organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrogen-bonded supramolecular structures of three related 4-(5-nitro-2-furyl)-1,4-di­hydro­pyridines

CROSSMARK_Color_square_no_text.svg

aDepartamento de Didáctica de las Ciencias, Facultad de Humanidades y Ciencias de la Educación (Edif. D-2), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain, bLaboratorio de Bioelectroquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 233, Santiago, Chile, cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 15 November 2005; accepted 16 November 2005; online 10 December 2005)

In ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydro­pyridine-3-carboxyl­ate, C15H15N3O5, the mol­ecules are linked into chains by a single N—H⋯O hydrogen bond. The mol­ecules in diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-di­hydro­pyridine-3,5-dicarboxyl­ate, C17H20N2O7, are linked by a combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds into sheets built from equal numbers of R22(17) and R44(18) rings. In 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydro­pyridine-3,5-dicarbonitrile, C13H10N4O3, the mol­ecules are linked by a combination of a three-centre N—H⋯(O)2 hydrogen bond and two independent two-centre C—H⋯O hydrogen bonds into complex sheets containing four types of ring.

Comment

1,4-Dihydro­pyridine (1,4-DHP) derivatives, which are analogues of NADH coenzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983[Bou, J., Llenas, J. & Massingham, R. (1983). J. Auton. Pharmacol. 3, 219-232.]; Godfraind et al., 1986[Godfraind, T., Miller, R. & Wibo, M, (1986). Pharmacol. Rev. 38, 321-416.]; Wagner et al., 1988[Wagner, J. A., Guggino, S. E., Reynolds, I. J., Snowman, A. M. & Snyder, S. H. (1988). Ann. N. Y. Acad. Sci. 522, 116-133.]). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997[Núñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Morello, A., Repetto, Y., Aldunate, J. & Letelier, M. E. (1997). Comp. Biochem. Physiol. C, 118, 105-111.], 1998[Núñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Marin-Catalán, R., Pino, L, Diaz-Araya, G. & Letelier, M. E. (1998). Gen. Pharmacol. 30, 85-87.]). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3- and 5-positions in the 1,4-dihydro­pyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991[Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559-1578.]). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydro­pyridine-3-carboxyl­ate, (I)[link], diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydro­pyridine-3,5-dicarboxyl­ate, (II)[link], and

[Scheme 1]
2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydro­pyridine-3,5-dicarbonitrile, (III)[link], have involved their NMR spectra (DaSilva et al., 2005[DaSilva, J. A., Barria, C. E., Jullian, C., Navarrete, P., Núñez-Vergara, L. J. & Squella, J. A. (2005). J. Braz. Chem. Soc. 16, 112-115.]) and electroreduction of the nitro groups (Argüello et al., 2005[Argüello, J., Núñez-Vergara, L. J. & Squella, J. A. (2005). Electrochem. Commun. 7, 53-57.]). The NMR study revealed the non-equivalence of the methyl­ene H atoms in the ethoxycarbonyl groups, and we now report the mol­ecular and supramolecular structures of three representative examples, viz. (I)[link]–(III)[link].

In each of compounds (I)[link]–(III)[link] (Figs. 1[link]–3[link][link]), the 1,4-dihydro­pyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982[Fossheim, R., Svarteng, K., Mostad, A., Roemming, C., Shefter, E. & Triggle, D. J. (1982). J. Am. Chem. 25, 126-131.]; Lokaj et al., 1991[Lokaj, J., Vrábel, V., Sivý, P., Kettmann, V., Ilavský, D. & Ječný, J. (1991). Acta Cryst. C47, 886-888.]; Kožíšek et al., 1993[Kožíšek, J., Paulus, H., Marchalín, S. & Ilavský, D. (1993). Acta Cryst. C49, 526-528.]), although an example containing a planar ring has recently been reported (Mahendra et al., 2003[Mahendra, M., Doreswamy, B. H., Adlakha, P., Raval, K., Varu, B., Shah, A., Sridhar, M. A. & Prasad, J. S. (2003). Anal. Sci. 19, x55-x56.]). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)[link]–(III)[link], respectively. In (I)[link], atom C4 is a stereogenic centre and the selected reference mol­ecule has the R configuration at this centre. However, the centrosymmetric space group accommodates equal numbers of R and S mol­ecules.

The supramolecular structures of compounds (I)[link]–(III)[link] are all different and each is based on a different selection of hydrogen bonds. It is of inter­est to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydro­pyridine ring.

In compound (I)[link], the mol­ecules are linked into simple chains by a single hydrogen bond (Table 1[link]). Atom N1 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O31 in the mol­ecule at (x, [{1\over 2}] − y, [{1\over 2}] + z), thereby producing a C(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction and generated by the c-glide plane at y = [{1 \over 4}] (Fig. 4[link]). Two such chains, running anti­parallel to one another, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

The formation of the sheet structure in compound (II)[link] can readily be analysed in terms of two one-dimensional substructures, one involving both N—H⋯O and C—H⋯O hydrogen bonds, and the other only a C—H⋯O hydrogen bond (Table 2[link]). In the first substructure, atoms N1 and C45 in the mol­ecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the mol­ecule at (x, [{1\over 2}] − y, [{1\over 2}] + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y[{1 \over 4}] (Fig. 5[link]). The second substructure is much simpler: atom C44 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the mol­ecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6[link]). Two sheets of this type, related to one another by inversion, pass through each unit cell. The only direction-specific inter­action of possible significance is a C—H⋯π(furan) hydrogen bond (Table 2[link]). Atom C52 in the mol­ecule at (x, y, z), which lies in the sheet generated by the glide planes at y = [{1 \over 4}], acts as hydrogen-bond donor to the furyl ring of the mol­ecule at (2 − x, 1 − y, 1 − z), which forms part of the sheet generated by the glide plane at y = [{3 \over 4}]. Propagation of this inter­action then links each (010) sheet to the two adjacent sheets.

The supramolecular structure of compound (III)[link] consists of hydrogen-bonded sheets containing four types of ring. However, as for (II)[link], the formation of the sheet in (III)[link] is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III)[link] can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the mol­ecule at (1 − x, 1 − y, 1 − z), forming an effectively planar three-centre N—H⋯(O)2 system (Table 3[link]). The resulting dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond and two R12(5) rings generated by both components (Fig. 7[link]). Two independent C—H⋯O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the mol­ecule at (x, y, z), part of the dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), acts as hydrogen-bond donor to atom O431 in the mol­ecule at (x, 1 + y, z), part of the dimer centred at ([{1\over 2}], [{3\over 2}], [{1\over 2}]). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along ([{1\over 2}], y, [{1\over 2}]), with R22(14) rings centred at ([{1\over 2}], n + [{1\over 2}], [{1\over 2}]) (n = zero or integer) and R44(14) rings centred at ([{1\over 2}], n, [{1\over 2}]) (n = zero or integer) (Fig. 8[link]). Finally, these chains are linked by the second C—H⋯O hydrogen bond. Atom C44 in the mol­ecule at (x, y, z), which lies in the chain of rings along ([{1\over 2}], y, [{1\over 2}]), acts as hydrogen-bond donor to atom O432 in the mol­ecule at (−x, [{1\over 2}] + y, [{3\over 2}] − z), which itself lies in the chain of rings along ([-{1\over 2}], y, 1). Propagation by the space group of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8[link]). There are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The R enanti­omer of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
The mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link], showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, [{1\over 2}] + z) and (x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (II)[link], showing the formation of a chain of edge-fused R22(17) rings along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, [{1\over 2}] + z) and (x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 6]
Figure 6
Stereoview of part of the crystal structure of (II)[link], showing the formation of an (010) sheet built from R22(17) and R44(18) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of (III)[link], showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 8]
Figure 8
Stereoview of part of the crystal structure of (III)[link], showing the formation of a (102) sheet built from R12(5), R22(14), R33(14) and R44(14) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Samples of compounds (I)[link]–(III)[link] were prepared according to published procedures (Hafiz et al., 1999[Hafiz, I. S. A., Darwish, E. S. & Mahmoud, F. F. (1999). J. Chem. Res. (S), pp. 536-537.]; DaSilva et al., 2005[DaSilva, J. A., Barria, C. E., Jullian, C., Navarrete, P., Núñez-Vergara, L. J. & Squella, J. A. (2005). J. Braz. Chem. Soc. 16, 112-115.]; Argüello et al., 2005[Argüello, J., Núñez-Vergara, L. J. & Squella, J. A. (2005). Electrochem. Commun. 7, 53-57.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Attempts to cut small fragments from the rather large blocks of compound (III)[link] led to shattering of the crystals.

Compound (I)[link]

Crystal data
  • C15H15N3O5

  • Mr = 317.30

  • Monoclinic, P 21 /c

  • a = 8.0214 (3) Å

  • b = 13.7477 (4) Å

  • c = 13.2847 (4) Å

  • β = 95.3019 (17)°

  • V = 1458.71 (8) Å3

  • Z = 4

  • Dx = 1.445 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3361 reflections

  • θ = 3.0–27.6°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, brown

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.979, Tmax = 0.991

  • 17958 measured reflections

  • 3361 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.054

  • θmax = 27.6°

  • h = −10 → 10

  • k = −17 → 17

  • l = −17 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.06

  • 3361 reflections

  • 211 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0641P)2 + 0.6243P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O31i 0.88 2.12 2.953 (2) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C17H20N2O7

  • Mr = 364.35

  • Monoclinic, P 21 /c

  • a = 8.0511 (2) Å

  • b = 15.173 (4) Å

  • c = 14.470 (4) Å

  • β = 105.760 (2)°

  • V = 1701.2 (7) Å3

  • Z = 4

  • Dx = 1.423 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3898 reflections

  • θ = 2.9–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.26 × 0.22 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.969, Tmax = 0.993

  • 17840 measured reflections

  • 3898 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.5°

  • h = −10 → 7

  • k = −19 → 19

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.06

  • 3898 reflections

  • 239 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0587P)2 + 0.8476P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.37 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C41/O42/C43/C44/C45 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O31i 0.86 2.18 2.986 (2) 157
C44—H44⋯O32ii 0.95 2.38 3.330 (2) 174
C45—H45⋯O431i 0.95 2.45 3.369 (2) 163
C52—H52ACgiv 0.99 2.68 3.473 (2) 134
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iv) -x+2, -y+1, -z+1.

Compound (III)[link]

Crystal data
  • C13H10N4O3

  • Mr = 270.25

  • Monoclinic, P 21 /c

  • a = 9.5651 (3) Å

  • b = 7.5735 (2) Å

  • c = 17.6385 (5) Å

  • β = 96.2570 (13)°

  • V = 1270.14 (6) Å3

  • Z = 4

  • Dx = 1.413 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2907 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.90 × 0.34 × 0.22 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.906, Tmax = 0.977

  • 16132 measured reflections

  • 2907 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.5°

  • h = −12 → 12

  • k = −9 → 9

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.05

  • 2907 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4785P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O42i 0.88 2.35 3.2019 (15) 162
N1—H1⋯O431i 0.88 2.32 2.9390 (16) 128
C4—H4⋯O431ii 1.00 2.47 3.3262 (16) 143
C44—H44⋯O432iii 0.95 2.32 3.0446 (18) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

For each of compounds (I)[link], (II)[link] and (III)[link], the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

For all three compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

1,4-Dihydropyridine (1,4-DHP) derivatives, which are analogues of NADH co-enzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983; Godfraind et al., 1986; Wagner et al., 1988). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997, 1998). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3 and 5 positions in the 1,4-dihydropyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, (I), diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, (III), have involved their NMR spectra (DaSilva et al., 2005) and electroreduction of the nitro groups (Argüello et al., 2005). The NMR study revealed the non-equivalence of the methylene H atoms in the carboethoxy groups, and we now report the molecular and supramolecular structures of three representative examples, viz. (I)–(III).

In each of compounds (I)–(III) (Figs. 1–3), the 1,4-dihydropyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982; Lokaj et al., 1991; Kožíček et al., 1993), although an example containing a planar ring has recently been reported (Mahendra et al., 2003). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)–(III), respectively. In (I), atom C4 is a stereogenic centre and the selected reference molecule has the R configuration at this centre. However, the centrosymmetric space group accommodates equal numbers of R and S molecules.

The supramolecular structures of compounds (I)–(III) are all different and each is based on a different selection of hydrogen bonds. It is of interest to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydropyridine ring.

In compound (I), the molecules are linked into simple chains by a single hydrogen bond (Table 1). Atom N1 in the molecule at (x, y, z), acts as hydrogen-bond donor to carbonyl atom O31 in the molecule at (x, 1/2 - y, 1/2 + z), thereby producing a C(6) (Bernstein et al., 1995) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 4). Two such chains, running antiparallel to one another, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

The formation of the sheet structure in compound (II) can readily be analysed in terms of two one-dimensional substructures, one involving both N—H···O and C—H···O hydrogen bonds, and the other only a C—H···O hydrogen bond (Table 2). In the first substructure, atoms N1 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the molecule at (x, 1/2 - y, 1/2 + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 5). The second substructure is much simpler: atom C44 in the molecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the molecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6). Two sheets of this type, related to one another by inversion, pass through each unit cell. The only direction-specific interaction of possible significance is a C—H···π(furan) hydrogen bond (Table 2). Atom C52 in the molecule at (x, y, z), which lies in the sheet generated by the glide planes at y = 1/4, acts as hydrogen-bond donor to the furyl ring of the molecule at (2 - x, 1 - y, 1 - z), which forms part of the sheet generated by the glide plane at y = 3/4. Propagation of this interaction then links each (010) sheet to the two adjacent sheets.

The supramolecular structure of compound (III) consists of hydrogen-bonded sheets containing four types of ring. However, as for (II), the formation of the sheet in (III) is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III) can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the molecule at (1 - x, 1 - y, 1 - z), forming an effectively planar three-centre N—H···(O)2 system (Table 3). The resulting dimer centred at (1/2, 1/2, 1/2) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond, and two R12(5) rings generated by both components (Fig. 7). Two independent C—H···O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the molecule at (x, y, z), part of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to atom O431 in the molecule at (x, 1 + y, z), part of the dimer centred at (1/2, 3/2, 1/2). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along (1/2, y, 1/2), with R22(14) rings centred at (1/2, n + 1/2, 1/2) (n = zero or integer) and R44(14) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 8). Finally, these chains are linked by the second C—H···O hydrogen bond. Atom C44 in the molecule at (x, y, z), which lies in the chain of rings along (1/2, y, 1/2), acts as hydrogen-bond donor to atom O432 in the molecule at (-x, 1/2 + y, 3/2 - z), which itself lies in the chain of rings along (-1/2, y, 1). Propagation by the space group of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8). There are no direction-specific interactions between adjacent sheets.

Experimental top

Samples of compounds (I)–(III) were prepared according to published procedures (Hafiz et al., 1999; DaSilva et al., 2005; Argüello et al., 2005). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Attempts to cut small fragments from the rather large blocks of compound (III) led to shattering of the crystals.

Refinement top

For each of (I), (II) and (III), the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Structure description top

1,4-Dihydropyridine (1,4-DHP) derivatives, which are analogues of NADH co-enzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983; Godfraind et al., 1986; Wagner et al., 1988). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997, 1998). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3 and 5 positions in the 1,4-dihydropyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, (I), diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, (III), have involved their NMR spectra (DaSilva et al., 2005) and electroreduction of the nitro groups (Argüello et al., 2005). The NMR study revealed the non-equivalence of the methylene H atoms in the carboethoxy groups, and we now report the molecular and supramolecular structures of three representative examples, viz. (I)–(III).

In each of compounds (I)–(III) (Figs. 1–3), the 1,4-dihydropyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982; Lokaj et al., 1991; Kožíček et al., 1993), although an example containing a planar ring has recently been reported (Mahendra et al., 2003). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)–(III), respectively. In (I), atom C4 is a stereogenic centre and the selected reference molecule has the R configuration at this centre. However, the centrosymmetric space group accommodates equal numbers of R and S molecules.

The supramolecular structures of compounds (I)–(III) are all different and each is based on a different selection of hydrogen bonds. It is of interest to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydropyridine ring.

In compound (I), the molecules are linked into simple chains by a single hydrogen bond (Table 1). Atom N1 in the molecule at (x, y, z), acts as hydrogen-bond donor to carbonyl atom O31 in the molecule at (x, 1/2 - y, 1/2 + z), thereby producing a C(6) (Bernstein et al., 1995) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 4). Two such chains, running antiparallel to one another, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

The formation of the sheet structure in compound (II) can readily be analysed in terms of two one-dimensional substructures, one involving both N—H···O and C—H···O hydrogen bonds, and the other only a C—H···O hydrogen bond (Table 2). In the first substructure, atoms N1 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the molecule at (x, 1/2 - y, 1/2 + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 5). The second substructure is much simpler: atom C44 in the molecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the molecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6). Two sheets of this type, related to one another by inversion, pass through each unit cell. The only direction-specific interaction of possible significance is a C—H···π(furan) hydrogen bond (Table 2). Atom C52 in the molecule at (x, y, z), which lies in the sheet generated by the glide planes at y = 1/4, acts as hydrogen-bond donor to the furyl ring of the molecule at (2 - x, 1 - y, 1 - z), which forms part of the sheet generated by the glide plane at y = 3/4. Propagation of this interaction then links each (010) sheet to the two adjacent sheets.

The supramolecular structure of compound (III) consists of hydrogen-bonded sheets containing four types of ring. However, as for (II), the formation of the sheet in (III) is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III) can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the molecule at (1 - x, 1 - y, 1 - z), forming an effectively planar three-centre N—H···(O)2 system (Table 3). The resulting dimer centred at (1/2, 1/2, 1/2) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond, and two R12(5) rings generated by both components (Fig. 7). Two independent C—H···O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the molecule at (x, y, z), part of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to atom O431 in the molecule at (x, 1 + y, z), part of the dimer centred at (1/2, 3/2, 1/2). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along (1/2, y, 1/2), with R22(14) rings centred at (1/2, n + 1/2, 1/2) (n = zero or integer) and R44(14) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 8). Finally, these chains are linked by the second C—H···O hydrogen bond. Atom C44 in the molecule at (x, y, z), which lies in the chain of rings along (1/2, y, 1/2), acts as hydrogen-bond donor to atom O432 in the molecule at (-x, 1/2 + y, 3/2 - z), which itself lies in the chain of rings along (-1/2, y, 1). Propagation by the space group of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8). There are no direction-specific interactions between adjacent sheets.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The R enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 - y, 1/2 + z) and (x, 1/2 - y, -1/2 + z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a chain of edge-fused R22(17) rings along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 - y, 1/2 + z) and (x, 1/2 - y, -1/2 + z), respectively.
[Figure 6] Fig. 6. Stereoview of part of the crystal structure of (II), showing the formation of an (010) sheet built from R22(17) and R44(18) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 8] Fig. 8. Stereoview of part of the crystal structure of (III), showing the formation of a (102) sheet built from R12(5), R22(14), R33(14) and R44(14) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate top
Crystal data top
C15H15N3O5F(000) = 664
Mr = 317.30Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3361 reflections
a = 8.0214 (3) Åθ = 3.0–27.6°
b = 13.7477 (4) ŵ = 0.11 mm1
c = 13.2847 (4) ÅT = 120 K
β = 95.3019 (17)°Block, brown
V = 1458.71 (8) Å30.14 × 0.12 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3361 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.979, Tmax = 0.991l = 1716
17958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.6243P]
where P = (Fo2 + 2Fc2)/3
3361 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C15H15N3O5V = 1458.71 (8) Å3
Mr = 317.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0214 (3) ŵ = 0.11 mm1
b = 13.7477 (4) ÅT = 120 K
c = 13.2847 (4) Å0.14 × 0.12 × 0.08 mm
β = 95.3019 (17)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3361 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2614 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.991Rint = 0.054
17958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3361 reflectionsΔρmin = 0.40 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.77237 (15)0.12586 (9)0.57702 (9)0.0223 (3)
O320.94984 (15)0.10372 (9)0.71630 (9)0.0226 (3)
O420.48921 (14)0.33505 (8)0.50276 (9)0.0194 (3)
O4310.29866 (16)0.38423 (10)0.34165 (10)0.0328 (3)
O4320.50117 (17)0.46435 (10)0.28064 (9)0.0313 (3)
N10.69121 (17)0.31836 (10)0.86343 (11)0.0198 (3)
N430.44161 (19)0.41652 (10)0.34731 (11)0.0234 (3)
N510.16274 (19)0.34964 (13)0.66906 (13)0.0321 (4)
C20.7913 (2)0.25597 (11)0.81411 (12)0.0178 (3)
C30.7368 (2)0.22212 (12)0.72070 (12)0.0179 (3)
C40.5763 (2)0.25943 (12)0.66380 (12)0.0179 (3)
C50.4669 (2)0.30909 (12)0.73598 (13)0.0190 (4)
C60.5276 (2)0.33856 (12)0.82929 (13)0.0187 (3)
C210.9568 (2)0.23557 (13)0.87286 (13)0.0225 (4)
C310.8207 (2)0.14805 (12)0.66446 (12)0.0189 (4)
C321.0373 (2)0.02987 (13)0.66327 (13)0.0224 (4)
C331.1581 (2)0.07439 (14)0.59697 (14)0.0258 (4)
C410.6142 (2)0.32718 (12)0.58037 (12)0.0185 (3)
C430.5491 (2)0.39835 (12)0.43664 (12)0.0193 (4)
C440.7033 (2)0.43184 (12)0.46804 (13)0.0218 (4)
C450.7457 (2)0.38513 (12)0.56259 (13)0.0210 (4)
C510.2976 (2)0.33115 (13)0.70004 (13)0.0226 (4)
C610.4281 (2)0.39324 (13)0.90073 (13)0.0243 (4)
H10.73410.34660.91940.024*
H40.51330.20240.63290.022*
H21A1.04770.25750.83390.034*
H21B0.96780.16550.88550.034*
H21C0.96280.27040.93750.034*
H32A0.95460.00990.62140.027*
H32B1.09870.01370.71320.027*
H33A1.24090.11310.63840.039*
H33B1.09720.11640.54650.039*
H33C1.21520.02280.56260.039*
H440.76910.47670.43440.026*
H450.84660.39300.60520.025*
H61A0.30850.38190.88280.037*
H61B0.45200.46290.89620.037*
H61C0.45890.37070.96990.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0246 (6)0.0267 (6)0.0151 (6)0.0016 (5)0.0007 (5)0.0020 (5)
O320.0223 (6)0.0269 (6)0.0182 (6)0.0065 (5)0.0007 (5)0.0029 (5)
O420.0194 (6)0.0228 (6)0.0154 (6)0.0000 (5)0.0012 (5)0.0017 (5)
O4310.0273 (7)0.0398 (8)0.0294 (7)0.0043 (6)0.0071 (6)0.0056 (6)
O4320.0416 (8)0.0309 (7)0.0209 (7)0.0007 (6)0.0010 (6)0.0090 (5)
N10.0197 (7)0.0233 (7)0.0160 (7)0.0001 (6)0.0004 (5)0.0037 (6)
N430.0277 (8)0.0218 (7)0.0200 (8)0.0034 (6)0.0021 (6)0.0003 (6)
N510.0217 (8)0.0426 (10)0.0318 (9)0.0042 (7)0.0016 (7)0.0039 (7)
C20.0189 (8)0.0180 (8)0.0168 (8)0.0009 (6)0.0028 (6)0.0012 (6)
C30.0170 (8)0.0217 (8)0.0152 (8)0.0006 (6)0.0019 (6)0.0010 (6)
C40.0177 (8)0.0204 (8)0.0153 (8)0.0007 (6)0.0002 (6)0.0002 (6)
C50.0162 (8)0.0211 (8)0.0199 (8)0.0007 (6)0.0022 (6)0.0029 (7)
C60.0180 (8)0.0192 (8)0.0191 (8)0.0008 (6)0.0028 (6)0.0017 (6)
C210.0190 (8)0.0297 (9)0.0182 (8)0.0003 (7)0.0015 (7)0.0035 (7)
C310.0187 (8)0.0216 (8)0.0162 (8)0.0009 (6)0.0002 (6)0.0018 (6)
C320.0247 (9)0.0231 (8)0.0195 (9)0.0056 (7)0.0022 (7)0.0032 (7)
C330.0261 (9)0.0293 (9)0.0223 (9)0.0052 (7)0.0046 (7)0.0001 (7)
C410.0175 (8)0.0240 (8)0.0136 (8)0.0027 (6)0.0009 (6)0.0017 (6)
C430.0229 (8)0.0200 (8)0.0150 (8)0.0031 (6)0.0014 (7)0.0021 (6)
C440.0238 (8)0.0209 (8)0.0214 (9)0.0001 (7)0.0056 (7)0.0011 (7)
C450.0193 (8)0.0242 (8)0.0191 (9)0.0000 (7)0.0004 (7)0.0004 (7)
C510.0212 (9)0.0271 (9)0.0201 (9)0.0011 (7)0.0044 (7)0.0019 (7)
C610.0252 (9)0.0285 (9)0.0199 (9)0.0046 (7)0.0050 (7)0.0013 (7)
Geometric parameters (Å, º) top
N1—C61.377 (2)C4—C51.520 (2)
N1—C21.381 (2)C4—H41.00
N1—H10.88C41—C451.359 (2)
C2—C31.359 (2)C41—O421.3745 (19)
C2—C211.503 (2)O42—C431.356 (2)
C21—H21A0.98C43—C441.349 (2)
C21—H21B0.98C43—N431.423 (2)
C21—H21C0.98N43—O4311.225 (2)
C3—C311.463 (2)N43—O4321.2341 (19)
C3—C41.520 (2)C44—C451.424 (2)
C31—O311.228 (2)C44—H440.95
C31—O321.3369 (19)C45—H450.95
C32—O321.453 (2)C5—C61.351 (2)
C32—C331.499 (3)C5—C511.430 (2)
C32—H32A0.99C51—N511.149 (2)
C32—H32B0.99C6—C611.497 (2)
C33—H33A0.98C61—H61A0.98
C33—H33B0.98C61—H61B0.98
C33—H33C0.98C61—H61C0.98
C4—C411.500 (2)
C6—N1—C2123.19 (14)C5—C4—C3110.45 (13)
C6—N1—H1118.4C41—C4—H4108.2
C2—N1—H1118.4C5—C4—H4108.2
C3—C2—N1119.58 (15)C3—C4—H4108.2
C3—C2—C21127.19 (16)C45—C41—O42110.32 (14)
N1—C2—C21113.21 (14)C45—C41—C4134.88 (15)
C2—C21—H21A109.5O42—C41—C4114.80 (14)
C2—C21—H21B109.5C43—O42—C41105.01 (12)
H21A—C21—H21B109.5C44—C43—O42112.85 (14)
C2—C21—H21C109.5C44—C43—N43131.71 (16)
H21A—C21—H21C109.5O42—C43—N43115.43 (14)
H21B—C21—H21C109.5O431—N43—O432124.82 (15)
C2—C3—C31125.46 (15)O431—N43—C43118.61 (15)
C2—C3—C4121.65 (15)O432—N43—C43116.56 (15)
C31—C3—C4112.90 (13)C43—C44—C45104.84 (15)
O31—C31—O32122.38 (15)C43—C44—H44127.6
O31—C31—C3122.41 (15)C45—C44—H44127.6
O32—C31—C3115.17 (14)C41—C45—C44106.98 (15)
O32—C32—C33111.52 (14)C41—C45—H45126.5
O32—C32—H32A109.3C44—C45—H45126.5
C33—C32—H32A109.3C6—C5—C51119.55 (16)
O32—C32—H32B109.3C6—C5—C4122.23 (14)
C33—C32—H32B109.3C51—C5—C4118.06 (15)
H32A—C32—H32B108.0N51—C51—C5178.4 (2)
C31—O32—C32117.04 (13)C5—C6—N1119.56 (15)
C32—C33—H33A109.5C5—C6—C61124.33 (15)
C32—C33—H33B109.5N1—C6—C61116.11 (14)
H33A—C33—H33B109.5C6—C61—H61A109.5
C32—C33—H33C109.5C6—C61—H61B109.5
H33A—C33—H33C109.5H61A—C61—H61B109.5
H33B—C33—H33C109.5C6—C61—H61C109.5
C41—C4—C5110.81 (13)H61A—C61—H61C109.5
C41—C4—C3110.89 (13)H61B—C61—H61C109.5
C6—N1—C2—C39.2 (2)C4—C41—O42—C43179.70 (14)
C6—N1—C2—C21172.45 (15)C41—O42—C43—C440.68 (18)
N1—C2—C3—C31173.06 (15)C41—O42—C43—N43178.48 (14)
C21—C2—C3—C318.8 (3)C44—C43—N43—O431172.54 (18)
N1—C2—C3—C46.7 (2)O42—C43—N43—O4318.5 (2)
C21—C2—C3—C4171.46 (15)C44—C43—N43—O4327.5 (3)
C2—C3—C31—O31174.16 (17)O42—C43—N43—O432171.46 (14)
C4—C3—C31—O316.1 (2)O42—C43—C44—C450.31 (19)
C2—C3—C31—O328.2 (2)N43—C43—C44—C45178.67 (17)
C4—C3—C31—O32171.54 (14)O42—C41—C45—C440.62 (19)
O31—C31—O32—C322.6 (2)C4—C41—C45—C44180.00 (18)
C3—C31—O32—C32179.77 (14)C43—C44—C45—C410.19 (19)
C33—C32—O32—C3180.06 (18)C41—C4—C5—C6106.28 (18)
C2—C3—C4—C41104.92 (18)C3—C4—C5—C617.0 (2)
C31—C3—C4—C4175.33 (17)C41—C4—C5—C5169.09 (19)
C2—C3—C4—C518.3 (2)C3—C4—C5—C51167.61 (14)
C31—C3—C4—C5161.42 (14)C51—C5—C6—N1179.22 (15)
C5—C4—C41—C4598.5 (2)C4—C5—C6—N13.9 (2)
C3—C4—C41—C4524.5 (3)C51—C5—C6—C610.7 (3)
C5—C4—C41—O4280.86 (17)C4—C5—C6—C61176.00 (16)
C3—C4—C41—O42156.10 (14)C2—N1—C6—C510.6 (2)
C45—C41—O42—C430.79 (18)C2—N1—C6—C61169.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.882.122.953 (2)157
Symmetry code: (i) x, y+1/2, z+1/2.
(II) diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C17H20N2O7F(000) = 768
Mr = 364.35Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3898 reflections
a = 8.0511 (2) Åθ = 2.9–27.5°
b = 15.173 (4) ŵ = 0.11 mm1
c = 14.470 (4) ÅT = 120 K
β = 105.760 (2)°Plate, yellow
V = 1701.2 (7) Å30.26 × 0.22 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3898 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ and ω scansh = 107
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1919
Tmin = 0.969, Tmax = 0.993l = 1818
17840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.8476P]
where P = (Fo2 + 2Fc2)/3
3898 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H20N2O7V = 1701.2 (7) Å3
Mr = 364.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0511 (2) ŵ = 0.11 mm1
b = 15.173 (4) ÅT = 120 K
c = 14.470 (4) Å0.26 × 0.22 × 0.06 mm
β = 105.760 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3073 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.993Rint = 0.047
17840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
3898 reflectionsΔρmin = 0.37 e Å3
239 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.51174 (15)0.19208 (8)0.39397 (8)0.0203 (3)
O320.38877 (15)0.11796 (7)0.49219 (8)0.0174 (3)
O420.80303 (15)0.31933 (7)0.39983 (8)0.0165 (3)
O4310.90638 (17)0.34441 (8)0.24520 (9)0.0254 (3)
O4321.11994 (18)0.25194 (9)0.29460 (10)0.0297 (3)
O510.77729 (19)0.55027 (8)0.61859 (9)0.0316 (3)
O520.73600 (15)0.48699 (7)0.47419 (8)0.0194 (3)
N10.60132 (19)0.30689 (9)0.70679 (10)0.0186 (3)
N430.99410 (19)0.29324 (10)0.30501 (10)0.0206 (3)
C20.5338 (2)0.24179 (10)0.64101 (11)0.0155 (3)
C30.5438 (2)0.25016 (10)0.54904 (11)0.0147 (3)
C40.6314 (2)0.32908 (10)0.51643 (11)0.0152 (3)
C50.6769 (2)0.40033 (10)0.59366 (11)0.0156 (3)
C60.6669 (2)0.38535 (11)0.68400 (12)0.0176 (4)
C210.4572 (2)0.16731 (11)0.68472 (12)0.0211 (4)
C310.4822 (2)0.18551 (10)0.47192 (11)0.0149 (3)
C320.3187 (2)0.05729 (11)0.41336 (12)0.0206 (4)
C330.2033 (2)0.00630 (12)0.44639 (13)0.0255 (4)
C410.7893 (2)0.29747 (10)0.48935 (11)0.0154 (3)
C430.9483 (2)0.27909 (11)0.39198 (12)0.0175 (3)
C441.0287 (2)0.23332 (11)0.47184 (12)0.0192 (4)
C450.9246 (2)0.24588 (10)0.53550 (12)0.0177 (3)
C510.7346 (2)0.48642 (11)0.56723 (12)0.0185 (3)
C520.8006 (2)0.56725 (11)0.44191 (12)0.0205 (4)
C530.7937 (3)0.55517 (12)0.33795 (13)0.0270 (4)
C610.7228 (3)0.44752 (12)0.76791 (12)0.0257 (4)
H10.60240.29810.76570.022*
H12A0.33310.16360.65370.032*
H12B0.47610.17810.75360.032*
H12C0.51270.11180.67540.032*
H13A0.41330.02520.39630.025*
H13B0.25200.09000.35610.025*
H140.54950.35490.45800.018*
H33A0.27120.03890.50250.038*
H33B0.15260.04780.39450.038*
H33C0.11110.02630.46370.038*
H441.13220.20000.48280.023*
H450.94540.22260.59860.021*
H52A0.92080.57840.48010.025*
H52B0.72860.61810.44970.025*
H52C0.86620.50500.33120.040*
H52D0.83620.60860.31390.040*
H52E0.67430.54400.30090.040*
H61A0.84430.46330.77730.039*
H61B0.70860.41880.82600.039*
H61C0.65180.50090.75500.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0246 (7)0.0232 (6)0.0153 (6)0.0031 (5)0.0091 (5)0.0019 (5)
O320.0207 (6)0.0170 (6)0.0160 (6)0.0041 (5)0.0074 (5)0.0027 (4)
O4310.0309 (7)0.0283 (7)0.0186 (6)0.0012 (6)0.0094 (5)0.0033 (5)
O4320.0319 (8)0.0331 (7)0.0309 (7)0.0066 (6)0.0200 (6)0.0011 (6)
O510.0504 (9)0.0212 (7)0.0264 (7)0.0119 (6)0.0161 (6)0.0065 (5)
O520.0263 (7)0.0151 (6)0.0183 (6)0.0046 (5)0.0087 (5)0.0003 (4)
N10.0259 (8)0.0193 (7)0.0128 (6)0.0024 (6)0.0088 (6)0.0022 (5)
N430.0238 (8)0.0219 (7)0.0192 (7)0.0033 (6)0.0110 (6)0.0038 (6)
C20.0155 (8)0.0145 (7)0.0174 (8)0.0010 (6)0.0059 (6)0.0007 (6)
C30.0137 (8)0.0149 (7)0.0165 (8)0.0005 (6)0.0060 (6)0.0007 (6)
C40.0165 (8)0.0156 (7)0.0141 (7)0.0001 (6)0.0054 (6)0.0000 (6)
C50.0154 (8)0.0145 (7)0.0173 (8)0.0003 (6)0.0050 (6)0.0011 (6)
C60.0185 (9)0.0164 (8)0.0190 (8)0.0001 (6)0.0070 (7)0.0024 (6)
C210.0273 (10)0.0214 (8)0.0169 (8)0.0044 (7)0.0097 (7)0.0001 (7)
C310.0132 (8)0.0160 (8)0.0156 (8)0.0014 (6)0.0041 (6)0.0010 (6)
C320.0250 (9)0.0191 (8)0.0184 (8)0.0033 (7)0.0069 (7)0.0051 (7)
C330.0284 (10)0.0224 (9)0.0256 (9)0.0086 (7)0.0071 (8)0.0041 (7)
C410.0191 (8)0.0153 (7)0.0132 (7)0.0039 (6)0.0068 (6)0.0012 (6)
O420.0189 (6)0.0177 (6)0.0148 (6)0.0020 (5)0.0079 (5)0.0005 (4)
C430.0186 (8)0.0179 (8)0.0181 (8)0.0012 (6)0.0086 (6)0.0033 (6)
C440.0195 (9)0.0182 (8)0.0215 (8)0.0001 (7)0.0081 (7)0.0000 (7)
C450.0206 (9)0.0175 (8)0.0165 (8)0.0009 (6)0.0075 (7)0.0007 (6)
C510.0187 (8)0.0179 (8)0.0198 (8)0.0004 (7)0.0069 (6)0.0004 (6)
C520.0231 (9)0.0146 (8)0.0250 (9)0.0023 (7)0.0085 (7)0.0034 (7)
C530.0343 (11)0.0246 (9)0.0233 (9)0.0046 (8)0.0100 (8)0.0032 (7)
C610.0349 (11)0.0242 (9)0.0204 (9)0.0069 (8)0.0115 (8)0.0067 (7)
Geometric parameters (Å, º) top
N1—C21.377 (2)O42—C431.351 (2)
N1—C61.378 (2)C43—C441.353 (2)
N1—H10.8599C43—N431.420 (2)
C2—C31.361 (2)N43—O4311.2323 (19)
C2—C211.506 (2)N43—O4321.2348 (19)
C21—H12A0.98C44—C451.416 (2)
C21—H12B0.98C44—H440.95
C21—H12C0.98C45—H450.95
C3—C311.467 (2)C5—C61.351 (2)
C3—C41.528 (2)C5—C511.471 (2)
C31—O311.2185 (19)C6—C611.507 (2)
C31—O321.3499 (19)C51—O511.213 (2)
O32—C321.4551 (19)C51—O521.349 (2)
C32—C331.504 (2)O52—C521.4507 (19)
C32—H13A0.99C52—C531.501 (2)
C32—H13B0.99C52—H52A0.99
C33—H33A0.98C52—H52B0.99
C33—H33B0.98C53—H52C0.98
C33—H33C0.98C53—H52D0.98
C4—C411.507 (2)C53—H52E0.98
C4—C51.526 (2)C61—H61A0.98
C4—H141.00C61—H61B0.98
C41—C451.360 (2)C61—H61C0.98
C41—O421.3703 (19)
C2—N1—C6124.01 (14)O42—C43—C44112.59 (14)
C2—N1—H1118.0O42—C43—N43116.42 (14)
C6—N1—H1118.0C44—C43—N43130.96 (16)
C3—C2—N1119.46 (14)O431—N43—O432124.52 (14)
C3—C2—C21128.35 (15)O431—N43—C43118.71 (14)
N1—C2—C21112.19 (14)O432—N43—C43116.76 (14)
C2—C21—H12A109.5C43—C44—C45104.85 (15)
C2—C21—H12B109.5C43—C44—H44127.6
H12A—C21—H12B109.5C45—C44—H44127.6
C2—C21—H12C109.5C41—C45—C44107.12 (15)
H12A—C21—H12C109.5C41—C45—H45126.4
H12B—C21—H12C109.5C44—C45—H45126.4
C2—C3—C31125.71 (14)C6—C5—C51120.47 (15)
C2—C3—C4122.02 (14)C6—C5—C4121.60 (14)
C31—C3—C4112.22 (13)C51—C5—C4117.93 (14)
O31—C31—O32121.58 (14)C5—C6—N1120.29 (15)
O31—C31—C3122.59 (15)C5—C6—C61126.26 (15)
O32—C31—C3115.83 (13)N1—C6—C61113.46 (14)
C31—O32—C32115.49 (12)O51—C51—O52121.91 (15)
O32—C32—C33107.34 (13)O51—C51—C5127.37 (16)
O32—C32—H13A110.2O52—C51—C5110.72 (14)
C33—C32—H13A110.2C51—O52—C52115.31 (13)
O32—C32—H13B110.2O52—C52—C53107.53 (14)
C33—C32—H13B110.2O52—C52—H52A110.2
H13A—C32—H13B108.5C53—C52—H52A110.2
C32—C33—H33A109.5O52—C52—H52B110.2
C32—C33—H33B109.5C53—C52—H52B110.2
H33A—C33—H33B109.5H52A—C52—H52B108.5
C32—C33—H33C109.5C52—C53—H52C109.5
H33A—C33—H33C109.5C52—C53—H52D109.5
H33B—C33—H33C109.5H52C—C53—H52D109.5
C41—C4—C5111.36 (13)C52—C53—H52E109.5
C41—C4—C3108.88 (13)H52C—C53—H52E109.5
C5—C4—C3111.59 (13)H52D—C53—H52E109.5
C41—C4—H14108.3C6—C61—H61A109.5
C5—C4—H14108.3C6—C61—H61B109.5
C3—C4—H14108.3H61A—C61—H61B109.5
C45—C41—O42110.13 (14)C6—C61—H61C109.5
C45—C41—C4132.47 (15)H61A—C61—H61C109.5
O42—C41—C4117.33 (13)H61B—C61—H61C109.5
C43—O42—C41105.30 (12)
C6—N1—C2—C35.9 (2)C44—C43—N43—O431173.70 (17)
C6—N1—C2—C21174.76 (15)O42—C43—N43—O432175.20 (14)
N1—C2—C3—C31178.28 (15)C44—C43—N43—O4327.0 (3)
C21—C2—C3—C311.0 (3)O42—C43—C44—C450.03 (19)
N1—C2—C3—C41.3 (2)N43—C43—C44—C45177.90 (17)
C21—C2—C3—C4177.98 (15)O42—C41—C45—C440.73 (18)
C2—C3—C31—O31171.65 (16)C4—C41—C45—C44175.86 (16)
C4—C3—C31—O315.6 (2)C43—C44—C45—C410.43 (18)
C2—C3—C31—O328.8 (2)C41—C4—C5—C6110.93 (17)
C4—C3—C31—O32173.91 (13)C3—C4—C5—C611.0 (2)
O31—C31—O32—C323.4 (2)C41—C4—C5—C5168.32 (18)
C3—C31—O32—C32176.18 (13)C3—C4—C5—C51169.78 (14)
C31—O32—C32—C33173.60 (14)C51—C5—C6—N1175.41 (15)
C2—C3—C4—C41114.40 (16)C4—C5—C6—N15.4 (2)
C31—C3—C4—C4162.98 (17)C51—C5—C6—C614.9 (3)
C2—C3—C4—C58.9 (2)C4—C5—C6—C61174.35 (16)
C31—C3—C4—C5173.69 (13)C2—N1—C6—C53.8 (3)
C5—C4—C41—C4573.2 (2)C2—N1—C6—C61176.46 (15)
C3—C4—C41—C4550.3 (2)C6—C5—C51—O510.1 (3)
C5—C4—C41—O42110.41 (15)C4—C5—C51—O51179.33 (17)
C3—C4—C41—O42126.12 (14)C6—C5—C51—O52179.62 (15)
C45—C41—O42—C430.74 (17)C4—C5—C51—O520.4 (2)
C4—C41—O42—C43176.44 (13)O51—C51—O52—C523.2 (2)
C41—O42—C43—C440.46 (18)C5—C51—O52—C52176.55 (13)
C41—O42—C43—N43178.67 (13)C51—O52—C52—C53179.52 (14)
O42—C43—N43—O4314.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.862.182.986 (2)157
C44—H44···O32ii0.952.383.330 (2)174
C45—H45···O431i0.952.453.369 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
(III) 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile top
Crystal data top
C13H10N4O3F(000) = 560
Mr = 270.25Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2907 reflections
a = 9.5651 (3) Åθ = 2.9–27.5°
b = 7.5735 (2) ŵ = 0.10 mm1
c = 17.6385 (5) ÅT = 120 K
β = 96.2570 (13)°Block, colourless
V = 1270.14 (6) Å30.90 × 0.34 × 0.22 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2907 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.906, Tmax = 0.977l = 2222
16132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4785P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H10N4O3V = 1270.14 (6) Å3
Mr = 270.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5651 (3) ŵ = 0.10 mm1
b = 7.5735 (2) ÅT = 120 K
c = 17.6385 (5) Å0.90 × 0.34 × 0.22 mm
β = 96.2570 (13)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2333 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.977Rint = 0.035
16132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2907 reflectionsΔρmin = 0.28 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O420.27258 (9)0.53845 (11)0.61731 (5)0.0164 (2)
O4310.30100 (10)0.20533 (12)0.65330 (6)0.0221 (2)
O4320.15430 (11)0.22748 (14)0.73896 (6)0.0278 (3)
N10.50332 (13)0.70103 (16)0.45769 (7)0.0234 (3)
N310.55647 (13)0.93396 (17)0.71152 (7)0.0286 (3)
N430.21791 (11)0.28884 (15)0.68804 (6)0.0188 (3)
N510.00913 (15)0.8255 (2)0.42460 (9)0.0423 (4)
C20.55496 (15)0.75829 (17)0.52956 (8)0.0201 (3)
C30.46578 (14)0.82043 (17)0.57746 (7)0.0180 (3)
C40.30672 (13)0.82641 (17)0.55835 (7)0.0169 (3)
C50.26985 (14)0.77735 (17)0.47480 (8)0.0194 (3)
C60.36409 (15)0.71607 (17)0.42962 (8)0.0213 (3)
C210.71118 (15)0.74498 (19)0.54819 (9)0.0251 (3)
C310.51887 (14)0.88193 (18)0.65156 (8)0.0204 (3)
C410.23281 (14)0.71315 (17)0.61106 (7)0.0173 (3)
C430.19267 (13)0.46889 (18)0.66885 (7)0.0178 (3)
C440.10486 (15)0.5872 (2)0.69481 (8)0.0256 (3)
C510.12583 (16)0.80078 (19)0.44537 (8)0.0259 (3)
C450.13092 (16)0.74698 (19)0.65650 (9)0.0248 (3)
C610.33009 (18)0.6621 (2)0.34784 (8)0.0298 (4)
H10.56200.65280.42860.028*
H40.27580.95110.56500.020*
H21A0.73800.79080.59970.038*
H21B0.75780.81430.51130.038*
H21C0.74000.62110.54580.038*
H440.03960.56830.73090.031*
H450.08530.85700.66180.030*
H61A0.22780.66130.33480.045*
H61B0.36760.54370.34040.045*
H61C0.37270.74610.31490.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O420.0169 (5)0.0165 (5)0.0165 (5)0.0010 (3)0.0048 (3)0.0001 (3)
O4310.0215 (5)0.0197 (5)0.0255 (5)0.0011 (4)0.0050 (4)0.0010 (4)
O4320.0273 (6)0.0307 (6)0.0271 (5)0.0071 (4)0.0100 (4)0.0067 (4)
N10.0264 (6)0.0230 (6)0.0221 (6)0.0015 (5)0.0086 (5)0.0023 (5)
N310.0259 (7)0.0333 (7)0.0254 (7)0.0000 (5)0.0028 (5)0.0001 (5)
N510.0326 (8)0.0529 (9)0.0385 (8)0.0007 (7)0.0099 (6)0.0074 (7)
C20.0232 (7)0.0148 (6)0.0229 (7)0.0008 (5)0.0044 (6)0.0043 (5)
C30.0201 (7)0.0155 (6)0.0183 (6)0.0013 (5)0.0011 (5)0.0021 (5)
C40.0186 (6)0.0154 (6)0.0164 (6)0.0010 (5)0.0007 (5)0.0011 (5)
C50.0233 (7)0.0177 (6)0.0167 (6)0.0021 (5)0.0000 (5)0.0011 (5)
C60.0302 (8)0.0156 (6)0.0184 (7)0.0045 (5)0.0044 (6)0.0021 (5)
C210.0217 (7)0.0224 (7)0.0322 (8)0.0019 (5)0.0071 (6)0.0052 (6)
C310.0180 (7)0.0199 (7)0.0229 (7)0.0006 (5)0.0011 (5)0.0037 (5)
C410.0185 (6)0.0168 (6)0.0165 (6)0.0027 (5)0.0008 (5)0.0010 (5)
C430.0150 (6)0.0219 (7)0.0168 (6)0.0023 (5)0.0036 (5)0.0013 (5)
N430.0154 (5)0.0226 (6)0.0185 (6)0.0040 (4)0.0026 (5)0.0003 (5)
C440.0222 (7)0.0297 (8)0.0267 (8)0.0027 (6)0.0109 (6)0.0012 (6)
C510.0301 (8)0.0265 (8)0.0201 (7)0.0028 (6)0.0014 (6)0.0026 (6)
C450.0254 (7)0.0234 (7)0.0270 (7)0.0070 (6)0.0088 (6)0.0004 (6)
C610.0441 (10)0.0277 (8)0.0182 (7)0.0066 (7)0.0064 (6)0.0022 (6)
Geometric parameters (Å, º) top
N1—C61.3741 (19)O42—C431.3563 (15)
N1—C21.3794 (18)C43—C441.3424 (19)
N1—H10.88C43—N431.4193 (18)
C2—C31.3491 (19)N43—O4321.2297 (15)
C2—C211.498 (2)N43—O4311.2302 (14)
C21—H21A0.98C44—C451.421 (2)
C21—H21B0.98C44—H440.95
C21—H21C0.98C5—C61.349 (2)
C3—C311.4278 (19)C5—C511.429 (2)
C3—C41.5227 (18)C51—N511.152 (2)
C31—N311.1490 (18)C45—H450.95
C4—C411.4978 (18)C6—C611.500 (2)
C4—C51.5234 (18)C61—H61A0.98
C4—H41.00C61—H61B0.98
C41—C451.352 (2)C61—H61C0.98
C41—O421.3778 (16)
C6—N1—C2122.76 (12)C44—C43—O42112.86 (12)
C6—N1—H1118.6C44—C43—N43131.04 (12)
C2—N1—H1118.6O42—C43—N43116.06 (11)
C3—C2—N1119.85 (13)O432—N43—O431124.58 (12)
C3—C2—C21124.74 (13)O432—N43—C43116.90 (11)
N1—C2—C21115.42 (12)O431—N43—C43118.52 (11)
C2—C21—H21A109.5C43—C44—C45104.92 (12)
C2—C21—H21B109.5C43—C44—H44127.5
H21A—C21—H21B109.5C45—C44—H44127.5
C2—C21—H21C109.5C6—C5—C51120.52 (13)
H21A—C21—H21C109.5C6—C5—C4123.80 (12)
H21B—C21—H21C109.5C51—C5—C4115.68 (12)
C2—C3—C31120.07 (12)N51—C51—C5176.57 (16)
C2—C3—C4123.81 (12)C41—C45—C44107.20 (12)
C31—C3—C4116.11 (11)C41—C45—H45126.4
N31—C31—C3177.33 (15)C44—C45—H45126.4
C41—C4—C3111.92 (10)C5—C6—N1119.96 (12)
C41—C4—C5112.68 (11)C5—C6—C61124.96 (13)
C3—C4—C5109.10 (11)N1—C6—C61115.08 (13)
C41—C4—H4107.6C6—C61—H61A109.5
C3—C4—H4107.6C6—C61—H61B109.5
C5—C4—H4107.6H61A—C61—H61B109.5
C45—C41—O42110.18 (12)C6—C61—H61C109.5
C45—C41—C4132.76 (12)H61A—C61—H61C109.5
O42—C41—C4117.05 (11)H61B—C61—H61C109.5
C43—O42—C41104.82 (10)
C6—N1—C2—C35.0 (2)O42—C43—N43—O432174.51 (11)
C6—N1—C2—C21175.16 (12)C44—C43—N43—O431177.01 (14)
N1—C2—C3—C31179.21 (12)O42—C43—N43—O4315.36 (17)
C21—C2—C3—C310.9 (2)O42—C43—C44—C450.04 (17)
N1—C2—C3—C42.2 (2)N43—C43—C44—C45177.65 (14)
C21—C2—C3—C4177.65 (12)C41—C4—C5—C6116.84 (14)
C2—C3—C4—C41117.40 (14)C3—C4—C5—C68.12 (18)
C31—C3—C4—C4161.23 (15)C41—C4—C5—C5163.42 (15)
C2—C3—C4—C58.01 (17)C3—C4—C5—C51171.62 (11)
C31—C3—C4—C5173.37 (11)O42—C41—C45—C440.85 (16)
C3—C4—C41—C45124.76 (16)C4—C41—C45—C44178.71 (14)
C5—C4—C41—C45111.83 (17)C43—C44—C45—C410.49 (17)
C3—C4—C41—O4254.78 (15)C51—C5—C6—N1177.31 (12)
C5—C4—C41—O4268.63 (14)C4—C5—C6—N12.4 (2)
C45—C41—O42—C430.85 (14)C51—C5—C6—C612.0 (2)
C4—C41—O42—C43178.79 (11)C4—C5—C6—C61178.24 (13)
C41—O42—C43—C440.54 (15)C2—N1—C6—C54.9 (2)
C41—O42—C43—N43177.52 (11)C2—N1—C6—C61174.54 (12)
C44—C43—N43—O4323.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O42i0.882.353.2019 (15)162
N1—H1···O431i0.882.322.9390 (16)128
C4—H4···O431ii1.002.473.3262 (16)143
C44—H44···O432iii0.952.323.0446 (18)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H15N3O5C17H20N2O7C13H10N4O3
Mr317.30364.35270.25
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)8.0214 (3), 13.7477 (4), 13.2847 (4)8.0511 (2), 15.173 (4), 14.470 (4)9.5651 (3), 7.5735 (2), 17.6385 (5)
β (°) 95.3019 (17) 105.760 (2) 96.2570 (13)
V3)1458.71 (8)1701.2 (7)1270.14 (6)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.110.10
Crystal size (mm)0.14 × 0.12 × 0.080.26 × 0.22 × 0.060.90 × 0.34 × 0.22
Data collection
DiffractometerNonius KappaCCD area-detectorNonius KappaCCD area-detectorNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.979, 0.9910.969, 0.9930.906, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
17958, 3361, 2614 17840, 3898, 3073 16132, 2907, 2333
Rint0.0540.0470.035
(sin θ/λ)max1)0.6510.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.06 0.047, 0.128, 1.06 0.039, 0.105, 1.05
No. of reflections336138982907
No. of parameters211239183
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.400.42, 0.370.23, 0.28

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.882.122.953 (2)157
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.862.182.986 (2)157
C44—H44···O32ii0.952.383.330 (2)174
C45—H45···O431i0.952.453.369 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O42i0.882.353.2019 (15)162
N1—H1···O431i0.882.322.9390 (16)128
C4—H4···O431ii1.002.473.3262 (16)143
C44—H44···O432iii0.952.323.0446 (18)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationArgüello, J., Núñez-Vergara, L. J. & Squella, J. A. (2005). Electrochem. Commun. 7, 53–57.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBou, J., Llenas, J. & Massingham, R. (1983). J. Auton. Pharmacol. 3, 219–232.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaSilva, J. A., Barria, C. E., Jullian, C., Navarrete, P., Núñez-Vergara, L. J. & Squella, J. A. (2005). J. Braz. Chem. Soc. 16, 112–115.  CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFossheim, R., Svarteng, K., Mostad, A., Roemming, C., Shefter, E. & Triggle, D. J. (1982). J. Am. Chem. 25, 126–131.  CAS Google Scholar
First citationGodfraind, T., Miller, R. & Wibo, M, (1986). Pharmacol. Rev. 38, 321–416.  Google Scholar
First citationGoldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578.  CrossRef Web of Science Google Scholar
First citationHafiz, I. S. A., Darwish, E. S. & Mahmoud, F. F. (1999). J. Chem. Res. (S), pp. 536–537.  CrossRef Google Scholar
First citationKožíšek, J., Paulus, H., Marchalín, S. & Ilavský, D. (1993). Acta Cryst. C49, 526–528.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLokaj, J., Vrábel, V., Sivý, P., Kettmann, V., Ilavský, D. & Ječný, J. (1991). Acta Cryst. C47, 886–888.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMahendra, M., Doreswamy, B. H., Adlakha, P., Raval, K., Varu, B., Shah, A., Sridhar, M. A. & Prasad, J. S. (2003). Anal. Sci. 19, x55–x56.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNúñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Marin-Catalán, R., Pino, L, Diaz-Araya, G. & Letelier, M. E. (1998). Gen. Pharmacol. 30, 85–87.  CAS PubMed Web of Science Google Scholar
First citationNúñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Morello, A., Repetto, Y., Aldunate, J. & Letelier, M. E. (1997). Comp. Biochem. Physiol. C, 118, 105–111.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, J. A., Guggino, S. E., Reynolds, I. J., Snowman, A. M. & Snyder, S. H. (1988). Ann. N. Y. Acad. Sci. 522, 116–133.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds