metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Di­chloro­tetra­kis[3-(4-pyrid­yl)-1H-pyrazole]cobalt(II) aceto­nitrile tetra­solvate: an infinite hydrogen-bonded network, in an instant

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, England
*Correspondence e-mail: m.d.ward@sheffield.ac.uk

(Received 7 September 2005; accepted 5 October 2005; online 22 October 2005)

Reaction of 3-(4-pyrid­yl)pyrazole (4pypz) with cobalt(II) chloride in acetonitrile affords the title complex, [CoCl2(C8H7N3)4]·4CH3CN, within seconds of addition, as purple X-ray quality crystals. The mol­ecule has C4 symmetry. The metal ion exhibits a trans-N4Cl2 octa­hedral geometry, with the four 3-(4-pyrid­yl)-1H-pyrazole ligands coordinating through their pyridyl N-atom donors; one coordinated chloride ion forms hydrogen bonds with the pyrazole rings from four separate units. This configuration creates an infinite three-dimensional coordination network containing channels that are filled with acetonitrile solvent mol­ecules.

Comment

We have extensively studied the structural and photophysical properties of metal complexes with the scorpionate ligand hydro­tris[3-(2-pyrid­yl)pyrazol-1-yl]borate (Tp2py) (Davies, Adams, Pope et al., 2005[Davies, G. M., Adams, H., Pope, S. J. A., Faulkner, S. & Ward, M. D. (2005). Photochem. Photobiol. Sci. 4, 829-834.]; Davies, Adams & Ward, 2005[Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221-m223.]; Davies et al., 2004[Davies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). Dalton Trans. pp. 1136-1144.]; Beeby et al., 2002[Beeby, A., Burton-Pye, B. P., Faulkner, S., Motson, G. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1923-1928.]; Ward et al., 2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]; Jones, Amoroso et al., 1997[Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]; Amoroso et al., 1994[Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751-2752.]). The potentially tridentate ligand 3-(2-pyrid­yl)pyrazole (2pypz), a precursor to (Tp2py), has also proven to be of inter­est, with a range of coordination modes being displayed depending on whether the pyrazole unit is neutral or deprotonated (Ward, Fleming et al., 1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.]; Ward, Mann et al., 1998[Ward, M. D., Mann, K. L. V., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 601-603.]; Jones, Jeffery et al., 1997[Jones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567.]). Accordingly, we have prepared the isomeric ligand 3-(4-pyrid­yl)pyrazole (4pypz) (Adams et al., 2005[Adams, H., Batten, S. R., Davies, G. M., Duriska, M. B., Jeffery, J. C., Jensen, P., Lu, J., Motson, G. R., Coles, S. J., Hursthouse, M. B. & Ward, M. D. (2005). Dalton Trans. pp. 1910-1923.]), which can no longer act as a chelate but in principle can act as a bridging ligand whose coordination mode will again depend on whether the pyrazole unit is deprotonated.

Linear bridging ligands commonly give rise to infinite coordination polymers (Fujita et al., 1996[Fujita, M., Sasaki, O., Mitsuhoshi, T., Fujita, T., Yazahi, J., Yamaguchi, K. & Ogura, K. (1996). Chem. Commun. pp. 1535-1536.]; Choudhury et al., 2002[Choudhury, C. R., Dey, S. K., Sen, S., Bag, B., Mitra, S. & Gramlich, V. (2002). Z. Naturforsch. Teil B, 57, 1191-1194.]; Zheng et al., 2005[Zheng, B., Liu, G., Gou, L., Wang, D.-Y. & Hu, H.-M. (2005). Acta Cryst. E61, m499-m501.]; Subramanian & Zaworotko, 1995[Subramanian, R. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. 34, 2127-2129.]); `bent' bridging ligands, arising here from the combination of six- and five-membered rings, are less explored. As a result, we decided to explore the coordination chemistry of the 4pypz ligand. In this paper, we describe the synthesis and structure of the title complex, [CoCl2(4pypz)4]·4MeCN, (I)[link], a new hydrogen-bonded coordination network based on 4pypz, in which the 4pypz ligand combines a metal coordination site and a hydrogen-bond donor site. Mulyana et al. (2005[Mulyana, Y., Kepert, C. J., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 1598-1601.]) recently described complexes of the isomeric ligand 4-(4-pyrid­yl)­pyrazole, in which the ligand could be either cationic (proton­ated) and monodentate or anionic (deprotonated) and tridentate; in the former case, the network structure is propagated by hydrogen bonding between mononuclear units, whereas in the latter case, the ligand coordinates to three metal ions, resulting in a genuine coordination network.

[Scheme 1]

Reaction of 4pypz with anyhdrous cobalt(II) chloride in acetonitrile afforded a blue solution from which, a few seconds after addition, purple X-ray quality crystals of complex (I)[link] began to appear. In contrast to the behaviour displayed by 4-(4-pyrid­yl)pyrazole (Mulyana et al., 2005[Mulyana, Y., Kepert, C. J., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 1598-1601.]), 3-(4-pyrid­yl)­pyrazole remains neutral upon coordination. The cobalt(II) centre retains both chloride ions in a trans arrangement and coordinates to the pyridyl termini of four separate 4pypz ligands around the equatorial plane (Fig. 1[link]), giving a trans-N4Cl2 pseudo-octa­hedral coordination geometry. Only one 4pypz arm is located in the asymmetric unit, the Cl—Co—Cl axis (parallel to the c axis) being a fourfold rotation axis such that the Co and Cl atoms have 25% occupancy in the asymmetric unit. The Co1—N1 bond length of 2.1648 (12) Å is typical of pyrid­yl–cobalt(II) coordination (Long & Clarke, 1978[Long, G. J. & Clarke, P. J. (1978). Inorg. Chem. 17, 1394-1401.]). One Co—Cl bond is significantly longer than the other, viz. Co1—Cl1 = 2.5775 (11) Å and Co1—Cl2 = 2.3962 (12) Å.

In relation to the mean plane of the four pyridyl N atoms (Npy), the pyridyl and pyrazole rings are twisted by 46.3 and 26.6°, respectively, and by 20.0° with respect to each other. Pyrrolic N10 atoms form the vertices of a perfect square parallel to the ab plane, with a side length of 11.935 Å and rotated by 7° about the c axis with respect to the square face of the unit cell. The mean plane of the four N10 donors lies 0.27 Å below that of the four pyridyl donors because of the twist between the pyridyl and pyrazolyl rings.

Each pyrrolic H atom, H10, is hydrogen bonded to one of the chloride ions of a separate [CoCl2(4pypz)] unit [N10⋯Cl1 = 3.260 (2) Å, H10⋯Cl1 = 2.41 Å and N10—H10⋯Cl1 = 164°]; there is a square array of four such hydrogen bonds to each Cl1 atom (Fig. 2[link]), generating a hydrogen-bonded sheet of complex mol­ecules in the ab plane. Each Cl1 atom is therefore in a `square-pyramidal' coordination environment, with four equivalent N—H⋯Cl hydrogen bonds in the basal plane and an axial dative bond to atom Co1. Owing to the orientation of the pyrazole rings, the network of hydrogen bonds also extends down the c axis, giving an overall three-dimensional coordination network. Hydrogen-bonding inter­actions between NH donors and Cl acceptors have been studied extensively as a tool for crystal engineering (Brammer et al., 2002[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.]; Angeloni & Orpen, 2001[Angeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343-344.]; Angeloni et al., 2004[Angeloni, A., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Shore, B. J. (2004). Chem. Eur. J. 10, 3783-3791.]).

In addition, the network contains square channels with a cross-section area of 71 Å2, whose perimeters are defined by the ligands. These channels contain four columns of aceto­nitrile solvent mol­ecules, each of which inter­acts weakly via a C—H⋯N hydrogen bond between atom H8 of a pyrazole ring and atom N22 of the acetonitrile mol­ecule (H8⋯N22 = 2.61 Å). These solvent mol­ecules are easily lost from the lattice on drying, as shown by loss of weight on drying and elemental analysis of the dried material.

Finally, we note that the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter for this chiral crystal is indicative of racemic twinning.

[Figure 1]
Figure 1
A view of [CoCl2(4pypz)4]·4MeCN; displacement ellipsoids are shown at the 40% probability level. [Symmetry codes: (A) 1-x, 1-y, -z; (B) 1-y, x, z; (C) y, 1-x, z.]
[Figure 2]
Figure 2
A view down the c axis, showing the arrangement of four N—H⋯Cl hydrogen bonds (dashed lines) to atom Cl1 at the centre of the figure. The four ligands coordinated to atom Co1 (obscured beneath Cl1) are shown with solid bonds; the four ligands with hollow bonds are coordinated via their pyridyl N-atom donors to separate metal atoms but act as hydrogen-bond donors to the central complex mol­ecule (see Comment).

Experimental

3-(4-Pyrid­yl)-1H-pyrazole was prepared according to the published method of Davies et al. (2003[Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550-1553.]) and a solution (100 mg, 0.69 mmol) in MeCN (10 ml) was added to a solution of anhydrous CoCl2 (22.4 mg, 0.17 mmol) in MeCN (10 ml); the resulting solution was stirred once and filtered through celite. Upon being left to stand for a few moments, purple X-ray quality crystals began to precipitate out of the blue solution. After the mixture had been left to stand for a few hours, the purple crystals were filtered off and dried, giving opaque pink crystals of [CoCl2(4pypz)4]·4MeCN in 30% yield. Analysis found: C 53.4, H 4.2, N 23.4%; calculated for C32H28Cl2CoN12·4MeCN: C 53.4, H 4.1, N 23.4%. IR (cm−1): 3287 (m), 1614 (s), 1556 (w), 1496 (w), 1456 (m), 1424 (m), 1356 (w), 1290 (w), 1216 (m), 1178 (m), 1122 (w), 1079 (w), 1039 (m), 1014 (m), 947 (m), 843 (s), 758 (s), 740 (s), 701 (s), 663 (w), 622 (m). A crystal for X-ray diffraction analysis was removed directly from the mother liquor, coated in engine oil to clean it of subsidiary grains, and quickly (to prevent loss of MeCN) mounted in a stream of cold N2 (150 K) on the diffractometer for subsequent analysis.

Crystal data
  • [CoCl2(C8H7N3)4]·4C2H3N

  • Mr = 874.71

  • Tetragonal, I 4

  • a = 15.649 (2) Å

  • c = 8.653 (2) Å

  • V = 2119.0 (6) Å3

  • Z = 2

  • Dx = 1.371 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1005 reflections

  • θ = 5.4–53.8°

  • μ = 0.58 mm−1

  • T = 150 (2) K

  • Block, purple

  • 0.31 × 0.31 × 0.19 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.840, Tmax = 0.898

  • 11871 measured reflections

  • 2407 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

  • h = −20 → 19

  • k = −20 → 20

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 0.97

  • 2407 reflections

  • 138 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0477P)2 + 0.1612P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1094 Friedel pairs

  • Flack parameter: 0.418 (14)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have extensively studied the structural and photophysical properties of metal complexes with the scorpionate ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate (Tp2py) (Davies, Adams, Pope et al., 2005; Davies, Adams & Ward, 2005; Davies et al., 2004; Beeby et al., 2002; Ward et al., 2001; Jones, Amoroso et al., 1997; Amoroso et al., 1994). The potentially tridentate ligand 3-(2-pyridyl)pyrazole (2pypz), a precursor to (Tp2py), has also proven to be of interest with a range of coordination modes being displayed depending on whether the pyrazole unit is neutral or deprotonated (Ward, Fleming et al., 1998; Ward, Mann et al., 1998; Jones, Jeffery et al., 1997). Accordingly, we have prepared the isomeric ligand 3-(4-pyridyl)pyrazole (4pypz) (Adams et al., 2005), which can no longer act as a chelate but in principle can act as a bridging ligand whose coordination mode will again depend on whether the pyrazole is deprotonated.

Linear bridging ligands commonly give rise to infinite coordination polymers (Fujita et al., 1996; Choudhury et al., 2002; Zheng et al., 2005; Subramanian & Zaworotko, 1995); `bent' bridging ligands, arising here from the combination of six- and five-membered rings, are less explored. As a result, we decided to explore the coordination chemistry of the 4pypz ligand. In this paper, we describe the synthesis and structure of the title complex, [Co(4pypz)4Cl2]·4(MeCN), (I), a new hydrogen-bonded coordination network based on 4pypz, in which the ligand 4pypz combines a metal coordination site and a hydrogen- bond donor site. Mulyana et al. (2005) recently described complexes of the isomeric ligand 4-(4-pyridyl)pyrazole, in which the ligand could be either cationic (protonated) and monodentate, or anionic (deprotonated) and tridentate; in the former case, the network structure is propagated by hydrogen bonding between mononuclear units, whereas in the latter case, the ligand coordinates to three metal ions, resulting in a genuine coordination network.

Reaction of 4pypz with anyhdrous cobalt(II) chloride in acetonitrile afforded a blue solution from which, a few s after addition, purple X-ray quality crystals of complex (I) began to appear. In contrast to the behaviour displayed by 4-(4-pyridyl)pyrazole (Mulyana et al., 2005), our ligand 3-(4-pyridyl)pyrazole remains neutral upon coordination. The cobalt(II) centre retains both chloride ions in a trans arrangement and coordinates to the pyridyl termini of four separate 4pypz ligands around the equatorial plane (Fig. 1), giving a trans-N4Cl2 pseudo-octahedral coordination geometry. Only one 4pypz arm is located in the asymmetric unit, with the Cl—Co—Cl axis (parallel to the c axis) being a fourfold rotation axis such that the Co and Cl atoms have 25% occupancy in the asymmetric unit. The Co1—N1 bond length of 2.1648 (12) Å is typical of pyridyl–CoII coordination (Long & Clarke, 1978). One Co—Cl bond is significantly longer than the other [Co1—Cl1 = 2.5775 (11) Å and Co1—Cl2 = 2.3962 (12) Å].

In relation to the mean plane of the four pyridyl N atoms (Npy), the pyridyl and pyrazole rings are twisted 46.3 and 26.6°, respectively, and 20.0° with respect to each other. Pyrrolic atoms N10 form the vertices of a perfect square parallel to the ab plane, with a side length of 11.935 Å and rotated by 7° about the c axis with respect to the square face of the unit cell. The mean plane of the four N10 donors lies 0.27 Å below that of the four pyridyl donors because of the twist between the pyridyl and pyrazolyl rings.

Each pyrrolic H atom, H10, is hydrogen bonded to one of the chloride ions of a separate [Co(4pypz)Cl2] unit [N10···Cl1 = 3.260 (2) Å, H10···Cl1 = 2.41 Å and N10—H10···Cl1 = 164°]; there is a square array of four such hydrogen bonds to each Cl1 atom (Fig. 2), generating a hydrogen-bonded sheet of complex molecules in the ab plane. Each Cl1 atom is therefore in a `square pyramidal' coordination environment, with four equivalent N—H···Cl hydrogen bonds in the basal plane and an axial dative bond to atom Co1. Owing to the orientation of the pyrazole rings, the network of hydrogen bonds also extends down the c axis, giving an overall three-dimensional coordination network. Hydrogen-bonding interactions between NH donors and Cl acceptors have been extensively studied as a tool for crystal engineering (Brammer et al., 2002; Angeloni & Orpen, 2001; Angeloni et al., 2004).

In addition, the network contains square channels with a cross section area of 71 Å2, whose perimeters are defined by the ligands. These channels contain four columns of acetonitrile solvent molecules (Fig. 2), each of which interacts weakly via a C—H···N hydrogen bond between atom H8 of a pyrazole ring and atom N22 of the acetonitrile (H8···N22 = 2.61 Å). These solvent molecules are easily lost from the lattice on drying, as shown by loss of weight on drying and elemental analysis of the dried material.

Finally, we note that the Flack parameter for this chiral crystal [0.42 (1)] is indicative of racemic twinning.

Experimental top

3-(4-Pyridyl)pyrazole was prepared according to the published method (Davies et al., 2003). 3-(4-Pyridyl)pyrazole (100 mg, 0.69 mmol) in MeCN (10 ml) was added to a solution of anhydrous CoCl2 (22.4 mg, 0.17 mmol) in MeCN (10 ml); the solution was stirred once and filtered through celite. Upon being left to stand for a few moments, purple X-ray quality crystals began to precipitate out of the blue solution. After the mixture had been left to stand for a few hours, the purple crystals were filtered off from the filtrate and dried, to give opaque pink crystals of [Co(4pypz)4Cl2]·0.5H2O in 30% yield. Found: C 53.4, H 4.2, N 23.4%; calculated for C32H28N12CoCl2·0.5H2O: C 53.4, H 4.1, N 23.4%. IR (cm−1): 3287 (m), 1614 (s), 1556 (w), 1496 (w), 1456 (m), 1424 (m), 1356 (w), 1290 (w), 1216 (m), 1178 (m), 1122 (w), 1079 (w), 1039 (m), 1014 (m), 947 (m), 843 (s), 758 (s), 740 (s), 701 (s), 663 (w), 622 (m). A crystal for X-ray diffraction analysis was removed directly from the mother liquor, coated in engine oil to clean it of subsidiary grains, and quickly (to prevent loss of MeCN) mounted in a stream of cold N2 (150 K) on the diffractometer for subsequent analysis.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of [Co(4pypz)4Cl2]·4MeCN; displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. A view down the c axis, showing the arrangement of four N—H···Cl hydrogen bonds (dashed lines) to atom Cl1 at the centre of the figure. The four ligands coordinated to atom Co1 [obscured beneath Cl1] are shown with solid bonds; the four ligands with hollow bonds are coordinated via their pyridyl donors to separate metal atoms, but act as hydrogen-bond donors to the central complex molecule (see main text).
Dichlorotetrakis[3-(4-pyridyl)-1H-pyrazole]cobalt(II) acetonitrile tetrasolvate top
Crystal data top
[CoCl2(C8H7N3)4]·4C2H3NDx = 1.371 Mg m3
Mr = 874.71Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 1005 reflections
a = 15.649 (2) Åθ = 5.4–53.8°
c = 8.653 (2) ŵ = 0.58 mm1
V = 2119.0 (6) Å3T = 150 K
Z = 2Block, purple
F(000) = 9060.31 × 0.31 × 0.19 mm
Data collection top
Bruker smart 1000
diffractometer
2407 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω scansh = 2019
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.840, Tmax = 0.898l = 1111
11871 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.1612P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2407 reflectionsΔρmax = 0.27 e Å3
138 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1094 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.418 (14)
Crystal data top
[CoCl2(C8H7N3)4]·4C2H3NZ = 2
Mr = 874.71Mo Kα radiation
Tetragonal, I4µ = 0.58 mm1
a = 15.649 (2) ÅT = 150 K
c = 8.653 (2) Å0.31 × 0.31 × 0.19 mm
V = 2119.0 (6) Å3
Data collection top
Bruker smart 1000
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2197 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.898Rint = 0.032
11871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.27 e Å3
S = 0.97Δρmin = 0.16 e Å3
2407 reflectionsAbsolute structure: Flack (1983), 1094 Friedel pairs
138 parametersAbsolute structure parameter: 0.418 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.60360 (5)0.01697 (11)
Cl10.50000.50000.30573 (9)0.01661 (18)
Cl20.50000.50000.88052 (10)0.0226 (2)
N10.61477 (8)0.57695 (8)0.5918 (2)0.0199 (3)
C20.67856 (11)0.56009 (11)0.4937 (2)0.0218 (4)
H20.67270.51260.42610.026*
C30.75269 (11)0.60825 (11)0.4852 (2)0.0214 (4)
H30.79650.59340.41410.026*
C40.76236 (10)0.67881 (10)0.5821 (2)0.0203 (3)
C50.69552 (12)0.69721 (11)0.6832 (2)0.0240 (4)
H50.69880.74530.74980.029*
C60.62435 (11)0.64488 (11)0.6856 (2)0.0232 (4)
H60.58000.65750.75710.028*
C70.84086 (10)0.73069 (10)0.5793 (2)0.0211 (3)
C80.92180 (12)0.70787 (13)0.5244 (2)0.0299 (4)
H80.93790.65580.47610.036*
C90.97277 (12)0.77667 (13)0.5554 (2)0.0321 (5)
H91.03190.78210.53290.039*
N100.92289 (10)0.83472 (9)0.6236 (2)0.0341 (4)
H100.94150.88490.65440.041*
N110.84134 (10)0.80904 (10)0.6406 (2)0.0328 (4)
C200.89595 (19)0.63238 (18)0.0833 (3)0.0521 (7)
H20A0.83470.62290.09980.078*
H20B0.92880.59670.15500.078*
H20C0.90940.69270.10170.078*
C210.91795 (15)0.61014 (13)0.0738 (3)0.0404 (5)
N220.93422 (16)0.59211 (15)0.1974 (3)0.0588 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01450 (13)0.01450 (13)0.0219 (2)0.0000.0000.000
Cl10.0146 (3)0.0146 (3)0.0207 (4)0.0000.0000.000
Cl20.0232 (3)0.0232 (3)0.0213 (4)0.0000.0000.000
N10.0178 (6)0.0192 (6)0.0228 (7)0.0001 (5)0.0000 (7)0.0009 (7)
C20.0192 (8)0.0207 (8)0.0254 (9)0.0006 (6)0.0016 (7)0.0051 (7)
C30.0182 (8)0.0219 (8)0.0241 (9)0.0008 (6)0.0015 (6)0.0045 (7)
C40.0197 (7)0.0182 (7)0.0228 (9)0.0015 (6)0.0024 (7)0.0030 (7)
C50.0265 (9)0.0193 (8)0.0261 (8)0.0019 (7)0.0015 (8)0.0064 (7)
C60.0226 (9)0.0232 (9)0.0239 (8)0.0003 (7)0.0021 (7)0.0044 (7)
C70.0221 (7)0.0195 (7)0.0216 (9)0.0027 (6)0.0047 (8)0.0010 (7)
C80.0223 (9)0.0274 (10)0.0401 (11)0.0031 (7)0.0002 (8)0.0058 (8)
C90.0226 (9)0.0312 (10)0.0425 (14)0.0067 (8)0.0021 (8)0.0009 (8)
N100.0280 (8)0.0215 (7)0.0527 (12)0.0101 (6)0.0063 (9)0.0044 (8)
N110.0251 (8)0.0248 (8)0.0485 (12)0.0050 (6)0.0033 (7)0.0044 (7)
C200.0626 (18)0.0510 (16)0.0426 (14)0.0094 (13)0.0086 (12)0.0044 (10)
C210.0440 (12)0.0339 (11)0.0433 (15)0.0007 (8)0.0036 (11)0.0074 (10)
N220.0786 (17)0.0534 (14)0.0444 (13)0.0072 (12)0.0138 (12)0.0053 (11)
Geometric parameters (Å, º) top
Co1—N1i2.1648 (12)C5—H50.9500
Co1—N12.1648 (13)C6—H60.9500
Co1—N1ii2.1648 (12)C7—N111.336 (2)
Co1—N1iii2.1648 (12)C7—C81.399 (3)
Co1—Cl22.3962 (12)C8—C91.366 (3)
Co1—Cl12.5775 (11)C8—H80.9500
N1—C21.337 (2)C9—N101.335 (3)
N1—C61.346 (2)C9—H90.9500
C2—C31.385 (2)N10—N111.346 (2)
C2—H20.9500N10—H100.8800
C3—C41.395 (2)C20—C211.446 (4)
C3—H30.9500C20—H20A0.9800
C4—C51.393 (3)C20—H20B0.9800
C4—C71.473 (2)C20—H20C0.9800
C5—C61.383 (3)C21—N221.135 (3)
N1i—Co1—N1174.61 (10)C6—C5—C4119.47 (16)
N1i—Co1—N1ii89.873 (5)C6—C5—H5120.3
N1—Co1—N1ii89.873 (5)C4—C5—H5120.3
N1i—Co1—N1iii89.873 (5)N1—C6—C5123.25 (16)
N1—Co1—N1iii89.873 (5)N1—C6—H6118.4
N1ii—Co1—N1iii174.61 (10)C5—C6—H6118.4
N1i—Co1—Cl292.69 (5)N11—C7—C8111.34 (15)
N1—Co1—Cl292.69 (5)N11—C7—C4120.27 (15)
N1ii—Co1—Cl292.69 (5)C8—C7—C4128.33 (15)
N1iii—Co1—Cl292.69 (5)C9—C8—C7105.12 (17)
N1i—Co1—Cl187.31 (5)C9—C8—H8127.4
N1—Co1—Cl187.31 (5)C7—C8—H8127.4
N1ii—Co1—Cl187.31 (5)N10—C9—C8106.35 (17)
N1iii—Co1—Cl187.31 (5)N10—C9—H9126.8
Cl2—Co1—Cl1180.0C8—C9—H9126.8
C2—N1—C6117.12 (14)C9—N10—N11113.54 (15)
C2—N1—Co1122.65 (11)C9—N10—H10123.2
C6—N1—Co1120.23 (12)N11—N10—H10123.2
N1—C2—C3123.46 (15)C7—N11—N10103.65 (15)
N1—C2—H2118.3C21—C20—H20A109.5
C3—C2—H2118.3C21—C20—H20B109.5
C2—C3—C4119.34 (15)H20A—C20—H20B109.5
C2—C3—H3120.3C21—C20—H20C109.5
C4—C3—H3120.3H20A—C20—H20C109.5
C3—C4—C5117.35 (15)H20B—C20—H20C109.5
C3—C4—C7121.12 (16)N22—C21—C20179.1 (3)
C5—C4—C7121.52 (16)
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z; (iii) y+1, x, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C8H7N3)4]·4C2H3N
Mr874.71
Crystal system, space groupTetragonal, I4
Temperature (K)150
a, c (Å)15.649 (2), 8.653 (2)
V3)2119.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.31 × 0.31 × 0.19
Data collection
DiffractometerBruker smart 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
11871, 2407, 2197
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 0.97
No. of reflections2407
No. of parameters138
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.16
Absolute structureFlack (1983), 1094 Friedel pairs
Absolute structure parameter0.418 (14)

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

 

Acknowledgements

The authors thank the University of Sheffield for financial support.

References

First citationAdams, H., Batten, S. R., Davies, G. M., Duriska, M. B., Jeffery, J. C., Jensen, P., Lu, J., Motson, G. R., Coles, S. J., Hursthouse, M. B. & Ward, M. D. (2005). Dalton Trans. pp. 1910–1923.  Web of Science CSD CrossRef Google Scholar
First citationAmoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.  CrossRef Web of Science Google Scholar
First citationAngeloni, A., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Shore, B. J. (2004). Chem. Eur. J. 10, 3783–3791.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAngeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343–344.  Web of Science CSD CrossRef Google Scholar
First citationBeeby, A., Burton-Pye, B. P., Faulkner, S., Motson, G. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1923–1928.  Web of Science CSD CrossRef Google Scholar
First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, C. R., Dey, S. K., Sen, S., Bag, B., Mitra, S. & Gramlich, V. (2002). Z. Naturforsch. Teil B, 57, 1191–1194.  CAS Google Scholar
First citationDavies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). Dalton Trans. pp. 1136–1144.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDavies, G. M., Adams, H., Pope, S. J. A., Faulkner, S. & Ward, M. D. (2005). Photochem. Photobiol. Sci. 4, 829–834.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDavies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221–m223.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDavies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujita, M., Sasaki, O., Mitsuhoshi, T., Fujita, T., Yazahi, J., Yamaguchi, K. & Ogura, K. (1996). Chem. Commun. pp. 1535–1536.  CSD CrossRef Web of Science Google Scholar
First citationJones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationJones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567.  CSD CrossRef Web of Science Google Scholar
First citationLong, G. J. & Clarke, P. J. (1978). Inorg. Chem. 17, 1394–1401.  CSD CrossRef CAS Web of Science Google Scholar
First citationMulyana, Y., Kepert, C. J., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 1598–1601.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSubramanian, R. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. 34, 2127–2129.  CSD CrossRef CAS Web of Science Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar
First citationWard, M. D., Mann, K. L. V., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 601–603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZheng, B., Liu, G., Gou, L., Wang, D.-Y. & Hu, H.-M. (2005). Acta Cryst. E61, m499–m501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds