organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

π-Stacked hydrogen-bonded chains of rings in 2,4-di­fluoro­benzaldehyde isonicotinoylhydrazone and hydrogen-bonded sheets in 2,3-di­chloro­benzaldehyde isonicotinoylhydrazone

aFundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 13 September 2005; accepted 14 September 2005; online 30 September 2005)

The difluorinated ring in 2,4-difluoro­benzaldehyde iso­nicotinoyl­hydrazone, C13H9F2N3O, (I)[link], is disordered over two sets of sites with unequal occupancy. The mol­ecules of (I)[link] are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds into chains of rings, which are linked into sheets by a single ππ stacking inter­action. In 2,3-dichloro­benzaldehyde isonicotinoylhydrazone, C13H9Cl2N3O, (II)[link], the mol­ecules are linked by a combination of N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds into sheets of R44(14) and R44(26) rings.

Comment

Tuberculosis is again a worldwide problem, due in part to the advent of multi-drug resistant strains and the association of tuberculosis with human immunodeficiency virus infection in AIDS. A first-line drug used in combination with other drugs

[Scheme 1]
for the treatment of tuberculosis is isoniazid (isonicotin­oylhydrazine). As part of a study of new derivatives of isoniazid, we now report the structures of 2,4-difluoro­benzaldehyde isonicotinoylhydrazone, (I)[link], and 2,3-dichloro­benzaldehyde isonicotinoylhydrazone, (II)[link].

The leading torsion angles (Table 1[link]) indicate that, while the mol­ecules of compound (II)[link] are nearly planar, in those of compound (I)[link] not only is the central spacer unit between atoms C14 and C21 non-planar, but each of the rings, particularly the pyridyl ring, is twisted away from the mean plane of the adjacent spacer atoms.

Compound (I)[link] (Fig. 1[link]) exhibits orientational disorder of the difluorinated ring, such that one of the F atoms appears to be disordered over sites bonded to C22 and C26. The major conformer, with this F atom occupying the site designated F2, has occupancy 0.760 (3), while the minor conformer, with the disordered F atom occupying the site designated F6, has occupancy 0.240 (3).

The mol­ecules of compound (I)[link] are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]) into a chain of rings, and these chains are linked into sheets by a single ππ stacking inter­action. Atoms N17 and C27 in the mol­ecule at (x, y, z) both act as hydrogen-bond donors to atom O1 in the mol­ecule at ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z), so forming a C(4)C(7)[R21(6)] chain of rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [101] direction and generated by the n-glide plane at y = [{1\over 4}] (Fig. 2[link]).

The aryl ring in the mol­ecule at (x, y, z) and the pyridyl ring in the mol­ecules at ([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z) and (−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) are almost parallel, with a dihedral angle of only 0.6 (2)° between adjacent rings; the corresponding ring–centroid separations are 3.754 (2) Å, with an inter­planar spacing of ca 3.394 Å and a ring offset of ca 1.60 Å. This inter­action thus forms a chain parallel to the [10[\overline{1}]] direction, which links the hydrogen-bonded [101] chains into an (010) sheet lying in the domain −0.01 < y < 0.51 (Fig. 3[link]). A second such sheet, related to the first by inversion and generated by the n-glide plane at y = [{3\over 4}], lies in the domain 0.49 < y < 1.01, but there are no direction-specific inter­actions between adjacent (010 sheets.

The mol­ecules of compound (II)[link] (Fig. 4[link]) are fully ordered, and they are linked into sheets by a combination of N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds. Atoms N17 and C13 in the mol­ecule at (x, y, z) both act as hydrogen-bond donors to pyridyl atom N11 in the mol­ecule at (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z), so forming a C(4)C(7)[R21(7)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) (Fig. 5[link]). In addition, atom C12 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O1 in the mol­ecule at (x, [{3\over 2}] − y, −[{1\over 2}] + z), so forming a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = [{3\over 4}] (Fig. 6[link]). The combination of the [010] and [001] chains then generates a sheet parallel to (100) containing alternating R44(14) and R44(26) rings, where each type of ring is centrosymmetric (Fig. 7[link]). There are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The major conformer (see Comment) of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a chain of rings along [101]. For the sake of clarity, only the major conformer is shown, and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) and (−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of an (010) sheet of π-stacked [10[\overline{1}]] chains. For the sake of clarity, only the major conformer is shown and H atoms not involved in the motifs shown have been omitted.
[Figure 4]
Figure 4
The mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of a chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z) and (1 − x, [{1\over 2}] + y, [{1\over 2}] − z), respectively.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link], showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{3\over 2}] − y, −[{1\over 2}] + z) and (x, [{3\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded (100) sheet. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Equimolar mixtures of isoniazid (2 mmol) and the appropriate dihalobenzaldehyde (2 mmol) in tetra­hydro­furan (20 ml) containing a catalytic amount of triethyl­amine were heated under reflux for 6 h in an atmosphere of dinitro­gen. After cooling, the mixtures were concentrated under reduced pressure and the residues were purified by column chromatography on silica gel, eluting with a hexane–ethyl acetate gradient, to give pure samples of compounds (I)[link] and (II)[link]. Crystallization from ethanol solutions gave crystals suitable for single-crystal X-ray diffraction. For (I)[link], m.p. 501–503 K; for (II)[link], m.p. 511–512 K. Spectroscopic analysis, for (I)[link]: 1H NMR (DMSO-d6): δ 12.43 (1H, s, NH), 8.82 (2H, d, J = 5.5 Hz), 8.67 (1H, s), 8.02 (1H, dd, J = 15.5 and 8.5 Hz), 7.85 (2H, d, J = 5.5 Hz), 7.40 (1H, dd, J = 9.5 and 11.0 Hz), 7.23 (1H, dd, J = 8.5 and 8.5 Hz); 13C NMR (DMSO-d6): δ: 163.4 (dd, J = 13.2 and 250.5 Hz), 161.6, 161.1 (dd, J = 11.1 and 251.4 Hz), 150.4, 140.9, 140.1, 128.0 (d, J = 8.2 Hz), 121.4, 118.4 (d, J = 10.1 Hz), 112.7 (d, J = 21.9 Hz), 104.5 (t, J = 25.5 Hz); for (II)[link]: 1H NMR (DMSO-d6): δ 12.35 (1H, s, NH), 8.88 (1H, s), 8.79 (2H, d, J = 5.5 Hz), 7.98 (1H, d, J = 8.0 Hz), 7.83 (2H, d, J = 5.5 Hz), 7.71 (1H, d, J = 7.5 Hz), 7.45 (1H, dd, J = 7.5 and 8.0 Hz); 13C NMR (DMSO-d6): δ 161.7, 150.4, 149.6, 144.6, 140.0, 133.7, 132.4, 131.8, 128.5, 125.6, 121.5; IR (KBr, ν, cm−1), for (I)[link]: 3177 (NH) and 1654 (CO); for (II)[link]: 3188 (NH) and 1686 (CO).

Compound (I)[link]

Crystal data
  • C13H9F2N3O

  • Mr = 261.23

  • Monoclinic, P 21 /n

  • a = 6.8859 (3) Å

  • b = 24.7258 (12) Å

  • c = 7.2582 (2) Å

  • β = 107.953 (2)°

  • V = 1175.61 (8) Å3

  • Z = 4

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2658 reflections

  • θ = 3.2–27.5°

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.60 × 0.35 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.946, Tmax = 0.988

  • 10256 measured reflections

  • 2658 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.5°

  • h = −8 → 8

  • k = −32 → 30

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.07

  • 2658 reflections

  • 178 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.035P)2 + 0.6726P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected torsion angles (°) for compounds (I)[link] and (II)[link]

  (I) [link] (II) [link]
C13—C14—C17—N17 39.21 (19) −1.9 (2)
C14—C17—N17—N27 178.39 (12) −175.12 (12)
C17—N17—N27—C27 169.28 (13) 176.30 (13)
N17—N27—C27—C21 176.72 (12) −178.28 (12)
N27—C27—C21—C22 168.76 (14) −173.32 (13)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O1i 0.88 1.97 2.826 (2) 164
C27—H27⋯O1i 0.95 2.49 3.261 (2) 138
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C13H9Cl2N3O

  • Mr = 294.13

  • Monoclinic, P 21 /c

  • a = 7.7369 (2) Å

  • b = 10.7764 (4) Å

  • c = 14.9091 (5) Å

  • β = 90.2400 (18)°

  • V = 1243.05 (7) Å3

  • Z = 4

  • Dx = 1.572 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2833 reflections

  • θ = 3.2–27.5°

  • μ = 0.52 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.30 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.861, Tmax = 0.965

  • 18370 measured reflections

  • 2833 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −10 → 9

  • k = −13 → 13

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.099

  • S = 1.15

  • 2833 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0574P)2 + 0.238P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.49 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.88 2.22 3.079 (2) 164
C12—H12⋯O1ii 0.95 2.45 3.338 (2) 155
C13—H13⋯N11i 0.95 2.59 3.512 (2) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

The space groups P21/n for (I)[link] and P21/c for (II)[link] were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with distances C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). In compound (I)[link], the disordered difluorinated ring was modelled using partially occupied hydrogen and fluorine sites adjacent to atoms C22 and C26, with the occupancies of the partially occupied hydrogen and partially occupied fluorine sites each constrained to sum to unity. The site-occupancy factors then refined to 0.760 (3) and 0.240 (3).

For both compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Tuberculosis is again a world-wide problem, due in part to the advent of multi-drug resistant strains and the association of tuberculosis with human immunodeficiency virus infection in AIDS. A first-line drug used in combination with other drugs for treatment of tuberculosis is isoniazid (isonitinoylhydrazine). As part of a study of new derivatives of isoniazid, we now report the structures of N-(isonicotinoyl)-2,4-difluorobenzaldehyde hydrazone, (I), and N-(isonicotinoyl)-2,3-dichlorobenzaldehyde hydrazone, (II).

The leading torsion angles (Table 1) indicate that, while the molecules of compound (II) are nearly planar, in those of compound (I) not only is the central spacer unit between atoms C14 and C21 non-planar, but each of the rings, particularly the pyridyl ring, is twisted away from the mean plane of the adjacent spacer atoms.

Compound (I) (Fig. 1) exhibits orientational disorder of the difluorinated ring, such that one of the F atoms appears to be disordered over sites bonded to C22 and C26. The major conformer, with this F atom occupying the site designated F2, has occupancy 0.760 (3), while the minor conformer, with the disordered F atom occupying the site designated F6, has occupancy 0.240 (3).

The molecules of compound (I) are linked by a combination of N—H···O and C—H···O hydrogen bonds (Table 2) into a chain of rings, and these chains are linked into sheets by a single ππ stacking interaction. Atoms N17 and C27 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O1 in the molecule at (1/2 + x, 1/2 − y, 1/2 + z), so forming a C(4)C(7)[R21(6)] chain of rings (Bernstein et al., 1995) running parallel to the [101] direction and generated by the n-glide plane at y = 1/4 (Fig. 2).

The aryl ring in the molecule at (x, y, z) and the pyridyl ring in the molecules at (1/2 + x, 1/2 − y, −1/2 + z) and (−1/2 + x, 1/2 − y, 1/2 + z) are almost parallel, with a dihedral angle of only 0.6 (2)° between adjacent rings. the corresponding ring–centroid separations are 3.754 (2) Å, with an interplanar spacing of ca 3.394 Å and a ring offset of ca 1.60 Å. This interaction thus forms a chain parallel to the [101] direction, which links the hydrogen-bonded [101] chains into an (010) sheet lying in the domain −0.01 < y < 0.51 (Fig. 3). A second such sheet, related to the first by inversion and generated by the n-glide plane at y = 3/4, lies in the domain 0.49 < y < 1.01, but there are no direction-specific interactions between adjacent (010 sheets.

The molecules of compound (II) (Fig. 4) are fully ordered, and they are linked into sheets by a combination of N—H···N, C—H···N and C—H···O hydrogen bonds. Atoms N17 and C13 in the molecule at (x, y, z) both act as hydrogen-bond donors to the pyridyl atom N11 in the molecule at (1 − x, −1/2 + y, 1/2 − z), so forming a C(4)C(7)[R21(7)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 5). In addition, atom C12 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O1 in the molecule at (x, 3/2 − y, −1/2 + z), so forming C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = 3/4 (Fig. 6). The combination of the [010] and [001] chains then generates a sheet parallel to (100) containing alternating R44(14) and R44(26) rings, where each type of ring is centrosymmetric (Fig. 7). There are no direction-specific interactions between adjacent sheets.

Experimental top

Equimolar mixtures of isoniazid (2 mmol) and the appropriate dihalobenzaldehyde (2 mmol) in tetrahydrofuran (20 ml) containing a catalytic quantity of triethylamine were heated under reflux for 6 h in an atmosphere of dinitrogen. After cooling, the mixtures were concentrated under reduced pressure and the residues were purified by column chromatography on silica gel, eluting with hexane–ethyl acetate gradient, to give pure samples of compounds (I) and (II). Crystallization from ethanol solutions gave crystals suitable for single-crystal X-ray diffraction. For (I), m.p. 501–503 K; for (II), m.p. 511–512 K. Spectroscopic analysis, for (I): 1H NMR (DMSO-d6, δ, p.p.m.): 12.43 (1H, s, NH), 8.82 (2H, d, J = 5.5 Hz), 8.67 (1H, s), 8.02 (1H, dd, J = 15.5 and 8.5 Hz), 7.85 (2H, d, J = 5.5 Hz), 7.40 (1H, dd, J = 9.5 and 11.0 Hz), 7.23 (1H, dd, J= 8.5 and 8.5 Hz); 13C NMR (DMSO-d6, δ, p.p.m.): 163.4 (dd, J = 13.2 and 250.5 Hz), 161.6, 161.1 (dd, J = 11.1 and 251.4 Hz) 150.4, 140.9, 140.1, 128.0 (d, J = 8.2 Hz), 121.4, 118.4 (d, J = 10.1 Hz), 112.7 (d, J = 21.9 Hz), 104.5 (t, J = 25.5 Hz); for (II): 1H NMR (DMSO-d6, δ, p.p.m.): 12.35 (1H, s, NH), 8.88 (1H, s), 8.79 (2H, d, J = 5.5 Hz), 7.98 (1H, d, J = 8.0 Hz), 7.83 (2H, d, J = 5.5 Hz), 7.71 (1H, d, J = 7.5 Hz), 7.45 (1H, dd, J = 7.5 and 8.0 Hz); 13C NMR (DMSO-d6, δ, p.p.m.): 161.7, 150.4, 149.6, 144.6, 140.0, 133.7, 132.4, 131.8, 128.5, 125.6, 121.5; IR (KBr, ν, cm−1), for (I): 3177 (NH) and 1654 (CO); for (II): 3188 (NH) and 1686 (CO).

Refinement top

The space groups P21/n for (I) and P21/c for (II) were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with distances C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). In compound (I), the disordered difluorinated ring was modelled using partially occupied H and F sites adjacent to atoms C22 and C26, with the occupancies of the partially occupied H and partially occupied F sites each constrained to sum to unity. The site-occupancy factors then refined to 0.760 (3) and 0.240 (3).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The major conformer (see text) of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of compound (I), showing the formation of a chain of rings along [101]. For the sake of clarity, only the major conformer is shown, and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1/2 + x, 1/2 − y, 1/2 + z) and (−1/2 + x, 1/2 − y, −1/2 + z), respectively.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of an (010) sheet of π-stacked [101] chains. For the sake of clarity, only the major conformer is shown, and H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. Part of the crystal structure of compound (II), showing the formation of a chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, −1/2 + y, 1/2 − z) and (1 − x, 1/2 + y, 1/2 − z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure of compound (II), showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 3/2 − y, −1/2 + z) and (x, 3/2 − y, 1/2 + z), respectively.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded (100) sheet. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2,4-difluorobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H9F2N3OF(000) = 536
Mr = 261.23Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2658 reflections
a = 6.8859 (3) Åθ = 3.2–27.5°
b = 24.7258 (12) ŵ = 0.12 mm1
c = 7.2582 (2) ÅT = 120 K
β = 107.953 (2)°Block, colourless
V = 1175.61 (8) Å30.60 × 0.35 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2658 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3230
Tmin = 0.946, Tmax = 0.988l = 99
10256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.035P)2 + 0.6726P]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H9F2N3OV = 1175.61 (8) Å3
Mr = 261.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8859 (3) ŵ = 0.12 mm1
b = 24.7258 (12) ÅT = 120 K
c = 7.2582 (2) Å0.60 × 0.35 × 0.10 mm
β = 107.953 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2231 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.988Rint = 0.031
10256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2658 reflectionsΔρmin = 0.28 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F20.8073 (2)0.45076 (5)0.56591 (17)0.0346 (4)0.760 (3)
F40.72835 (17)0.50298 (4)0.07066 (15)0.0403 (3)
F60.6083 (6)0.32559 (14)0.0544 (5)0.0317 (13)0.240 (3)
O10.51293 (16)0.19391 (4)0.41215 (14)0.0219 (2)
N110.7884 (2)0.10916 (5)1.06980 (18)0.0258 (3)
N170.72223 (19)0.25953 (5)0.58717 (16)0.0192 (3)
N270.68464 (18)0.29395 (5)0.42872 (17)0.0189 (3)
C120.7607 (2)0.16247 (6)1.0840 (2)0.0238 (3)
C130.7125 (2)0.19749 (6)0.9274 (2)0.0198 (3)
C140.6889 (2)0.17639 (6)0.74432 (19)0.0169 (3)
C150.7128 (2)0.12117 (6)0.7257 (2)0.0187 (3)
C160.7642 (2)0.08966 (6)0.8920 (2)0.0235 (3)
C170.6327 (2)0.21063 (5)0.56489 (19)0.0180 (4)
C210.7347 (2)0.38328 (6)0.3252 (2)0.0174 (3)
C220.7742 (2)0.43710 (6)0.3791 (2)0.0236 (3)
C230.7718 (3)0.47825 (6)0.2506 (2)0.0286 (4)
C240.7276 (2)0.46374 (6)0.0597 (2)0.0261 (3)
C250.6819 (2)0.41167 (7)0.0066 (2)0.0266 (3)
C260.6863 (2)0.37187 (6)0.1282 (2)0.0226 (3)
C270.7506 (2)0.34208 (6)0.4739 (2)0.0181 (3)
H120.77510.17711.20860.029*
H130.69580.23510.94470.024*
H150.69440.10530.60230.022*
H160.78350.05200.87900.028*
H170.81590.26770.69690.023*
H270.81110.35120.60640.022*
H220.80460.44600.51240.028*0.240 (3)
H230.79930.51470.29190.034*
H250.64850.40340.14060.032*
H260.65550.33560.08550.038*0.760 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0587 (9)0.0227 (6)0.0207 (7)0.0062 (6)0.0096 (6)0.0055 (5)
F40.0542 (7)0.0306 (5)0.0370 (6)0.0013 (5)0.0155 (5)0.0180 (4)
F60.053 (3)0.0194 (19)0.023 (2)0.0074 (17)0.0115 (18)0.0032 (15)
O10.0240 (6)0.0197 (5)0.0173 (5)0.0013 (4)0.0005 (4)0.0002 (4)
N110.0278 (7)0.0274 (7)0.0213 (6)0.0004 (5)0.0061 (5)0.0057 (5)
N170.0215 (6)0.0182 (6)0.0143 (6)0.0023 (5)0.0001 (5)0.0024 (4)
N270.0192 (6)0.0190 (6)0.0175 (6)0.0002 (5)0.0041 (5)0.0042 (5)
C120.0249 (8)0.0293 (8)0.0172 (7)0.0025 (6)0.0065 (6)0.0008 (6)
C130.0198 (7)0.0194 (7)0.0201 (7)0.0011 (5)0.0060 (6)0.0022 (5)
C140.0130 (7)0.0192 (7)0.0176 (7)0.0011 (5)0.0034 (5)0.0013 (5)
C150.0182 (7)0.0189 (7)0.0183 (7)0.0011 (5)0.0048 (5)0.0018 (5)
C160.0246 (8)0.0193 (7)0.0262 (8)0.0006 (6)0.0073 (6)0.0023 (6)
C170.0159 (9)0.0202 (9)0.0164 (9)0.0005 (7)0.0029 (7)0.0004 (7)
C210.0139 (6)0.0186 (7)0.0194 (7)0.0005 (5)0.0048 (5)0.0016 (5)
C220.0276 (8)0.0228 (7)0.0205 (7)0.0017 (6)0.0073 (6)0.0026 (6)
C230.0351 (9)0.0180 (7)0.0335 (9)0.0016 (6)0.0120 (7)0.0010 (6)
C240.0264 (8)0.0234 (7)0.0285 (8)0.0027 (6)0.0086 (7)0.0112 (6)
C250.0295 (8)0.0311 (8)0.0186 (7)0.0004 (7)0.0064 (6)0.0031 (6)
C260.0240 (8)0.0206 (7)0.0227 (7)0.0038 (6)0.0064 (6)0.0016 (6)
C270.0163 (7)0.0204 (7)0.0164 (7)0.0004 (5)0.0034 (5)0.0002 (5)
Geometric parameters (Å, º) top
N11—C161.339 (2)C27—C211.4631 (19)
N11—C121.340 (2)C27—H270.95
C12—C131.386 (2)C21—C221.390 (2)
C12—H120.95C21—C261.393 (2)
C13—C141.3895 (19)C22—F21.3465 (19)
C13—H130.95C22—C231.377 (2)
C14—C151.387 (2)C22—H220.95
C14—C171.5006 (19)C23—C241.372 (2)
C15—C161.388 (2)C23—H230.95
C15—H150.95C24—F41.3564 (17)
C16—H160.95C24—C251.377 (2)
C17—O11.2315 (17)C25—C261.382 (2)
C17—N171.3442 (18)C25—H250.95
N17—N271.3894 (16)C26—F61.307 (4)
N17—H170.88C26—H260.95
N27—C271.2799 (18)
C16—N11—C12116.74 (13)N27—C27—H27119.4
N11—C12—C13123.73 (14)C21—C27—H27119.4
N11—C12—H12118.1C22—C21—C26116.53 (13)
C13—C12—H12118.1C22—C21—C27119.69 (13)
C12—C13—C14118.54 (14)C26—C21—C27123.76 (13)
C12—C13—H13120.7F2—C22—C23117.36 (14)
C14—C13—H13120.7F2—C22—C21118.76 (14)
C15—C14—C13118.70 (13)C23—C22—C21123.80 (14)
C15—C14—C17118.54 (12)C23—C22—H22118.1
C13—C14—C17122.74 (13)C21—C22—H22118.1
C14—C15—C16118.32 (13)C24—C23—C22116.34 (14)
C14—C15—H15120.8C24—C23—H23121.8
C16—C15—H15120.8C22—C23—H23121.8
N11—C16—C15123.96 (14)F4—C24—C23118.06 (14)
N11—C16—H16118.0F4—C24—C25118.32 (14)
C15—C16—H16118.0C23—C24—C25123.61 (14)
O1—C17—N17124.42 (13)C24—C25—C26117.74 (14)
O1—C17—C14120.92 (12)C24—C25—H25121.1
N17—C17—C14114.65 (12)C26—C25—H25121.1
C17—N17—N27119.34 (11)F6—C26—C25114.62 (19)
C17—N17—H17119.8F6—C26—C21122.42 (19)
N27—N17—H17120.4C25—C26—C21121.94 (14)
C27—N27—N17113.36 (11)C25—C26—H26119.1
N27—C27—C21121.22 (13)C21—C26—H26119.0
C16—N11—C12—C130.9 (2)N27—C27—C21—C2613.0 (2)
N11—C12—C13—C140.7 (2)C26—C21—C22—F2175.32 (14)
C12—C13—C14—C150.6 (2)C27—C21—C22—F26.3 (2)
C12—C13—C14—C17178.76 (13)C26—C21—C22—C231.3 (2)
C13—C14—C15—C161.6 (2)C27—C21—C22—C23177.04 (15)
C17—C14—C15—C16179.82 (13)F2—C22—C23—C24176.81 (15)
C12—N11—C16—C150.2 (2)C21—C22—C23—C240.1 (2)
C14—C15—C16—N111.4 (2)C22—C23—C24—F4178.56 (14)
C15—C14—C17—O137.62 (19)C22—C23—C24—C251.7 (3)
C13—C14—C17—O1140.55 (14)F4—C24—C25—C26178.55 (14)
C15—C14—C17—N17142.61 (14)C23—C24—C25—C261.7 (3)
C13—C14—C17—N1739.21 (19)C24—C25—C26—F6168.8 (2)
O1—C17—N17—N271.9 (2)C24—C25—C26—C210.1 (2)
C14—C17—N17—N27178.39 (12)C22—C21—C26—F6166.5 (2)
C17—N17—N27—C27169.28 (13)C27—C21—C26—F615.2 (3)
N17—N27—C27—C21176.72 (12)C22—C21—C26—C251.3 (2)
N27—C27—C21—C22168.76 (14)C27—C21—C26—C25176.98 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O1i0.881.972.826 (2)164
C27—H27···O1i0.952.493.261 (2)138
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II) 2,3-dichlorobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H9Cl2N3OF(000) = 600
Mr = 294.13Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2833 reflections
a = 7.7369 (2) Åθ = 3.2–27.5°
b = 10.7764 (4) ŵ = 0.52 mm1
c = 14.9091 (5) ÅT = 120 K
β = 90.2400 (18)°Plate, colourless
V = 1243.05 (7) Å30.30 × 0.10 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2833 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.861, Tmax = 0.965l = 1919
18370 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
2833 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C13H9Cl2N3OV = 1243.05 (7) Å3
Mr = 294.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7369 (2) ŵ = 0.52 mm1
b = 10.7764 (4) ÅT = 120 K
c = 14.9091 (5) Å0.30 × 0.10 × 0.07 mm
β = 90.2400 (18)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2466 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.965Rint = 0.033
18370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.15Δρmax = 0.42 e Å3
2833 reflectionsΔρmin = 0.49 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.04940 (5)0.24580 (4)0.42803 (2)0.02352 (14)
Cl30.10886 (5)0.09016 (3)0.58410 (3)0.02128 (13)
O10.51413 (15)0.78229 (11)0.53171 (7)0.0230 (3)
N110.63516 (16)0.99082 (12)0.23853 (9)0.0196 (3)
N170.39121 (15)0.64469 (12)0.43497 (8)0.0161 (3)
N270.32647 (16)0.57712 (11)0.50549 (9)0.0168 (3)
C120.5589 (2)0.88125 (15)0.22055 (10)0.0199 (3)
C130.5094 (2)0.79782 (15)0.28652 (10)0.0191 (3)
C140.53873 (18)0.82704 (14)0.37632 (10)0.0151 (3)
C150.62092 (19)0.93893 (15)0.39518 (11)0.0185 (3)
C160.6659 (2)1.01645 (15)0.32536 (11)0.0209 (3)
C170.48243 (19)0.74973 (13)0.45513 (11)0.0162 (3)
C210.15624 (18)0.40883 (13)0.55589 (10)0.0150 (3)
C220.06857 (18)0.29789 (14)0.53716 (10)0.0158 (3)
C230.00409 (19)0.22879 (14)0.60658 (10)0.0167 (3)
C240.0077 (2)0.26876 (15)0.69431 (11)0.0220 (3)
C250.0932 (2)0.37925 (16)0.71337 (11)0.0249 (4)
C260.1665 (2)0.44816 (15)0.64513 (11)0.0197 (3)
C270.23389 (18)0.48333 (14)0.48410 (10)0.0163 (3)
H120.53800.86000.15960.024*
H130.45600.72150.27060.023*
H150.64580.96170.45540.022*
H160.72201.09240.33950.025*
H170.37930.61470.38040.019*
H240.04200.22120.74130.026*
H250.10120.40760.77360.030*
H260.22480.52340.65910.024*
H270.21570.46220.42290.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0362 (3)0.0209 (2)0.0135 (2)0.00425 (15)0.00043 (16)0.00294 (14)
Cl30.0249 (2)0.0160 (2)0.0230 (2)0.00380 (14)0.00022 (15)0.00012 (14)
O10.0329 (6)0.0217 (6)0.0143 (6)0.0044 (5)0.0022 (5)0.0003 (5)
N110.0241 (7)0.0165 (7)0.0182 (7)0.0001 (5)0.0005 (5)0.0018 (5)
N170.0207 (6)0.0152 (6)0.0124 (6)0.0001 (5)0.0011 (5)0.0024 (5)
N270.0174 (6)0.0162 (7)0.0167 (7)0.0014 (5)0.0011 (5)0.0032 (5)
C120.0260 (8)0.0187 (8)0.0148 (8)0.0005 (6)0.0003 (6)0.0015 (6)
C130.0243 (8)0.0159 (8)0.0171 (8)0.0025 (6)0.0009 (6)0.0009 (6)
C140.0150 (7)0.0140 (7)0.0163 (8)0.0029 (5)0.0000 (5)0.0016 (6)
C150.0220 (7)0.0181 (8)0.0153 (8)0.0004 (6)0.0025 (6)0.0008 (6)
C160.0243 (8)0.0187 (8)0.0198 (8)0.0038 (6)0.0017 (6)0.0003 (6)
C170.0173 (7)0.0145 (8)0.0168 (8)0.0024 (5)0.0002 (6)0.0014 (6)
C210.0154 (7)0.0150 (7)0.0148 (7)0.0036 (5)0.0006 (5)0.0012 (6)
C220.0173 (7)0.0171 (8)0.0130 (7)0.0033 (6)0.0019 (5)0.0010 (6)
C230.0169 (7)0.0143 (7)0.0187 (8)0.0011 (6)0.0001 (6)0.0003 (6)
C240.0264 (8)0.0234 (8)0.0162 (8)0.0026 (6)0.0037 (6)0.0017 (6)
C250.0337 (9)0.0265 (9)0.0147 (8)0.0060 (7)0.0013 (7)0.0034 (7)
C260.0233 (8)0.0181 (8)0.0175 (8)0.0029 (6)0.0002 (6)0.0023 (6)
C270.0176 (7)0.0166 (8)0.0146 (7)0.0032 (6)0.0004 (5)0.0004 (6)
Geometric parameters (Å, º) top
N11—C161.344 (2)N27—C271.2785 (19)
N11—C121.346 (2)C27—C211.469 (2)
C12—C131.388 (2)C27—H270.95
C12—H120.95C21—C261.398 (2)
C13—C141.393 (2)C21—C221.402 (2)
C13—H130.95C22—C231.395 (2)
C14—C151.391 (2)C22—Cl21.7270 (15)
C14—C171.506 (2)C23—C241.380 (2)
C15—C161.381 (2)C23—Cl31.7318 (16)
C15—H150.95C24—C251.391 (2)
C16—H160.95C24—H240.95
C17—O11.2183 (19)C25—C261.383 (2)
C17—N171.3667 (19)C25—H250.95
N17—N271.3751 (17)C26—H260.95
N17—H170.88
C16—N11—C12116.60 (13)C27—N27—N17115.68 (13)
N11—C12—C13123.31 (14)N27—C27—C21118.74 (14)
N11—C12—H12118.3N27—C27—H27120.6
C13—C12—H12118.3C21—C27—H27120.6
C12—C13—C14119.37 (14)C26—C21—C22118.26 (14)
C12—C13—H13120.3C26—C21—C27120.40 (14)
C14—C13—H13120.3C22—C21—C27121.33 (13)
C15—C14—C13117.55 (14)C23—C22—C21120.23 (14)
C15—C14—C17117.07 (13)C23—C22—Cl2119.48 (12)
C13—C14—C17125.33 (14)C21—C22—Cl2120.29 (11)
C16—C15—C14119.25 (14)C24—C23—C22120.75 (14)
C16—C15—H15120.4C24—C23—Cl3118.81 (12)
C14—C15—H15120.4C22—C23—Cl3120.44 (12)
N11—C16—C15123.89 (15)C23—C24—C25119.38 (15)
N11—C16—H16118.1C23—C24—H24120.3
C15—C16—H16118.1C25—C24—H24120.3
O1—C17—N17123.12 (14)C26—C25—C24120.36 (15)
O1—C17—C14120.92 (13)C26—C25—H25119.8
N17—C17—C14115.93 (13)C24—C25—H25119.8
C17—N17—N27117.38 (13)C25—C26—C21121.01 (15)
C17—N17—H17124.0C25—C26—H26119.5
N27—N17—H17118.4C21—C26—H26119.5
C16—N11—C12—C131.4 (2)N27—C27—C21—C267.4 (2)
N11—C12—C13—C140.0 (2)N27—C27—C21—C22173.32 (13)
C12—C13—C14—C151.4 (2)C26—C21—C22—C230.8 (2)
C12—C13—C14—C17176.01 (14)C27—C21—C22—C23180.00 (13)
C13—C14—C15—C161.4 (2)C26—C21—C22—Cl2179.17 (11)
C17—C14—C15—C16176.26 (13)C27—C21—C22—Cl20.08 (19)
C12—N11—C16—C151.4 (2)C21—C22—C23—C240.6 (2)
C14—C15—C16—N110.0 (2)Cl2—C22—C23—C24179.36 (12)
C15—C14—C17—O12.8 (2)C21—C22—C23—Cl3178.73 (11)
C13—C14—C17—O1179.78 (15)Cl2—C22—C23—Cl31.35 (18)
C15—C14—C17—N17175.51 (13)C22—C23—C24—C250.0 (2)
C13—C14—C17—N171.9 (2)Cl3—C23—C24—C25179.32 (13)
O1—C17—N17—N273.1 (2)C23—C24—C25—C260.4 (3)
C14—C17—N17—N27175.12 (12)C24—C25—C26—C210.2 (2)
C17—N17—N27—C27176.30 (13)C22—C21—C26—C250.4 (2)
N17—N27—C27—C21178.28 (12)C27—C21—C26—C25179.65 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.223.079 (2)164
C12—H12···O1ii0.952.453.338 (2)155
C13—H13···N11i0.952.593.512 (2)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H9F2N3OC13H9Cl2N3O
Mr261.23294.13
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)6.8859 (3), 24.7258 (12), 7.2582 (2)7.7369 (2), 10.7764 (4), 14.9091 (5)
β (°) 107.953 (2) 90.2400 (18)
V3)1175.61 (8)1243.05 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.120.52
Crystal size (mm)0.60 × 0.35 × 0.100.30 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.946, 0.9880.861, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
10256, 2658, 2231 18370, 2833, 2466
Rint0.0310.033
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.07 0.031, 0.099, 1.15
No. of reflections26582833
No. of parameters178172
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.280.42, 0.49

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O1i0.881.972.826 (2)164
C27—H27···O1i0.952.493.261 (2)138
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.223.079 (2)164
C12—H12···O1ii0.952.453.338 (2)155
C13—H13···N11i0.952.593.512 (2)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
Selected torsion angles for compounds (I) and (II) (°) top
Parameter(I)(II)
C13-C14-C17-N1739.21 (19)-1.9 (2)
C14-C17-N17-N27178.39 (12)-175.12 (12)
C17-N17-N27-C27169.28 (13)176.30 (13)
N17-N27-C27-C21176.72 (12)-178.28 (12)
N27-C27-C21-C22168.76 (14)-173.32 (13)
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds