organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3-(3-Nitro­phenyl­amino­carbon­yl)­propionic acid: hydrogen-bonded sheets of alternating R22(8) and R66(36) rings

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 1 December 2005; accepted 2 December 2005; online 24 December 2005)

Mol­ecules of the title compound, C10H10N2O5, are linked by a combination of O—H⋯O and N—H⋯O hydrogen bonds into (100) sheets containing alternating R22(8) and R66(36) rings.

Comment

The reaction of C-substituted anilines, such as nitro­anilines, with succinic anhydride yields initially 3-(aryl­amino­carbon­yl)­propionic acids, (A) (see scheme[link]), dehydration of which yields the corresponding N-aryl­succinimides, (B). We have recently reported the mol­ecular and supramolecular structures of the three isomeric N-(nitro­phen­yl)succinimides (B), where R = NO2 (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o216-o220.]). We have now prepared all three isomeric 3-(nitro­phenyl­amino­carbon­yl)propionic acids (A), where R = NO2, but unfortunately only the 3-nitro isomer has provided crystals suitable for single-crystal structure determination. We report here the mol­ecular and supramolecular structures of 3-(3-nitro­phenyl­amino­carbon­yl)­propionic acid, (I)[link].

The mol­ecules of (I)[link] (Fig. 1[link]) are linked into sheets by a combination of an N—H⋯O=C hydrogen bond, forming the usual amidic C(4) chain, and an O—H⋯O hydrogen bond, forming the usual centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif characteristic of simple carboxylic acids (Table 1[link]). Carboxyl atom O43 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O44 in the mol­ecule at (1 − x, 1 − y, 1 − z), so that the reference R22(8) dimer is centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 2[link]). Amide atoms N1 at (x, y, z) and (1 − x, 1 − y, 1 − z), which form part of the dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), act as hydrogen-bond donors to amide atoms O1 at (x, [{1\over 2}]y, −[{1\over 2}] + z) and (1 − x, [{1\over 2}] + y, [3\over2]z), respectively, which themselves form parts of the R22(8) dimers centred at ([1\over2], 0, 0) and ([1\over2], 1, 1), respectively. Similarly, atoms O1 at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from atoms N1 at (x, [{1\over 2}]y, [{1\over 2}] + z) and (1 − x, [{1\over 2}] + y, [{1\over 2}]z), which are pairs of the dimers centred, respectively, at ([1\over2], 0, 1) and ([1\over2], 1, 0). In this manner, each dimer

[Scheme 1]
is directly linked to four other dimers via the amidic C(4) chains along [001], so forming a (100) sheet in which centrosymmetric R22(8) and R66(36) rings alternate in a chessboard fashion (Fig. 3[link]).
[Figure 1]
Figure 1
The mol­ecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I), showing the formation of an R22(8) dimer centred at ([1\over2], [1\over2], [1\over2]). Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I), showing the formation of a (100) sheet built from R22(8) and R66(36) rings.

Experimental

A solution containing equimolar quanti­ties of succinic anhydride and 3-nitro­aniline (2 mmol of each) in 1,2-dichloro­ethane (20 ml) was heated under reflux for 1 h and then left overnight at room temperature. The solvent was removed under reduced pressure and the resulting solid product was recrystallized from ethanol (m.p. 455–457 K). IR (KBr): 3400–2000 (br), 1706, 1673, 1524, 1556, 1524, 1481, 1434, 1403, 1351, 1257, 1237, 1179, 1089, 1064, 993, 952, 891, 868,847, 819, 806, 737, 684, 670, 606, 540, 421, 498 cm−1.

Crystal data
  • C10H10N2O5

  • Mr = 238.20

  • Monoclinic, P 21 /c

  • a = 6.6765 (4) Å

  • b = 19.7961 (13) Å

  • c = 9.0675 (5) Å

  • β = 113.595 (4)°

  • V = 1098.25 (11) Å3

  • Z = 4

  • Dx = 1.441 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2525 reflections

  • θ = 2.1–27.6°

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • Plate, colourless

  • 0.38 × 0.17 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.967, Tmax = 0.995

  • 9375 measured reflections

  • 2525 independent reflections

  • 1537 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.6°

  • h = −8 → 8

  • k = −25 → 25

  • l = −11 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 0.91

  • 2525 reflections

  • 162 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0652P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 1.96 2.850 (2) 173
O43—H43⋯O44ii 0.82 1.84 2.654 (2) 175
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic) or 0.97 Å (CH2), an N—H distance of 0.89 Å, and an O—H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N,O).

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The reaction of C-substituted anilines, such as nitroanilines, with succinic anhydride yields initially 3-(arylaminocarbonyl)propionic acids, (A) (see scheme), dehydration of which yields the corresponding N-arylsuccinimides, (B). We have recently reported the molecular and supramolecular structures of the three isomeric N-(nitrophenyl)succinimides [(B), where R = NO2; Glidewell et al., 2005]. We have now prepared all three isomeric 3-(nitrophenylaminocarbonyl)propionic acids [(A), where R = NO2], but unfortunately only the 3-nitro isomer has provided crystals suitable for single-crystal structure determination. We report here the molecular and supramolecular structures of 3-(3-nitrophenylaminocarbonyl)propionic acid, (I).

The molecules of (I) (Fig. 1) are linked into sheets by a combination of an N—H···OC hydrogen bond, forming the usual amidic C(4) chain, and an O—H···O hydrogen bond, forming the usual centrosymmetric R22(8) (Bernstein et al., 1995) motif characteristic of simple carboxylic acids (Table 1). Carboxyl atom O43 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O44 in the molecule at (1 - x, 1 - y, 1 - z), so that the reference R22(8) dimer is centred at (1/2, 1/2, 1/2) (Fig. 2). Amide atoms N1 at (x, y, z) and (1 - x, 1 - y, 1 - z), which form part of the dimer centred at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor to amide atoms O1 at (x, 1/2 - y, -1/2 + z) and (1 - x, 1/2 + y, 1.5 - z), respectively, which themselves form parts of the R22(8) dimers centred at (1/2, 0, 0) and (1/2, 1, 1), respectively. Similarly, atoms O1 at (x, y, z) and (1 - x, 1 - y, 1 - z) accept hydrogen bonds from atoms N1 at (x, 1/2 - y, 1/2 + z) and (1 - x, 1/2 + y, 1/2 - z), which are pairs of the dimers centred respectively at (1/2, 0, 1) and (1/2, 1, 0). In this manner each dimer is directly linked to four other dimers via the amidic C(4) chains along [001], so forming a (100) sheet in which centrosymmetric R22(8) and R66(36) rings alternate in chessboard fashion (Fig. 3).

Experimental top

A solution containing equimolar quantities of succinic anhydride and 3-nitroaniline (2 mmol of each) in 1,2-dichloroethane (20 ml) was heated under reflux for 1 h and then left overnight at room temperature. The solvent was removed under reduced presure and the resulting solid product was recrystallized from ethanol (m.p. 455–457 K). IR (KBr): 3400–2000 (br), 1706, 1673, 1524, 1556, 1524, 1481, 1434, 1403, 1351, 1257, 1237, 1179, 1089, 1064, 993, 952, 891, 868,847, 819, 806, 737, 684, 670, 606, 540, 421, 498 cm-1.

Refinement top

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps, and then treated as riding atoms, with distances C—H 0.93 Å (aromatic) or 0.97 Å (CH2), N—H 0.89 Å, and O—H 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N,O).

Structure description top

The reaction of C-substituted anilines, such as nitroanilines, with succinic anhydride yields initially 3-(arylaminocarbonyl)propionic acids, (A) (see scheme), dehydration of which yields the corresponding N-arylsuccinimides, (B). We have recently reported the molecular and supramolecular structures of the three isomeric N-(nitrophenyl)succinimides [(B), where R = NO2; Glidewell et al., 2005]. We have now prepared all three isomeric 3-(nitrophenylaminocarbonyl)propionic acids [(A), where R = NO2], but unfortunately only the 3-nitro isomer has provided crystals suitable for single-crystal structure determination. We report here the molecular and supramolecular structures of 3-(3-nitrophenylaminocarbonyl)propionic acid, (I).

The molecules of (I) (Fig. 1) are linked into sheets by a combination of an N—H···OC hydrogen bond, forming the usual amidic C(4) chain, and an O—H···O hydrogen bond, forming the usual centrosymmetric R22(8) (Bernstein et al., 1995) motif characteristic of simple carboxylic acids (Table 1). Carboxyl atom O43 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O44 in the molecule at (1 - x, 1 - y, 1 - z), so that the reference R22(8) dimer is centred at (1/2, 1/2, 1/2) (Fig. 2). Amide atoms N1 at (x, y, z) and (1 - x, 1 - y, 1 - z), which form part of the dimer centred at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor to amide atoms O1 at (x, 1/2 - y, -1/2 + z) and (1 - x, 1/2 + y, 1.5 - z), respectively, which themselves form parts of the R22(8) dimers centred at (1/2, 0, 0) and (1/2, 1, 1), respectively. Similarly, atoms O1 at (x, y, z) and (1 - x, 1 - y, 1 - z) accept hydrogen bonds from atoms N1 at (x, 1/2 - y, 1/2 + z) and (1 - x, 1/2 + y, 1/2 - z), which are pairs of the dimers centred respectively at (1/2, 0, 1) and (1/2, 1, 0). In this manner each dimer is directly linked to four other dimers via the amidic C(4) chains along [001], so forming a (100) sheet in which centrosymmetric R22(8) and R66(36) rings alternate in chessboard fashion (Fig. 3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of an R22(8) dimer centred at (1/2, 1/2, 1/2). The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (I), showing the formation of a (100) sheet built from R22(8) and R66(36) rings.
3-(3-Nitrophenylaminocarbonyl)propionic acid top
Crystal data top
C10H10N2O5F(000) = 496
Mr = 238.20Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2525 reflections
a = 6.6765 (4) Åθ = 2.1–27.6°
b = 19.7961 (13) ŵ = 0.12 mm1
c = 9.0675 (5) ÅT = 293 K
β = 113.595 (4)°Plate, colourless
V = 1098.25 (11) Å30.38 × 0.17 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed X-ray tube1537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.967, Tmax = 0.995k = 2525
9375 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
2525 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H10N2O5V = 1098.25 (11) Å3
Mr = 238.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6765 (4) ŵ = 0.12 mm1
b = 19.7961 (13) ÅT = 293 K
c = 9.0675 (5) Å0.38 × 0.17 × 0.04 mm
β = 113.595 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1537 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.995Rint = 0.038
9375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
2525 reflectionsΔρmin = 0.22 e Å3
162 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6360 (2)0.29810 (6)0.56794 (13)0.0575 (3)
O310.0969 (3)0.19919 (8)0.6589 (2)0.0904 (5)
O320.0117 (2)0.09628 (8)0.6223 (2)0.0893 (5)
O430.7815 (2)0.47720 (7)0.61217 (16)0.0787 (4)
O440.5264 (2)0.43856 (6)0.38524 (15)0.0678 (4)
N10.5794 (2)0.22718 (7)0.35833 (16)0.0483 (4)
N130.0921 (2)0.14318 (8)0.60141 (19)0.0603 (4)
C10.6608 (3)0.28337 (8)0.44555 (19)0.0435 (4)
C20.7889 (3)0.32755 (8)0.3793 (2)0.0522 (4)
C30.8823 (3)0.38893 (9)0.4831 (2)0.0591 (5)
C40.7125 (3)0.43650 (8)0.4891 (2)0.0532 (4)
C110.4565 (3)0.17529 (8)0.39002 (18)0.0427 (4)
C120.3293 (2)0.18641 (8)0.47620 (19)0.0441 (4)
C130.2191 (2)0.13195 (8)0.50369 (19)0.0464 (4)
C140.2248 (3)0.06807 (9)0.4459 (2)0.0569 (5)
C150.3478 (3)0.05859 (9)0.3576 (2)0.0622 (5)
C160.4634 (3)0.11115 (9)0.3298 (2)0.0556 (4)
H10.60950.21910.27270.058*
H2A0.69430.34210.27160.059 (5)*
H2B0.90730.30140.37160.068 (5)*
H3A0.97200.37410.59170.067 (5)*
H3B0.97630.41280.44230.074 (6)*
H120.31830.22920.51460.050 (4)*
H140.14790.03260.46600.073 (6)*
H150.35340.01600.31590.076 (6)*
H160.54680.10370.27020.069 (6)*
H430.68130.50220.60820.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0883 (9)0.0563 (7)0.0480 (7)0.0122 (6)0.0483 (7)0.0082 (5)
O310.1100 (12)0.0823 (10)0.1222 (13)0.0204 (8)0.0920 (11)0.0257 (9)
O320.0977 (10)0.0837 (10)0.1189 (13)0.0270 (8)0.0775 (10)0.0017 (9)
O430.0750 (9)0.0744 (9)0.0763 (9)0.0001 (7)0.0191 (7)0.0268 (8)
O440.0728 (9)0.0643 (8)0.0584 (8)0.0009 (6)0.0181 (7)0.0069 (6)
N10.0629 (8)0.0554 (8)0.0410 (7)0.0074 (6)0.0357 (7)0.0065 (6)
N130.0582 (9)0.0686 (10)0.0668 (10)0.0079 (8)0.0383 (8)0.0006 (8)
C10.0540 (9)0.0471 (9)0.0378 (8)0.0018 (7)0.0272 (7)0.0029 (7)
C20.0637 (10)0.0556 (10)0.0512 (10)0.0067 (8)0.0377 (9)0.0014 (8)
C30.0618 (10)0.0627 (11)0.0615 (12)0.0149 (9)0.0338 (9)0.0038 (9)
C40.0683 (11)0.0470 (9)0.0509 (10)0.0139 (8)0.0310 (9)0.0015 (8)
C110.0500 (8)0.0477 (8)0.0347 (8)0.0018 (7)0.0216 (7)0.0009 (7)
C120.0488 (9)0.0454 (9)0.0432 (9)0.0007 (7)0.0238 (7)0.0026 (7)
C130.0444 (8)0.0553 (9)0.0431 (9)0.0025 (7)0.0212 (7)0.0024 (7)
C140.0643 (11)0.0503 (10)0.0590 (11)0.0109 (8)0.0278 (9)0.0012 (8)
C150.0809 (12)0.0473 (10)0.0633 (12)0.0040 (9)0.0342 (10)0.0104 (9)
C160.0680 (11)0.0572 (10)0.0525 (10)0.0005 (8)0.0357 (9)0.0093 (8)
Geometric parameters (Å, º) top
N1—C11.347 (2)C14—H140.93
N1—C111.4145 (19)C15—C161.377 (2)
N1—H10.89C15—H150.9304
C1—O11.2214 (17)C16—H160.93
C1—C21.506 (2)C2—C31.511 (2)
C11—C121.382 (2)C2—H2A0.97
C11—C161.390 (2)C2—H2B0.97
C12—C131.383 (2)C3—C41.491 (3)
C12—H120.93C3—H3A0.97
C13—C141.375 (2)C3—H3B0.97
C13—N131.468 (2)C4—O441.223 (2)
N13—O321.2180 (18)C4—O431.302 (2)
N13—O311.2201 (19)O43—H430.82
C14—C151.370 (2)
C1—N1—C11127.67 (13)C14—C15—H15119.5
C1—N1—H1118.8C16—C15—H15119.6
C11—N1—H1113.5C15—C16—C11120.61 (16)
O1—C1—N1124.13 (14)C15—C16—H16119.7
O1—C1—C2121.94 (15)C11—C16—H16119.7
N1—C1—C2113.93 (13)C1—C2—C3112.19 (13)
C12—C11—C16119.47 (14)C1—C2—H2A109.2
C12—C11—N1122.47 (14)C3—C2—H2A109.2
C16—C11—N1118.05 (14)C1—C2—H2B109.1
C11—C12—C13117.97 (14)C3—C2—H2B109.2
C11—C12—H12121.0H2A—C2—H2B107.9
C13—C12—H12121.0C4—C3—C2113.60 (15)
C14—C13—C12123.39 (15)C4—C3—H3A108.9
C14—C13—N13118.69 (14)C2—C3—H3A108.8
C12—C13—N13117.91 (15)C4—C3—H3B108.9
O32—N13—O31123.06 (16)C2—C3—H3B108.9
O32—N13—C13118.72 (16)H3A—C3—H3B107.7
O31—N13—C13118.22 (14)O44—C4—O43122.76 (17)
C15—C14—C13117.59 (15)O44—C4—C3123.07 (16)
C15—C14—H14121.2O43—C4—C3114.13 (16)
C13—C14—H14121.2C4—O43—H43109.4
C14—C15—C16120.93 (16)
C11—N1—C1—O11.0 (3)C12—C13—C14—C150.5 (3)
C11—N1—C1—C2178.73 (15)N13—C13—C14—C15178.77 (15)
C1—N1—C11—C1226.7 (2)C13—C14—C15—C160.8 (3)
C1—N1—C11—C16154.11 (17)C14—C15—C16—C110.5 (3)
C16—C11—C12—C132.2 (2)C12—C11—C16—C151.0 (3)
N1—C11—C12—C13178.59 (14)N1—C11—C16—C15179.69 (16)
C11—C12—C13—C141.9 (2)O1—C1—C2—C31.3 (2)
C11—C12—C13—N13177.29 (14)N1—C1—C2—C3178.43 (15)
C14—C13—N13—O323.1 (2)C1—C2—C3—C464.9 (2)
C12—C13—N13—O32177.59 (16)C2—C3—C4—O4422.3 (2)
C14—C13—N13—O31176.42 (18)C2—C3—C4—O43159.71 (15)
C12—C13—N13—O312.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.891.962.850 (2)173
O43—H43···O44ii0.821.842.654 (2)175
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2O5
Mr238.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.6765 (4), 19.7961 (13), 9.0675 (5)
β (°) 113.595 (4)
V3)1098.25 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.17 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.967, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
9375, 2525, 1537
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 0.91
No. of reflections2525
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.891.962.850 (2)173
O43—H43···O44ii0.821.842.654 (2)175
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the University of Aberdeen for funding the purchase of the diffractometer. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o216–o220.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds