organic compounds
Hydrogen-bonded supramolecular structures of three related 4-(5-nitro-2-furyl)-1,4-dihydropyridines
aDepartamento de Didáctica de las Ciencias, Facultad de Humanidades y Ciencias de la Educación (Edif. D-2), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain, bLaboratorio de Bioelectroquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 233, Santiago, Chile, cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
In ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, C15H15N3O5, the molecules are linked into chains by a single N—H⋯O hydrogen bond. The molecules in diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, C17H20N2O7, are linked by a combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds into sheets built from equal numbers of R22(17) and R44(18) rings. In 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, C13H10N4O3, the molecules are linked by a combination of a three-centre N—H⋯(O)2 hydrogen bond and two independent two-centre C—H⋯O hydrogen bonds into complex sheets containing four types of ring.
Comment
1,4-Dihydropyridine (1,4-DHP) derivatives, which are analogues of NADH coenzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983; Godfraind et al., 1986; Wagner et al., 1988). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997, 1998). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3- and 5-positions in the 1,4-dihydropyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, (I), diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and
2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, (III), have involved their NMR spectra (DaSilva et al., 2005) and electroreduction of the nitro groups (Argüello et al., 2005). The NMR study revealed the non-equivalence of the methylene H atoms in the ethoxycarbonyl groups, and we now report the molecular and supramolecular structures of three representative examples, viz. (I)–(III).In each of compounds (I)–(III) (Figs. 1–3), the 1,4-dihydropyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982; Lokaj et al., 1991; Kožíšek et al., 1993), although an example containing a planar ring has recently been reported (Mahendra et al., 2003). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)–(III), respectively. In (I), atom C4 is a stereogenic centre and the selected reference molecule has the R configuration at this centre. However, the centrosymmetric accommodates equal numbers of R and S molecules.
The supramolecular structures of compounds (I)–(III) are all different and each is based on a different selection of hydrogen bonds. It is of interest to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydropyridine ring.
In compound (I), the molecules are linked into simple chains by a single hydrogen bond (Table 1). Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O31 in the molecule at (x, − y, + z), thereby producing a C(6) (Bernstein et al., 1995) chain running parallel to the [001] direction and generated by the c-glide plane at y = (Fig. 4). Two such chains, running antiparallel to one another, pass through each but there are no direction-specific interactions between adjacent chains.
The formation of the sheet structure in compound (II) can readily be analysed in terms of two one-dimensional substructures, one involving both N—H⋯O and C—H⋯O hydrogen bonds, and the other only a C—H⋯O hydrogen bond (Table 2). In the first atoms N1 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the molecule at (x, − y, + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y = (Fig. 5). The second is much simpler: atom C44 in the molecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the molecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6). Two sheets of this type, related to one another by inversion, pass through each The only direction-specific interaction of possible significance is a C—H⋯π(furan) hydrogen bond (Table 2). Atom C52 in the molecule at (x, y, z), which lies in the sheet generated by the glide planes at y = , acts as hydrogen-bond donor to the furyl ring of the molecule at (2 − x, 1 − y, 1 − z), which forms part of the sheet generated by the glide plane at y = . Propagation of this interaction then links each (010) sheet to the two adjacent sheets.
The supramolecular structure of compound (III) consists of hydrogen-bonded sheets containing four types of ring. However, as for (II), the formation of the sheet in (III) is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III) can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the molecule at (1 − x, 1 − y, 1 − z), forming an effectively planar three-centre N—H⋯(O)2 system (Table 3). The resulting dimer centred at (, , ) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond and two R12(5) rings generated by both components (Fig. 7). Two independent C—H⋯O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the molecule at (x, y, z), part of the dimer centred at (, , ), acts as hydrogen-bond donor to atom O431 in the molecule at (x, 1 + y, z), part of the dimer centred at (, , ). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along (, y, ), with R22(14) rings centred at (, n + , ) (n = zero or integer) and R44(14) rings centred at (, n, ) (n = zero or integer) (Fig. 8). Finally, these chains are linked by the second C—H⋯O hydrogen bond. Atom C44 in the molecule at (x, y, z), which lies in the chain of rings along (, y, ), acts as hydrogen-bond donor to atom O432 in the molecule at (−x, + y, − z), which itself lies in the chain of rings along (, y, 1). Propagation by the of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8). There are no direction-specific interactions between adjacent sheets.
Experimental
Samples of compounds (I)–(III) were prepared according to published procedures (Hafiz et al., 1999; DaSilva et al., 2005; Argüello et al., 2005). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Attempts to cut small fragments from the rather large blocks of compound (III) led to shattering of the crystals.
Compound (I)
Crystal data
|
Refinement
|
Compound (II)
Crystal data
|
Refinement
|
Compound (III)
Crystal data
|
Refinement
|
For each of compounds (I), (II) and (III), the P21/c was uniquely assigned from the All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).
For all three compounds, data collection: COLLECT (Nonius, 1999); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S0108270105037753/sk1887sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270105037753/sk1887Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270105037753/sk1887IIsup3.hkl
Structure factors: contains datablock III. DOI: 10.1107/S0108270105037753/sk1887IIIsup4.hkl
Samples of compounds (I)–(III) were prepared according to published procedures (Hafiz et al., 1999; DaSilva et al., 2005; Argüello et al., 2005). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Attempts to cut small fragments from the rather large blocks of compound (III) led to shattering of the crystals.
For each of (I), (II) and (III), the
P21/c was uniquely assigned from the All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).1,4-Dihydropyridine (1,4-DHP) derivatives, which are analogues of NADH co-enzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983; Godfraind et al., 1986; Wagner et al., 1988). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997, 1998). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3 and 5 positions in the 1,4-dihydropyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, (I), diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, (III), have involved their NMR spectra (DaSilva et al., 2005) and electroreduction of the nitro groups (Argüello et al., 2005). The NMR study revealed the non-equivalence of the methylene H atoms in the carboethoxy groups, and we now report the molecular and supramolecular structures of three representative examples, viz. (I)–(III).
In each of compounds (I)–(III) (Figs. 1–3), the 1,4-dihydropyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982; Lokaj et al., 1991; Kožíček et al., 1993), although an example containing a planar ring has recently been reported (Mahendra et al., 2003). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)–(III), respectively. In (I), atom C4 is a stereogenic centre and the selected reference molecule has the R configuration at this centre. However, the centrosymmetric
accommodates equal numbers of R and S molecules.The supramolecular structures of compounds (I)–(III) are all different and each is based on a different selection of hydrogen bonds. It is of interest to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydropyridine ring.
In compound (I), the molecules are linked into simple chains by a single hydrogen bond (Table 1). Atom N1 in the molecule at (x, y, z), acts as hydrogen-bond donor to carbonyl atom O31 in the molecule at (x, 1/2 - y, 1/2 + z), thereby producing a C(6) (Bernstein et al., 1995) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 4). Two such chains, running antiparallel to one another, pass through each
but there are no direction-specific interactions between adjacent chains.The formation of the sheet structure in compound (II) can readily be analysed in terms of two one-dimensional substructures, one involving both N—H···O and C—H···O hydrogen bonds, and the other only a C—H···O hydrogen bond (Table 2). In the first π(furan) hydrogen bond (Table 2). Atom C52 in the molecule at (x, y, z), which lies in the sheet generated by the glide planes at y = 1/4, acts as hydrogen-bond donor to the furyl ring of the molecule at (2 - x, 1 - y, 1 - z), which forms part of the sheet generated by the glide plane at y = 3/4. Propagation of this interaction then links each (010) sheet to the two adjacent sheets.
atoms N1 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the molecule at (x, 1/2 - y, 1/2 + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 5). The second is much simpler: atom C44 in the molecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the molecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6). Two sheets of this type, related to one another by inversion, pass through each The only direction-specific interaction of possible significance is a C—H···The supramolecular structure of compound (III) consists of hydrogen-bonded sheets containing four types of ring. However, as for (II), the formation of the sheet in (III) is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III) can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the molecule at (1 - x, 1 - y, 1 - z), forming an effectively planar three-centre N—H···(O)2 system (Table 3). The resulting dimer centred at (1/2, 1/2, 1/2) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond, and two R12(5) rings generated by both components (Fig. 7). Two independent C—H···O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the molecule at (x, y, z), part of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to atom O431 in the molecule at (x, 1 + y, z), part of the dimer centred at (1/2, 3/2, 1/2). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along (1/2, y, 1/2), with R22(14) rings centred at (1/2, n + 1/2, 1/2) (n = zero or integer) and R44(14) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 8). Finally, these chains are linked by the second C—H···O hydrogen bond. Atom C44 in the molecule at (x, y, z), which lies in the chain of rings along (1/2, y, 1/2), acts as hydrogen-bond donor to atom O432 in the molecule at (-x, 1/2 + y, 3/2 - z), which itself lies in the chain of rings along (-1/2, y, 1). Propagation by the
of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8). There are no direction-specific interactions between adjacent sheets.For all compounds, data collection: COLLECT (Nonius, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C15H15N3O5 | F(000) = 664 |
Mr = 317.30 | Dx = 1.445 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3361 reflections |
a = 8.0214 (3) Å | θ = 3.0–27.6° |
b = 13.7477 (4) Å | µ = 0.11 mm−1 |
c = 13.2847 (4) Å | T = 120 K |
β = 95.3019 (17)° | Block, brown |
V = 1458.71 (8) Å3 | 0.14 × 0.12 × 0.08 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 3361 independent reflections |
Radiation source: Bruker Nonius FR91 rotating anode | 2614 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.0° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −17→17 |
Tmin = 0.979, Tmax = 0.991 | l = −17→16 |
17958 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.6243P] where P = (Fo2 + 2Fc2)/3 |
3361 reflections | (Δ/σ)max < 0.001 |
211 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C15H15N3O5 | V = 1458.71 (8) Å3 |
Mr = 317.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0214 (3) Å | µ = 0.11 mm−1 |
b = 13.7477 (4) Å | T = 120 K |
c = 13.2847 (4) Å | 0.14 × 0.12 × 0.08 mm |
β = 95.3019 (17)° |
Nonius KappaCCD area-detector diffractometer | 3361 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2614 reflections with I > 2σ(I) |
Tmin = 0.979, Tmax = 0.991 | Rint = 0.054 |
17958 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.34 e Å−3 |
3361 reflections | Δρmin = −0.40 e Å−3 |
211 parameters |
x | y | z | Uiso*/Ueq | ||
O31 | 0.77237 (15) | 0.12586 (9) | 0.57702 (9) | 0.0223 (3) | |
O32 | 0.94984 (15) | 0.10372 (9) | 0.71630 (9) | 0.0226 (3) | |
O42 | 0.48921 (14) | 0.33505 (8) | 0.50276 (9) | 0.0194 (3) | |
O431 | 0.29866 (16) | 0.38423 (10) | 0.34165 (10) | 0.0328 (3) | |
O432 | 0.50117 (17) | 0.46435 (10) | 0.28064 (9) | 0.0313 (3) | |
N1 | 0.69121 (17) | 0.31836 (10) | 0.86343 (11) | 0.0198 (3) | |
N43 | 0.44161 (19) | 0.41652 (10) | 0.34731 (11) | 0.0234 (3) | |
N51 | 0.16274 (19) | 0.34964 (13) | 0.66906 (13) | 0.0321 (4) | |
C2 | 0.7913 (2) | 0.25597 (11) | 0.81411 (12) | 0.0178 (3) | |
C3 | 0.7368 (2) | 0.22212 (12) | 0.72070 (12) | 0.0179 (3) | |
C4 | 0.5763 (2) | 0.25943 (12) | 0.66380 (12) | 0.0179 (3) | |
C5 | 0.4669 (2) | 0.30909 (12) | 0.73598 (13) | 0.0190 (4) | |
C6 | 0.5276 (2) | 0.33856 (12) | 0.82929 (13) | 0.0187 (3) | |
C21 | 0.9568 (2) | 0.23557 (13) | 0.87286 (13) | 0.0225 (4) | |
C31 | 0.8207 (2) | 0.14805 (12) | 0.66446 (12) | 0.0189 (4) | |
C32 | 1.0373 (2) | 0.02987 (13) | 0.66327 (13) | 0.0224 (4) | |
C33 | 1.1581 (2) | 0.07439 (14) | 0.59697 (14) | 0.0258 (4) | |
C41 | 0.6142 (2) | 0.32718 (12) | 0.58037 (12) | 0.0185 (3) | |
C43 | 0.5491 (2) | 0.39835 (12) | 0.43664 (12) | 0.0193 (4) | |
C44 | 0.7033 (2) | 0.43184 (12) | 0.46804 (13) | 0.0218 (4) | |
C45 | 0.7457 (2) | 0.38513 (12) | 0.56259 (13) | 0.0210 (4) | |
C51 | 0.2976 (2) | 0.33115 (13) | 0.70004 (13) | 0.0226 (4) | |
C61 | 0.4281 (2) | 0.39324 (13) | 0.90073 (13) | 0.0243 (4) | |
H1 | 0.7341 | 0.3466 | 0.9194 | 0.024* | |
H4 | 0.5133 | 0.2024 | 0.6329 | 0.022* | |
H21A | 1.0477 | 0.2575 | 0.8339 | 0.034* | |
H21B | 0.9678 | 0.1655 | 0.8855 | 0.034* | |
H21C | 0.9628 | 0.2704 | 0.9375 | 0.034* | |
H32A | 0.9546 | −0.0099 | 0.6214 | 0.027* | |
H32B | 1.0987 | −0.0137 | 0.7132 | 0.027* | |
H33A | 1.2409 | 0.1131 | 0.6384 | 0.039* | |
H33B | 1.0972 | 0.1164 | 0.5465 | 0.039* | |
H33C | 1.2152 | 0.0228 | 0.5626 | 0.039* | |
H44 | 0.7691 | 0.4767 | 0.4344 | 0.026* | |
H45 | 0.8466 | 0.3930 | 0.6052 | 0.025* | |
H61A | 0.3085 | 0.3819 | 0.8828 | 0.037* | |
H61B | 0.4520 | 0.4629 | 0.8962 | 0.037* | |
H61C | 0.4589 | 0.3707 | 0.9699 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O31 | 0.0246 (6) | 0.0267 (6) | 0.0151 (6) | 0.0016 (5) | −0.0007 (5) | −0.0020 (5) |
O32 | 0.0223 (6) | 0.0269 (6) | 0.0182 (6) | 0.0065 (5) | −0.0007 (5) | −0.0029 (5) |
O42 | 0.0194 (6) | 0.0228 (6) | 0.0154 (6) | 0.0000 (5) | −0.0012 (5) | 0.0017 (5) |
O431 | 0.0273 (7) | 0.0398 (8) | 0.0294 (7) | −0.0043 (6) | −0.0071 (6) | 0.0056 (6) |
O432 | 0.0416 (8) | 0.0309 (7) | 0.0209 (7) | −0.0007 (6) | 0.0010 (6) | 0.0090 (5) |
N1 | 0.0197 (7) | 0.0233 (7) | 0.0160 (7) | 0.0001 (6) | −0.0004 (5) | −0.0037 (6) |
N43 | 0.0277 (8) | 0.0218 (7) | 0.0200 (8) | 0.0034 (6) | −0.0021 (6) | −0.0003 (6) |
N51 | 0.0217 (8) | 0.0426 (10) | 0.0318 (9) | 0.0042 (7) | 0.0016 (7) | 0.0039 (7) |
C2 | 0.0189 (8) | 0.0180 (8) | 0.0168 (8) | −0.0009 (6) | 0.0028 (6) | 0.0012 (6) |
C3 | 0.0170 (8) | 0.0217 (8) | 0.0152 (8) | 0.0006 (6) | 0.0019 (6) | 0.0010 (6) |
C4 | 0.0177 (8) | 0.0204 (8) | 0.0153 (8) | 0.0007 (6) | 0.0002 (6) | −0.0002 (6) |
C5 | 0.0162 (8) | 0.0211 (8) | 0.0199 (8) | 0.0007 (6) | 0.0022 (6) | 0.0029 (7) |
C6 | 0.0180 (8) | 0.0192 (8) | 0.0191 (8) | 0.0008 (6) | 0.0028 (6) | 0.0017 (6) |
C21 | 0.0190 (8) | 0.0297 (9) | 0.0182 (8) | −0.0003 (7) | −0.0015 (7) | −0.0035 (7) |
C31 | 0.0187 (8) | 0.0216 (8) | 0.0162 (8) | −0.0009 (6) | 0.0002 (6) | 0.0018 (6) |
C32 | 0.0247 (9) | 0.0231 (8) | 0.0195 (9) | 0.0056 (7) | 0.0022 (7) | −0.0032 (7) |
C33 | 0.0261 (9) | 0.0293 (9) | 0.0223 (9) | 0.0052 (7) | 0.0046 (7) | −0.0001 (7) |
C41 | 0.0175 (8) | 0.0240 (8) | 0.0136 (8) | 0.0027 (6) | −0.0009 (6) | −0.0017 (6) |
C43 | 0.0229 (8) | 0.0200 (8) | 0.0150 (8) | 0.0031 (6) | 0.0014 (7) | 0.0021 (6) |
C44 | 0.0238 (8) | 0.0209 (8) | 0.0214 (9) | −0.0001 (7) | 0.0056 (7) | 0.0011 (7) |
C45 | 0.0193 (8) | 0.0242 (8) | 0.0191 (9) | 0.0000 (7) | 0.0004 (7) | −0.0004 (7) |
C51 | 0.0212 (9) | 0.0271 (9) | 0.0201 (9) | 0.0011 (7) | 0.0044 (7) | 0.0019 (7) |
C61 | 0.0252 (9) | 0.0285 (9) | 0.0199 (9) | 0.0046 (7) | 0.0050 (7) | −0.0013 (7) |
N1—C6 | 1.377 (2) | C4—C5 | 1.520 (2) |
N1—C2 | 1.381 (2) | C4—H4 | 1.00 |
N1—H1 | 0.88 | C41—C45 | 1.359 (2) |
C2—C3 | 1.359 (2) | C41—O42 | 1.3745 (19) |
C2—C21 | 1.503 (2) | O42—C43 | 1.356 (2) |
C21—H21A | 0.98 | C43—C44 | 1.349 (2) |
C21—H21B | 0.98 | C43—N43 | 1.423 (2) |
C21—H21C | 0.98 | N43—O431 | 1.225 (2) |
C3—C31 | 1.463 (2) | N43—O432 | 1.2341 (19) |
C3—C4 | 1.520 (2) | C44—C45 | 1.424 (2) |
C31—O31 | 1.228 (2) | C44—H44 | 0.95 |
C31—O32 | 1.3369 (19) | C45—H45 | 0.95 |
C32—O32 | 1.453 (2) | C5—C6 | 1.351 (2) |
C32—C33 | 1.499 (3) | C5—C51 | 1.430 (2) |
C32—H32A | 0.99 | C51—N51 | 1.149 (2) |
C32—H32B | 0.99 | C6—C61 | 1.497 (2) |
C33—H33A | 0.98 | C61—H61A | 0.98 |
C33—H33B | 0.98 | C61—H61B | 0.98 |
C33—H33C | 0.98 | C61—H61C | 0.98 |
C4—C41 | 1.500 (2) | ||
C6—N1—C2 | 123.19 (14) | C5—C4—C3 | 110.45 (13) |
C6—N1—H1 | 118.4 | C41—C4—H4 | 108.2 |
C2—N1—H1 | 118.4 | C5—C4—H4 | 108.2 |
C3—C2—N1 | 119.58 (15) | C3—C4—H4 | 108.2 |
C3—C2—C21 | 127.19 (16) | C45—C41—O42 | 110.32 (14) |
N1—C2—C21 | 113.21 (14) | C45—C41—C4 | 134.88 (15) |
C2—C21—H21A | 109.5 | O42—C41—C4 | 114.80 (14) |
C2—C21—H21B | 109.5 | C43—O42—C41 | 105.01 (12) |
H21A—C21—H21B | 109.5 | C44—C43—O42 | 112.85 (14) |
C2—C21—H21C | 109.5 | C44—C43—N43 | 131.71 (16) |
H21A—C21—H21C | 109.5 | O42—C43—N43 | 115.43 (14) |
H21B—C21—H21C | 109.5 | O431—N43—O432 | 124.82 (15) |
C2—C3—C31 | 125.46 (15) | O431—N43—C43 | 118.61 (15) |
C2—C3—C4 | 121.65 (15) | O432—N43—C43 | 116.56 (15) |
C31—C3—C4 | 112.90 (13) | C43—C44—C45 | 104.84 (15) |
O31—C31—O32 | 122.38 (15) | C43—C44—H44 | 127.6 |
O31—C31—C3 | 122.41 (15) | C45—C44—H44 | 127.6 |
O32—C31—C3 | 115.17 (14) | C41—C45—C44 | 106.98 (15) |
O32—C32—C33 | 111.52 (14) | C41—C45—H45 | 126.5 |
O32—C32—H32A | 109.3 | C44—C45—H45 | 126.5 |
C33—C32—H32A | 109.3 | C6—C5—C51 | 119.55 (16) |
O32—C32—H32B | 109.3 | C6—C5—C4 | 122.23 (14) |
C33—C32—H32B | 109.3 | C51—C5—C4 | 118.06 (15) |
H32A—C32—H32B | 108.0 | N51—C51—C5 | 178.4 (2) |
C31—O32—C32 | 117.04 (13) | C5—C6—N1 | 119.56 (15) |
C32—C33—H33A | 109.5 | C5—C6—C61 | 124.33 (15) |
C32—C33—H33B | 109.5 | N1—C6—C61 | 116.11 (14) |
H33A—C33—H33B | 109.5 | C6—C61—H61A | 109.5 |
C32—C33—H33C | 109.5 | C6—C61—H61B | 109.5 |
H33A—C33—H33C | 109.5 | H61A—C61—H61B | 109.5 |
H33B—C33—H33C | 109.5 | C6—C61—H61C | 109.5 |
C41—C4—C5 | 110.81 (13) | H61A—C61—H61C | 109.5 |
C41—C4—C3 | 110.89 (13) | H61B—C61—H61C | 109.5 |
C6—N1—C2—C3 | 9.2 (2) | C4—C41—O42—C43 | −179.70 (14) |
C6—N1—C2—C21 | −172.45 (15) | C41—O42—C43—C44 | −0.68 (18) |
N1—C2—C3—C31 | −173.06 (15) | C41—O42—C43—N43 | 178.48 (14) |
C21—C2—C3—C31 | 8.8 (3) | C44—C43—N43—O431 | −172.54 (18) |
N1—C2—C3—C4 | 6.7 (2) | O42—C43—N43—O431 | 8.5 (2) |
C21—C2—C3—C4 | −171.46 (15) | C44—C43—N43—O432 | 7.5 (3) |
C2—C3—C31—O31 | −174.16 (17) | O42—C43—N43—O432 | −171.46 (14) |
C4—C3—C31—O31 | 6.1 (2) | O42—C43—C44—C45 | 0.31 (19) |
C2—C3—C31—O32 | 8.2 (2) | N43—C43—C44—C45 | −178.67 (17) |
C4—C3—C31—O32 | −171.54 (14) | O42—C41—C45—C44 | −0.62 (19) |
O31—C31—O32—C32 | 2.6 (2) | C4—C41—C45—C44 | 180.00 (18) |
C3—C31—O32—C32 | −179.77 (14) | C43—C44—C45—C41 | 0.19 (19) |
C33—C32—O32—C31 | 80.06 (18) | C41—C4—C5—C6 | −106.28 (18) |
C2—C3—C4—C41 | 104.92 (18) | C3—C4—C5—C6 | 17.0 (2) |
C31—C3—C4—C41 | −75.33 (17) | C41—C4—C5—C51 | 69.09 (19) |
C2—C3—C4—C5 | −18.3 (2) | C3—C4—C5—C51 | −167.61 (14) |
C31—C3—C4—C5 | 161.42 (14) | C51—C5—C6—N1 | −179.22 (15) |
C5—C4—C41—C45 | 98.5 (2) | C4—C5—C6—N1 | −3.9 (2) |
C3—C4—C41—C45 | −24.5 (3) | C51—C5—C6—C61 | 0.7 (3) |
C5—C4—C41—O42 | −80.86 (17) | C4—C5—C6—C61 | 176.00 (16) |
C3—C4—C41—O42 | 156.10 (14) | C2—N1—C6—C5 | −10.6 (2) |
C45—C41—O42—C43 | 0.79 (18) | C2—N1—C6—C61 | 169.48 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O31i | 0.88 | 2.12 | 2.953 (2) | 157 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
C17H20N2O7 | F(000) = 768 |
Mr = 364.35 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3898 reflections |
a = 8.0511 (2) Å | θ = 2.9–27.5° |
b = 15.173 (4) Å | µ = 0.11 mm−1 |
c = 14.470 (4) Å | T = 120 K |
β = 105.760 (2)° | Plate, yellow |
V = 1701.2 (7) Å3 | 0.26 × 0.22 × 0.06 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 3898 independent reflections |
Radiation source: Bruker Nonius FR91 rotating anode | 3073 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
φ and ω scans | h = −10→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −19→19 |
Tmin = 0.969, Tmax = 0.993 | l = −18→18 |
17840 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.8476P] where P = (Fo2 + 2Fc2)/3 |
3898 reflections | (Δ/σ)max = 0.001 |
239 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C17H20N2O7 | V = 1701.2 (7) Å3 |
Mr = 364.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0511 (2) Å | µ = 0.11 mm−1 |
b = 15.173 (4) Å | T = 120 K |
c = 14.470 (4) Å | 0.26 × 0.22 × 0.06 mm |
β = 105.760 (2)° |
Nonius KappaCCD area-detector diffractometer | 3898 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3073 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.993 | Rint = 0.047 |
17840 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.42 e Å−3 |
3898 reflections | Δρmin = −0.37 e Å−3 |
239 parameters |
x | y | z | Uiso*/Ueq | ||
O31 | 0.51174 (15) | 0.19208 (8) | 0.39397 (8) | 0.0203 (3) | |
O32 | 0.38877 (15) | 0.11796 (7) | 0.49219 (8) | 0.0174 (3) | |
O42 | 0.80303 (15) | 0.31933 (7) | 0.39983 (8) | 0.0165 (3) | |
O431 | 0.90638 (17) | 0.34441 (8) | 0.24520 (9) | 0.0254 (3) | |
O432 | 1.11994 (18) | 0.25194 (9) | 0.29460 (10) | 0.0297 (3) | |
O51 | 0.77729 (19) | 0.55027 (8) | 0.61859 (9) | 0.0316 (3) | |
O52 | 0.73600 (15) | 0.48699 (7) | 0.47419 (8) | 0.0194 (3) | |
N1 | 0.60132 (19) | 0.30689 (9) | 0.70679 (10) | 0.0186 (3) | |
N43 | 0.99410 (19) | 0.29324 (10) | 0.30501 (10) | 0.0206 (3) | |
C2 | 0.5338 (2) | 0.24179 (10) | 0.64101 (11) | 0.0155 (3) | |
C3 | 0.5438 (2) | 0.25016 (10) | 0.54904 (11) | 0.0147 (3) | |
C4 | 0.6314 (2) | 0.32908 (10) | 0.51643 (11) | 0.0152 (3) | |
C5 | 0.6769 (2) | 0.40033 (10) | 0.59366 (11) | 0.0156 (3) | |
C6 | 0.6669 (2) | 0.38535 (11) | 0.68400 (12) | 0.0176 (4) | |
C21 | 0.4572 (2) | 0.16731 (11) | 0.68472 (12) | 0.0211 (4) | |
C31 | 0.4822 (2) | 0.18551 (10) | 0.47192 (11) | 0.0149 (3) | |
C32 | 0.3187 (2) | 0.05729 (11) | 0.41336 (12) | 0.0206 (4) | |
C33 | 0.2033 (2) | −0.00630 (12) | 0.44639 (13) | 0.0255 (4) | |
C41 | 0.7893 (2) | 0.29747 (10) | 0.48935 (11) | 0.0154 (3) | |
C43 | 0.9483 (2) | 0.27909 (11) | 0.39198 (12) | 0.0175 (3) | |
C44 | 1.0287 (2) | 0.23332 (11) | 0.47184 (12) | 0.0192 (4) | |
C45 | 0.9246 (2) | 0.24588 (10) | 0.53550 (12) | 0.0177 (3) | |
C51 | 0.7346 (2) | 0.48642 (11) | 0.56723 (12) | 0.0185 (3) | |
C52 | 0.8006 (2) | 0.56725 (11) | 0.44191 (12) | 0.0205 (4) | |
C53 | 0.7937 (3) | 0.55517 (12) | 0.33795 (13) | 0.0270 (4) | |
C61 | 0.7228 (3) | 0.44752 (12) | 0.76791 (12) | 0.0257 (4) | |
H1 | 0.6024 | 0.2981 | 0.7657 | 0.022* | |
H12A | 0.3331 | 0.1636 | 0.6537 | 0.032* | |
H12B | 0.4761 | 0.1781 | 0.7536 | 0.032* | |
H12C | 0.5127 | 0.1118 | 0.6754 | 0.032* | |
H13A | 0.4133 | 0.0252 | 0.3963 | 0.025* | |
H13B | 0.2520 | 0.0900 | 0.3561 | 0.025* | |
H14 | 0.5495 | 0.3549 | 0.4580 | 0.018* | |
H33A | 0.2712 | −0.0389 | 0.5025 | 0.038* | |
H33B | 0.1526 | −0.0478 | 0.3945 | 0.038* | |
H33C | 0.1111 | 0.0263 | 0.4637 | 0.038* | |
H44 | 1.1322 | 0.2000 | 0.4828 | 0.023* | |
H45 | 0.9454 | 0.2226 | 0.5986 | 0.021* | |
H52A | 0.9208 | 0.5784 | 0.4801 | 0.025* | |
H52B | 0.7286 | 0.6181 | 0.4497 | 0.025* | |
H52C | 0.8662 | 0.5050 | 0.3312 | 0.040* | |
H52D | 0.8362 | 0.6086 | 0.3139 | 0.040* | |
H52E | 0.6743 | 0.5440 | 0.3009 | 0.040* | |
H61A | 0.8443 | 0.4633 | 0.7773 | 0.039* | |
H61B | 0.7086 | 0.4188 | 0.8260 | 0.039* | |
H61C | 0.6518 | 0.5009 | 0.7550 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O31 | 0.0246 (7) | 0.0232 (6) | 0.0153 (6) | −0.0031 (5) | 0.0091 (5) | −0.0019 (5) |
O32 | 0.0207 (6) | 0.0170 (6) | 0.0160 (6) | −0.0041 (5) | 0.0074 (5) | −0.0027 (4) |
O431 | 0.0309 (7) | 0.0283 (7) | 0.0186 (6) | 0.0012 (6) | 0.0094 (5) | 0.0033 (5) |
O432 | 0.0319 (8) | 0.0331 (7) | 0.0309 (7) | 0.0066 (6) | 0.0200 (6) | −0.0011 (6) |
O51 | 0.0504 (9) | 0.0212 (7) | 0.0264 (7) | −0.0119 (6) | 0.0161 (6) | −0.0065 (5) |
O52 | 0.0263 (7) | 0.0151 (6) | 0.0183 (6) | −0.0046 (5) | 0.0087 (5) | −0.0003 (4) |
N1 | 0.0259 (8) | 0.0193 (7) | 0.0128 (6) | −0.0024 (6) | 0.0088 (6) | −0.0022 (5) |
N43 | 0.0238 (8) | 0.0219 (7) | 0.0192 (7) | −0.0033 (6) | 0.0110 (6) | −0.0038 (6) |
C2 | 0.0155 (8) | 0.0145 (7) | 0.0174 (8) | 0.0010 (6) | 0.0059 (6) | −0.0007 (6) |
C3 | 0.0137 (8) | 0.0149 (7) | 0.0165 (8) | 0.0005 (6) | 0.0060 (6) | −0.0007 (6) |
C4 | 0.0165 (8) | 0.0156 (7) | 0.0141 (7) | −0.0001 (6) | 0.0054 (6) | 0.0000 (6) |
C5 | 0.0154 (8) | 0.0145 (7) | 0.0173 (8) | 0.0003 (6) | 0.0050 (6) | −0.0011 (6) |
C6 | 0.0185 (9) | 0.0164 (8) | 0.0190 (8) | −0.0001 (6) | 0.0070 (7) | −0.0024 (6) |
C21 | 0.0273 (10) | 0.0214 (8) | 0.0169 (8) | −0.0044 (7) | 0.0097 (7) | −0.0001 (7) |
C31 | 0.0132 (8) | 0.0160 (8) | 0.0156 (8) | 0.0014 (6) | 0.0041 (6) | 0.0010 (6) |
C32 | 0.0250 (9) | 0.0191 (8) | 0.0184 (8) | −0.0033 (7) | 0.0069 (7) | −0.0051 (7) |
C33 | 0.0284 (10) | 0.0224 (9) | 0.0256 (9) | −0.0086 (7) | 0.0071 (8) | −0.0041 (7) |
C41 | 0.0191 (8) | 0.0153 (7) | 0.0132 (7) | −0.0039 (6) | 0.0068 (6) | −0.0012 (6) |
O42 | 0.0189 (6) | 0.0177 (6) | 0.0148 (6) | 0.0020 (5) | 0.0079 (5) | 0.0005 (4) |
C43 | 0.0186 (8) | 0.0179 (8) | 0.0181 (8) | −0.0012 (6) | 0.0086 (6) | −0.0033 (6) |
C44 | 0.0195 (9) | 0.0182 (8) | 0.0215 (8) | 0.0001 (7) | 0.0081 (7) | 0.0000 (7) |
C45 | 0.0206 (9) | 0.0175 (8) | 0.0165 (8) | −0.0009 (6) | 0.0075 (7) | 0.0007 (6) |
C51 | 0.0187 (8) | 0.0179 (8) | 0.0198 (8) | 0.0004 (7) | 0.0069 (6) | −0.0004 (6) |
C52 | 0.0231 (9) | 0.0146 (8) | 0.0250 (9) | −0.0023 (7) | 0.0085 (7) | 0.0034 (7) |
C53 | 0.0343 (11) | 0.0246 (9) | 0.0233 (9) | −0.0046 (8) | 0.0100 (8) | 0.0032 (7) |
C61 | 0.0349 (11) | 0.0242 (9) | 0.0204 (9) | −0.0069 (8) | 0.0115 (8) | −0.0067 (7) |
N1—C2 | 1.377 (2) | O42—C43 | 1.351 (2) |
N1—C6 | 1.378 (2) | C43—C44 | 1.353 (2) |
N1—H1 | 0.8599 | C43—N43 | 1.420 (2) |
C2—C3 | 1.361 (2) | N43—O431 | 1.2323 (19) |
C2—C21 | 1.506 (2) | N43—O432 | 1.2348 (19) |
C21—H12A | 0.98 | C44—C45 | 1.416 (2) |
C21—H12B | 0.98 | C44—H44 | 0.95 |
C21—H12C | 0.98 | C45—H45 | 0.95 |
C3—C31 | 1.467 (2) | C5—C6 | 1.351 (2) |
C3—C4 | 1.528 (2) | C5—C51 | 1.471 (2) |
C31—O31 | 1.2185 (19) | C6—C61 | 1.507 (2) |
C31—O32 | 1.3499 (19) | C51—O51 | 1.213 (2) |
O32—C32 | 1.4551 (19) | C51—O52 | 1.349 (2) |
C32—C33 | 1.504 (2) | O52—C52 | 1.4507 (19) |
C32—H13A | 0.99 | C52—C53 | 1.501 (2) |
C32—H13B | 0.99 | C52—H52A | 0.99 |
C33—H33A | 0.98 | C52—H52B | 0.99 |
C33—H33B | 0.98 | C53—H52C | 0.98 |
C33—H33C | 0.98 | C53—H52D | 0.98 |
C4—C41 | 1.507 (2) | C53—H52E | 0.98 |
C4—C5 | 1.526 (2) | C61—H61A | 0.98 |
C4—H14 | 1.00 | C61—H61B | 0.98 |
C41—C45 | 1.360 (2) | C61—H61C | 0.98 |
C41—O42 | 1.3703 (19) | ||
C2—N1—C6 | 124.01 (14) | O42—C43—C44 | 112.59 (14) |
C2—N1—H1 | 118.0 | O42—C43—N43 | 116.42 (14) |
C6—N1—H1 | 118.0 | C44—C43—N43 | 130.96 (16) |
C3—C2—N1 | 119.46 (14) | O431—N43—O432 | 124.52 (14) |
C3—C2—C21 | 128.35 (15) | O431—N43—C43 | 118.71 (14) |
N1—C2—C21 | 112.19 (14) | O432—N43—C43 | 116.76 (14) |
C2—C21—H12A | 109.5 | C43—C44—C45 | 104.85 (15) |
C2—C21—H12B | 109.5 | C43—C44—H44 | 127.6 |
H12A—C21—H12B | 109.5 | C45—C44—H44 | 127.6 |
C2—C21—H12C | 109.5 | C41—C45—C44 | 107.12 (15) |
H12A—C21—H12C | 109.5 | C41—C45—H45 | 126.4 |
H12B—C21—H12C | 109.5 | C44—C45—H45 | 126.4 |
C2—C3—C31 | 125.71 (14) | C6—C5—C51 | 120.47 (15) |
C2—C3—C4 | 122.02 (14) | C6—C5—C4 | 121.60 (14) |
C31—C3—C4 | 112.22 (13) | C51—C5—C4 | 117.93 (14) |
O31—C31—O32 | 121.58 (14) | C5—C6—N1 | 120.29 (15) |
O31—C31—C3 | 122.59 (15) | C5—C6—C61 | 126.26 (15) |
O32—C31—C3 | 115.83 (13) | N1—C6—C61 | 113.46 (14) |
C31—O32—C32 | 115.49 (12) | O51—C51—O52 | 121.91 (15) |
O32—C32—C33 | 107.34 (13) | O51—C51—C5 | 127.37 (16) |
O32—C32—H13A | 110.2 | O52—C51—C5 | 110.72 (14) |
C33—C32—H13A | 110.2 | C51—O52—C52 | 115.31 (13) |
O32—C32—H13B | 110.2 | O52—C52—C53 | 107.53 (14) |
C33—C32—H13B | 110.2 | O52—C52—H52A | 110.2 |
H13A—C32—H13B | 108.5 | C53—C52—H52A | 110.2 |
C32—C33—H33A | 109.5 | O52—C52—H52B | 110.2 |
C32—C33—H33B | 109.5 | C53—C52—H52B | 110.2 |
H33A—C33—H33B | 109.5 | H52A—C52—H52B | 108.5 |
C32—C33—H33C | 109.5 | C52—C53—H52C | 109.5 |
H33A—C33—H33C | 109.5 | C52—C53—H52D | 109.5 |
H33B—C33—H33C | 109.5 | H52C—C53—H52D | 109.5 |
C41—C4—C5 | 111.36 (13) | C52—C53—H52E | 109.5 |
C41—C4—C3 | 108.88 (13) | H52C—C53—H52E | 109.5 |
C5—C4—C3 | 111.59 (13) | H52D—C53—H52E | 109.5 |
C41—C4—H14 | 108.3 | C6—C61—H61A | 109.5 |
C5—C4—H14 | 108.3 | C6—C61—H61B | 109.5 |
C3—C4—H14 | 108.3 | H61A—C61—H61B | 109.5 |
C45—C41—O42 | 110.13 (14) | C6—C61—H61C | 109.5 |
C45—C41—C4 | 132.47 (15) | H61A—C61—H61C | 109.5 |
O42—C41—C4 | 117.33 (13) | H61B—C61—H61C | 109.5 |
C43—O42—C41 | 105.30 (12) | ||
C6—N1—C2—C3 | 5.9 (2) | C44—C43—N43—O431 | −173.70 (17) |
C6—N1—C2—C21 | −174.76 (15) | O42—C43—N43—O432 | −175.20 (14) |
N1—C2—C3—C31 | 178.28 (15) | C44—C43—N43—O432 | 7.0 (3) |
C21—C2—C3—C31 | −1.0 (3) | O42—C43—C44—C45 | 0.03 (19) |
N1—C2—C3—C4 | 1.3 (2) | N43—C43—C44—C45 | 177.90 (17) |
C21—C2—C3—C4 | −177.98 (15) | O42—C41—C45—C44 | −0.73 (18) |
C2—C3—C31—O31 | −171.65 (16) | C4—C41—C45—C44 | 175.86 (16) |
C4—C3—C31—O31 | 5.6 (2) | C43—C44—C45—C41 | 0.43 (18) |
C2—C3—C31—O32 | 8.8 (2) | C41—C4—C5—C6 | −110.93 (17) |
C4—C3—C31—O32 | −173.91 (13) | C3—C4—C5—C6 | 11.0 (2) |
O31—C31—O32—C32 | −3.4 (2) | C41—C4—C5—C51 | 68.32 (18) |
C3—C31—O32—C32 | 176.18 (13) | C3—C4—C5—C51 | −169.78 (14) |
C31—O32—C32—C33 | −173.60 (14) | C51—C5—C6—N1 | 175.41 (15) |
C2—C3—C4—C41 | 114.40 (16) | C4—C5—C6—N1 | −5.4 (2) |
C31—C3—C4—C41 | −62.98 (17) | C51—C5—C6—C61 | −4.9 (3) |
C2—C3—C4—C5 | −8.9 (2) | C4—C5—C6—C61 | 174.35 (16) |
C31—C3—C4—C5 | 173.69 (13) | C2—N1—C6—C5 | −3.8 (3) |
C5—C4—C41—C45 | 73.2 (2) | C2—N1—C6—C61 | 176.46 (15) |
C3—C4—C41—C45 | −50.3 (2) | C6—C5—C51—O51 | −0.1 (3) |
C5—C4—C41—O42 | −110.41 (15) | C4—C5—C51—O51 | −179.33 (17) |
C3—C4—C41—O42 | 126.12 (14) | C6—C5—C51—O52 | 179.62 (15) |
C45—C41—O42—C43 | 0.74 (17) | C4—C5—C51—O52 | 0.4 (2) |
C4—C41—O42—C43 | −176.44 (13) | O51—C51—O52—C52 | 3.2 (2) |
C41—O42—C43—C44 | −0.46 (18) | C5—C51—O52—C52 | −176.55 (13) |
C41—O42—C43—N43 | −178.67 (13) | C51—O52—C52—C53 | 179.52 (14) |
O42—C43—N43—O431 | 4.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O31i | 0.86 | 2.18 | 2.986 (2) | 157 |
C44—H44···O32ii | 0.95 | 2.38 | 3.330 (2) | 174 |
C45—H45···O431i | 0.95 | 2.45 | 3.369 (2) | 163 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, y, z. |
C13H10N4O3 | F(000) = 560 |
Mr = 270.25 | Dx = 1.413 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2907 reflections |
a = 9.5651 (3) Å | θ = 2.9–27.5° |
b = 7.5735 (2) Å | µ = 0.10 mm−1 |
c = 17.6385 (5) Å | T = 120 K |
β = 96.2570 (13)° | Block, colourless |
V = 1270.14 (6) Å3 | 0.90 × 0.34 × 0.22 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2907 independent reflections |
Radiation source: Bruker Nonius FR91 rotating anode | 2333 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −9→9 |
Tmin = 0.906, Tmax = 0.977 | l = −22→22 |
16132 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4785P] where P = (Fo2 + 2Fc2)/3 |
2907 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C13H10N4O3 | V = 1270.14 (6) Å3 |
Mr = 270.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5651 (3) Å | µ = 0.10 mm−1 |
b = 7.5735 (2) Å | T = 120 K |
c = 17.6385 (5) Å | 0.90 × 0.34 × 0.22 mm |
β = 96.2570 (13)° |
Nonius KappaCCD area-detector diffractometer | 2907 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2333 reflections with I > 2σ(I) |
Tmin = 0.906, Tmax = 0.977 | Rint = 0.035 |
16132 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.23 e Å−3 |
2907 reflections | Δρmin = −0.28 e Å−3 |
183 parameters |
x | y | z | Uiso*/Ueq | ||
O42 | 0.27258 (9) | 0.53845 (11) | 0.61731 (5) | 0.0164 (2) | |
O431 | 0.30100 (10) | 0.20533 (12) | 0.65330 (6) | 0.0221 (2) | |
O432 | 0.15430 (11) | 0.22748 (14) | 0.73896 (6) | 0.0278 (3) | |
N1 | 0.50332 (13) | 0.70103 (16) | 0.45769 (7) | 0.0234 (3) | |
N31 | 0.55647 (13) | 0.93396 (17) | 0.71152 (7) | 0.0286 (3) | |
N43 | 0.21791 (11) | 0.28884 (15) | 0.68804 (6) | 0.0188 (3) | |
N51 | 0.00913 (15) | 0.8255 (2) | 0.42460 (9) | 0.0423 (4) | |
C2 | 0.55496 (15) | 0.75829 (17) | 0.52956 (8) | 0.0201 (3) | |
C3 | 0.46578 (14) | 0.82043 (17) | 0.57746 (7) | 0.0180 (3) | |
C4 | 0.30672 (13) | 0.82641 (17) | 0.55835 (7) | 0.0169 (3) | |
C5 | 0.26985 (14) | 0.77735 (17) | 0.47480 (8) | 0.0194 (3) | |
C6 | 0.36409 (15) | 0.71607 (17) | 0.42962 (8) | 0.0213 (3) | |
C21 | 0.71118 (15) | 0.74498 (19) | 0.54819 (9) | 0.0251 (3) | |
C31 | 0.51887 (14) | 0.88193 (18) | 0.65156 (8) | 0.0204 (3) | |
C41 | 0.23281 (14) | 0.71315 (17) | 0.61106 (7) | 0.0173 (3) | |
C43 | 0.19267 (13) | 0.46889 (18) | 0.66885 (7) | 0.0178 (3) | |
C44 | 0.10486 (15) | 0.5872 (2) | 0.69481 (8) | 0.0256 (3) | |
C51 | 0.12583 (16) | 0.80078 (19) | 0.44537 (8) | 0.0259 (3) | |
C45 | 0.13092 (16) | 0.74698 (19) | 0.65650 (9) | 0.0248 (3) | |
C61 | 0.33009 (18) | 0.6621 (2) | 0.34784 (8) | 0.0298 (4) | |
H1 | 0.5620 | 0.6528 | 0.4286 | 0.028* | |
H4 | 0.2758 | 0.9511 | 0.5650 | 0.020* | |
H21A | 0.7380 | 0.7908 | 0.5997 | 0.038* | |
H21B | 0.7578 | 0.8143 | 0.5113 | 0.038* | |
H21C | 0.7400 | 0.6211 | 0.5458 | 0.038* | |
H44 | 0.0396 | 0.5683 | 0.7309 | 0.031* | |
H45 | 0.0853 | 0.8570 | 0.6618 | 0.030* | |
H61A | 0.2278 | 0.6613 | 0.3348 | 0.045* | |
H61B | 0.3676 | 0.5437 | 0.3404 | 0.045* | |
H61C | 0.3727 | 0.7461 | 0.3149 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O42 | 0.0169 (5) | 0.0165 (5) | 0.0165 (5) | 0.0010 (3) | 0.0048 (3) | 0.0001 (3) |
O431 | 0.0215 (5) | 0.0197 (5) | 0.0255 (5) | 0.0011 (4) | 0.0050 (4) | −0.0010 (4) |
O432 | 0.0273 (6) | 0.0307 (6) | 0.0271 (5) | −0.0071 (4) | 0.0100 (4) | 0.0067 (4) |
N1 | 0.0264 (6) | 0.0230 (6) | 0.0221 (6) | 0.0015 (5) | 0.0086 (5) | −0.0023 (5) |
N31 | 0.0259 (7) | 0.0333 (7) | 0.0254 (7) | 0.0000 (5) | −0.0028 (5) | −0.0001 (5) |
N51 | 0.0326 (8) | 0.0529 (9) | 0.0385 (8) | 0.0007 (7) | −0.0099 (6) | −0.0074 (7) |
C2 | 0.0232 (7) | 0.0148 (6) | 0.0229 (7) | −0.0008 (5) | 0.0044 (6) | 0.0043 (5) |
C3 | 0.0201 (7) | 0.0155 (6) | 0.0183 (6) | −0.0013 (5) | 0.0011 (5) | 0.0021 (5) |
C4 | 0.0186 (6) | 0.0154 (6) | 0.0164 (6) | 0.0010 (5) | 0.0007 (5) | −0.0011 (5) |
C5 | 0.0233 (7) | 0.0177 (6) | 0.0167 (6) | −0.0021 (5) | 0.0000 (5) | 0.0011 (5) |
C6 | 0.0302 (8) | 0.0156 (6) | 0.0184 (7) | −0.0045 (5) | 0.0044 (6) | 0.0021 (5) |
C21 | 0.0217 (7) | 0.0224 (7) | 0.0322 (8) | 0.0019 (5) | 0.0071 (6) | 0.0052 (6) |
C31 | 0.0180 (7) | 0.0199 (7) | 0.0229 (7) | 0.0006 (5) | 0.0011 (5) | 0.0037 (5) |
C41 | 0.0185 (6) | 0.0168 (6) | 0.0165 (6) | 0.0027 (5) | 0.0008 (5) | −0.0010 (5) |
C43 | 0.0150 (6) | 0.0219 (7) | 0.0168 (6) | −0.0023 (5) | 0.0036 (5) | 0.0013 (5) |
N43 | 0.0154 (5) | 0.0226 (6) | 0.0185 (6) | −0.0040 (4) | 0.0026 (5) | 0.0003 (5) |
C44 | 0.0222 (7) | 0.0297 (8) | 0.0267 (8) | 0.0027 (6) | 0.0109 (6) | 0.0012 (6) |
C51 | 0.0301 (8) | 0.0265 (8) | 0.0201 (7) | −0.0028 (6) | −0.0014 (6) | −0.0026 (6) |
C45 | 0.0254 (7) | 0.0234 (7) | 0.0270 (7) | 0.0070 (6) | 0.0088 (6) | −0.0004 (6) |
C61 | 0.0441 (10) | 0.0277 (8) | 0.0182 (7) | −0.0066 (7) | 0.0064 (6) | −0.0022 (6) |
N1—C6 | 1.3741 (19) | O42—C43 | 1.3563 (15) |
N1—C2 | 1.3794 (18) | C43—C44 | 1.3424 (19) |
N1—H1 | 0.88 | C43—N43 | 1.4193 (18) |
C2—C3 | 1.3491 (19) | N43—O432 | 1.2297 (15) |
C2—C21 | 1.498 (2) | N43—O431 | 1.2302 (14) |
C21—H21A | 0.98 | C44—C45 | 1.421 (2) |
C21—H21B | 0.98 | C44—H44 | 0.95 |
C21—H21C | 0.98 | C5—C6 | 1.349 (2) |
C3—C31 | 1.4278 (19) | C5—C51 | 1.429 (2) |
C3—C4 | 1.5227 (18) | C51—N51 | 1.152 (2) |
C31—N31 | 1.1490 (18) | C45—H45 | 0.95 |
C4—C41 | 1.4978 (18) | C6—C61 | 1.500 (2) |
C4—C5 | 1.5234 (18) | C61—H61A | 0.98 |
C4—H4 | 1.00 | C61—H61B | 0.98 |
C41—C45 | 1.352 (2) | C61—H61C | 0.98 |
C41—O42 | 1.3778 (16) | ||
C6—N1—C2 | 122.76 (12) | C44—C43—O42 | 112.86 (12) |
C6—N1—H1 | 118.6 | C44—C43—N43 | 131.04 (12) |
C2—N1—H1 | 118.6 | O42—C43—N43 | 116.06 (11) |
C3—C2—N1 | 119.85 (13) | O432—N43—O431 | 124.58 (12) |
C3—C2—C21 | 124.74 (13) | O432—N43—C43 | 116.90 (11) |
N1—C2—C21 | 115.42 (12) | O431—N43—C43 | 118.52 (11) |
C2—C21—H21A | 109.5 | C43—C44—C45 | 104.92 (12) |
C2—C21—H21B | 109.5 | C43—C44—H44 | 127.5 |
H21A—C21—H21B | 109.5 | C45—C44—H44 | 127.5 |
C2—C21—H21C | 109.5 | C6—C5—C51 | 120.52 (13) |
H21A—C21—H21C | 109.5 | C6—C5—C4 | 123.80 (12) |
H21B—C21—H21C | 109.5 | C51—C5—C4 | 115.68 (12) |
C2—C3—C31 | 120.07 (12) | N51—C51—C5 | 176.57 (16) |
C2—C3—C4 | 123.81 (12) | C41—C45—C44 | 107.20 (12) |
C31—C3—C4 | 116.11 (11) | C41—C45—H45 | 126.4 |
N31—C31—C3 | 177.33 (15) | C44—C45—H45 | 126.4 |
C41—C4—C3 | 111.92 (10) | C5—C6—N1 | 119.96 (12) |
C41—C4—C5 | 112.68 (11) | C5—C6—C61 | 124.96 (13) |
C3—C4—C5 | 109.10 (11) | N1—C6—C61 | 115.08 (13) |
C41—C4—H4 | 107.6 | C6—C61—H61A | 109.5 |
C3—C4—H4 | 107.6 | C6—C61—H61B | 109.5 |
C5—C4—H4 | 107.6 | H61A—C61—H61B | 109.5 |
C45—C41—O42 | 110.18 (12) | C6—C61—H61C | 109.5 |
C45—C41—C4 | 132.76 (12) | H61A—C61—H61C | 109.5 |
O42—C41—C4 | 117.05 (11) | H61B—C61—H61C | 109.5 |
C43—O42—C41 | 104.82 (10) | ||
C6—N1—C2—C3 | 5.0 (2) | O42—C43—N43—O432 | 174.51 (11) |
C6—N1—C2—C21 | −175.16 (12) | C44—C43—N43—O431 | 177.01 (14) |
N1—C2—C3—C31 | −179.21 (12) | O42—C43—N43—O431 | −5.36 (17) |
C21—C2—C3—C31 | 0.9 (2) | O42—C43—C44—C45 | −0.04 (17) |
N1—C2—C3—C4 | 2.2 (2) | N43—C43—C44—C45 | 177.65 (14) |
C21—C2—C3—C4 | −177.65 (12) | C41—C4—C5—C6 | −116.84 (14) |
C2—C3—C4—C41 | 117.40 (14) | C3—C4—C5—C6 | 8.12 (18) |
C31—C3—C4—C41 | −61.23 (15) | C41—C4—C5—C51 | 63.42 (15) |
C2—C3—C4—C5 | −8.01 (17) | C3—C4—C5—C51 | −171.62 (11) |
C31—C3—C4—C5 | 173.37 (11) | O42—C41—C45—C44 | 0.85 (16) |
C3—C4—C41—C45 | 124.76 (16) | C4—C41—C45—C44 | −178.71 (14) |
C5—C4—C41—C45 | −111.83 (17) | C43—C44—C45—C41 | −0.49 (17) |
C3—C4—C41—O42 | −54.78 (15) | C51—C5—C6—N1 | 177.31 (12) |
C5—C4—C41—O42 | 68.63 (14) | C4—C5—C6—N1 | −2.4 (2) |
C45—C41—O42—C43 | −0.85 (14) | C51—C5—C6—C61 | −2.0 (2) |
C4—C41—O42—C43 | 178.79 (11) | C4—C5—C6—C61 | 178.24 (13) |
C41—O42—C43—C44 | 0.54 (15) | C2—N1—C6—C5 | −4.9 (2) |
C41—O42—C43—N43 | −177.52 (11) | C2—N1—C6—C61 | 174.54 (12) |
C44—C43—N43—O432 | −3.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O42i | 0.88 | 2.35 | 3.2019 (15) | 162 |
N1—H1···O431i | 0.88 | 2.32 | 2.9390 (16) | 128 |
C4—H4···O431ii | 1.00 | 2.47 | 3.3262 (16) | 143 |
C44—H44···O432iii | 0.95 | 2.32 | 3.0446 (18) | 132 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x, y+1/2, −z+3/2. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C15H15N3O5 | C17H20N2O7 | C13H10N4O3 |
Mr | 317.30 | 364.35 | 270.25 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c | Monoclinic, P21/c |
Temperature (K) | 120 | 120 | 120 |
a, b, c (Å) | 8.0214 (3), 13.7477 (4), 13.2847 (4) | 8.0511 (2), 15.173 (4), 14.470 (4) | 9.5651 (3), 7.5735 (2), 17.6385 (5) |
β (°) | 95.3019 (17) | 105.760 (2) | 96.2570 (13) |
V (Å3) | 1458.71 (8) | 1701.2 (7) | 1270.14 (6) |
Z | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.11 | 0.11 | 0.10 |
Crystal size (mm) | 0.14 × 0.12 × 0.08 | 0.26 × 0.22 × 0.06 | 0.90 × 0.34 × 0.22 |
Data collection | |||
Diffractometer | Nonius KappaCCD area-detector | Nonius KappaCCD area-detector | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.979, 0.991 | 0.969, 0.993 | 0.906, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17958, 3361, 2614 | 17840, 3898, 3073 | 16132, 2907, 2333 |
Rint | 0.054 | 0.047 | 0.035 |
(sin θ/λ)max (Å−1) | 0.651 | 0.650 | 0.650 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.132, 1.06 | 0.047, 0.128, 1.06 | 0.039, 0.105, 1.05 |
No. of reflections | 3361 | 3898 | 2907 |
No. of parameters | 211 | 239 | 183 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.40 | 0.42, −0.37 | 0.23, −0.28 |
Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O31i | 0.88 | 2.12 | 2.953 (2) | 157 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O31i | 0.86 | 2.18 | 2.986 (2) | 157 |
C44—H44···O32ii | 0.95 | 2.38 | 3.330 (2) | 174 |
C45—H45···O431i | 0.95 | 2.45 | 3.369 (2) | 163 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O42i | 0.88 | 2.35 | 3.2019 (15) | 162 |
N1—H1···O431i | 0.88 | 2.32 | 2.9390 (16) | 128 |
C4—H4···O431ii | 1.00 | 2.47 | 3.3262 (16) | 143 |
C44—H44···O432iii | 0.95 | 2.32 | 3.0446 (18) | 132 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x, y+1/2, −z+3/2. |
Acknowledgements
The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.
References
Argüello, J., Núñez-Vergara, L. J. & Squella, J. A. (2005). Electrochem. Commun. 7, 53–57. Web of Science CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bou, J., Llenas, J. & Massingham, R. (1983). J. Auton. Pharmacol. 3, 219–232. CrossRef CAS PubMed Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
DaSilva, J. A., Barria, C. E., Jullian, C., Navarrete, P., Núñez-Vergara, L. J. & Squella, J. A. (2005). J. Braz. Chem. Soc. 16, 112–115. CAS Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Fossheim, R., Svarteng, K., Mostad, A., Roemming, C., Shefter, E. & Triggle, D. J. (1982). J. Am. Chem. 25, 126–131. CAS Google Scholar
Godfraind, T., Miller, R. & Wibo, M, (1986). Pharmacol. Rev. 38, 321–416. Google Scholar
Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578. CrossRef Web of Science Google Scholar
Hafiz, I. S. A., Darwish, E. S. & Mahmoud, F. F. (1999). J. Chem. Res. (S), pp. 536–537. CrossRef Google Scholar
Kožíšek, J., Paulus, H., Marchalín, S. & Ilavský, D. (1993). Acta Cryst. C49, 526–528. CSD CrossRef Web of Science IUCr Journals Google Scholar
Lokaj, J., Vrábel, V., Sivý, P., Kettmann, V., Ilavský, D. & Ječný, J. (1991). Acta Cryst. C47, 886–888. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Mahendra, M., Doreswamy, B. H., Adlakha, P., Raval, K., Varu, B., Shah, A., Sridhar, M. A. & Prasad, J. S. (2003). Anal. Sci. 19, x55–x56. Web of Science CSD CrossRef Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Núñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Marin-Catalán, R., Pino, L, Diaz-Araya, G. & Letelier, M. E. (1998). Gen. Pharmacol. 30, 85–87. CAS PubMed Web of Science Google Scholar
Núñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Morello, A., Repetto, Y., Aldunate, J. & Letelier, M. E. (1997). Comp. Biochem. Physiol. C, 118, 105–111. CrossRef CAS PubMed Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wagner, J. A., Guggino, S. E., Reynolds, I. J., Snowman, A. M. & Snyder, S. H. (1988). Ann. N. Y. Acad. Sci. 522, 116–133. CrossRef CAS PubMed Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
1,4-Dihydropyridine (1,4-DHP) derivatives, which are analogues of NADH co-enzymes, are an important class of drugs, acting as potent blockers of calcium channels with application in the treatment of various cardiovascular diseases (Bou et al., 1983; Godfraind et al., 1986; Wagner et al., 1988). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity, inhibiting culture growth and oxygen uptake in Trypanosoma cruzi epimastigotes, the parasite causing Chagas' disease (Núñez-Vergara et al., 1997, 1998). The drug action can be associated with the reduction of the nitro groups in these compounds. The presence of ester groups at the 3 and 5 positions in the 1,4-dihydropyridine ring is of crucial importance for the pharmaceutical effects. It has been suggested that these groups form hydrogen bonds with the receptor site (Goldmann & Stoltefuss, 1991). Previous studies of the title compounds, namely ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, (I), diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, (III), have involved their NMR spectra (DaSilva et al., 2005) and electroreduction of the nitro groups (Argüello et al., 2005). The NMR study revealed the non-equivalence of the methylene H atoms in the carboethoxy groups, and we now report the molecular and supramolecular structures of three representative examples, viz. (I)–(III).
In each of compounds (I)–(III) (Figs. 1–3), the 1,4-dihydropyrimidine ring adopt a flat-boat conformation, as generally observed when this ring system carries an aryl or heteroaryl substituent at position 4 (Fossheim et al., 1982; Lokaj et al., 1991; Kožíček et al., 1993), although an example containing a planar ring has recently been reported (Mahendra et al., 2003). In each compound, the distortion of the ring from planarity is modest, with total puckering amplitudes (Cremer & Pople, 1975) of only 0.190 (2), 0.105 (2) and 0.089 (2) Å for (I)–(III), respectively. In (I), atom C4 is a stereogenic centre and the selected reference molecule has the R configuration at this centre. However, the centrosymmetric space group accommodates equal numbers of R and S molecules.
The supramolecular structures of compounds (I)–(III) are all different and each is based on a different selection of hydrogen bonds. It is of interest to note the changes in the supramolecular structures which are associated with the changes in the substituents at positions 3 and 5 of the dihydropyridine ring.
In compound (I), the molecules are linked into simple chains by a single hydrogen bond (Table 1). Atom N1 in the molecule at (x, y, z), acts as hydrogen-bond donor to carbonyl atom O31 in the molecule at (x, 1/2 - y, 1/2 + z), thereby producing a C(6) (Bernstein et al., 1995) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 4). Two such chains, running antiparallel to one another, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.
The formation of the sheet structure in compound (II) can readily be analysed in terms of two one-dimensional substructures, one involving both N—H···O and C—H···O hydrogen bonds, and the other only a C—H···O hydrogen bond (Table 2). In the first substructure, atoms N1 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to atoms O31 and O431, respectively, in the molecule at (x, 1/2 - y, 1/2 + z), so forming a chain of edge-fused R22(17) rings running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 5). The second substructure is much simpler: atom C44 in the molecule at (x, y, z) acts as hydrogen-bond donor to ester atom O32 in the molecule at (1 + x, y, z), so generating by translation a simple C(8) chain running parallel to the [100] direction. The combination of these two one-dimensional motifs then generates an (010) sheet consisting of alternating columns, all parallel to [001], of R22(17) and R44(18) rings (Fig. 6). Two sheets of this type, related to one another by inversion, pass through each unit cell. The only direction-specific interaction of possible significance is a C—H···π(furan) hydrogen bond (Table 2). Atom C52 in the molecule at (x, y, z), which lies in the sheet generated by the glide planes at y = 1/4, acts as hydrogen-bond donor to the furyl ring of the molecule at (2 - x, 1 - y, 1 - z), which forms part of the sheet generated by the glide plane at y = 3/4. Propagation of this interaction then links each (010) sheet to the two adjacent sheets.
The supramolecular structure of compound (III) consists of hydrogen-bonded sheets containing four types of ring. However, as for (II), the formation of the sheet in (III) is readily analysed in terms of simpler zero- and one-dimensional substructures. The basic building block in the supramolecular structure of (III) can be regarded as a cyclic centrosymmetric dimer. Atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to both O42 and O431 in the molecule at (1 - x, 1 - y, 1 - z), forming an effectively planar three-centre N—H···(O)2 system (Table 3). The resulting dimer centred at (1/2, 1/2, 1/2) contains an R22(14) ring generated by the shorter component of the three-centre hydrogen bond, and two R12(5) rings generated by both components (Fig. 7). Two independent C—H···O hydrogen bonds then link these dimers into sheets, and it is convenient to consider the action of each hydrogen bond in turn. Atom C4 in the molecule at (x, y, z), part of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to atom O431 in the molecule at (x, 1 + y, z), part of the dimer centred at (1/2, 3/2, 1/2). Propagation of this hydrogen bond by translation and inversion then generates a chain of edge-fused rings along (1/2, y, 1/2), with R22(14) rings centred at (1/2, n + 1/2, 1/2) (n = zero or integer) and R44(14) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 8). Finally, these chains are linked by the second C—H···O hydrogen bond. Atom C44 in the molecule at (x, y, z), which lies in the chain of rings along (1/2, y, 1/2), acts as hydrogen-bond donor to atom O432 in the molecule at (-x, 1/2 + y, 3/2 - z), which itself lies in the chain of rings along (-1/2, y, 1). Propagation by the space group of this hydrogen bond then links the [010] chains of rings into a (102) sheet (Fig. 8). There are no direction-specific interactions between adjacent sheets.