3-PPh3-3-I-4-SMe2-closo-3,1,2-PdC2B9H10], (I), and [3-PPhMe2-3-Cl-4-SMe2-closo-3,1,2-PdC2B9H10], (II) the substitution of a B-SMe2 group for a BH(exo) unit causes marked twisting of the {PdX(PR3)} [X = I or Cl] above the C2B3-face (see diagram 1c). The orientations of the {PdI(PPh3)} and {PdCl(PPhMe2)} units above the C2B3 faces are clearly shown in Figs. 3 and 4. The conformations of the Pd—X and Pd—P vectors above the C2B3 faces have become more like the `perpendicular' conformation that is expected for [closo-2,1,7-MC2B9H11] species. It is noticeable that the twisting of the {X—Pd—PR3} unit away from the SMe2 ligand is somewhat greater in (I) than in (II), as can be seen in the angles made between the X—Pd and B4—S1 vectors when they are projected onto the plane of the C2B3 face; these are 71.7 (2)° in (I) and 53.7 (2)° in (II). This difference is also seen in the comparison between the S1—B4—Pd3—X twist angle in (I), which is larger at −48.5 (3)° with the smaller corresponding angle in (II) of −29.16 (9)°. All these values would be expected to be close to zero in the absence of substitution at B4. The difference in these pairs of angles is most probably due to the steric interactions in the X—Pd3—C1—B4—S1(Me2) region and in particular the difference in the effective radii of I and Cl, although the differential bulk of the PPh3 versus the PPhMe2 ligands will also affect the conformations, as will the locations of the methyl groups of the SMe2 ligand attached at atom B4.

The Pd—C distances of 2.274 (6) and 2.467 (6) Å in (I) are significantly different, with Pd—C1 considerably shorter than Pd—C2. Atom C1 is adjacent to the (SMe2)-substituted B4 atom, and the shorter Pd—C distance may be an artefact of this configuration if extra electron density due to the presence of the S atom is available in the Pd—B4—C1 region compared with the Pd—B7—C2 region. The Pd—C distances in (II), at 2.304 (2) and 2.478 (2) Å, are similar to those in (I). The Pd—C distances in (I) and (II) span those observed in the cation of [3-(η2,η2-C8H12)-4-SMe2-closo-3,1,2-PdC2B9H10][BF4] [2.371 (4) and 2.434 (4) Å; Douek & Welch, 1993]. A search of the May 2005 release of the Cambridge Structural Database (CSD; Allen, 2002) for palladacarbaboranes resulted in 11 unique hits that yielded Pd—C distances in a wide range from 2.187 (5) Å, in the 13-vertex bis(diphenylphosphino)ethane derivative [4-(dppe)-closo-4,1,6- PdC2B10H12] (Alcock et al., 1987; CSD refcode FODFOT), to 2.634 (7) Å, in [1-(5-MeC4H2S)-3,3-(PMe2Ph)2-closo-3,1,2-PdC2B9H10] (Michaelidou et al., 1997; CSD refcode RUSWIL). It is noteworthy that, in the latter compound, which has a 5-methylthiophenyl substituent on atom C1, the conformation of the plane containing the P—Pd—P unit and the C—C vector is near to the `parallel' type; the angle between the C—C vector and the plane containing the P—Pd—P unit projected onto the B3C2 plane is 26° rather than 0°.

The SMe2 group has slightly different orientations in (I) and in (II), quantified by the values of the Pd3—B4—S1—C3 torsion angles [−85.0 (4)° in (I) and −54.19 (13)° in (II)]. Presumably, this difference arises from packing effects. Examination of the intermolecular distances shows that there are no ππ or C—H···π interactions in the crystal structures of (I) and (II). In (I), there is a weak intramolecular C16—H16···I1 interaction (see Table 2). In (II), there are no significant intramolecular interactions; the inversion-related shortest intermolecular interactions are shown in Fig. 5 with pairs of C—H···Cl interactions leading to a weakly linked dimer (see Table 2). Such attractive interactions are consistent with the well known greater polarity and H-atom acidic character of carbaborane cluster CH(exo) units.

Experimental top

Reactions were carried out under an inert atmosphere and products were isolated and manipulated in air. The reagents Tl[9-SMe2-7,8-nido-C2B9H10] (Hamilton & Welch, 1991), [Pd(PPhMe2)2Cl2] (Jenkins & Shaw, 1966) and [Pd(PPh3)2I2] (Bailey & Mason, 1968) were prepared according to literature methods. For the synthesis of (I), to a solution of Tl[9-SMe2-7,8-nido-C2B9H10] (0.02 g, 0.05 mmol) in CH2Cl2 (10 ml) was added a solution of [Pd(PPh3)2I2] (0.044 g, 0.05 mmol) in CH2Cl2 (10 ml). The mixture was heated at the reflux temperature for 2.5 h. The dark-green solution was concentrated under reduced pressure (rotatory film evaporator, 298 K) and subjected to preparative thin-layer chromatography (CH2Cl2–hexane, 3:2). The major band was extracted into CH2Cl2 and recrystallized from CH2Cl2–hexane (3:2) as dark-green block-shaped crystals of (I) (0.028 g, 81.3%). Analysis found: C 38.4, H 5.0, I 18.1%; C22H31B9IPPdS requires: C 38.35, H 4.5, I 18.4%. For details of IR and NMR spectra for (I), see the archived CIF. For the synthesis of (II), to a solution of Tl[9-SMe2-7,8-nido-C2B9H10] (0.121 g, 0.304 mmol) in toluene (30 ml) was added a solution of [Pd(PPhMe2)2Cl2] (0.1365 g, 0.301 mmol) in toluene (20 ml). The mixture was stirred at room temperature for 20 h. The purple solution was concentrated under reduced pressure (rotatory film evaporator, 308 K) and subjected to preparative TLC (CH2Cl2–hexane, 4:1). The major band was extracted into CH2Cl2 and recrystallized from CH2Cl2–hexane (1:1), affording purple crystals of (II) (0.143 g, 75.9%). Analysis found: C 30.7, H 5.9, S 6.85%; C12H27ClB9PPdS requires: C 30.4, H 5.8, S 6.8%. For details of IR and NMR spectra for (II), see the archived CIF.

Refinement top

Molecule (I) crystallized in the orthorhombic system; space group Pbca was assigned from the systematic absences. Molecule (II) crystallized in the monoclinic system; space group P21/n was assigned from the systematic absences. In both compounds, H atoms were treated as riding atoms with C—H distances of 0.93, 0.96 and 1.10 Å, and B—H distances of 1.10 Å, and with Uiso(H) values set at 1.2Ueq(C,B) or 1.5Ueq(C). The maxima and minima in the final difference maps for (I) were adjacent to the I atom.

Computing details top

For both compounds, data collection: DIFRAC (Gabe & White, 1993) with profile analysis; cell refinement: DIFRAC (Gabe & White, 1993); data reduction: DATRD2 in NRCVAX94 (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX (Version 1.70.01; Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of (II), with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A view of the P—Pd—I unit above the C2B3 face with the SMe2 ligand at B4 in (I).
[Figure 4] Fig. 4. A view of the P—Pd—Cl unit above the C2B3 face with the SMe2 ligand at B4 in (II).
[Figure 5] Fig. 5. A view of a pair of molecules of (II), linked by weak C—H···Cl interactions. [Symmetry code: (i) 1 − x, 1 − y, −z.]
(I) 4-dimethylsulfido-3-iodo-3-triphenylphosphine-closo-3-pallada- 1,2-dicarbadodecaborane top
Crystal data top
[Pd(C4H16B9S)I(C18H15P)]F(000) = 2704
Mr = 689.12Dx = 1.643 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.9576 (5) Åθ = 9.9–16.0°
b = 16.8316 (10) ŵ = 1.92 mm1
c = 30.2015 (17) ÅT = 294 K
V = 5570.2 (5) Å3Block, dark green
Z = 80.20 × 0.15 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.0
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
θ/2θ scansh = 013
Absorption correction: ψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
k = 021
Tmin = 0.708, Tmax = 0.751l = 038
6057 measured reflections3 standard reflections every 250 reflections
6057 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1025P)2]
where P = (Fo2 + 2Fc2)/3
6057 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 1.93 e Å3
Crystal data top
[Pd(C4H16B9S)I(C18H15P)]V = 5570.2 (5) Å3
Mr = 689.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.9576 (5) ŵ = 1.92 mm1
b = 16.8316 (10) ÅT = 294 K
c = 30.2015 (17) Å0.20 × 0.15 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3546 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
Rint = 0.0
Tmin = 0.708, Tmax = 0.7513 standard reflections every 250 reflections
6057 measured reflections intensity decay: none
6057 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.00Δρmax = 1.29 e Å3
6057 reflectionsΔρmin = 1.93 e Å3
318 parameters
Special details top

Experimental. Details of IR and NMR spectra for (I) are as follows:-

IR: νmax(KBr disc) cm−1 2555(s) (BH), 2513(versus) (BH), 2499(versus,sh) (BH), 2480(s) (BH). 11B and 1H NMR data (CDCl3 294 K) ordered as δ(11B) [δ(1H) of directly attached proton]: +2.3 [+3.61], −2.8 [+2.65], −10.8 [+1.79], BH(4) ca −11.0 [SMe2 +2.47, +2.91], −11.5 [+2.73], −14.8 [+1.20], −21.1 [+2.06], −21.1 [+1.03], −23.1 [+1.02]. Additional data, 13C (CDCl3 300 K) CH +3.07, +3.60 and 31P NMR δ+41.7 at 219 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.67262 (4)0.13753 (3)0.099786 (17)0.04633 (17)
Pd30.42963 (4)0.15203 (3)0.098863 (17)0.03107 (15)
S10.45758 (14)0.21805 (9)0.00477 (6)0.0329 (4)
P10.42053 (16)0.22895 (10)0.15973 (6)0.0333 (4)
C10.4157 (6)0.0587 (3)0.0446 (2)0.0317 (13)
C20.3485 (6)0.0176 (4)0.0850 (2)0.0365 (15)
C30.3814 (7)0.3096 (4)0.0053 (3)0.0452 (17)
C40.4252 (8)0.2060 (4)0.0628 (2)0.0499 (19)
C110.4356 (6)0.1706 (4)0.2107 (2)0.0381 (15)
C120.3601 (9)0.1814 (6)0.2467 (3)0.073 (3)
C130.3749 (11)0.1359 (8)0.2846 (4)0.097 (4)
C140.4652 (11)0.0819 (6)0.2876 (3)0.076 (3)
C150.5408 (11)0.0711 (6)0.2522 (3)0.091 (4)
C160.5270 (10)0.1144 (6)0.2144 (3)0.078 (3)
C210.5438 (6)0.3024 (4)0.1601 (2)0.0347 (14)
C220.5621 (7)0.3470 (4)0.1222 (3)0.0463 (18)
C230.6509 (8)0.4044 (5)0.1212 (3)0.055 (2)
C240.7221 (8)0.4185 (5)0.1569 (3)0.059 (2)
C250.7057 (9)0.3744 (5)0.1956 (3)0.066 (3)
C260.6156 (8)0.3164 (5)0.1970 (2)0.0503 (19)
C310.2850 (7)0.2901 (4)0.1695 (2)0.0418 (16)
C320.1686 (7)0.2570 (5)0.1664 (3)0.053 (2)
C330.0657 (8)0.3030 (6)0.1748 (3)0.065 (2)
C340.0754 (8)0.3810 (6)0.1850 (3)0.063 (2)
C350.1904 (8)0.4141 (5)0.1878 (3)0.067 (3)
C360.2938 (8)0.3702 (4)0.1795 (3)0.052 (2)
B40.3567 (6)0.1462 (4)0.0270 (2)0.0253 (13)
B50.3181 (6)0.0597 (4)0.0017 (3)0.0359 (17)
B60.3143 (7)0.0223 (4)0.0355 (3)0.0405 (19)
B70.2531 (7)0.0828 (5)0.1061 (3)0.0382 (17)
B80.2460 (7)0.1715 (4)0.0671 (2)0.0331 (15)
B90.2051 (7)0.1283 (4)0.0143 (3)0.0346 (17)
B100.1770 (7)0.0262 (4)0.0198 (3)0.042 (2)
B110.2024 (8)0.0022 (5)0.0751 (3)0.044 (2)
B120.1376 (7)0.0934 (5)0.0644 (3)0.0425 (19)
H10.51390.04710.04060.038*
H20.39490.02540.10660.044*
H3A0.41580.35030.01320.068*
H3B0.39110.32420.03580.068*
H3C0.29620.30390.00130.068*
H4A0.33880.20950.06760.075*
H4B0.45410.15510.07260.075*
H4C0.46560.24710.07930.075*
H12A0.29870.21950.24550.087*
H130.32180.14290.30830.117*
H140.47580.05250.31340.092*
H150.60280.03360.25390.110*
H160.57980.10600.19080.093*
H220.51400.33810.09740.056*
H230.66240.43400.09550.067*
H240.78200.45760.15570.071*
H250.75460.38370.22020.080*
H260.60360.28710.22270.060*
H320.15970.20380.15870.064*
H330.01120.27970.17330.078*
H340.00610.41170.19000.075*
H350.19820.46730.19550.080*
H360.37000.39450.18050.063*
H50.34600.05040.03630.043*
H60.33860.08270.02470.049*
H70.23470.08460.14190.046*
H80.21750.23240.07540.040*
H90.15440.16310.01050.041*
H100.10790.00330.00080.051*
H110.14910.05040.09020.053*
H120.04300.10740.07370.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0296 (2)0.0626 (3)0.0468 (3)0.0010 (2)0.0013 (2)0.0074 (2)
Pd30.0265 (2)0.0361 (3)0.0307 (3)0.00015 (19)0.0011 (2)0.0016 (2)
S10.0296 (8)0.0316 (7)0.0376 (9)0.0003 (6)0.0013 (7)0.0024 (7)
P10.0325 (9)0.0364 (8)0.0310 (9)0.0001 (7)0.0024 (7)0.0012 (7)
C10.027 (3)0.025 (3)0.043 (4)0.004 (2)0.001 (3)0.001 (3)
C20.034 (3)0.031 (3)0.045 (4)0.002 (3)0.002 (3)0.008 (3)
C30.053 (5)0.030 (3)0.052 (4)0.003 (3)0.003 (4)0.003 (3)
C40.067 (5)0.051 (4)0.032 (4)0.003 (4)0.005 (4)0.001 (3)
C110.041 (4)0.043 (4)0.030 (3)0.010 (3)0.002 (3)0.001 (3)
C120.062 (6)0.098 (7)0.058 (6)0.020 (5)0.027 (5)0.020 (6)
C130.087 (8)0.143 (11)0.062 (7)0.015 (8)0.033 (6)0.044 (7)
C140.101 (8)0.081 (7)0.048 (6)0.028 (6)0.012 (6)0.028 (5)
C150.127 (10)0.090 (7)0.057 (6)0.045 (7)0.007 (6)0.030 (6)
C160.102 (8)0.095 (7)0.035 (5)0.047 (6)0.011 (5)0.018 (5)
C210.032 (3)0.033 (3)0.038 (4)0.003 (3)0.004 (3)0.002 (3)
C220.051 (5)0.050 (4)0.037 (4)0.004 (4)0.007 (3)0.004 (3)
C230.056 (5)0.044 (4)0.067 (6)0.007 (4)0.020 (4)0.013 (4)
C240.047 (5)0.059 (5)0.071 (6)0.022 (4)0.005 (4)0.008 (4)
C250.067 (6)0.088 (6)0.044 (5)0.033 (5)0.018 (4)0.008 (4)
C260.065 (5)0.054 (4)0.031 (4)0.013 (4)0.001 (4)0.006 (3)
C310.042 (4)0.052 (4)0.031 (4)0.006 (3)0.007 (3)0.000 (3)
C320.044 (4)0.067 (5)0.048 (5)0.004 (4)0.003 (4)0.014 (4)
C330.042 (5)0.091 (7)0.063 (6)0.013 (5)0.010 (4)0.007 (5)
C340.053 (5)0.084 (6)0.051 (5)0.032 (5)0.014 (4)0.009 (5)
C350.060 (5)0.055 (5)0.085 (7)0.018 (4)0.016 (5)0.008 (5)
C360.053 (5)0.050 (4)0.054 (5)0.002 (4)0.009 (4)0.004 (4)
B40.023 (3)0.022 (3)0.030 (4)0.001 (2)0.005 (3)0.002 (3)
B50.029 (4)0.026 (3)0.054 (5)0.003 (3)0.006 (3)0.011 (3)
B60.037 (4)0.025 (3)0.059 (6)0.007 (3)0.004 (4)0.001 (3)
B70.036 (4)0.040 (4)0.039 (4)0.000 (3)0.000 (4)0.002 (3)
B80.031 (4)0.034 (4)0.035 (4)0.003 (3)0.001 (3)0.004 (3)
B90.023 (3)0.029 (3)0.051 (5)0.002 (3)0.004 (3)0.004 (3)
B100.026 (4)0.030 (4)0.071 (6)0.002 (3)0.004 (4)0.003 (4)
B110.037 (4)0.038 (4)0.058 (6)0.009 (3)0.004 (4)0.005 (4)
B120.029 (4)0.046 (4)0.053 (5)0.001 (3)0.007 (4)0.006 (4)
Geometric parameters (Å, º) top
I1—Pd32.6739 (7)C23—H230.93
Pd3—P12.2507 (17)C24—C251.396 (12)
Pd3—B82.254 (7)C24—H240.93
Pd3—B72.269 (8)C25—C261.388 (11)
Pd3—C12.274 (6)C25—H250.93
Pd3—B42.315 (7)C26—H260.93
Pd3—C22.467 (6)C31—C361.384 (10)
S1—C31.779 (7)C31—C321.396 (10)
S1—C41.801 (7)C32—C331.391 (11)
S1—B41.899 (7)C32—H320.93
P1—C211.831 (7)C33—C341.353 (13)
P1—C311.831 (7)C33—H330.93
P1—C111.834 (7)C34—C351.381 (13)
C1—C21.584 (9)C34—H340.93
C1—B41.693 (8)C35—C361.375 (11)
C1—B51.761 (10)C35—H350.93
C1—B61.781 (9)C36—H360.93
C1—H11.10B4—B91.731 (10)
C2—B71.644 (10)B4—B51.745 (9)
C2—B111.663 (10)B4—B81.766 (10)
C2—B61.681 (10)B5—B91.759 (10)
C2—H21.10B5—B101.769 (11)
C3—H3A0.96B5—B61.781 (11)
C3—H3B0.96B5—H51.10
C3—H3C0.96B6—B111.745 (12)
C4—H4A0.96B6—B101.776 (10)
C4—H4B0.96B6—H61.10
C4—H4C0.96B7—B121.795 (12)
C11—C121.378 (10)B7—B111.798 (11)
C11—C161.381 (11)B7—B81.903 (11)
C12—C131.388 (13)B7—H71.10
C12—H12A0.93B8—B121.774 (11)
C13—C141.346 (15)B8—B91.809 (11)
C13—H130.93B8—H81.10
C14—C151.366 (14)B9—B101.754 (10)
C14—H140.93B9—B121.783 (12)
C15—C161.361 (12)B9—H91.10
C15—H150.93B10—B111.757 (13)
C16—H160.93B10—B121.809 (12)
C21—C221.383 (10)B10—H101.10
C21—C261.385 (10)B11—B121.787 (12)
C22—C231.371 (10)B11—H111.10
C22—H220.93B12—H121.10
C23—C241.352 (12)
P1—Pd3—B8102.97 (19)B5—B4—B8112.0 (5)
P1—Pd3—B7100.3 (2)C1—B4—S1119.3 (4)
B8—Pd3—B749.8 (3)B9—B4—S1123.8 (5)
P1—Pd3—C1169.28 (16)B5—B4—S1114.9 (5)
B8—Pd3—C174.6 (2)B8—B4—S1126.3 (4)
B7—Pd3—C170.0 (3)C1—B4—Pd367.1 (3)
P1—Pd3—B4140.80 (16)B9—B4—Pd3123.2 (5)
B8—Pd3—B445.5 (2)B5—B4—Pd3125.8 (4)
B7—Pd3—B476.9 (3)B8—B4—Pd365.4 (3)
C1—Pd3—B443.3 (2)S1—B4—Pd3104.2 (3)
P1—Pd3—C2130.57 (16)B4—B5—B959.2 (4)
B8—Pd3—C274.9 (2)B4—B5—C157.7 (4)
B7—Pd3—C240.4 (2)B9—B5—C1102.5 (5)
C1—Pd3—C238.8 (2)B4—B5—B10107.2 (5)
B4—Pd3—C271.2 (2)B9—B5—B1059.6 (4)
P1—Pd3—I195.06 (5)C1—B5—B10103.7 (6)
B8—Pd3—I1155.09 (19)B4—B5—B6109.8 (6)
B7—Pd3—I1143.2 (2)B9—B5—B6108.7 (6)
C1—Pd3—I190.64 (16)C1—B5—B660.4 (4)
B4—Pd3—I1110.47 (16)B10—B5—B660.1 (4)
C2—Pd3—I1106.07 (16)B4—B5—H5121.5
C3—S1—C499.9 (4)B9—B5—H5123.3
C3—S1—B4101.1 (3)C1—B5—H5125.7
C4—S1—B4107.8 (3)B10—B5—H5123.1
C21—P1—C31102.6 (3)B6—B5—H5119.7
C21—P1—C11106.9 (3)C2—B6—B1158.0 (5)
C31—P1—C11103.9 (3)C2—B6—B10104.0 (6)
C21—P1—Pd3111.1 (2)B11—B6—B1059.9 (5)
C31—P1—Pd3119.4 (2)C2—B6—B5104.2 (5)
C11—P1—Pd3111.9 (2)B11—B6—B5107.3 (6)
C2—C1—B4116.4 (5)B10—B6—B559.7 (4)
C2—C1—B5109.4 (5)C2—B6—C154.4 (4)
B4—C1—B560.7 (4)B11—B6—C1100.6 (5)
C2—C1—B659.6 (4)B10—B6—C1102.6 (5)
B4—C1—B6112.3 (5)B5—B6—C159.3 (4)
B5—C1—B660.4 (4)C2—B6—H6125.3
C2—C1—Pd377.2 (3)B11—B6—H6123.5
B4—C1—Pd369.6 (3)B10—B6—H6123.4
B5—C1—Pd3127.3 (4)B5—B6—H6121.6
B6—C1—Pd3133.0 (4)C1—B6—H6127.1
C2—C1—H1117.5C2—B7—B12104.0 (6)
B4—C1—H1119.6C2—B7—B1157.6 (4)
B5—C1—H1120.5B12—B7—B1159.7 (5)
B6—C1—H1117.2C2—B7—B8108.1 (5)
Pd3—C1—H197.9B12—B7—B857.2 (4)
C1—C2—B7107.6 (5)B11—B7—B8106.8 (5)
C1—C2—B11113.3 (6)C2—B7—Pd376.3 (4)
B7—C2—B1165.9 (5)B12—B7—Pd3118.9 (5)
C1—C2—B666.0 (4)B11—B7—Pd3128.5 (5)
B7—C2—B6118.0 (6)B8—B7—Pd364.7 (3)
B11—C2—B662.9 (5)C2—B7—H7121.1
C1—C2—Pd364.0 (3)B12—B7—H7123.9
B7—C2—Pd363.3 (3)B11—B7—H7118.5
B11—C2—Pd3124.1 (4)B8—B7—H7125.4
B6—C2—Pd3126.7 (4)Pd3—B7—H7103.7
C1—C2—H2122.0B4—B8—B12104.4 (5)
B7—C2—H2120.2B4—B8—B957.9 (4)
B11—C2—H2114.8B12—B8—B959.7 (4)
B6—C2—H2111.6B4—B8—B7101.9 (5)
Pd3—C2—H2109.7B12—B8—B758.3 (4)
S1—C3—H3A109.5B9—B8—B7103.9 (5)
S1—C3—H3B109.5B4—B8—Pd369.1 (3)
H3A—C3—H3B109.5B12—B8—Pd3120.6 (5)
S1—C3—H3C109.5B9—B8—Pd3122.5 (4)
H3A—C3—H3C109.5B7—B8—Pd365.5 (3)
H3B—C3—H3C109.5B4—B8—H8125.2
S1—C4—H4A109.5B12—B8—H8120.8
S1—C4—H4B109.5B9—B8—H8120.4
H4A—C4—H4B109.5B7—B8—H8126.9
S1—C4—H4C109.5Pd3—B8—H8106.9
H4A—C4—H4C109.5B4—B9—B10108.5 (5)
H4B—C4—H4C109.5B4—B9—B560.0 (4)
C12—C11—C16117.5 (7)B10—B9—B560.5 (4)
C12—C11—P1122.5 (6)B4—B9—B12105.5 (6)
C16—C11—P1120.0 (6)B10—B9—B1261.5 (5)
C11—C12—C13120.5 (9)B5—B9—B12107.9 (6)
C11—C12—H12A119.7B4—B9—B859.8 (4)
C13—C12—H12A119.7B10—B9—B8110.7 (6)
C14—C13—C12120.9 (10)B5—B9—B8109.3 (5)
C14—C13—H13119.6B12—B9—B859.2 (5)
C12—C13—H13119.6B4—B9—H9122.9
C13—C14—C15118.9 (9)B10—B9—H9119.8
C13—C14—H14120.6B5—B9—H9121.2
C15—C14—H14120.6B12—B9—H9122.8
C16—C15—C14121.2 (10)B8—B9—H9120.7
C16—C15—H15119.4B9—B10—B11109.2 (6)
C14—C15—H15119.4B9—B10—B559.9 (4)
C15—C16—C11121.0 (9)B11—B10—B5107.3 (6)
C15—C16—H16119.5B9—B10—B6109.1 (5)
C11—C16—H16119.5B11—B10—B659.2 (5)
C22—C21—C26119.3 (6)B5—B10—B660.3 (4)
C22—C21—P1118.0 (5)B9—B10—B1260.1 (5)
C26—C21—P1122.6 (5)B11—B10—B1260.1 (5)
C23—C22—C21120.3 (7)B5—B10—B12106.4 (5)
C23—C22—H22119.8B6—B10—B12106.9 (6)
C21—C22—H22119.8B9—B10—H10120.6
C24—C23—C22121.0 (8)B11—B10—H10121.6
C24—C23—H23119.5B5—B10—H10122.5
C22—C23—H23119.5B6—B10—H10121.8
C23—C24—C25120.0 (7)B12—B10—H10122.7
C23—C24—H24120.0C2—B11—B659.0 (4)
C25—C24—H24120.0C2—B11—B10105.6 (6)
C26—C25—C24119.4 (8)B6—B11—B1061.0 (5)
C26—C25—H25120.3C2—B11—B12103.6 (5)
C24—C25—H25120.3B6—B11—B12109.3 (6)
C21—C26—C25120.0 (7)B10—B11—B1261.4 (5)
C21—C26—H26120.0C2—B11—B756.6 (4)
C25—C26—H26120.0B6—B11—B7107.1 (5)
C36—C31—C32117.9 (7)B10—B11—B7109.1 (5)
C36—C31—P1121.7 (6)B12—B11—B760.1 (5)
C32—C31—P1120.4 (6)C2—B11—H11125.7
C33—C32—C31120.4 (8)B6—B11—H11121.0
C33—C32—H32119.8B10—B11—H11120.8
C31—C32—H32119.8B12—B11—H11121.9
C34—C33—C32121.2 (9)B7—B11—H11122.3
C34—C33—H33119.4B8—B12—B961.1 (4)
C32—C33—H33119.4B8—B12—B11113.1 (6)
C33—C34—C35118.5 (8)B9—B12—B11106.6 (6)
C33—C34—H34120.8B8—B12—B764.5 (5)
C35—C34—H34120.8B9—B12—B7109.6 (6)
C36—C35—C34121.6 (9)B11—B12—B760.3 (5)
C36—C35—H35119.2B8—B12—B10109.8 (5)
C34—C35—H35119.2B9—B12—B1058.4 (4)
C35—C36—C31120.3 (8)B11—B12—B1058.5 (5)
C35—C36—H36119.8B7—B12—B10107.0 (5)
C31—C36—H36119.8B8—B12—H12117.4
C1—B4—B9106.6 (5)B9—B12—H12122.6
C1—B4—B561.6 (4)B11—B12—H12121.4
B9—B4—B560.8 (4)B7—B12—H12120.3
C1—B4—B8104.9 (5)B10—B12—H12123.4
B9—B4—B862.3 (4)
B8—Pd3—P1—C21122.0 (3)B4—Pd3—B7—B1150.2 (6)
B7—Pd3—P1—C21172.9 (3)C2—Pd3—B7—B1126.0 (5)
C1—Pd3—P1—C21162.5 (9)I1—Pd3—B7—B1156.6 (8)
B4—Pd3—P1—C2190.9 (3)P1—Pd3—B7—B898.3 (3)
C2—Pd3—P1—C21156.9 (3)C1—Pd3—B7—B886.4 (3)
I1—Pd3—P1—C2140.7 (2)B4—Pd3—B7—B841.7 (3)
B8—Pd3—P1—C313.0 (3)C2—Pd3—B7—B8117.9 (5)
B7—Pd3—P1—C3153.8 (3)I1—Pd3—B7—B8148.5 (3)
C1—Pd3—P1—C3178.5 (9)C1—B4—B8—B1262.1 (6)
B4—Pd3—P1—C3128.1 (4)B9—B4—B8—B1239.1 (5)
C2—Pd3—P1—C3184.1 (3)B5—B4—B8—B122.9 (7)
I1—Pd3—P1—C31159.7 (3)S1—B4—B8—B12152.3 (5)
B8—Pd3—P1—C11118.6 (3)Pd3—B4—B8—B12117.7 (5)
B7—Pd3—P1—C1167.7 (3)C1—B4—B8—B9101.2 (5)
C1—Pd3—P1—C1143.1 (9)B5—B4—B8—B936.2 (5)
B4—Pd3—P1—C11149.7 (3)S1—B4—B8—B9113.2 (6)
C2—Pd3—P1—C1137.5 (3)Pd3—B4—B8—B9156.8 (4)
I1—Pd3—P1—C1178.7 (2)C1—B4—B8—B72.1 (6)
P1—Pd3—C1—C26.8 (11)B9—B4—B8—B799.1 (5)
B8—Pd3—C1—C285.0 (4)B5—B4—B8—B762.8 (6)
B7—Pd3—C1—C232.7 (4)S1—B4—B8—B7147.7 (5)
B4—Pd3—C1—C2124.8 (5)Pd3—B4—B8—B757.7 (4)
I1—Pd3—C1—C2115.3 (3)C1—B4—B8—Pd355.6 (4)
P1—Pd3—C1—B4117.9 (8)B9—B4—B8—Pd3156.8 (4)
B8—Pd3—C1—B439.8 (3)B5—B4—B8—Pd3120.6 (5)
B7—Pd3—C1—B492.0 (4)S1—B4—B8—Pd390.0 (5)
C2—Pd3—C1—B4124.8 (5)C2—B7—B8—B44.3 (6)
I1—Pd3—C1—B4119.9 (3)B12—B7—B8—B499.7 (5)
P1—Pd3—C1—B598.0 (9)B11—B7—B8—B464.9 (6)
B8—Pd3—C1—B519.9 (5)Pd3—B7—B8—B460.2 (4)
B7—Pd3—C1—B572.1 (5)C2—B7—B8—B1295.4 (6)
B4—Pd3—C1—B519.9 (5)B11—B7—B8—B1234.8 (5)
C2—Pd3—C1—B5104.8 (6)Pd3—B7—B8—B12159.9 (5)
I1—Pd3—C1—B5139.8 (5)C2—B7—B8—B955.2 (6)
P1—Pd3—C1—B616.0 (13)B12—B7—B8—B940.2 (5)
B8—Pd3—C1—B662.1 (6)B11—B7—B8—B95.4 (6)
B7—Pd3—C1—B69.9 (5)Pd3—B7—B8—B9119.7 (4)
B4—Pd3—C1—B6101.9 (6)C2—B7—B8—Pd364.6 (4)
C2—Pd3—C1—B622.9 (5)B12—B7—B8—Pd3159.9 (5)
I1—Pd3—C1—B6138.2 (5)B11—B7—B8—Pd3125.2 (5)
B4—C1—C2—B711.9 (7)P1—Pd3—B8—B4152.8 (3)
B5—C1—C2—B778.1 (6)B7—Pd3—B8—B4114.6 (4)
B6—C1—C2—B7113.5 (6)C1—Pd3—B8—B438.0 (3)
Pd3—C1—C2—B747.3 (4)C2—Pd3—B8—B478.3 (3)
B4—C1—C2—B1158.8 (7)I1—Pd3—B8—B417.4 (6)
B5—C1—C2—B117.4 (7)P1—Pd3—B8—B12112.5 (5)
B6—C1—C2—B1142.8 (5)B7—Pd3—B8—B1219.8 (5)
Pd3—C1—C2—B11118.0 (5)C1—Pd3—B8—B1256.8 (5)
B4—C1—C2—B6101.5 (6)B4—Pd3—B8—B1294.8 (6)
B5—C1—C2—B635.4 (5)C2—Pd3—B8—B1216.5 (5)
Pd3—C1—C2—B6160.8 (4)I1—Pd3—B8—B12112.2 (6)
B4—C1—C2—Pd359.3 (4)P1—Pd3—B8—B9176.1 (5)
B5—C1—C2—Pd3125.4 (4)B7—Pd3—B8—B991.3 (6)
B6—C1—C2—Pd3160.8 (4)C1—Pd3—B8—B914.7 (5)
P1—Pd3—C2—C1178.3 (3)B4—Pd3—B8—B923.3 (4)
B8—Pd3—C2—C184.0 (4)C2—Pd3—B8—B954.9 (5)
B7—Pd3—C2—C1128.4 (5)I1—Pd3—B8—B940.8 (8)
B4—Pd3—C2—C136.5 (3)P1—Pd3—B8—B792.6 (3)
I1—Pd3—C2—C170.1 (3)C1—Pd3—B8—B776.6 (3)
P1—Pd3—C2—B750.0 (4)B4—Pd3—B8—B7114.6 (4)
B8—Pd3—C2—B744.3 (4)C2—Pd3—B8—B736.4 (3)
C1—Pd3—C2—B7128.4 (5)I1—Pd3—B8—B7132.1 (4)
B4—Pd3—C2—B791.8 (4)C1—B4—B9—B105.2 (7)
I1—Pd3—C2—B7161.5 (3)B5—B4—B9—B1037.5 (6)
P1—Pd3—C2—B1176.6 (6)B8—B4—B9—B10103.6 (6)
B8—Pd3—C2—B1117.7 (6)S1—B4—B9—B10139.4 (5)
B7—Pd3—C2—B1126.7 (6)Pd3—B4—B9—B1078.3 (6)
C1—Pd3—C2—B11101.7 (7)C1—B4—B9—B542.7 (5)
B4—Pd3—C2—B1165.2 (6)B8—B4—B9—B5141.1 (6)
I1—Pd3—C2—B11171.8 (5)S1—B4—B9—B5101.9 (6)
P1—Pd3—C2—B6156.3 (5)Pd3—B4—B9—B5115.8 (5)
B8—Pd3—C2—B662.0 (6)C1—B4—B9—B1259.4 (6)
B7—Pd3—C2—B6106.3 (7)B5—B4—B9—B12102.1 (6)
C1—Pd3—C2—B622.1 (5)B8—B4—B9—B1239.1 (5)
B4—Pd3—C2—B614.5 (5)S1—B4—B9—B12156.0 (5)
I1—Pd3—C2—B692.2 (5)Pd3—B4—B9—B1213.7 (6)
C21—P1—C11—C12103.9 (7)C1—B4—B9—B898.4 (5)
C31—P1—C11—C124.1 (8)B5—B4—B9—B8141.1 (6)
Pd3—P1—C11—C12134.3 (7)S1—B4—B9—B8117.0 (6)
C21—P1—C11—C1674.8 (8)Pd3—B4—B9—B825.3 (4)
C31—P1—C11—C16177.2 (8)C1—B5—B9—B439.8 (4)
Pd3—P1—C11—C1647.1 (8)B10—B5—B9—B4138.4 (6)
C16—C11—C12—C131.3 (15)B6—B5—B9—B4102.4 (6)
P1—C11—C12—C13179.9 (9)B4—B5—B9—B10138.4 (6)
C11—C12—C13—C141.8 (19)C1—B5—B9—B1098.7 (6)
C12—C13—C14—C151.5 (19)B6—B5—B9—B1036.0 (6)
C13—C14—C15—C160.7 (18)B4—B5—B9—B1297.9 (6)
C14—C15—C16—C110.2 (19)C1—B5—B9—B1258.1 (6)
C12—C11—C16—C150.5 (16)B10—B5—B9—B1240.6 (6)
P1—C11—C16—C15179.1 (9)B6—B5—B9—B124.6 (7)
C31—P1—C21—C2279.5 (6)B4—B5—B9—B835.1 (5)
C11—P1—C21—C22171.6 (5)C1—B5—B9—B84.7 (7)
Pd3—P1—C21—C2249.2 (6)B10—B5—B9—B8103.4 (6)
C31—P1—C21—C2698.3 (7)B6—B5—B9—B867.3 (6)
C11—P1—C21—C2610.7 (7)B12—B8—B9—B4135.0 (5)
Pd3—P1—C21—C26133.0 (6)B7—B8—B9—B495.5 (5)
C26—C21—C22—C230.3 (11)Pd3—B8—B9—B425.9 (5)
P1—C21—C22—C23178.1 (6)B4—B8—B9—B10100.0 (5)
C21—C22—C23—C240.0 (12)B12—B8—B9—B1035.0 (5)
C22—C23—C24—C250.0 (14)B7—B8—B9—B104.5 (7)
C23—C24—C25—C260.3 (15)Pd3—B8—B9—B1074.1 (6)
C22—C21—C26—C250.6 (12)B4—B8—B9—B535.2 (5)
P1—C21—C26—C25178.3 (7)B12—B8—B9—B599.8 (6)
C24—C25—C26—C210.6 (14)B7—B8—B9—B560.3 (6)
C21—P1—C31—C366.7 (7)Pd3—B8—B9—B59.3 (7)
C11—P1—C31—C36104.5 (7)B4—B8—B9—B12135.0 (5)
Pd3—P1—C31—C36130.0 (6)B7—B8—B9—B1239.5 (5)
C21—P1—C31—C32172.4 (6)Pd3—B8—B9—B12109.1 (6)
C11—P1—C31—C3276.4 (7)B4—B9—B10—B1162.0 (7)
Pd3—P1—C31—C3249.1 (7)B5—B9—B10—B1199.3 (6)
C36—C31—C32—C332.3 (12)B12—B9—B10—B1136.0 (5)
P1—C31—C32—C33178.5 (7)B8—B9—B10—B111.9 (7)
C31—C32—C33—C341.7 (14)B4—B9—B10—B537.3 (5)
C32—C33—C34—C351.3 (14)B12—B9—B10—B5135.2 (6)
C33—C34—C35—C361.6 (14)B8—B9—B10—B5101.1 (6)
C34—C35—C36—C312.4 (14)B4—B9—B10—B61.1 (8)
C32—C31—C36—C352.7 (12)B5—B9—B10—B636.2 (6)
P1—C31—C36—C35178.2 (7)B12—B9—B10—B699.0 (7)
C2—C1—B4—B956.2 (7)B8—B9—B10—B664.9 (7)
B5—C1—B4—B942.3 (5)B4—B9—B10—B1298.0 (6)
B6—C1—B4—B99.7 (7)B5—B9—B10—B12135.2 (6)
Pd3—C1—B4—B9119.6 (5)B8—B9—B10—B1234.1 (5)
C2—C1—B4—B598.5 (6)B4—B5—B10—B936.6 (5)
B6—C1—B4—B532.5 (5)C1—B5—B10—B996.6 (5)
Pd3—C1—B4—B5161.9 (4)B6—B5—B10—B9140.0 (6)
C2—C1—B4—B88.8 (7)B4—B5—B10—B1166.0 (6)
B5—C1—B4—B8107.3 (5)B9—B5—B10—B11102.6 (6)
B6—C1—B4—B874.7 (6)C1—B5—B10—B116.0 (6)
Pd3—C1—B4—B854.6 (4)B6—B5—B10—B1137.4 (5)
C2—C1—B4—S1157.3 (5)B4—B5—B10—B6103.4 (6)
B5—C1—B4—S1104.2 (5)B9—B5—B10—B6140.0 (6)
B6—C1—B4—S1136.7 (5)C1—B5—B10—B643.3 (5)
Pd3—C1—B4—S193.9 (4)B4—B5—B10—B122.9 (7)
C2—C1—B4—Pd363.4 (5)B9—B5—B10—B1239.5 (5)
B5—C1—B4—Pd3161.9 (4)C1—B5—B10—B1257.1 (6)
B6—C1—B4—Pd3129.3 (5)B6—B5—B10—B12100.5 (6)
C3—S1—B4—C1156.5 (5)C2—B6—B10—B962.4 (7)
C4—S1—B4—C199.2 (5)B11—B6—B10—B9101.5 (7)
C3—S1—B4—B963.1 (6)B5—B6—B10—B936.1 (6)
C4—S1—B4—B941.2 (6)C1—B6—B10—B96.4 (8)
C3—S1—B4—B5133.5 (5)C2—B6—B10—B1139.1 (5)
C4—S1—B4—B529.2 (5)B5—B6—B10—B11137.6 (6)
C3—S1—B4—B815.3 (6)C1—B6—B10—B1195.1 (6)
C4—S1—B4—B8119.5 (6)C2—B6—B10—B598.5 (5)
C3—S1—B4—Pd385.0 (3)B11—B6—B10—B5137.6 (6)
C4—S1—B4—Pd3170.7 (3)C1—B6—B10—B542.5 (5)
P1—Pd3—B4—C1164.9 (2)C2—B6—B10—B121.1 (7)
B8—Pd3—B4—C1120.0 (4)B11—B6—B10—B1238.0 (5)
B7—Pd3—B4—C174.6 (3)B5—B6—B10—B1299.5 (6)
C2—Pd3—B4—C132.9 (3)C1—B6—B10—B1257.0 (7)
I1—Pd3—B4—C167.7 (3)C1—C2—B11—B644.2 (5)
P1—Pd3—B4—B969.5 (5)B7—C2—B11—B6143.8 (6)
B8—Pd3—B4—B924.6 (4)Pd3—C2—B11—B6117.7 (6)
B7—Pd3—B4—B920.8 (5)C1—C2—B11—B103.2 (7)
C1—Pd3—B4—B995.4 (5)B7—C2—B11—B10102.9 (6)
C2—Pd3—B4—B962.5 (5)B6—C2—B11—B1040.9 (5)
I1—Pd3—B4—B9163.1 (4)Pd3—C2—B11—B1076.8 (7)
P1—Pd3—B4—B5145.2 (4)C1—C2—B11—B1260.4 (7)
B8—Pd3—B4—B5100.3 (6)B7—C2—B11—B1239.2 (5)
B7—Pd3—B4—B554.9 (5)B6—C2—B11—B12104.5 (6)
C1—Pd3—B4—B519.7 (5)Pd3—C2—B11—B1213.2 (8)
C2—Pd3—B4—B513.2 (5)C1—C2—B11—B799.6 (6)
I1—Pd3—B4—B587.4 (5)B6—C2—B11—B7143.8 (6)
P1—Pd3—B4—B844.9 (4)Pd3—C2—B11—B726.1 (5)
B7—Pd3—B4—B845.4 (4)B10—B6—B11—C2133.8 (5)
C1—Pd3—B4—B8120.0 (4)B5—B6—B11—C296.3 (5)
C2—Pd3—B4—B887.1 (3)C1—B6—B11—C235.4 (4)
I1—Pd3—B4—B8172.3 (3)C2—B6—B11—B10133.8 (5)
P1—Pd3—B4—S178.9 (4)B5—B6—B11—B1037.6 (5)
B8—Pd3—B4—S1123.8 (4)C1—B6—B11—B1098.5 (5)
B7—Pd3—B4—S1169.2 (3)C2—B6—B11—B1294.6 (6)
C1—Pd3—B4—S1116.2 (4)B10—B6—B11—B1239.2 (5)
C2—Pd3—B4—S1149.1 (3)B5—B6—B11—B121.6 (7)
I1—Pd3—B4—S148.5 (3)C1—B6—B11—B1259.3 (7)
C1—B4—B5—B9132.4 (6)C2—B6—B11—B731.1 (5)
B8—B4—B5—B936.8 (5)B10—B6—B11—B7102.8 (6)
S1—B4—B5—B9116.3 (5)B5—B6—B11—B765.2 (7)
Pd3—B4—B5—B9111.7 (6)C1—B6—B11—B74.3 (7)
B9—B4—B5—C1132.4 (6)B9—B10—B11—C261.3 (7)
B8—B4—B5—C195.6 (5)B5—B10—B11—C22.1 (7)
S1—B4—B5—C1111.3 (5)B6—B10—B11—C240.0 (5)
Pd3—B4—B5—C120.7 (5)B12—B10—B11—C297.2 (6)
C1—B4—B5—B1095.6 (6)B9—B10—B11—B6101.3 (6)
B9—B4—B5—B1036.8 (5)B5—B10—B11—B637.8 (5)
B8—B4—B5—B100.0 (7)B12—B10—B11—B6137.2 (5)
S1—B4—B5—B10153.1 (5)B9—B10—B11—B1235.9 (5)
Pd3—B4—B5—B1074.9 (6)B5—B10—B11—B1299.3 (6)
C1—B4—B5—B631.9 (5)B6—B10—B11—B12137.2 (5)
B9—B4—B5—B6100.4 (6)B9—B10—B11—B71.8 (7)
B8—B4—B5—B663.6 (7)B5—B10—B11—B761.6 (7)
S1—B4—B5—B6143.2 (5)B6—B10—B11—B799.4 (6)
Pd3—B4—B5—B611.3 (7)B12—B10—B11—B737.8 (5)
C2—C1—B5—B4110.0 (5)B12—B7—B11—C2134.8 (6)
B6—C1—B5—B4145.1 (5)B8—B7—B11—C2101.1 (6)
Pd3—C1—B5—B421.5 (5)Pd3—B7—B11—C230.3 (6)
C2—C1—B5—B969.5 (6)C2—B7—B11—B632.0 (5)
B4—C1—B5—B940.5 (5)B12—B7—B11—B6102.8 (6)
B6—C1—B5—B9104.5 (6)B8—B7—B11—B669.0 (7)
Pd3—C1—B5—B919.0 (7)Pd3—B7—B11—B61.7 (9)
C2—C1—B5—B108.1 (6)C2—B7—B11—B1096.5 (6)
B4—C1—B5—B10101.9 (5)B12—B7—B11—B1038.3 (5)
B6—C1—B5—B1043.2 (5)B8—B7—B11—B104.6 (7)
Pd3—C1—B5—B1080.4 (6)Pd3—B7—B11—B1066.2 (7)
C2—C1—B5—B635.1 (5)C2—B7—B11—B12134.8 (6)
B4—C1—B5—B6145.1 (5)B8—B7—B11—B1233.8 (5)
Pd3—C1—B5—B6123.6 (6)Pd3—B7—B11—B12104.5 (6)
C1—C2—B6—B11135.6 (5)B4—B8—B12—B938.2 (5)
B7—C2—B6—B1137.6 (6)B7—B8—B12—B9133.5 (5)
Pd3—C2—B6—B11113.9 (6)Pd3—B8—B12—B9112.2 (5)
C1—C2—B6—B1095.6 (5)B4—B8—B12—B1158.6 (7)
B7—C2—B6—B102.4 (7)B9—B8—B12—B1196.8 (6)
B11—C2—B6—B1040.0 (5)B7—B8—B12—B1136.7 (6)
Pd3—C2—B6—B1073.9 (6)Pd3—B8—B12—B1115.4 (8)
C1—C2—B6—B533.9 (5)B4—B8—B12—B795.3 (5)
B7—C2—B6—B564.1 (7)B9—B8—B12—B7133.5 (5)
B11—C2—B6—B5101.7 (6)Pd3—B8—B12—B721.3 (5)
Pd3—C2—B6—B512.2 (7)B4—B8—B12—B104.6 (7)
B7—C2—B6—C197.9 (6)B9—B8—B12—B1033.6 (5)
B11—C2—B6—C1135.6 (5)B7—B8—B12—B1099.9 (6)
Pd3—C2—B6—C121.7 (5)Pd3—B8—B12—B1078.6 (7)
B4—B5—B6—C20.8 (7)B4—B9—B12—B839.4 (5)
B9—B5—B6—C262.3 (6)B10—B9—B12—B8142.3 (6)
C1—B5—B6—C231.8 (5)B5—B9—B12—B8102.3 (6)
B10—B5—B6—C298.1 (6)B4—B9—B12—B1168.3 (6)
B4—B5—B6—B1161.3 (7)B10—B9—B12—B1134.7 (5)
B9—B5—B6—B111.8 (7)B5—B9—B12—B115.4 (7)
C1—B5—B6—B1192.2 (6)B8—B9—B12—B11107.7 (6)
B10—B5—B6—B1137.7 (5)B4—B9—B12—B74.6 (7)
B4—B5—B6—B1098.9 (6)B10—B9—B12—B798.3 (6)
B9—B5—B6—B1035.8 (5)B5—B9—B12—B758.2 (7)
C1—B5—B6—B10129.9 (6)B8—B9—B12—B744.0 (5)
B4—B5—B6—C131.0 (5)B4—B9—B12—B10103.0 (5)
B9—B5—B6—C194.1 (5)B5—B9—B12—B1040.1 (5)
B10—B5—B6—C1129.9 (6)B8—B9—B12—B10142.3 (6)
B4—C1—B6—C2108.4 (6)C2—B11—B12—B80.8 (8)
B5—C1—B6—C2141.1 (6)B6—B11—B12—B860.8 (8)
Pd3—C1—B6—C226.0 (6)B10—B11—B12—B899.8 (6)
C2—C1—B6—B1137.2 (5)B7—B11—B12—B838.4 (6)
B4—C1—B6—B1171.3 (6)C2—B11—B12—B966.0 (7)
B5—C1—B6—B11103.9 (6)B6—B11—B12—B94.4 (8)
Pd3—C1—B6—B1111.1 (8)B10—B11—B12—B934.6 (5)
C2—C1—B6—B1098.4 (6)B7—B11—B12—B9103.5 (6)
B4—C1—B6—B1010.1 (7)C2—B11—B12—B737.5 (5)
B5—C1—B6—B1042.7 (5)B6—B11—B12—B799.1 (6)
Pd3—C1—B6—B1072.3 (7)B10—B11—B12—B7138.1 (6)
C2—C1—B6—B5141.1 (6)C2—B11—B12—B10100.6 (6)
B4—C1—B6—B532.6 (5)B6—B11—B12—B1039.0 (5)
Pd3—C1—B6—B5115.0 (6)B7—B11—B12—B10138.1 (6)
C1—C2—B7—B1269.1 (6)C2—B7—B12—B8102.7 (5)
B11—C2—B7—B1239.1 (5)B11—B7—B12—B8140.8 (6)
B6—C2—B7—B122.6 (7)Pd3—B7—B12—B820.8 (5)
Pd3—C2—B7—B12116.8 (5)C2—B7—B12—B960.2 (7)
C1—C2—B7—B11108.3 (6)B11—B7—B12—B998.3 (6)
B6—C2—B7—B1136.6 (6)B8—B7—B12—B942.4 (5)
Pd3—C2—B7—B11156.0 (5)Pd3—B7—B12—B921.7 (7)
C1—C2—B7—B89.5 (7)C2—B7—B12—B1138.1 (5)
B11—C2—B7—B898.8 (6)B8—B7—B12—B11140.8 (6)
B6—C2—B7—B862.2 (7)Pd3—B7—B12—B11120.0 (6)
Pd3—C2—B7—B857.2 (4)C2—B7—B12—B101.6 (7)
C1—C2—B7—Pd347.7 (4)B11—B7—B12—B1036.5 (5)
B11—C2—B7—Pd3156.0 (5)B8—B7—B12—B10104.3 (6)
B6—C2—B7—Pd3119.4 (5)Pd3—B7—B12—B1083.5 (6)
P1—Pd3—B7—C2143.8 (3)B9—B10—B12—B834.7 (5)
B8—Pd3—B7—C2117.9 (5)B11—B10—B12—B8105.6 (6)
C1—Pd3—B7—C231.5 (3)B5—B10—B12—B84.8 (8)
B4—Pd3—B7—C276.2 (4)B6—B10—B12—B868.0 (7)
I1—Pd3—B7—C230.6 (5)B11—B10—B12—B9140.3 (6)
P1—Pd3—B7—B12117.6 (5)B5—B10—B12—B939.4 (5)
B8—Pd3—B7—B1219.3 (5)B6—B10—B12—B9102.7 (6)
C1—Pd3—B7—B1267.2 (5)B9—B10—B12—B11140.3 (6)
B4—Pd3—B7—B1222.4 (5)B5—B10—B12—B11100.8 (6)
C2—Pd3—B7—B1298.7 (6)B6—B10—B12—B1137.6 (5)
I1—Pd3—B7—B12129.3 (4)B9—B10—B12—B7103.0 (6)
P1—Pd3—B7—B11169.8 (6)B11—B10—B12—B737.3 (5)
B8—Pd3—B7—B1191.9 (7)B5—B10—B12—B763.5 (7)
C1—Pd3—B7—B115.5 (6)B6—B10—B12—B70.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···I10.932.983.831 (9)153
(II) 3-dimethylphenylphosphine- 3-chloro-4-dimethylsulfido-closo-3-pallada-1,2-dicarbadodecaborane top
Crystal data top
[Pd(C4H16B9S)Cl(C8H11P)]F(000) = 952
Mr = 473.54Dx = 1.458 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.8117 (8) Åθ = 10.0–16.5°
b = 9.2670 (7) ŵ = 1.15 mm1
c = 18.2948 (10) ÅT = 294 K
β = 96.567 (5)°Block, purple
V = 2157.8 (2) Å30.33 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
5023 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.020
Graphite monochromatorθmax = 30.0°, θmin = 1.9°
θ/2θ scansh = 018
Absorption correction: ψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
k = 013
Tmin = 0.684, Tmax = 0.760l = 2525
6506 measured reflections3 standard reflections every 250 reflections
6265 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.6303P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6265 reflectionsΔρmax = 0.70 e Å3
231 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00185 (18)
Crystal data top
[Pd(C4H16B9S)Cl(C8H11P)]V = 2157.8 (2) Å3
Mr = 473.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8117 (8) ŵ = 1.15 mm1
b = 9.2670 (7) ÅT = 294 K
c = 18.2948 (10) Å0.33 × 0.25 × 0.25 mm
β = 96.567 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5023 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
Rint = 0.020
Tmin = 0.684, Tmax = 0.7603 standard reflections every 250 reflections
6506 measured reflections intensity decay: none
6265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
6265 reflectionsΔρmin = 0.51 e Å3
231 parameters
Special details top

Experimental. Details of IR and NMR spectra for (II) are as follows:- IR: νmax(KBr disc) cm−1 2602(m,sh) (BH), 2561(m,sh) (BH), 2537(versus) (BH), 2497(m,sh) (BH). 11B and 1H NMR data (CDCl3 294 K) ordered as δ(11B) [δ(1H) of directly attached proton]: −3.5 [+2.6], −5.6 [+2.8], BH(4) −10.0 [SMe2 +2.47, +2.66], −12.5 [+2.1], −14.2 [+2.4], −17.3 [+1.4], −21.7 [+2.0], −23.9 [+0.8], −26.0 [+0.8]. Additional data, 1H (CDCl3 294 K) P-methyl resonances at +1.99, +1.96, +1.93 and +1.89; 31P (CDCl3 229 K) δ +15.96.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd30.379261 (10)0.335664 (14)0.101576 (7)0.03293 (5)
S10.53335 (4)0.04233 (5)0.12176 (3)0.03873 (10)
P10.20666 (4)0.36995 (5)0.07755 (3)0.03981 (11)
Cl10.39537 (4)0.27972 (7)0.02333 (3)0.05485 (13)
C10.55550 (13)0.36598 (18)0.14010 (9)0.0329 (3)
H10.58670.36360.08650.039*
C20.50663 (14)0.51148 (19)0.16241 (10)0.0375 (4)
H20.50990.60920.12860.045*
C30.40912 (19)0.0446 (3)0.10041 (15)0.0622 (6)
H3A0.41970.14000.08220.093*
H3B0.36680.01010.06360.093*
H3C0.37410.05060.14400.093*
C40.5948 (2)0.0794 (2)0.18996 (13)0.0562 (6)
H4A0.54920.09460.22740.084*
H4B0.66000.03870.21170.084*
H4C0.60810.16990.16720.084*
C110.18008 (14)0.5338 (2)0.02529 (10)0.0393 (4)
C120.1707 (2)0.6645 (2)0.06040 (12)0.0531 (5)
H120.17250.66740.11130.064*
C130.1586 (2)0.7905 (3)0.02020 (15)0.0676 (7)
H130.15240.87790.04430.081*
C140.1555 (2)0.7883 (3)0.05508 (15)0.0673 (7)
H140.14770.87370.08180.081*
C150.1640 (2)0.6597 (3)0.09035 (13)0.0670 (7)
H150.16140.65780.14140.080*
C160.17644 (19)0.5322 (3)0.05101 (12)0.0578 (6)
H160.18240.44530.07560.069*
C170.1412 (2)0.2262 (3)0.02328 (18)0.0750 (8)
H17A0.14480.13880.05170.113*
H17B0.17520.21160.02030.113*
H17C0.06900.25170.00960.113*
C180.13252 (18)0.3838 (3)0.15605 (14)0.0593 (6)
H18A0.16160.45910.18810.089*
H18B0.13620.29380.18220.089*
H18C0.06050.40570.13930.089*
B40.50616 (16)0.2128 (2)0.17366 (11)0.0335 (4)
B50.62480 (18)0.2841 (2)0.21582 (12)0.0401 (4)
H50.69900.22460.21540.048*
B60.62427 (18)0.4761 (2)0.20917 (12)0.0431 (5)
H60.69660.53860.20580.052*
B70.39869 (18)0.4687 (2)0.20263 (12)0.0421 (5)
H70.32820.53740.19590.050*
B80.39851 (18)0.2672 (2)0.21915 (11)0.0396 (4)
H80.33080.19910.22810.048*
B90.52454 (19)0.2306 (2)0.26969 (12)0.0425 (5)
H90.53470.13840.30770.051*
B100.5951 (2)0.3929 (3)0.29088 (12)0.0491 (5)
H100.64840.40340.34220.059*
B110.5189 (2)0.5382 (2)0.25307 (12)0.0466 (5)
H110.52170.64410.28030.056*
B120.4533 (2)0.3886 (3)0.28837 (12)0.0483 (5)
H12A0.41280.39990.33800.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd30.03533 (7)0.03033 (7)0.03383 (7)0.00362 (5)0.00693 (5)0.00116 (5)
S10.0453 (2)0.0300 (2)0.0402 (2)0.00383 (18)0.00193 (18)0.00286 (17)
P10.0349 (2)0.0340 (2)0.0511 (3)0.00032 (18)0.0071 (2)0.0008 (2)
Cl10.0621 (3)0.0670 (3)0.0361 (2)0.0092 (3)0.0086 (2)0.0039 (2)
C10.0353 (8)0.0301 (8)0.0330 (8)0.0020 (6)0.0030 (6)0.0012 (6)
C20.0467 (10)0.0253 (8)0.0406 (9)0.0021 (7)0.0052 (7)0.0012 (7)
C30.0541 (12)0.0404 (12)0.0885 (18)0.0046 (10)0.0081 (12)0.0166 (11)
C40.0739 (15)0.0351 (10)0.0554 (12)0.0121 (10)0.0102 (11)0.0006 (9)
C110.0315 (8)0.0438 (10)0.0419 (9)0.0032 (7)0.0020 (7)0.0006 (8)
C120.0734 (15)0.0431 (11)0.0424 (10)0.0035 (10)0.0043 (10)0.0031 (9)
C130.093 (2)0.0432 (12)0.0659 (16)0.0046 (13)0.0067 (14)0.0081 (11)
C140.0652 (15)0.0699 (17)0.0670 (16)0.0078 (13)0.0083 (12)0.0317 (14)
C150.0629 (14)0.096 (2)0.0430 (11)0.0205 (14)0.0087 (10)0.0167 (13)
C160.0604 (13)0.0687 (16)0.0436 (11)0.0172 (12)0.0032 (9)0.0029 (10)
C170.0578 (14)0.0527 (15)0.114 (2)0.0154 (12)0.0059 (14)0.0247 (15)
C180.0481 (12)0.0626 (14)0.0719 (15)0.0041 (11)0.0272 (11)0.0157 (12)
B40.0403 (10)0.0258 (8)0.0344 (9)0.0004 (7)0.0043 (7)0.0021 (7)
B50.0449 (11)0.0355 (10)0.0382 (10)0.0009 (9)0.0022 (8)0.0016 (8)
B60.0485 (12)0.0352 (11)0.0440 (11)0.0098 (9)0.0016 (9)0.0011 (9)
B70.0499 (12)0.0347 (11)0.0432 (11)0.0048 (9)0.0123 (9)0.0025 (8)
B80.0481 (11)0.0343 (10)0.0380 (10)0.0022 (9)0.0115 (8)0.0028 (8)
B90.0590 (13)0.0345 (11)0.0337 (10)0.0025 (9)0.0038 (9)0.0043 (8)
B100.0677 (15)0.0412 (12)0.0356 (10)0.0049 (11)0.0054 (10)0.0031 (9)
B110.0660 (14)0.0327 (11)0.0412 (11)0.0034 (10)0.0061 (10)0.0052 (9)
B120.0692 (15)0.0432 (12)0.0347 (10)0.0007 (11)0.0153 (10)0.0023 (9)
Geometric parameters (Å, º) top
Pd3—B72.212 (2)C15—C161.383 (4)
Pd3—P12.2275 (5)C15—H150.93
Pd3—B82.229 (2)C16—H160.93
Pd3—B42.278 (2)C17—H17A0.96
Pd3—C12.304 (2)C17—H17B0.96
Pd3—Cl12.3751 (5)C17—H17C0.96
Pd3—C22.478 (2)C18—H18A0.96
S1—C31.787 (2)C18—H18B0.96
S1—C41.796 (2)C18—H18C0.96
S1—B41.896 (2)B4—B51.753 (3)
P1—C111.806 (2)B4—B91.754 (3)
P1—C171.809 (2)B4—B81.764 (3)
P1—C181.815 (2)B5—B91.777 (3)
C1—C21.561 (2)B5—B101.780 (3)
C1—B41.697 (3)B5—B61.783 (3)
C1—B51.733 (3)B5—H51.10
C1—B61.778 (3)B6—B111.745 (3)
C1—H11.10B6—B101.759 (3)
C2—B111.667 (3)B6—H61.10
C2—B61.678 (3)B7—B121.802 (3)
C2—B71.686 (3)B7—B111.820 (3)
C2—H21.10B7—B81.891 (3)
C3—H3A0.96B7—H71.10
C3—H3B0.96B8—B121.777 (3)
C3—H3C0.96B8—B91.799 (3)
C4—H4A0.96B8—H81.10
C4—H4B0.96B9—B101.775 (3)
C4—H4C0.96B9—B121.779 (3)
C11—C121.382 (3)B9—H91.10
C11—C161.391 (3)B10—B111.757 (4)
C12—C131.380 (3)B10—B121.813 (4)
C12—H120.93B10—H101.10
C13—C141.374 (4)B11—B121.781 (3)
C13—H130.93B11—H111.10
C14—C151.365 (4)B12—H12A1.10
C14—H140.93
B7—Pd3—P195.72 (6)B4—B5—B959.57 (12)
B7—Pd3—B850.40 (8)C1—B5—B10103.51 (16)
P1—Pd3—B8103.23 (6)B4—B5—B10107.59 (16)
B7—Pd3—B477.88 (8)B9—B5—B1059.88 (13)
P1—Pd3—B4144.32 (5)C1—B5—B660.72 (12)
B8—Pd3—B446.07 (8)B4—B5—B6110.47 (15)
B7—Pd3—C170.36 (7)B9—B5—B6108.59 (16)
P1—Pd3—C1163.51 (5)B10—B5—B659.19 (13)
B8—Pd3—C175.12 (7)C1—B5—H5125.3
B4—Pd3—C143.48 (6)B4—B5—H5121.0
B7—Pd3—Cl1155.75 (6)B9—B5—H5123.0
P1—Pd3—Cl192.00 (2)B10—B5—H5123.4
B8—Pd3—Cl1148.67 (6)B6—B5—H5119.8
B4—Pd3—Cl1108.25 (5)C2—B6—B1158.23 (13)
C1—Pd3—Cl197.52 (5)C2—B6—B10104.67 (17)
B7—Pd3—C241.66 (7)B11—B6—B1060.19 (14)
P1—Pd3—C2125.64 (4)C2—B6—C153.60 (10)
B8—Pd3—C276.06 (7)B11—B6—C199.78 (15)
B4—Pd3—C271.27 (7)B10—B6—C1102.50 (15)
C1—Pd3—C237.87 (6)C2—B6—B5103.06 (14)
Cl1—Pd3—C2116.77 (5)B11—B6—B5107.14 (16)
C3—S1—C4100.24 (12)B10—B6—B560.30 (13)
C3—S1—B4105.96 (10)C1—B6—B558.23 (11)
C4—S1—B4105.45 (10)C2—B6—H6125.6
C11—P1—C17106.33 (12)B11—B6—H6123.6
C11—P1—C18106.00 (10)B10—B6—H6122.7
C17—P1—C18103.57 (14)C1—B6—H6127.9
C11—P1—Pd3110.32 (6)B5—B6—H6122.2
C17—P1—Pd3112.98 (10)C2—B7—B12102.75 (16)
C18—P1—Pd3116.84 (9)C2—B7—B1156.59 (12)
C2—C1—B4116.80 (14)B12—B7—B1158.87 (13)
C2—C1—B5110.70 (14)C2—B7—B8108.53 (14)
B4—C1—B561.48 (11)B12—B7—B857.45 (12)
C2—C1—B659.94 (12)B11—B7—B8106.53 (16)
B4—C1—B6113.44 (14)C2—B7—Pd377.63 (10)
B5—C1—B661.05 (12)B12—B7—Pd3119.55 (13)
C2—C1—Pd377.11 (9)B11—B7—Pd3128.94 (14)
B4—C1—Pd367.43 (9)B8—B7—Pd365.25 (9)
B5—C1—Pd3125.86 (11)C2—B7—H7121.2
B6—C1—Pd3132.54 (12)B12—B7—H7124.6
C2—C1—H1116.6B11—B7—H7119.2
B4—C1—H1119.6B8—B7—H7125.0
B5—C1—H1119.9Pd3—B7—H7102.5
B6—C1—H1116.4B4—B8—B12104.54 (16)
Pd3—C1—H199.7B4—B8—B958.96 (12)
C1—C2—B11113.17 (15)B12—B8—B959.68 (13)
C1—C2—B666.46 (12)B4—B8—B7101.05 (14)
B11—C2—B662.90 (13)B12—B8—B758.76 (13)
C1—C2—B7106.53 (14)B9—B8—B7104.53 (15)
B11—C2—B765.77 (14)B4—B8—Pd368.42 (9)
B6—C2—B7117.72 (15)B12—B8—Pd3119.91 (13)
C1—C2—Pd365.02 (9)B9—B8—Pd3122.92 (13)
B11—C2—Pd3121.81 (12)B7—B8—Pd364.34 (9)
B6—C2—Pd3127.40 (12)B4—B8—H8125.3
B7—C2—Pd360.70 (9)B12—B8—H8120.7
C1—C2—H2121.5B9—B8—H8119.5
B11—C2—H2115.6B7—B8—H8127.3
B6—C2—H2110.9Pd3—B8—H8107.7
B7—C2—H2121.7B4—B9—B10107.79 (15)
Pd3—C2—H2110.8B4—B9—B559.55 (12)
S1—C3—H3A109.5B10—B9—B560.14 (13)
S1—C3—H3B109.5B4—B9—B12104.89 (15)
H3A—C3—H3B109.5B10—B9—B1261.36 (14)
S1—C3—H3C109.5B5—B9—B12107.25 (16)
H3A—C3—H3C109.5B4—B9—B859.54 (11)
H3B—C3—H3C109.5B10—B9—B8110.95 (16)
S1—C4—H4A109.5B5—B9—B8109.01 (14)
S1—C4—H4B109.5B12—B9—B859.55 (13)
H4A—C4—H4B109.5B4—B9—H9123.5
S1—C4—H4C109.5B10—B9—H9120.0
H4A—C4—H4C109.5B5—B9—H9121.7
H4B—C4—H4C109.5B12—B9—H9123.0
C12—C11—C16118.7 (2)B8—B9—H9120.4
C12—C11—P1120.77 (15)B11—B10—B659.50 (14)
C16—C11—P1120.34 (17)B11—B10—B9108.47 (17)
C13—C12—C11120.3 (2)B6—B10—B9109.75 (15)
C13—C12—H12119.9B11—B10—B5106.76 (16)
C11—C12—H12119.9B6—B10—B560.51 (13)
C14—C13—C12120.7 (3)B9—B10—B559.98 (13)
C14—C13—H13119.7B11—B10—B1259.79 (14)
C12—C13—H13119.7B6—B10—B12107.31 (17)
C15—C14—C13119.5 (2)B9—B10—B1259.44 (14)
C15—C14—H14120.2B5—B10—B12105.66 (16)
C13—C14—H14120.2B11—B10—H10122.1
C14—C15—C16120.7 (2)B6—B10—H10121.0
C14—C15—H15119.7B9—B10—H10120.8
C16—C15—H15119.7B5—B10—H10122.8
C15—C16—C11120.1 (2)B12—B10—H10123.1
C15—C16—H16119.9C2—B11—B658.87 (12)
C11—C16—H16119.9C2—B11—B10105.25 (16)
P1—C17—H17A109.5B6—B11—B1060.31 (14)
P1—C17—H17B109.5C2—B11—B12104.51 (15)
H17A—C17—H17B109.5B6—B11—B12109.43 (17)
P1—C17—H17C109.5B10—B11—B1261.66 (15)
H17A—C17—H17C109.5C2—B11—B757.64 (12)
H17B—C17—H17C109.5B6—B11—B7107.71 (15)
P1—C18—H18A109.5B10—B11—B7109.17 (16)
P1—C18—H18B109.5B12—B11—B760.06 (13)
H18A—C18—H18B109.5C2—B11—H11125.3
P1—C18—H18C109.5B6—B11—H11121.1
H18A—C18—H18C109.5B10—B11—H11121.2
H18B—C18—H18C109.5B12—B11—H11121.5
C1—B4—B560.25 (11)B7—B11—H11121.8
C1—B4—B9105.70 (14)B8—B12—B960.77 (13)
B5—B4—B960.88 (12)B8—B12—B11113.50 (15)
C1—B4—B8105.96 (14)B9—B12—B11107.26 (17)
B5—B4—B8111.70 (15)B8—B12—B763.79 (13)
B9—B4—B861.51 (13)B9—B12—B7109.16 (15)
C1—B4—S1114.73 (12)B11—B12—B761.07 (13)
B5—B4—S1109.56 (13)B8—B12—B10110.17 (16)
B9—B4—S1124.69 (13)B9—B12—B1059.20 (14)
B8—B4—S1132.30 (14)B11—B12—B1058.54 (14)
C1—B4—Pd369.09 (9)B7—B12—B10107.51 (16)
B5—B4—Pd3126.28 (12)B8—B12—H12A117.6
B9—B4—Pd3122.55 (13)B9—B12—H12A122.5
B8—B4—Pd365.51 (10)B11—B12—H12A120.8
S1—B4—Pd3106.64 (9)B7—B12—H12A120.4
C1—B5—B458.27 (11)B10—B12—H12A122.8
C1—B5—B9103.23 (15)
B7—Pd3—P1—C1186.05 (9)B5—B4—B8—B935.70 (14)
B8—Pd3—P1—C11136.67 (9)S1—B4—B8—B9112.43 (19)
B4—Pd3—P1—C11163.22 (11)Pd3—B4—B8—B9156.93 (13)
C1—Pd3—P1—C1154.47 (17)C1—B4—B8—B70.92 (17)
Cl1—Pd3—P1—C1170.94 (7)B5—B4—B8—B764.71 (17)
C2—Pd3—P1—C1154.48 (9)B9—B4—B8—B7100.42 (15)
B7—Pd3—P1—C17155.09 (13)S1—B4—B8—B7147.15 (15)
B8—Pd3—P1—C17104.47 (13)Pd3—B4—B8—B756.52 (11)
B4—Pd3—P1—C1777.92 (15)C1—B4—B8—Pd357.44 (11)
C1—Pd3—P1—C17173.33 (19)B5—B4—B8—Pd3121.23 (14)
Cl1—Pd3—P1—C1747.93 (12)B9—B4—B8—Pd3156.93 (13)
C2—Pd3—P1—C17173.35 (13)S1—B4—B8—Pd390.63 (16)
B7—Pd3—P1—C1835.07 (11)C2—B7—B8—B46.85 (19)
B8—Pd3—P1—C1815.55 (11)B12—B7—B8—B4100.42 (17)
B4—Pd3—P1—C1842.10 (13)B11—B7—B8—B466.44 (17)
C1—Pd3—P1—C1866.65 (18)Pd3—B7—B8—B459.37 (11)
Cl1—Pd3—P1—C18167.95 (10)C2—B7—B8—B1293.57 (17)
C2—Pd3—P1—C1866.63 (11)B11—B7—B8—B1233.98 (15)
B7—Pd3—C1—C233.57 (10)Pd3—B7—B8—B12159.79 (14)
P1—Pd3—C1—C20.0 (2)C2—B7—B8—B953.67 (18)
B8—Pd3—C1—C286.32 (10)B12—B7—B8—B939.90 (15)
B4—Pd3—C1—C2126.59 (13)B11—B7—B8—B95.92 (18)
Cl1—Pd3—C1—C2124.77 (9)Pd3—B7—B8—B9119.89 (13)
B7—Pd3—C1—B493.01 (11)C2—B7—B8—Pd366.22 (12)
P1—Pd3—C1—B4126.61 (15)B12—B7—B8—Pd3159.79 (14)
B8—Pd3—C1—B440.27 (10)B11—B7—B8—Pd3125.81 (14)
Cl1—Pd3—C1—B4108.64 (9)B7—Pd3—B8—B4114.75 (14)
C2—Pd3—C1—B4126.59 (13)P1—Pd3—B8—B4158.78 (8)
B7—Pd3—C1—B572.81 (15)C1—Pd3—B8—B438.14 (9)
P1—Pd3—C1—B5106.40 (18)Cl1—Pd3—B8—B441.72 (16)
B8—Pd3—C1—B520.06 (15)C2—Pd3—B8—B477.28 (10)
B4—Pd3—C1—B520.21 (13)B7—Pd3—B8—B1219.93 (15)
Cl1—Pd3—C1—B5128.85 (14)P1—Pd3—B8—B12106.40 (15)
C2—Pd3—C1—B5106.38 (17)B4—Pd3—B8—B1294.82 (18)
B7—Pd3—C1—B68.72 (15)C1—Pd3—B8—B1256.68 (16)
P1—Pd3—C1—B624.9 (3)Cl1—Pd3—B8—B12136.54 (13)
B8—Pd3—C1—B661.46 (16)C2—Pd3—B8—B1217.54 (15)
B4—Pd3—C1—B6101.73 (18)B7—Pd3—B8—B991.18 (17)
Cl1—Pd3—C1—B6149.62 (15)P1—Pd3—B8—B9177.65 (14)
C2—Pd3—C1—B624.85 (14)B4—Pd3—B8—B923.57 (13)
B4—C1—C2—B1159.5 (2)C1—Pd3—B8—B914.57 (14)
B5—C1—C2—B118.1 (2)Cl1—Pd3—B8—B965.3 (2)
B6—C1—C2—B1143.37 (15)C2—Pd3—B8—B953.71 (15)
Pd3—C1—C2—B11115.66 (14)P1—Pd3—B8—B786.47 (9)
B4—C1—C2—B6102.86 (16)B4—Pd3—B8—B7114.75 (14)
B5—C1—C2—B635.26 (15)C1—Pd3—B8—B776.61 (10)
Pd3—C1—C2—B6159.03 (11)Cl1—Pd3—B8—B7156.47 (10)
B4—C1—C2—B710.7 (2)C2—Pd3—B8—B737.47 (10)
B5—C1—C2—B778.32 (17)C1—B4—B9—B104.4 (2)
B6—C1—C2—B7113.57 (16)B5—B4—B9—B1037.34 (16)
Pd3—C1—C2—B745.46 (12)B8—B4—B9—B10104.29 (18)
B4—C1—C2—Pd356.17 (12)S1—B4—B9—B10131.95 (16)
B5—C1—C2—Pd3123.78 (13)Pd3—B4—B9—B1079.27 (19)
B6—C1—C2—Pd3159.03 (11)C1—B4—B9—B541.70 (14)
B7—Pd3—C2—C1128.42 (14)B8—B4—B9—B5141.63 (16)
P1—Pd3—C2—C1179.99 (7)S1—B4—B9—B594.61 (17)
B8—Pd3—C2—C183.57 (10)Pd3—B4—B9—B5116.61 (16)
B4—Pd3—C2—C135.69 (10)C1—B4—B9—B1259.82 (18)
Cl1—Pd3—C2—C165.81 (10)B5—B4—B9—B12101.52 (17)
B7—Pd3—C2—B1125.60 (15)B8—B4—B9—B1240.11 (15)
P1—Pd3—C2—B1177.19 (15)S1—B4—B9—B12163.87 (15)
B8—Pd3—C2—B1119.25 (15)Pd3—B4—B9—B1215.1 (2)
B4—Pd3—C2—B1167.13 (15)C1—B4—B9—B899.93 (15)
C1—Pd3—C2—B11102.82 (17)B5—B4—B9—B8141.63 (16)
Cl1—Pd3—C2—B11168.63 (13)S1—B4—B9—B8123.75 (17)
B7—Pd3—C2—B6104.03 (18)Pd3—B4—B9—B825.02 (13)
P1—Pd3—C2—B6155.62 (13)C1—B5—B9—B440.13 (13)
B8—Pd3—C2—B659.18 (16)B10—B5—B9—B4138.24 (17)
B4—Pd3—C2—B611.30 (15)B6—B5—B9—B4103.32 (16)
C1—Pd3—C2—B624.39 (14)C1—B5—B9—B1098.12 (16)
Cl1—Pd3—C2—B690.20 (15)B4—B5—B9—B10138.24 (17)
P1—Pd3—C2—B751.59 (11)B6—B5—B9—B1034.92 (15)
B8—Pd3—C2—B744.85 (11)C1—B5—B9—B1257.32 (18)
B4—Pd3—C2—B792.73 (11)B4—B5—B9—B1297.44 (16)
C1—Pd3—C2—B7128.42 (14)B10—B5—B9—B1240.80 (16)
Cl1—Pd3—C2—B7165.78 (10)B6—B5—B9—B125.9 (2)
C17—P1—C11—C12147.65 (19)C1—B5—B9—B85.67 (19)
C18—P1—C11—C1237.9 (2)B4—B5—B9—B834.46 (14)
Pd3—P1—C11—C1289.51 (17)B10—B5—B9—B8103.78 (17)
C17—P1—C11—C1637.1 (2)B6—B5—B9—B868.86 (18)
C18—P1—C11—C16146.89 (18)B12—B8—B9—B4133.76 (15)
Pd3—P1—C11—C1685.73 (17)B7—B8—B9—B494.31 (14)
C16—C11—C12—C130.4 (4)Pd3—B8—B9—B425.72 (14)
P1—C11—C12—C13174.9 (2)B4—B8—B9—B1098.88 (17)
C11—C12—C13—C140.1 (4)B12—B8—B9—B1034.88 (16)
C12—C13—C14—C150.3 (4)B7—B8—B9—B104.57 (19)
C13—C14—C15—C160.5 (4)Pd3—B8—B9—B1073.15 (19)
C14—C15—C16—C110.2 (4)B4—B8—B9—B534.47 (14)
C12—C11—C16—C150.2 (3)B12—B8—B9—B599.29 (17)
P1—C11—C16—C15175.09 (19)B7—B8—B9—B559.84 (18)
C2—C1—B4—B5100.15 (17)Pd3—B8—B9—B58.7 (2)
B6—C1—B4—B533.26 (15)B4—B8—B9—B12133.76 (15)
Pd3—C1—B4—B5161.42 (12)B7—B8—B9—B1239.45 (14)
C2—C1—B4—B958.13 (19)Pd3—B8—B9—B12108.03 (17)
B5—C1—B4—B942.02 (14)C2—B6—B10—B1138.99 (15)
B6—C1—B4—B98.8 (2)C1—B6—B10—B1194.22 (16)
Pd3—C1—B4—B9119.40 (13)B5—B6—B10—B11135.86 (17)
C2—C1—B4—B86.1 (2)C2—B6—B10—B961.3 (2)
B5—C1—B4—B8106.23 (16)B11—B6—B10—B9100.32 (19)
B6—C1—B4—B872.97 (18)C1—B6—B10—B96.1 (2)
Pd3—C1—B4—B855.19 (11)B5—B6—B10—B935.54 (16)
C2—C1—B4—S1160.58 (13)C2—B6—B10—B596.87 (16)
B5—C1—B4—S199.28 (15)B11—B6—B10—B5135.86 (17)
B6—C1—B4—S1132.54 (14)C1—B6—B10—B541.64 (14)
Pd3—C1—B4—S199.30 (11)C2—B6—B10—B121.7 (2)
C2—C1—B4—Pd361.27 (13)B11—B6—B10—B1237.32 (16)
B5—C1—B4—Pd3161.42 (12)C1—B6—B10—B1256.90 (19)
B6—C1—B4—Pd3128.16 (14)B5—B6—B10—B1298.54 (17)
C3—S1—B4—C1128.38 (15)B4—B9—B10—B1162.0 (2)
C4—S1—B4—C1125.91 (14)B5—B9—B10—B1199.10 (17)
C3—S1—B4—B5166.21 (14)B12—B9—B10—B1135.58 (16)
C4—S1—B4—B560.50 (15)B8—B9—B10—B111.4 (2)
C3—S1—B4—B998.68 (18)B4—B9—B10—B61.3 (2)
C4—S1—B4—B97.03 (19)B5—B9—B10—B635.75 (16)
C3—S1—B4—B817.6 (2)B12—B9—B10—B698.93 (19)
C4—S1—B4—B888.1 (2)B8—B9—B10—B664.8 (2)
C3—S1—B4—Pd354.19 (12)B4—B9—B10—B537.08 (15)
C4—S1—B4—Pd3159.90 (11)B12—B9—B10—B5134.68 (16)
B7—Pd3—B4—C174.14 (10)B8—B9—B10—B5100.51 (16)
P1—Pd3—B4—C1157.01 (7)B4—B9—B10—B1297.60 (17)
B8—Pd3—B4—C1119.84 (13)B5—B9—B10—B12134.68 (16)
Cl1—Pd3—B4—C181.53 (9)B8—B9—B10—B1234.17 (15)
C2—Pd3—B4—C131.36 (8)C1—B5—B10—B114.4 (2)
B7—Pd3—B4—B554.07 (16)B4—B5—B10—B1165.0 (2)
P1—Pd3—B4—B5136.94 (12)B9—B5—B10—B11102.01 (19)
B8—Pd3—B4—B599.77 (18)B6—B5—B10—B1138.81 (16)
C1—Pd3—B4—B520.07 (13)C1—B5—B10—B643.20 (14)
Cl1—Pd3—B4—B5101.60 (15)B4—B5—B10—B6103.78 (17)
C2—Pd3—B4—B511.29 (14)B9—B5—B10—B6140.82 (17)
B7—Pd3—B4—B921.59 (15)C1—B5—B10—B997.62 (16)
P1—Pd3—B4—B961.28 (18)B4—B5—B10—B937.04 (15)
B8—Pd3—B4—B924.11 (14)B6—B5—B10—B9140.82 (17)
C1—Pd3—B4—B995.73 (17)C1—B5—B10—B1258.14 (19)
Cl1—Pd3—B4—B9177.26 (13)B4—B5—B10—B122.4 (2)
C2—Pd3—B4—B964.37 (14)B9—B5—B10—B1239.48 (15)
B7—Pd3—B4—B845.70 (11)B6—B5—B10—B12101.34 (18)
P1—Pd3—B4—B837.17 (14)C1—C2—B11—B645.01 (15)
C1—Pd3—B4—B8119.84 (13)B7—C2—B11—B6143.45 (16)
Cl1—Pd3—B4—B8158.63 (9)Pd3—C2—B11—B6119.04 (15)
C2—Pd3—B4—B888.48 (10)C1—C2—B11—B104.9 (2)
B7—Pd3—B4—S1175.18 (11)B6—C2—B11—B1040.14 (16)
P1—Pd3—B4—S192.31 (11)B7—C2—B11—B10103.31 (17)
B8—Pd3—B4—S1129.47 (14)Pd3—C2—B11—B1078.90 (19)
C1—Pd3—B4—S1110.68 (12)C1—C2—B11—B1259.2 (2)
Cl1—Pd3—B4—S129.16 (9)B6—C2—B11—B12104.19 (18)
C2—Pd3—B4—S1142.05 (10)B7—C2—B11—B1239.26 (16)
C2—C1—B5—B4110.08 (15)Pd3—C2—B11—B1214.9 (2)
B6—C1—B5—B4144.89 (16)C1—C2—B11—B798.44 (16)
Pd3—C1—B5—B421.29 (14)B6—C2—B11—B7143.45 (16)
C2—C1—B5—B969.28 (17)Pd3—C2—B11—B724.41 (13)
B4—C1—B5—B940.79 (13)B10—B6—B11—C2134.27 (16)
B6—C1—B5—B9104.10 (16)C1—B6—B11—C235.39 (12)
Pd3—C1—B5—B919.5 (2)B5—B6—B11—C295.00 (15)
C2—C1—B5—B107.56 (19)C2—B6—B11—B10134.27 (16)
B4—C1—B5—B10102.52 (16)C1—B6—B11—B1098.88 (15)
B6—C1—B5—B1042.38 (15)B5—B6—B11—B1039.28 (15)
Pd3—C1—B5—B1081.23 (17)C2—B6—B11—B1295.58 (17)
C2—C1—B5—B634.82 (15)B10—B6—B11—B1238.69 (16)
B4—C1—B5—B6144.89 (16)C1—B6—B11—B1260.19 (19)
Pd3—C1—B5—B6123.61 (15)B5—B6—B11—B120.6 (2)
B9—B4—B5—C1132.47 (15)C2—B6—B11—B731.88 (14)
B8—B4—B5—C196.52 (15)B10—B6—B11—B7102.40 (17)
S1—B4—B5—C1107.96 (13)C1—B6—B11—B73.52 (18)
Pd3—B4—B5—C121.67 (14)B5—B6—B11—B763.12 (19)
C1—B4—B5—B9132.47 (15)B6—B10—B11—C239.44 (14)
B8—B4—B5—B935.95 (15)B9—B10—B11—C263.1 (2)
S1—B4—B5—B9119.57 (14)B5—B10—B11—C20.2 (2)
Pd3—B4—B5—B9110.80 (16)B12—B10—B11—C298.51 (17)
C1—B4—B5—B1095.29 (16)B9—B10—B11—B6102.52 (17)
B9—B4—B5—B1037.18 (15)B5—B10—B11—B639.28 (16)
B8—B4—B5—B101.2 (2)B12—B10—B11—B6137.95 (16)
S1—B4—B5—B10156.75 (13)B6—B10—B11—B12137.95 (16)
Pd3—B4—B5—B1073.63 (19)B9—B10—B11—B1235.43 (15)
C1—B4—B5—B632.37 (14)B5—B10—B11—B1298.67 (18)
B9—B4—B5—B6100.10 (18)B6—B10—B11—B799.93 (17)
B8—B4—B5—B664.14 (19)B9—B10—B11—B72.6 (2)
S1—B4—B5—B6140.33 (14)B5—B10—B11—B760.7 (2)
Pd3—B4—B5—B610.7 (2)B12—B10—B11—B738.02 (15)
C1—C2—B6—B11134.83 (15)B12—B7—B11—C2135.01 (16)
B7—C2—B6—B1137.84 (16)B8—B7—B11—C2101.62 (15)
Pd3—C2—B6—B11110.74 (16)Pd3—B7—B11—C230.37 (16)
C1—C2—B6—B1094.88 (16)C2—B7—B11—B632.36 (14)
B11—C2—B6—B1039.96 (15)B12—B7—B11—B6102.65 (18)
B7—C2—B6—B102.1 (2)B8—B7—B11—B669.26 (18)
Pd3—C2—B6—B1070.78 (19)Pd3—B7—B11—B62.0 (2)
B11—C2—B6—C1134.83 (15)C2—B7—B11—B1096.28 (18)
B7—C2—B6—C196.99 (16)B12—B7—B11—B1038.73 (16)
Pd3—C2—B6—C124.10 (13)B8—B7—B11—B105.3 (2)
C1—C2—B6—B532.59 (14)Pd3—B7—B11—B1065.9 (2)
B11—C2—B6—B5102.25 (17)C2—B7—B11—B12135.01 (16)
B7—C2—B6—B564.4 (2)B8—B7—B11—B1233.39 (14)
Pd3—C2—B6—B58.5 (2)Pd3—B7—B11—B12104.63 (19)
B4—C1—B6—C2108.48 (16)B4—B8—B12—B939.74 (14)
B5—C1—B6—C2141.89 (16)B7—B8—B12—B9134.00 (16)
Pd3—C1—B6—C228.26 (15)Pd3—B8—B12—B9112.94 (16)
C2—C1—B6—B1137.72 (13)B4—B8—B12—B1157.6 (2)
B4—C1—B6—B1170.76 (18)B9—B8—B12—B1197.32 (19)
B5—C1—B6—B11104.18 (16)B7—B8—B12—B1136.68 (17)
Pd3—C1—B6—B119.5 (2)Pd3—B8—B12—B1115.6 (2)
C2—C1—B6—B1099.13 (17)B4—B8—B12—B794.26 (15)
B4—C1—B6—B109.3 (2)B9—B8—B12—B7134.00 (16)
B5—C1—B6—B1042.76 (15)Pd3—B8—B12—B721.06 (15)
Pd3—C1—B6—B1070.9 (2)B4—B8—B12—B105.9 (2)
C2—C1—B6—B5141.89 (16)B9—B8—B12—B1033.84 (15)
B4—C1—B6—B533.42 (15)B7—B8—B12—B10100.16 (17)
Pd3—C1—B6—B5113.64 (17)Pd3—B8—B12—B1079.1 (2)
C1—B5—B6—C230.66 (13)B4—B9—B12—B840.11 (14)
B4—B5—B6—C20.8 (2)B10—B9—B12—B8142.52 (16)
B9—B5—B6—C264.40 (18)B5—B9—B12—B8102.30 (16)
B10—B5—B6—C299.61 (17)B4—B9—B12—B1167.63 (19)
C1—B5—B6—B1191.04 (16)B10—B9—B12—B1134.78 (15)
B4—B5—B6—B1159.6 (2)B5—B9—B12—B115.4 (2)
B9—B5—B6—B114.0 (2)B8—B9—B12—B11107.74 (17)
B10—B5—B6—B1139.23 (16)B4—B9—B12—B73.0 (2)
C1—B5—B6—B10130.27 (16)B10—B9—B12—B799.42 (18)
B4—B5—B6—B1098.79 (18)B5—B9—B12—B759.2 (2)
B9—B5—B6—B1035.21 (16)B8—B9—B12—B743.10 (15)
B4—B5—B6—C131.47 (14)B4—B9—B12—B10102.41 (16)
B9—B5—B6—C195.06 (15)B5—B9—B12—B1040.22 (15)
B10—B5—B6—C1130.27 (16)B8—B9—B12—B10142.52 (16)
C1—C2—B7—B1270.10 (17)C2—B11—B12—B80.3 (2)
B11—C2—B7—B1238.35 (15)B6—B11—B12—B862.0 (2)
B6—C2—B7—B121.6 (2)B10—B11—B12—B8100.07 (19)
Pd3—C2—B7—B12117.90 (14)B7—B11—B12—B837.76 (17)
C1—C2—B7—B11108.45 (16)C2—B11—B12—B964.7 (2)
B6—C2—B7—B1136.79 (16)B6—B11—B12—B93.0 (2)
Pd3—C2—B7—B11156.26 (13)B10—B11—B12—B935.06 (15)
C1—C2—B7—B810.50 (19)B7—B11—B12—B9102.77 (17)
B11—C2—B7—B897.96 (17)C2—B11—B12—B738.09 (14)
B6—C2—B7—B861.2 (2)B6—B11—B12—B799.73 (17)
Pd3—C2—B7—B858.30 (11)B10—B11—B12—B7137.83 (16)
C1—C2—B7—Pd347.80 (12)C2—B11—B12—B1099.74 (17)
B11—C2—B7—Pd3156.26 (13)B6—B11—B12—B1038.09 (15)
B6—C2—B7—Pd3119.47 (14)B7—B11—B12—B10137.83 (16)
P1—Pd3—B7—C2140.21 (9)C2—B7—B12—B8104.01 (15)
B8—Pd3—B7—C2117.34 (14)B11—B7—B12—B8141.25 (16)
B4—Pd3—B7—C275.36 (10)Pd3—B7—B12—B821.14 (15)
C1—Pd3—B7—C230.71 (9)C2—B7—B12—B962.36 (19)
Cl1—Pd3—B7—C232.3 (2)B11—B7—B12—B999.60 (18)
P1—Pd3—B7—B12122.00 (15)B8—B7—B12—B941.65 (15)
B8—Pd3—B7—B1219.56 (14)Pd3—B7—B12—B920.5 (2)
B4—Pd3—B7—B1222.43 (15)C2—B7—B12—B1137.24 (14)
C1—Pd3—B7—B1267.08 (16)B8—B7—B12—B11141.25 (16)
Cl1—Pd3—B7—B12130.07 (15)Pd3—B7—B12—B11120.11 (17)
C2—Pd3—B7—B1297.79 (19)C2—B7—B12—B100.3 (2)
P1—Pd3—B7—B11165.81 (16)B11—B7—B12—B1036.91 (15)
B8—Pd3—B7—B1191.74 (19)B8—B7—B12—B10104.34 (17)
B4—Pd3—B7—B1149.76 (17)Pd3—B7—B12—B1083.20 (19)
C1—Pd3—B7—B115.11 (16)B11—B10—B12—B8105.86 (17)
Cl1—Pd3—B7—B1157.9 (3)B6—B10—B12—B868.7 (2)
C2—Pd3—B7—B1125.60 (14)B9—B10—B12—B834.45 (15)
P1—Pd3—B7—B8102.45 (9)B5—B10—B12—B85.3 (2)
B4—Pd3—B7—B841.98 (10)B11—B10—B12—B9140.31 (16)
C1—Pd3—B7—B886.63 (10)B6—B10—B12—B9103.12 (17)
Cl1—Pd3—B7—B8149.63 (13)B5—B10—B12—B939.74 (15)
C2—Pd3—B7—B8117.34 (14)B6—B10—B12—B1137.19 (15)
C1—B4—B8—B1259.40 (17)B9—B10—B12—B11140.31 (16)
B5—B4—B8—B124.40 (19)B5—B10—B12—B11100.57 (17)
B9—B4—B8—B1240.10 (14)B11—B10—B12—B738.04 (15)
S1—B4—B8—B12152.54 (16)B6—B10—B12—B70.8 (2)
Pd3—B4—B8—B12116.83 (14)B9—B10—B12—B7102.28 (17)
C1—B4—B8—B999.50 (15)B5—B10—B12—B762.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i1.102.603.540 (2)142
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pd(C4H16B9S)I(C18H15P)][Pd(C4H16B9S)Cl(C8H11P)]
Mr689.12473.54
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/n
Temperature (K)294294
a, b, c (Å)10.9576 (5), 16.8316 (10), 30.2015 (17)12.8117 (8), 9.2670 (7), 18.2948 (10)
α, β, γ (°)90, 90, 9090, 96.567 (5), 90
V3)5570.2 (5)2157.8 (2)
Z84
Radiation typeMo KαMo Kα
µ (mm1)1.921.15
Crystal size (mm)0.20 × 0.15 × 0.150.33 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
ψ scan
(ABSCOR in NRCVAX; Gabe et al., 1989)
Tmin, Tmax0.708, 0.7510.684, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
6057, 6057, 3546 6506, 6265, 5023
Rint0.00.020
(sin θ/λ)max1)0.6380.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.162, 1.00 0.024, 0.064, 1.03
No. of reflections60576265
No. of parameters318231
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.930.70, 0.51

Computer programs: DIFRAC (Gabe & White, 1993) with profile analysis, DIFRAC (Gabe & White, 1993), DATRD2 in NRCVAX94 (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) in WinGX (Version 1.70.01; Farrugia, 1999), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond distances (Å) and angles (°) for compounds (I) and (II). X = I1 in (I) and Cl1 in (II) top
Parameter(I)(II)
Pd3-X2.6739 (7)2.3751 (5)
Pd3-P12.2507 (17)2.2275 (5)
Pd3-C12.274 (6)2.304 (2)
Pd3-C22.467 (6)2.478 (2)
Pd3-B42.315 (7)2.278 (2)
Pd3-B72.269 (8)2.212 (2)
Pd3-B82.254 (7)2.229 (2)
S1-B41.899 (7)1.896 (2)
C1-C21.584 (9)1.561 (2)
C1-B41.693 (8)1.697 (3)
C2-B71.644 (10)1.686 (3)
B4-B81.766 (10)1.764 (3)
X-Pd3-P195.06 (5)92.00 (2)
X-Pd3-C190.64 (16)97.52 (5)
X-Pd3-C2106.07 (16)116.77 (5)
X-Pd3-B4110.47 (16)108.25 (5)
X-Pd3-B7143.2 (2)148.67 (6)
X-Pd3-B8155.09 (19)148.67 (6)
P1-Pd3-C1169.28 (16)163.51 (5)
P1-Pd3-C2130.57 (16)125.64 (4)
P1-Pd3-B4140.80 (16)144.32 (5)
P1-Pd3-B7100.3 (2)95.72 (6)
P1-Pd3-B8102.97 (19)103.23 (6)
Pd3-B4-S1104.2 (3)106.64 (9)
Hydrogen bond parameters (Å, °) for compounds (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C16-H16···I10.862.983.831 (9)153
(II)C2-H2···Cl1i0.862.603.540 (2)142
Symmetry code: (i) 1 − x, 1 − y, −z.
 

Acknowledgements

JDK thanks the UK EPSRC for instrument support, and Dr B. Stibr for his friendly interest and for a sample of Tl[9-SMe2-7,8-nido-C2B9H10].

References

First citationAlcock, N. W., Taylor, J. G. & Wallbridge, M. G. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1805–1811.  CSD CrossRef Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBailey, N. A. & Mason, R. (1968). J. Chem. Soc. A, pp. 2594–2605.  CSD CrossRef Google Scholar
First citationDouek, N. L. & Welch, A. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1917–1925.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationHamilton, E. J. M. & Welch, A. J. (1991). Polyhedron, 10, 471–476.  CSD CrossRef CAS Web of Science Google Scholar
First citationJenkins, J. M. & Shaw, B. L. (1966). J. Chem. Soc. A, pp. 770–777.  CrossRef Google Scholar
First citationMichaelidou, D. M., Mingos, D. M. P., Williams, D. J. & White, A. J. P. (1997). J. Organomet. Chem. 528, 135–141.  CSD CrossRef CAS Web of Science Google Scholar
First citationMingos, D. M. P., Forsyth, M. I. & Welch, A. J. (1978). J. Chem. Soc. Dalton Trans. pp. 1363–1374.  CSD CrossRef Web of Science Google Scholar
First citationO'Connell, D., Patterson, J. C., Spalding, T. R., Ferguson, G., Gallagher, J. F., Li, Y., Kennedy, J. D., Macias, R., Thornton-Pett, M. & Holub, J. (1996). J. Chem. Soc. Dalton Trans. pp. 3323–3333.  Google Scholar
First citationO'Connell, D., Spalding, T. R., Ferguson, G., Gallagher, J. F. & Kennedy, J. D. (1995). J. Organomet. Chem. 503, C12–C15.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1–63  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds