organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

5-Chloro-3-methyl-4-[3-(4-nitro­phenyl)-4,5-di­hydro-1H-pyrazol-5-yl]-1-phenyl-1H-pyrazole: a chain of fused hydrogen-bonded rings

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Ciencias Básicas, Universidad Nacional de Colombia Sede Palmira, Crra. 32, Chapinero vía Candelaria, AA 237 Palmira-Valle, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 November 2005; accepted 18 November 2005; online 16 December 2005)

In the title compound, C19H16ClN5O2, the mol­ecules are linked into chains of edge-fused rings by a combination of two independent C—H⋯O hydrogen bonds, augmented by a centrosymmetric ππ stacking inter­action.

Comment

With the aim of preparing new classes of fused pyrazole systems such as pyrazolo[3,4-c][1,2]diazepines, we have investigated the reactions of hydrazine with chalcones, (A) (see scheme), such as (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitro­phenyl)-2-propen-1-one, but instead of the expected condensation at the carbonyl group followed by nucleophilic displacement of the Cl to yield the pyrazolodiazepine, (B), we have observed a different cyclo­condensation involving only the α,β-unsaturated component, yielding the unfused pyrazole, (C). We report here the structure of an example of type (C), viz. the title compound, (I)[link].

The mol­ecule of (I)[link] contains two linked heterocyclic rings, namely a pyrazole ring (N11/N12/C13–C15), with chloro, methyl and phenyl substituents, and a dihydro­pyrazole ring (N21/N22/C23–C25), with a 4-nitro­phenyl substituent (Fig. 1[link]). The N11—N12 bond is shorter than the N21—N22 bond, while the N12—C13 bond is longer than the N22—C23 bond (Table 1[link]), consistent with a degree of cyclic aromatic delocalization in the pyrazole ring. The dihydro­pyrazole ring adopts a non-planar conformation, with a modest fold across the vector N21⋯C24, with a total puckering amplitude (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of 0.263 Å. The ring-puckering parameter φ2 for the atom sequence N21—N22—C23—C24—C25 is 327.0 (4)°, compared with a value of (36n)° for an idealized envelope conformation. While the 4-nitro­phenyl ring and the mean plane of the dihydro­pyrazole ring are almost coplanar, with a dihedral between these planes of only 7.5 (2)°, the corresponding dihedral angle between the pyrazole ring and the unsubstituted phenyl ring is 68.3 (2)°. The dihedral angle between the mean planes of the heterocyclic rings is 74.5 (2)°.

[Scheme 1]

The mol­ecules of (I)[link] are linked by two independent C—H⋯O hydrogen bonds (Table 2[link]). Atom C25 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O232 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(20) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]). This dimeric motif is reinforced by an aromatic ππ stacking inter­action. The nitrated phenyl rings in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are strictly parallel, with an inter­planar spacing of 3.421 (2) Å. The corresponding ring-centroid separation is 3.678 (2) Å, with a nearly ideal ring offset of 1.351 (2) Å.

In addition, in a rather weak hydrogen bond, atom C126 in the mol­ecule at (x, y, z) acts as donor to atom N12 in the mol­ecule at (1 + x, y, z), so generating by translation a C(5) chain running parallel to the [100] direction. The combination of the R22(20) and C(5) motifs then generates a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(20) rings centred at (n + [{1 \over 2}], [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) and R44(40) rings centred at (n, [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) (Fig. 2[link]).

There are no direction-specific inter­actions between adjacent chains. It is noteworthy that the N—H bond plays no role in the inter­molecular aggregation. The potential hydrogen-bond acceptors closest to atom N21 in the mol­ecule at (x, y, z) are the O atoms in the mol­ecule at (1 − x, 1 − y, 1 − z), i.e. the other component of the R22(20) dimer, where the two relevant N⋯O distances are 3.477 (2) and 3.539 (2) Å, associated with H⋯O distances of 3.29 and 3.02 Å, respectively. Moreover, N—H⋯π(arene) hydrogen bonds are absent from the crystal structure of (I)[link].

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I)[link], showing the formation of a [100] chain of alternating R22(20) and R44(40) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Hydrazine hydrate (0.10 g of a 55% aqueous solution, 1.72 mmol) was added dropwise to a solution of (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitro­phenyl)-2-propen-1-one (0.150 g, 0.428 mmol) in methanol (30 ml) and the mixture was stirred at room temperature for 15 min. The solid product was collected by filtration, washed with cold methanol and then recrystallized from methanol, giving crystals of (I)[link] suitable for single-crystal X-ray diffraction (yield 84%; m.p. 455–456 K). MS (EI 30 eV), m/z (%): 383/381 (35/100, M+), 346 (87, M ± Cl), 330 (20), 77 (51).

Crystal data
  • C19H16ClN5O2

  • Mr = 381.82

  • Triclinic, [P \overline 1]

  • a = 5.5055 (2) Å

  • b = 11.8317 (3) Å

  • c = 13.5668 (4) Å

  • α = 83.3210 (17)°

  • β = 78.9560 (17)°

  • γ = 86.3960 (18)°

  • V = 860.73 (5) Å3

  • Z = 2

  • Dx = 1.473 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3876 reflections

  • θ = 3.1–27.5°

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.42 × 0.34 × 0.16 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.928, Tmax = 0.961

  • 19351 measured reflections

  • 3950 independent reflections

  • 3076 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 27.6°

  • h = −7 → 7

  • k = −15 → 15

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.06

  • 3950 reflections

  • 245 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3277P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)[link]

N11—N12 1.3681 (18)
N12—C13 1.331 (2)
C13—C14 1.418 (2)
C14—C15 1.378 (2)
C15—N11 1.354 (2)
N21—N22 1.3924 (19)
N22—C23 1.290 (2)
C23—C24 1.509 (2)
C24—C25 1.539 (2)
C25—N21 1.495 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O232i 1.00 2.49 3.278 (2) 136
C126—H126⋯N12ii 0.95 2.60 3.463 (2) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Crystals of compound (I)[link] are triclinic. The space group P[\overline{1}] was selected and confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and an N—H distance of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl group.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

With the aim of preparing new classes of fused pyrazolo systems such as pyrazolo[3,4-c][1,2]diazepines, we have investigated the reactions of hydrazine with chalcones, (A), such as (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitrophenyl)-2-propen-1-one, but instead of the expected condensation at the carbonyl group followed by nucleophilic displacement of the Cl to yield the pyrazolodiazepine, (B), we have observed a different cyclocondensation involving only the α,β-unsaturated component, yielding the unfused pyrazole, (C). Here we report the structure of an example of type (C), the title compound, (I).

The molecule of (I) contains two linked heterocyclic rings, namely a pyrazole ring (N11/N12/C13–C15), with chloro, methyl and phenyl substituents, and a dihydropyrazole ring (N21/N22/C23–C25), with a 4-nitrophenyl substituent (Fig. 1). The N11—N12 bond is shorter than the N21—N22 bond, while the N12—C13 bond is longer than the N22—C23 bond (Table 1), consistent with a degree of cyclic aromatic delocalization in the pyrazole ring. The dihydropyrazole ring adopts a non-planar conformation, with a modest fold across the vector N21···C24, with a total puckering amplitude (Cremer & Pople, 1975) of 0.263 Å. The ring-puckering parameter φ2 for the atom sequence N21/N22/C23/C24/C25 is 327.0 (4)°, compared with a value of (36n)° for an idealized envelope conformation. While the 4-nitrophenyl ring and the mean plane of the dihydropyrazole ring are almost coplanar, with a dihedral between these planes of only 7.5 (2)°, the corresponding dihedral angle between the pyrazole ring and the unsubstituted phenyl ring is 68.3 (2)°. The dihedral angle between the mean planes of the heterocyclic rings is 74.5 (2)°.

The molecules of (I) are linked by two independent C—H···O hydrogen bonds (Table 2). Atom C25 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O232 in the molecule at (1 - x, 1 - y, 1 - z), so generating a centrosymmetric R22(20) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2). This dimeric motif is reinforced by an aromatic ππ stacking interaction. The nitrated phenyl rings in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel, with an interplanar spacing of 3.421 (2) Å. The corresponding ring-centroid separation is 3.678 (2) Å, with a nearly ideal ring offset of 1.351 (2) Å.

In addition, in a rather weak hydrogen bond, atom C126 in the molecule at (x, y, z) acts as donor to atom N12 in the molecule at (1 + x, y, z), so generating by translation a C(5) chain running parallel to the [100] direction. The combination of the R22(20) and C(5) motifs then generates a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(20) rings centred at (n + 1/2, 1/2, 1/2) (n = zero or integer) and R44(40) rings centred at (n, 1/2, 1/2) (n = zero or integer) (Fig. 2).

There are no direction-specific interactions between adjacent chains. It is noteworthy that the N—H bond plays no role in the intermolecular aggregation. The potential hydrogen-bond acceptors closest to atom N21 in the molecule at (x, y, z) are the O atoms in the molecule at (1 - x, 1 - y, 1 - z), i.e. the other component of the R22(20) dimer, where the two relevant N···O distances are 3.477 (2) and 3.539 (2) Å, associated with H···O distances of 3.29 and 3.02 Å, respectively. Moreover, N—H···π(arene) hydrogen bonds are absent from the crystal structure of (I).

Experimental top

Hydrazine hydrate (0.10 g of a 55% aqueous solution, 1.72 mmol) was added dropwise to a solution of (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitrophenyl)-2-propen-1-one (0.150 g, 0.428 mmol) in methanol (30 ml), and the mixture was stirred at room temperature for 15 min. The solid product was collected by filtration, washed with cold methanol and then recrystallized from methanol, giving crystals of (I) suitable for single-crystal X-ray diffraction (yield 84%; m.p. 455–456 K). MS (EI 30 eV), m/z (%): 383/381 (35/100, M+), 346 (87, M± Cl), 330?(20), 77?(51).

Refinement top

Crystals of compound (I) are triclinic. The space group P1 was selected, and confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and an N—H distance of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl group.

Structure description top

With the aim of preparing new classes of fused pyrazolo systems such as pyrazolo[3,4-c][1,2]diazepines, we have investigated the reactions of hydrazine with chalcones, (A), such as (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitrophenyl)-2-propen-1-one, but instead of the expected condensation at the carbonyl group followed by nucleophilic displacement of the Cl to yield the pyrazolodiazepine, (B), we have observed a different cyclocondensation involving only the α,β-unsaturated component, yielding the unfused pyrazole, (C). Here we report the structure of an example of type (C), the title compound, (I).

The molecule of (I) contains two linked heterocyclic rings, namely a pyrazole ring (N11/N12/C13–C15), with chloro, methyl and phenyl substituents, and a dihydropyrazole ring (N21/N22/C23–C25), with a 4-nitrophenyl substituent (Fig. 1). The N11—N12 bond is shorter than the N21—N22 bond, while the N12—C13 bond is longer than the N22—C23 bond (Table 1), consistent with a degree of cyclic aromatic delocalization in the pyrazole ring. The dihydropyrazole ring adopts a non-planar conformation, with a modest fold across the vector N21···C24, with a total puckering amplitude (Cremer & Pople, 1975) of 0.263 Å. The ring-puckering parameter φ2 for the atom sequence N21/N22/C23/C24/C25 is 327.0 (4)°, compared with a value of (36n)° for an idealized envelope conformation. While the 4-nitrophenyl ring and the mean plane of the dihydropyrazole ring are almost coplanar, with a dihedral between these planes of only 7.5 (2)°, the corresponding dihedral angle between the pyrazole ring and the unsubstituted phenyl ring is 68.3 (2)°. The dihedral angle between the mean planes of the heterocyclic rings is 74.5 (2)°.

The molecules of (I) are linked by two independent C—H···O hydrogen bonds (Table 2). Atom C25 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O232 in the molecule at (1 - x, 1 - y, 1 - z), so generating a centrosymmetric R22(20) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2). This dimeric motif is reinforced by an aromatic ππ stacking interaction. The nitrated phenyl rings in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel, with an interplanar spacing of 3.421 (2) Å. The corresponding ring-centroid separation is 3.678 (2) Å, with a nearly ideal ring offset of 1.351 (2) Å.

In addition, in a rather weak hydrogen bond, atom C126 in the molecule at (x, y, z) acts as donor to atom N12 in the molecule at (1 + x, y, z), so generating by translation a C(5) chain running parallel to the [100] direction. The combination of the R22(20) and C(5) motifs then generates a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(20) rings centred at (n + 1/2, 1/2, 1/2) (n = zero or integer) and R44(40) rings centred at (n, 1/2, 1/2) (n = zero or integer) (Fig. 2).

There are no direction-specific interactions between adjacent chains. It is noteworthy that the N—H bond plays no role in the intermolecular aggregation. The potential hydrogen-bond acceptors closest to atom N21 in the molecule at (x, y, z) are the O atoms in the molecule at (1 - x, 1 - y, 1 - z), i.e. the other component of the R22(20) dimer, where the two relevant N···O distances are 3.477 (2) and 3.539 (2) Å, associated with H···O distances of 3.29 and 3.02 Å, respectively. Moreover, N—H···π(arene) hydrogen bonds are absent from the crystal structure of (I).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound (I), showing the formation of a [100] chain of alternating R22(20) and R44(40) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
5-Chloro-3-methyl-4-[3-(4-nitrophenyl)-4,5-dihydro-1H-pyrazol-5-yl]-1-phenyl- 1H-pyrazole top
Crystal data top
C19H16ClN5O2Z = 2
Mr = 381.82F(000) = 396
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5055 (2) ÅCell parameters from 3876 reflections
b = 11.8317 (3) Åθ = 3.1–27.5°
c = 13.5668 (4) ŵ = 0.25 mm1
α = 83.3210 (17)°T = 120 K
β = 78.9560 (17)°Block, yellow
γ = 86.3960 (18)°0.42 × 0.34 × 0.16 mm
V = 860.73 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3950 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.928, Tmax = 0.961l = 1717
19351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3277P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H16ClN5O2γ = 86.3960 (18)°
Mr = 381.82V = 860.73 (5) Å3
Triclinic, P1Z = 2
a = 5.5055 (2) ÅMo Kα radiation
b = 11.8317 (3) ŵ = 0.25 mm1
c = 13.5668 (4) ÅT = 120 K
α = 83.3210 (17)°0.42 × 0.34 × 0.16 mm
β = 78.9560 (17)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3076 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.961Rint = 0.045
19351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3950 reflectionsΔρmin = 0.34 e Å3
245 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl50.51792 (7)0.93735 (3)0.88081 (3)0.02191 (12)
O2310.9250 (2)0.49839 (11)0.19582 (10)0.0322 (3)
O2320.5757 (2)0.41763 (10)0.20889 (9)0.0299 (3)
N110.2047 (2)1.10480 (11)0.82555 (10)0.0166 (3)
N120.0366 (2)1.13360 (11)0.76354 (10)0.0177 (3)
N210.0259 (3)0.78664 (11)0.69471 (10)0.0207 (3)
N220.0838 (2)0.71166 (11)0.62095 (10)0.0189 (3)
N2340.7069 (3)0.48538 (12)0.23486 (10)0.0229 (3)
C130.0382 (3)1.04464 (13)0.71165 (12)0.0174 (3)
C140.2040 (3)0.95573 (13)0.74027 (12)0.0170 (3)
C150.3048 (3)0.99880 (13)0.81281 (12)0.0172 (3)
C230.2946 (3)0.73652 (13)0.56498 (12)0.0165 (3)
C240.4129 (3)0.83341 (14)0.59863 (12)0.0195 (3)
C250.2573 (3)0.84014 (13)0.70499 (12)0.0187 (3)
C1210.2426 (3)1.18452 (13)0.89265 (11)0.0169 (3)
C1220.0484 (3)1.20953 (14)0.96907 (12)0.0218 (4)
C1230.0726 (3)1.29450 (15)1.02881 (13)0.0262 (4)
C1240.2901 (3)1.35152 (15)1.01306 (14)0.0266 (4)
C1250.4858 (3)1.32402 (14)0.93724 (14)0.0248 (4)
C1260.4632 (3)1.24021 (14)0.87610 (13)0.0199 (3)
C1310.1225 (3)1.05093 (14)0.63376 (13)0.0231 (4)
C2310.3972 (3)0.67580 (13)0.47698 (12)0.0166 (3)
C2320.6338 (3)0.69677 (13)0.42162 (12)0.0189 (3)
C2330.7355 (3)0.63481 (13)0.34166 (12)0.0200 (3)
C2340.5962 (3)0.55242 (13)0.31780 (12)0.0187 (3)
C2350.3577 (3)0.53123 (13)0.36894 (12)0.0208 (4)
C2360.2598 (3)0.59368 (13)0.44836 (12)0.0194 (3)
H13A0.24871.11260.64510.035*
H13B0.20340.97850.63880.035*
H13C0.02071.06580.56630.035*
H210.05340.75030.75080.025*
H24A0.39710.90500.55430.023*
H24B0.59000.81550.60100.023*
H250.33920.79040.75490.022*
H1220.09981.16910.98060.026*
H1230.06091.31341.08060.031*
H1240.30611.40951.05400.032*
H1250.63601.36280.92710.030*
H1260.59631.22150.82400.024*
H2320.72660.75420.43880.023*
H2330.89710.64880.30430.024*
H2350.26410.47530.34990.025*
H2360.09630.58070.48420.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.0242 (2)0.0214 (2)0.0224 (2)0.00244 (16)0.00968 (16)0.00434 (15)
O2310.0312 (7)0.0357 (7)0.0281 (7)0.0033 (6)0.0022 (6)0.0121 (6)
O2320.0426 (8)0.0231 (6)0.0280 (7)0.0005 (6)0.0110 (6)0.0124 (5)
N110.0183 (7)0.0165 (7)0.0166 (7)0.0000 (5)0.0050 (5)0.0060 (5)
N120.0183 (7)0.0188 (7)0.0175 (7)0.0005 (5)0.0056 (5)0.0046 (5)
N210.0225 (7)0.0206 (7)0.0197 (7)0.0065 (6)0.0006 (6)0.0091 (6)
N220.0230 (7)0.0162 (7)0.0190 (7)0.0014 (5)0.0043 (6)0.0069 (5)
N2340.0321 (8)0.0185 (7)0.0190 (7)0.0047 (6)0.0067 (6)0.0049 (6)
C130.0190 (8)0.0175 (8)0.0158 (8)0.0030 (6)0.0021 (6)0.0033 (6)
C140.0181 (8)0.0173 (8)0.0161 (8)0.0021 (6)0.0022 (6)0.0047 (6)
C150.0188 (8)0.0164 (8)0.0165 (8)0.0006 (6)0.0031 (6)0.0026 (6)
C230.0184 (8)0.0139 (7)0.0185 (8)0.0012 (6)0.0055 (6)0.0034 (6)
C240.0188 (8)0.0187 (8)0.0222 (8)0.0028 (6)0.0027 (7)0.0082 (6)
C250.0216 (8)0.0162 (8)0.0204 (8)0.0015 (6)0.0062 (7)0.0057 (6)
C1210.0221 (8)0.0143 (7)0.0163 (8)0.0022 (6)0.0078 (6)0.0048 (6)
C1220.0222 (8)0.0235 (8)0.0203 (8)0.0004 (7)0.0046 (7)0.0040 (7)
C1230.0317 (10)0.0295 (9)0.0181 (8)0.0062 (8)0.0046 (7)0.0096 (7)
C1240.0376 (10)0.0208 (9)0.0267 (9)0.0056 (8)0.0162 (8)0.0113 (7)
C1250.0280 (9)0.0186 (8)0.0322 (10)0.0021 (7)0.0152 (8)0.0043 (7)
C1260.0202 (8)0.0189 (8)0.0217 (8)0.0007 (6)0.0052 (7)0.0050 (6)
C1310.0266 (9)0.0226 (8)0.0234 (9)0.0002 (7)0.0107 (7)0.0062 (7)
C2310.0199 (8)0.0135 (7)0.0171 (8)0.0002 (6)0.0051 (6)0.0021 (6)
C2320.0219 (8)0.0159 (8)0.0202 (8)0.0036 (6)0.0046 (7)0.0049 (6)
C2330.0210 (8)0.0183 (8)0.0202 (8)0.0004 (6)0.0025 (7)0.0026 (6)
C2340.0264 (9)0.0158 (8)0.0150 (8)0.0029 (6)0.0058 (7)0.0044 (6)
C2350.0246 (9)0.0172 (8)0.0238 (9)0.0016 (7)0.0103 (7)0.0054 (7)
C2360.0203 (8)0.0178 (8)0.0215 (8)0.0030 (6)0.0052 (7)0.0054 (6)
Geometric parameters (Å, º) top
N11—N121.3681 (18)C131—H13A0.98
N12—C131.331 (2)C131—H13B0.98
C13—C141.418 (2)C131—H13C0.98
C14—C151.378 (2)C14—C251.494 (2)
C15—N111.354 (2)C15—Cl51.7051 (16)
N21—N221.3924 (19)N21—H210.88
N22—C231.290 (2)C23—C2311.466 (2)
C23—C241.509 (2)C231—C2321.395 (2)
C24—C251.539 (2)C231—C2361.400 (2)
C25—N211.495 (2)C232—C2331.389 (2)
N11—C1211.435 (2)C232—H2320.95
C121—C1221.383 (2)C233—C2341.381 (2)
C121—C1261.386 (2)C233—H2330.95
C122—C1231.390 (2)C234—C2351.386 (2)
C122—H1220.95C234—N2341.467 (2)
C123—C1241.380 (3)N234—O2311.2275 (19)
C123—H1230.95N234—O2321.2347 (19)
C124—C1251.391 (3)C235—C2361.382 (2)
C124—H1240.95C235—H2350.95
C125—C1261.390 (2)C236—H2360.95
C125—H1250.95C24—H24A0.99
C126—H1260.95C24—H24B0.99
C13—C1311.495 (2)C25—H251.00
C15—N11—N12110.53 (12)C25—N21—H21114.7
C15—N11—C121130.87 (13)C23—N22—N21109.03 (13)
N12—N11—C121118.58 (12)N22—C23—C231121.34 (14)
C122—C121—C126121.40 (15)N22—C23—C24113.09 (14)
C122—C121—N11118.29 (14)C231—C23—C24125.56 (14)
C126—C121—N11120.15 (14)C232—C231—C236118.81 (15)
C121—C122—C123119.27 (16)C232—C231—C23120.98 (14)
C121—C122—H122120.4C236—C231—C23120.19 (14)
C123—C122—H122120.4C233—C232—C231120.81 (15)
C124—C123—C122120.19 (16)C233—C232—H232119.6
C124—C123—H123119.9C231—C232—H232119.6
C122—C123—H123119.9C234—C233—C232118.44 (15)
C123—C124—C125119.98 (16)C234—C233—H233120.8
C123—C124—H124120.0C232—C233—H233120.8
C125—C124—H124120.0C233—C234—C235122.56 (15)
C126—C125—C124120.48 (16)C233—C234—N234118.16 (15)
C126—C125—H125119.8C235—C234—N234119.28 (15)
C124—C125—H125119.8O231—N234—O232123.50 (14)
C121—C126—C125118.65 (16)O231—N234—C234118.54 (14)
C121—C126—H126120.7O232—N234—C234117.95 (14)
C125—C126—H126120.7C236—C235—C234118.14 (15)
C13—N12—N11105.46 (12)C236—C235—H235120.9
N12—C13—C14111.66 (14)C234—C235—H235120.9
N12—C13—C131118.74 (14)C235—C236—C231121.19 (15)
C14—C13—C131129.59 (15)C235—C236—H236119.4
C13—C131—H13A109.5C231—C236—H236119.4
C13—C131—H13B109.5C23—C24—C25100.80 (13)
H13A—C131—H13B109.5C23—C24—H24A111.6
C13—C131—H13C109.5C25—C24—H24A111.6
H13A—C131—H13C109.5C23—C24—H24B111.6
H13B—C131—H13C109.5C25—C24—H24B111.6
C15—C14—C13103.66 (14)H24A—C24—H24B109.4
C15—C14—C25126.48 (14)C14—C25—N21111.62 (13)
C13—C14—C25129.84 (14)C14—C25—C24117.17 (13)
N11—C15—C14108.68 (13)N21—C25—C24100.81 (12)
N11—C15—Cl5121.90 (12)C14—C25—H25108.9
C14—C15—Cl5129.42 (12)N21—C25—H25108.9
N22—N21—C25108.97 (12)C24—C25—H25108.9
N22—N21—H21109.2
C15—N11—C121—C122112.48 (18)N21—N22—C23—C242.12 (18)
N12—N11—C121—C12265.48 (19)N22—C23—C231—C232174.80 (14)
C15—N11—C121—C12671.9 (2)C24—C23—C231—C2326.8 (2)
N12—N11—C121—C126110.16 (16)N22—C23—C231—C2363.9 (2)
C126—C121—C122—C1231.8 (2)C24—C23—C231—C236174.50 (14)
N11—C121—C122—C123173.82 (14)C236—C231—C232—C2332.2 (2)
C121—C122—C123—C1241.3 (2)C23—C231—C232—C233176.53 (14)
C122—C123—C124—C1250.0 (3)C231—C232—C233—C2340.4 (2)
C123—C124—C125—C1260.8 (2)C232—C233—C234—C2351.5 (2)
C122—C121—C126—C1251.0 (2)C232—C233—C234—N234178.54 (13)
N11—C121—C126—C125174.52 (14)C233—C234—N234—O2316.1 (2)
C124—C125—C126—C1210.3 (2)C235—C234—N234—O231174.01 (14)
C15—N11—N12—C130.94 (17)C233—C234—N234—O232174.81 (14)
C121—N11—N12—C13179.30 (13)C235—C234—N234—O2325.1 (2)
N11—N12—C13—C141.02 (17)C233—C234—C235—C2361.6 (2)
N11—N12—C13—C131178.08 (14)N234—C234—C235—C236178.47 (14)
N12—C13—C14—C150.72 (18)C234—C235—C236—C2310.3 (2)
C131—C13—C14—C15178.25 (16)C232—C231—C236—C2352.1 (2)
N12—C13—C14—C25177.48 (15)C23—C231—C236—C235176.60 (14)
C131—C13—C14—C253.5 (3)N22—C23—C24—C2514.62 (17)
N12—N11—C15—C140.51 (18)C231—C23—C24—C25166.86 (14)
C121—N11—C15—C14178.60 (15)C15—C14—C25—N21136.41 (16)
N12—N11—C15—Cl5179.03 (11)C13—C14—C25—N2141.4 (2)
C121—N11—C15—Cl50.9 (2)C15—C14—C25—C24108.12 (18)
C13—C14—C15—N110.11 (17)C13—C14—C25—C2474.1 (2)
C25—C14—C15—N11178.18 (14)N22—N21—C25—C14152.03 (13)
C13—C14—C15—Cl5179.61 (13)N22—N21—C25—C2426.88 (15)
C25—C14—C15—Cl51.3 (3)C23—C24—C25—C14144.67 (14)
C25—N21—N22—C2319.15 (17)C23—C24—C25—N2123.37 (14)
N21—N22—C23—C231176.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O232i1.002.493.278 (2)136
C126—H126···N12ii0.952.603.463 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H16ClN5O2
Mr381.82
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.5055 (2), 11.8317 (3), 13.5668 (4)
α, β, γ (°)83.3210 (17), 78.9560 (17), 86.3960 (18)
V3)860.73 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.42 × 0.34 × 0.16
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.928, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
19351, 3950, 3076
Rint0.045
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.06
No. of reflections3950
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
N11—N121.3681 (18)N21—N221.3924 (19)
N12—C131.331 (2)N22—C231.290 (2)
C13—C141.418 (2)C23—C241.509 (2)
C14—C151.378 (2)C24—C251.539 (2)
C15—N111.354 (2)C25—N211.495 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O232i1.002.493.278 (2)136
C126—H126···N12ii0.952.603.463 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. BI and HT thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds