metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Insights into crystallization mechanism: a synchrotron study of polymorphism in a cobalt acetate cluster compound

CROSSMARK_Color_square_no_text.svg

aUniversity Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bSynchrotron Radiation Department, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, England
*Correspondence e-mail: jb442@hermes.cam.ac.uk

(Received 7 December 2005; accepted 12 December 2005; online 21 January 2006)

The structure of the title compound, di-μ3-acetato-1κ2O,O′:2κO′;2κO:3κ2O,O′-di-μ2-acetato-1κO:2κO′;2κO:3κO′-octapy­ridyl-1κ3N,2κ2N,3κ3N-tri­cobalt(II) bis­(hexa­fluoro­phosphate), [Co3(C2H3O2)4(C5H5N)8](PF6)2, consists of divalent multinuclear cations in which three CoII ions are bridged by four μ2-acetate groups. The CoII ions are arranged in an approximately linear manner. The bridging acetates adopt two distinct coordination geometries: one pair bridges via a single O atom and the other pair employs both O atoms. The coordination octa­hedron around each CoII ion is completed by three pyridine mol­ecules for the two outer CoII ions and by two for the inner ion. Charge is balanced by two PF6 anions. Single-crystal synchrotron X-ray studies indicate the existence of two polymorphs, both triclinic, which are distinguished primarily by differences in the relative orientations of the multinuclear cations, which in form 1 are tilted with respect to each other, but in form 2 are co-parallel as a result of the central Co atom lying on an inversion centre. The results of the structural studies allow an insight into the crystallization mechanism and resultant polymorphism. They suggest that a (bidentate carboxyl)C—O⋯H—C(pyridine) inter­action exists in solution. For form 1, crystallized from pyridine, the inter­action is not structure determining, as it is satisfied by inter­actions between solvent and solute. For form 2, crystallized from CH2Cl2, the inter­action is between a bound acetate carboxyl group on one cation and a bound pyridine on another and is thus structure directing.

Comment

Multinuclear transition metal complexes have been intensively studied over a number of years, with inter­est driven by structural similarities to active sites in biological systems (Hagen et al., 1993[Hagen, K. S., Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321-1324.]), fundamental magnetism studies (Chudnovsky, 1996[Chudnovsky, E. M. (1996). Science, 274, 938-939.]) and possible use as supramolecular building blocks (Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N., Chae, H. K. & Eddaoudi, M. (2003). Nature (London), 423, 705-714.]). During the course of investigations into possible complexes formed by CoII, pyridine and acetate derivatives, the title compound, (I)[link], was isolated as two polymorphs (Figs. 1[link] and 2[link]). Examination of the refined crystal structures allows postulation of a crystal nucleation mechanism which is consistent both with the synthetic conditions and the existence of the two polymorphic forms.

[Scheme 1]

Both polymorphs adopt the space group P[\overline{1}], form 1 with Z = 4 and form 2 with Z = 1. The cations in both forms adopt essentially identical mol­ecular structures and are formed by three CoII ions arranged in an approximately linear manner. The cations possess an approximate (form 1) or an exact (form 2) crystallographic centre of symmetry located at the central CoII ion. For octa­hedral coordination about CoII, there are 18 coordination sites available for the ligands. The three CoII ions are linked by four bridging acetate groups, which adopt two distinct coordination modes. One pair of acetates bridges in a synsyn manner, with each O atom coordinated to a single CoII ion, thus occupying a total of four coordination sites. The other pair of acetates adopts a synanti configuration, with one O atom acting as a μ2-bridge and the other coordinated to a single CoII ion. This pair of acetates therefore occupies a total of six coordination sites. The coordination modes adopted by the acetate groups lead to the central CoII ion being surrounded by four O atoms, arranged in an approximately square-planar manner; for form 2, the O—Co—O angles deviate from 90° by 1.56 (15)°. The terminal CoII ions are surrounded by three O atoms, which are not regularly spaced; for form 2, the O4—Co2—O3 angle is 60.7 (1)°, whereas O2—Co2—O3 is 101.4 (1)°. The remaining eight available metal-coordination sites are occupied by pyridines, two of which bind along the mol­ecular axis and six of which bind perpendicular to the mol­ecular axis. The lack of an exact mol­ecular centre of symmetry in form 1 is manifested primarily in the lengths of the trans bonds about the central CoII ion, Co2—O2 and Co2—O7 (formed by the acetate μ2-O atom), which are 2.154 (2) and 2.134 (2) Å, respectively; each pair of bond lengths is identical by symmetry in form 2. In form 1, half of the PF6 groups exhibit a significant degree of rotational disorder about the central P atom; the occupancies, constrained to sum to unity, refined to 0.565 (5):0.435 (5) and 0.600 (4):0.400 (4) for the major and minor components of P2 and P4, respectively. However, in form 2 there is no evidence in difference Fourier maps for disorder of the PF6 units.

In terms of crystal packing, for both polymorphs the cations and anions adopt an arrangement in which layers are formed in the ab plane. It should be noted that a description of the structure as layered is for convenience and does not reflect the presence of any obvious specific intra­layer inter­actions. The two forms are very similar. In fact, viewed along [100] and [[\overline{1}]00], the two structures may practically be superimposed (Fig. 3[link]a and 3b). However, when the two forms are viewed in a projection achieved by rotating by 90° about the normal to 001, a significant difference becomes clear. In form 2, the layers are formed by cations which have Co⋯Co⋯Co mol­ecular axes co-parallel (Fig. 3[link]d). However, in form 1 the two distinct trimers are not arranged with their axes co-parallel (Fig. 3[link]c).

The only notable non-ionic inter­action in either polymorph is the short C—O⋯H—C distance (carbox­yl–pyridine) of 2.56 Å between cations in form 2 (Fig. 4[link]). This can be compared with the sum of the van der Waals radii (2.72 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and the average of the intra­molecular C—O⋯H—C(pyridine) distances (2.62 Å). Thus, in form 2 the inter­molecular C—O⋯H—C distance is 0.15 Å shorter than the sum of the van der Waals radii, and 0.03 Å shorter than the corresponding mean intra­molecular distance. The equivalent distance in form 1 is 3.13 Å, which is 0.41 Å greater than sum of the van der Waals radii and 0.54 Å longer than the corresponding distance in form 2. These short C—O⋯H—C inter­actions in form 2 form a linear network of cations which runs along the a axis. Given the generally accepted correlation between inter­molecular distance and inter­action strength, it seems reasonable that this inter­action has the potential to be chemically important and structure directing.

The presence of this short contact in form 2 and its absence in form 1 are consistent with a crystal nucleation mechanism in which the inter­molecular C—O⋯H—C inter­action occurs between a bridging acetate of one cation and pyridine. For form 1, crystallized from pyridine, the inter­action is between the cations and the solvent mol­ecules, whereas for form 2, crystallized from CH2Cl2, the inter­action is between a bound pyridine on one cation and a bridging acetate on a neighbouring cation, and is thus structure-directing.

Form 1 has a slightly lower volume per formula unit than form 2 [1375.98 (13) versus 1379.3 (8) Å3], and thus packing considerations suggest that form 1 has the lower lattice energy, although the difference may be slight. Furthermore, the disorder in the PF6 groups suggests that form 1 should also be favoured on entropic grounds. That form 2 has been isolated despite the apparent greater stability of form 1 in terms of both lattice energy and lattice entropy is consistent with our argument above that the pyridine-H⋯O—C inter­action is of some importance in stabilizing this form, both kinetically in the crystallization of both forms, and thermodynamically in the stability of form 2.

In conclusion, structural studies of the two polymorphic forms of (I)[link] have provided an insight into the crystal nucleation mechanism for this compound and the reason for the existence of two polymorphs.

[Figure 1]
Figure 1
The mol­ecular structure of form 1 of compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Both disorder components of the PF6 ions are shown.
[Figure 2]
Figure 2
The mol­ecular structure of form 2 of compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1-x, 1-y, 1-z.]
[Figure 3]
Figure 3
Packing diagrams (PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) of the two polymorphic forms of (I)[link]. (a) Projection view of form 1 along 100, (b) projection view of form 2 along [\overline{1}]00, (c) projection view of form 1 rotated 90° about the normal to 001 and (d) projection of form 2 rotated 90° to the 001 normal.
[Figure 4]
Figure 4
Inter­molecular inter­actions in form 2 of (I)[link]; these are absent in form 1 (PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Experimental

A solution of Co(OAc)2·4H2O (0.5 g), pyridine (10 ml) and acetic anydride (5 ml) were warmed to 323 K and stirred for approximately 4 h. Two molar equivalents of NH4PF6 were added, and a pink solid was precipitated on addition of excess hexane. Pink transparent crystals of form 1 of (I)[link] were grown by slow cooling of a saturated solution in pyridine. Crystals of form 2 of (I)[link] were obtained by recrystallization from dichloro­methane. The crystals are air-stable for several months.

Compound (I)[link], polymorph 1

Crystal data
  • [Co3(C2H3O2)4(C5H5N)8](PF6)2

  • Mr = 1335.71

  • Triclinic, [P \overline 1]

  • a = 10.7354 (6) Å

  • b = 22.1257 (12) Å

  • c = 23.6103 (13) Å

  • α = 99.380 (1)°

  • β = 95.008 (1)°

  • γ = 92.238 (1)°

  • V = 5503.9 (5) Å3

  • Z = 4

  • Dx = 1.612 Mg m−3

  • Synchrotron radiation

  • λ = 0.84610 Å

  • Cell parameters from 38731 reflections

  • θ = 3.6–31.6°

  • μ = 1.05 mm−1

  • T = 120 (2) K

  • Plate, pink

  • 0.25 × 0.1 × 0.05 mm

Data collection
  • Bruker D8 diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan(SADABS; Bruker, 2004[Bruker (2004). APEX2, including SAINT (Version 7.0) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.463, Tmax = 0.949

  • 38731 measured reflections

  • 21108 independent reflections

  • 17966 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 31.6°

  • h = 0 → 13

  • k = −27 → 27

  • l = −29 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 1.05

  • 21108 reflections

  • 1432 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0871P)2 + 8.495P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.46 e Å−3

Compound (I)[link], polymorph 2

Crystal data
  • [Co3(C2H3O2)4(C5H5N)8](PF6)2

  • Mr = 1335.71

  • Triclinic, [P \overline 1]

  • a = 10.688 (4) Å

  • b = 11.839 (4) Å

  • c = 12.480 (4) Å

  • α = 98.149 (5)°

  • β = 103.605 (5)°

  • γ = 111.722 (5)°

  • V = 1379.3 (8) Å3

  • Z = 1

  • Dx = 1.608 Mg m−3

  • Synchrotron radiation

  • λ = 0.67110 Å

  • Cell parameters from 3499 reflections

  • θ = 3.0–26.9°

  • μ = 1.05 mm−1

  • T = 120 (2) K

  • Needle, pink

  • 0.1 × 0.02 × 0.02 mm

Data collection
  • Bruker D8 diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan(SADABS; Bruker, 2004[Bruker (2004). APEX2, including SAINT (Version 7.0) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.207, Tmax = 1

  • 11698 measured reflections

  • 5565 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 24.8°

  • h = −13 → 13

  • k = −14 → 14

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.214

  • S = 1.03

  • 5565 reflections

  • 369 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1413P)2 + 0.0662P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.84 e Å−3

Pyridine H atoms were placed in idealized positions, with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C). Methyl H atom were also placed in idealized positions, with C—H = 0.96 Å, and refined with Uiso(H) = 1.5Ueq(C). For form 2, the highest difference peak is located 1.04 Å from atom H2B and the deepest hole is 0.82 Å from atom Co1. A number of difference peaks with density greater than 1 e Å−3 were present and are due to the quality of the crystal employed, which was the best available.

For both compounds, data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, including SAINT (Version 7.0) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: WinGX (Version 1.64; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Multinuclear transition metal complexes have been intensively studied over a number of years, with interest driven by structural similarities to active sites in biological systems (Hagen et al., 1993), fundamental magnetism studies (Chudnovsky, 1996) and possible use as supramolecular building blocks (Yaghi et al., 2003). During the course of investigations into possible complexes formed by CoII, pyridine and acetate derivatives, the title compound, (I), was isolated as two polymorphs (Figs. 1 and 2). Examination of the refined crystal structures allows postulation of a crystal nucleation mechanism which is consistent both with the synthetic conditions and the existence of the two polymorphic forms.

Both polymorphs adopt the space group P1, form 1 with Z = 4 and form 2 with Z = 1. The cations in both forms adopt essentially identical molecular structures and are formed by three CoII ions arranged in an approximately linear manner. The cations possess an approximate (form 1) or an exact (form 2) crystallographic centre of symmetry located at the central CoII ion. For octahedral coordination about CoII, there are 18 coordination sites available for the ligands. The three CoII ions are linked by four bridging acetate groups, which adopt two distinct coordination modes. One pair of acetates bridges in a synsyn manner, with each O atom coordinated to a single CoII ion, thus occupying a total of four coordination sites. The other pair of acetates adopts a synanti configuration, with one O atom acting as a µ2-bridge and the other coordinated to a single CoII ion. This pair of acetates therefore occupies a total of six coordination sites. The coordination modes adopted by the acetate groups lead to the central CoII ion being surrounded by four O atoms, arranged in an approximately square-planar manner; for form 2, the O—Co—O angles deviate from 90° by 1.56 (15)°. The terminal CoII ions are surrounded by three O atoms, which are not regularly spaced; for form 2, the O4—Co2—O3 angle is 60.7 (1)°, whereas the O2—Co2—O3 angle is 101.4 (1)°. The remaining eight available metal-coordination sites are occupied by pyridine molecules, two of which bind along the molecular axis and six of which bind perpendicular to the molecular axis. The lack of an exact molecular centre of symmetry in form 1 is manifested primarily in the lengths of the trans bonds about the central CoII ion, Co2—O2 and Co2—O7 (formed by the µ2-bridging O atom of the acetate), which are 2.154 (2) and 2.134 (2) Å, respectively; each pair of bond lengths is identical by symmetry in form 2. In form 1, half of the PF6 groups exhibit a significant degree of rotational disorder about the central P atom; the occupancies, constrained to sum to unity, refined to 0.565 (5):0.435 (5) and 0.600 (4):0.400 (4) for the major and minor components of P2 and P4, respectively. However, in form 2 there is no evidence in difference Fourier maps for disorder of the PF6 units.

In terms of crystal packing, for both polymorphs the cations and anions adopt an arrangement in which layers are formed in the ab plane. It should be noted that a description of the structure as layered is for convenience and does not reflect the presence of any obvious specific intralayer interactions. The two forms are very similar. In fact, viewed along [100] and [100], the two structures may practically be superimposed (Fig. 3a and 3b). However, when the two forms are viewed in a projection achieved by rotating by 90° about the normal to 001, a significant difference becomes clear. In form 2, the layers are formed by cations which have Co···Co···Co molecular axes co-parallel (Fig. 3d). However, in form 1 the two distinct trimers are not arranged with their axes co-parallel (Fig. 3c).

The only notable non-ionic interaction in either polymorph is the short C—O···H—C distance (carboxyl···pyridine) of 2.56 Å between cations in form 2 (Fig. 4). This can be compared with the sum of the van der Waals radii (2.72 Å; Reference?) and the average of the intramolecular CO···HC(pyridine) distances (2.62 Å). Thus, in form 2 the intermolecular C—O···H—C distance is 0.15 Å shorter than the sum of the van der Waals radii, and 0.03 Å shorter than the corresponding mean intramolecular distance. The equivalent distance in form 1 is 3.13 Å, which is 0.41 Å greater than sum of the van der Waals radii and 0.54 Å longer than the corresponding distance in form 2. These short C—O···H—C interactions in form 2 form a linear network of cations which runs along the a axis. Given the generally accepted correlation between intermolecular distance and interaction strength, it seems reasonable that this interaction has the potential to be chemically important and structure-directing.

The presence of this short contact in form 2 and its absence in form 1 are consistent with a crystal nucleation mechanism in which the intermolecular C—O···H—C interaction occurs between a bridging acetate of one cation and pyridine. For form 1, crystallized from pyridine, the interaction is between the cations and the solvent molecules, whereas for form 2, crystallized from CH2Cl2, the interaction is between a bound pyridine on one cation and a bridging acetate on a neighbouring cation, and is thus structure-directing.

Form 1 has a slightly lower volume per formula unit than form 2 [1375.98 (13) versus 1379.3 (8) Å3], and thus packing considerations suggest that form 1 has the lower lattice energy, although the difference may be slight. Furthermore, the disorder in the PF6 groups suggests that form 1 should also be favoured on entropic grounds. That form 2 has been isolated despite the apparent greater stability of form 1 in terms of both lattice energy and lattice entropy is consistent with our argument above that the py-H···O—C interaction is of some importance in stabilizing this form, both kinetically in the crystallization of both forms, and thermodynamically in the stability of form 2.

In conclusion, structural studies of the two polymorphic forms of (I) have provided an insight into the crystal nucleation mechanism for this compound and the reason for the existence of two polymorphs.

Experimental top

A solution of Co(OAc)2·4H2O (0.5 g), pyridine (10 ml) and acetic anydride (5 ml) were warmed to 323 K and stirred for approximately 4 h. Two molar equivalents of NH4PF6 were added, and a pink solid was precipitated on addition of excess hexane. Pink transparent crystals of form 1 of (I) were grown by slow cooling of a saturated solution in pyridine. Crystals of form 2 of (I) were obtained by recrystallization from dichloromethane. The crystals are air-stable for several months.

Refinement top

Pyridine H atoms were placed in idealized positions, with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C). Methyl H atom were also placed in idealized positions, with C—H = 0.96 Å, and refined with Uiso(H) = 1.5Ueq(C). For form 2, the highest difference peak is 1.292 e Å−3, located at (−0.2500, 0.3433, 0.0690), 1.04 Å from atom H2B, and the deepest hole is −0.835 e Å−3, located at (0.9450, 0.9408, 0.0169), 0.82 Å from atom Co1. A number of difference peaks with density greater than 1 e Å−3 were present and are due to the quality of the crystal employed, which was the best available.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64; Farrugia, 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHEXLX97.

Figures top
[Figure 1] Fig. 1. The molecular structure of form 1 of compound (I). Displacement ellipsoids are drawn at the ?? probability level and H atoms are shown as small spheres of arbitrary radii. Both disorder components of the PF6 ions are shown.
[Figure 2] Fig. 2. The molecular structure of form 2 of compound (I). Displacement ellipsoids are drawn at the ?? probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Packing diagrams (PLATON; Spek, 2003) of the two polymorphic forms of (I). (a) Projection view of form 1 along 100. (b) Projection view of form 2 along 100. (c) Projection view of form 1 rotated 90° about the normal to 001. (d) Projection of form 2 rotated 90° to the 001 normal.
[Figure 4] Fig. 4. Intermolecular interactions in form 2 of (I), absent in form 1. (PLATON; Spek, 2003).
(I) di-µ3-acetato-1κ2O,O':2κO';2κO:3κ2O,O'-di-µ2-acetato- 1κO:2κO';2κO:3κO'-octapyridyl-1κ3N,2κ2N,3κ3N-tricobalt(II) bis(hexafluorophosphate) top
Crystal data top
[Co3(C2H3O2)4(C5H5N)8](PF6)2Z = 4
Mr = 1335.71F(000) = 2716
Triclinic, P1Dx = 1.612 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.84610 Å
a = 10.7354 (6) ÅCell parameters from 38731 reflections
b = 22.1257 (12) Åθ = 3.6–31.6°
c = 23.6103 (13) ŵ = 1.05 mm1
α = 99.380 (1)°T = 120 K
β = 95.008 (1)°Plate, pink
γ = 92.238 (1)°0.25 × 0.1 × 0.05 mm
V = 5503.9 (5) Å3
Data collection top
Bruker D8
diffractometer
21108 independent reflections
Radiation source: Daresbury SRS Station 16.2SMX17966 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.030
ω rotation with narrow frames scansθmax = 31.6°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 013
Tmin = 0.463, Tmax = 0.949k = 2727
38731 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0871P)2 + 8.495P]
where P = (Fo2 + 2Fc2)/3
21108 reflections(Δ/σ)max = 0.002
1432 parametersΔρmax = 1.48 e Å3
66 restraintsΔρmin = 1.46 e Å3
Crystal data top
[Co3(C2H3O2)4(C5H5N)8](PF6)2γ = 92.238 (1)°
Mr = 1335.71V = 5503.9 (5) Å3
Triclinic, P1Z = 4
a = 10.7354 (6) ÅSynchrotron radiation, λ = 0.84610 Å
b = 22.1257 (12) ŵ = 1.05 mm1
c = 23.6103 (13) ÅT = 120 K
α = 99.380 (1)°0.25 × 0.1 × 0.05 mm
β = 95.008 (1)°
Data collection top
Bruker D8
diffractometer
21108 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
17966 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 0.949Rint = 0.030
38731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05666 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 1.48 e Å3
21108 reflectionsΔρmin = 1.46 e Å3
1432 parameters
Special details top

Experimental. A correction to account for decay of the synchrotron beam with time and crystal absorption is applied within the program SAINT v7.0 using a multi-scan method based on equivalents. Ratio of minimum to maximum apparent transmission: 0.487966

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.64029 (4)1.034157 (18)0.206669 (18)0.01183 (11)
C10.4323 (3)0.99007 (14)0.22652 (13)0.0134 (6)
O10.4445 (2)1.04186 (10)0.21098 (10)0.0170 (5)
O20.5304 (2)0.96107 (9)0.23618 (9)0.0137 (4)
C20.3048 (3)0.96341 (15)0.23191 (17)0.0216 (7)
H2A0.25100.99590.24360.032*
H2B0.31020.93680.26020.032*
H2C0.27110.94040.19540.032*
C30.8504 (3)0.95504 (13)0.23090 (13)0.0119 (6)
O30.8156 (2)1.00660 (10)0.21999 (10)0.0173 (5)
O40.7788 (2)0.90986 (10)0.23319 (10)0.0156 (5)
C40.9886 (3)0.94904 (16)0.24188 (17)0.0220 (7)
H4A1.00540.93100.27590.033*
H4B1.03090.98890.24730.033*
H4C1.01800.92340.20950.033*
Co20.60728 (4)0.875518 (16)0.249667 (17)0.00939 (10)
C50.3643 (3)0.79420 (14)0.26379 (13)0.0124 (6)
C60.2259 (3)0.79898 (15)0.24861 (16)0.0207 (7)
H6A0.19280.82710.27830.031*
H6B0.18380.75930.24530.031*
H6C0.21300.81360.21260.031*
O50.4346 (2)0.84106 (9)0.26495 (10)0.0151 (5)
O60.3994 (2)0.74296 (10)0.27435 (10)0.0167 (5)
Co30.57472 (4)0.718275 (18)0.293467 (19)0.01227 (11)
C70.7847 (3)0.76370 (14)0.27602 (14)0.0147 (6)
O70.6849 (2)0.79162 (9)0.26488 (9)0.0132 (4)
O80.7735 (2)0.71371 (10)0.29431 (10)0.0184 (5)
C80.9116 (3)0.79016 (15)0.26857 (16)0.0193 (7)
H8A0.94210.81840.30270.029*
H8B0.90590.81140.23610.029*
H8C0.96810.75770.26200.029*
Co40.09639 (4)0.526541 (18)0.203858 (19)0.01364 (11)
C1B0.1125 (3)0.44947 (13)0.23402 (13)0.0129 (6)
O90.0791 (2)0.49328 (10)0.20959 (10)0.0183 (5)
O100.0445 (2)0.40756 (10)0.24609 (10)0.0167 (5)
C2B0.2451 (3)0.44746 (15)0.25030 (16)0.0204 (7)
H2B10.29750.42160.22020.031*
H2B20.27490.48820.25550.031*
H2B30.24730.43130.28560.031*
C3B0.3079 (3)0.49299 (14)0.23584 (14)0.0144 (6)
O110.2939 (2)0.54147 (10)0.21480 (10)0.0197 (5)
O120.2102 (2)0.46110 (9)0.24275 (9)0.0136 (4)
Co50.13078 (4)0.374367 (16)0.255211 (17)0.01001 (10)
C4B0.4369 (3)0.47353 (15)0.25081 (15)0.0179 (7)
H4B10.47300.45720.21610.027*
H4B20.43260.44260.27490.027*
H4B30.48800.50830.27110.027*
C5B0.3725 (3)0.29689 (14)0.27036 (13)0.0129 (6)
O130.3055 (2)0.34083 (10)0.26578 (10)0.0157 (5)
O140.3395 (2)0.24821 (10)0.28834 (10)0.0187 (5)
C6B0.5037 (3)0.30122 (15)0.25271 (16)0.0199 (7)
H6B10.50270.31850.21790.030*
H6B20.53560.26100.24620.030*
H6B30.55630.32700.28280.030*
C7B0.0485 (3)0.25472 (14)0.27163 (14)0.0138 (6)
O150.0495 (2)0.28717 (9)0.26547 (9)0.0135 (4)
O160.0356 (2)0.20490 (10)0.28958 (10)0.0181 (5)
C8B0.1774 (3)0.27556 (15)0.25751 (15)0.0197 (7)
H8B10.22720.24250.23360.030*
H8B20.17150.30980.23740.030*
H8B30.21580.28770.29250.030*
Co60.16304 (4)0.218051 (18)0.297719 (19)0.01354 (11)
N10.6694 (3)1.09403 (12)0.29038 (12)0.0156 (6)
C100.7448 (3)1.08051 (16)0.33458 (15)0.0214 (7)
H100.78431.04360.32950.026*
C110.7664 (4)1.11902 (17)0.38736 (16)0.0267 (8)
H110.81801.10760.41710.032*
C120.7104 (3)1.17453 (16)0.39534 (15)0.0229 (7)
H120.72471.20140.43010.027*
C130.6327 (3)1.18908 (16)0.35032 (15)0.0228 (7)
H130.59321.22600.35420.027*
C140.6147 (3)1.14737 (15)0.29909 (14)0.0177 (7)
H140.56151.15730.26920.021*
N20.6693 (3)1.10945 (12)0.16380 (12)0.0176 (6)
C200.5760 (3)1.14450 (15)0.14927 (15)0.0191 (7)
H200.49771.13790.16190.023*
C210.5915 (4)1.18989 (16)0.11640 (15)0.0238 (8)
H210.52541.21380.10780.029*
C220.7073 (4)1.19931 (17)0.09628 (17)0.0298 (9)
H220.72001.22940.07380.036*
C230.8030 (4)1.16302 (18)0.11045 (19)0.0353 (10)
H230.88121.16780.09710.042*
C240.7806 (4)1.11943 (17)0.14484 (17)0.0276 (8)
H240.84621.09600.15520.033*
N30.6107 (3)0.98007 (12)0.12006 (12)0.0188 (6)
C300.7076 (4)0.95715 (17)0.09347 (16)0.0283 (8)
H300.78670.96300.11360.034*
C310.6969 (5)0.9254 (2)0.03793 (17)0.0404 (11)
H310.76710.91040.02110.049*
C320.5798 (5)0.91630 (19)0.00766 (17)0.0379 (10)
H320.56970.89530.03000.045*
C330.4786 (4)0.93884 (19)0.03420 (17)0.0352 (10)
H330.39860.93300.01500.042*
C340.4977 (4)0.97040 (17)0.09003 (16)0.0254 (8)
H340.42870.98570.10770.031*
N40.5706 (2)0.83412 (11)0.16099 (11)0.0135 (5)
C400.6631 (3)0.80825 (15)0.13249 (15)0.0201 (7)
H400.74410.81320.15070.024*
C410.6439 (4)0.77484 (18)0.07787 (16)0.0281 (8)
H410.71050.75700.06000.034*
C420.5241 (4)0.76788 (16)0.04954 (16)0.0261 (8)
H420.50880.74550.01250.031*
C430.4283 (3)0.79503 (16)0.07780 (15)0.0243 (8)
H430.34690.79150.06010.029*
C440.4553 (3)0.82776 (14)0.13311 (14)0.0174 (7)
H440.39040.84620.15180.021*
N50.6445 (3)0.91542 (11)0.33868 (11)0.0133 (5)
C500.7613 (3)0.92810 (14)0.36475 (14)0.0169 (7)
H500.82830.91500.34430.020*
C510.7865 (4)0.95976 (15)0.42070 (15)0.0240 (8)
H510.86860.96790.43720.029*
C520.6873 (4)0.97887 (16)0.45144 (16)0.0279 (8)
H520.70141.00090.48870.033*
C530.5661 (4)0.96455 (18)0.42549 (16)0.0301 (9)
H530.49760.97590.44550.036*
C540.5490 (3)0.93309 (15)0.36944 (15)0.0210 (7)
H540.46760.92380.35230.025*
N60.5812 (3)0.77322 (12)0.37940 (12)0.0183 (6)
C600.6886 (3)0.79493 (15)0.41063 (15)0.0221 (7)
H600.76280.79040.39310.027*
C610.6951 (4)0.82359 (17)0.46723 (17)0.0312 (9)
H610.77170.83830.48710.037*
C620.5861 (5)0.83010 (19)0.49394 (17)0.0372 (10)
H620.58790.84890.53230.045*
C630.4743 (4)0.80825 (19)0.46270 (17)0.0342 (9)
H630.39930.81180.47970.041*
C640.4756 (4)0.78111 (17)0.40589 (16)0.0254 (8)
H640.39960.76760.38480.030*
N70.5610 (3)0.64194 (12)0.33681 (12)0.0169 (6)
C700.6616 (3)0.61235 (14)0.35300 (14)0.0176 (7)
H700.73880.62310.34130.021*
C710.6549 (4)0.56678 (16)0.38618 (15)0.0230 (8)
H710.72610.54660.39580.028*
C720.5421 (4)0.55153 (16)0.40491 (16)0.0281 (8)
H720.53610.52130.42780.034*
C730.4374 (4)0.58179 (17)0.38913 (18)0.0317 (9)
H730.36000.57260.40150.038*
C740.4506 (3)0.62631 (16)0.35437 (17)0.0247 (8)
H740.38010.64600.34290.030*
N80.5590 (3)0.65853 (12)0.20988 (12)0.0151 (6)
C800.4867 (3)0.67054 (15)0.16423 (15)0.0205 (7)
H800.44300.70620.16840.025*
C810.4740 (4)0.63220 (17)0.11103 (15)0.0253 (8)
H810.42340.64240.08040.030*
C820.5375 (4)0.57858 (16)0.10415 (16)0.0251 (8)
H820.53040.55200.06900.030*
C830.6204 (3)0.60688 (15)0.20244 (15)0.0197 (7)
H830.67180.59800.23350.024*
C840.6120 (4)0.56576 (15)0.15116 (16)0.0244 (8)
H840.65570.53010.14830.029*
N90.0908 (3)0.58077 (12)0.28926 (12)0.0177 (6)
C900.1301 (4)0.64008 (16)0.29995 (17)0.0272 (8)
H900.15730.65760.26970.033*
C910.1324 (4)0.67637 (18)0.3531 (2)0.0372 (10)
H910.15820.71770.35830.045*
C920.0958 (4)0.6504 (2)0.3985 (2)0.0403 (11)
H920.09830.67360.43520.048*
C930.0548 (4)0.5887 (2)0.38863 (17)0.0357 (10)
H930.02920.56990.41850.043*
C940.0530 (4)0.55635 (16)0.33356 (15)0.0250 (8)
H940.02410.51540.32680.030*
N100.0464 (3)0.60424 (12)0.16674 (12)0.0181 (6)
C1000.0690 (3)0.62454 (16)0.17023 (16)0.0238 (8)
H1000.12510.60430.18960.029*
C1010.1080 (4)0.67438 (16)0.14619 (16)0.0286 (8)
H1010.18930.68690.14890.034*
C1020.0255 (4)0.70520 (16)0.11835 (17)0.0308 (9)
H1020.04910.73940.10270.037*
C1030.0931 (4)0.68435 (17)0.11410 (17)0.0311 (9)
H1030.15040.70400.09490.037*
C1040.1265 (4)0.63355 (16)0.13878 (17)0.0265 (8)
H1040.20670.61960.13570.032*
N110.1078 (3)0.47981 (12)0.11672 (12)0.0198 (6)
C1100.2116 (4)0.48432 (17)0.08896 (16)0.0272 (8)
H1100.28440.50310.10980.033*
C1110.2141 (4)0.46223 (18)0.03102 (18)0.0354 (10)
H1110.28730.46620.01320.043*
C1120.1066 (5)0.43401 (19)0.00042 (18)0.0387 (10)
H1120.10570.41940.03970.046*
C1130.0006 (4)0.42797 (18)0.02784 (17)0.0336 (9)
H1130.07230.40820.00810.040*
C1140.0042 (4)0.45177 (16)0.08590 (16)0.0246 (8)
H1140.06800.44820.10440.029*
N120.1262 (3)0.34018 (11)0.16499 (11)0.0142 (5)
C1200.2300 (3)0.34169 (15)0.13692 (15)0.0186 (7)
H1200.30310.36110.15680.022*
C1210.2323 (4)0.31545 (16)0.07961 (15)0.0248 (8)
H1210.30540.31730.06140.030*
C1220.1235 (4)0.28642 (18)0.04992 (16)0.0297 (9)
H1220.12270.26740.01170.036*
C1230.0162 (4)0.28624 (16)0.07824 (15)0.0254 (8)
H1230.05850.26810.05890.031*
C1240.0209 (3)0.31308 (15)0.13523 (15)0.0190 (7)
H1240.05180.31240.15390.023*
N130.1375 (3)0.40690 (11)0.34613 (12)0.0148 (5)
C1300.2432 (3)0.43372 (14)0.37597 (15)0.0181 (7)
H1300.31490.43570.35680.022*
C1310.2500 (3)0.45857 (16)0.43403 (15)0.0232 (8)
H1310.32460.47710.45320.028*
C1320.1448 (4)0.45545 (16)0.46280 (15)0.0254 (8)
H1320.14690.47230.50160.030*
C1330.0351 (3)0.42685 (16)0.43320 (15)0.0233 (7)
H1330.03680.42320.45190.028*
C1340.0358 (3)0.40386 (14)0.37514 (14)0.0182 (7)
H1340.03800.38530.35510.022*
N140.1631 (3)0.26328 (13)0.38604 (12)0.0198 (6)
C1400.2669 (4)0.29216 (15)0.41598 (15)0.0221 (7)
H1400.33650.29820.39630.027*
C1410.2748 (4)0.31326 (17)0.47482 (17)0.0300 (9)
H1410.34750.33370.49400.036*
C1420.1727 (4)0.30335 (19)0.50437 (17)0.0353 (10)
H1420.17560.31660.54390.042*
C1430.0659 (5)0.27326 (19)0.47396 (18)0.0377 (10)
H1430.00390.26560.49290.045*
C1440.0642 (4)0.25485 (17)0.41560 (17)0.0289 (8)
H1440.00890.23560.39550.035*
N150.2004 (3)0.13772 (12)0.33321 (12)0.0178 (6)
C1500.3150 (3)0.11684 (16)0.33394 (16)0.0232 (8)
H1500.37550.13710.31690.028*
C1510.3490 (4)0.06649 (17)0.35868 (17)0.0291 (8)
H1510.43050.05370.35890.035*
C1520.2586 (4)0.03587 (16)0.38303 (16)0.0292 (9)
H1520.27770.00160.39960.035*
C1530.1401 (4)0.05685 (18)0.38242 (18)0.0335 (9)
H1530.07790.03700.39880.040*
C1540.1135 (4)0.10793 (17)0.35725 (19)0.0315 (9)
H1540.03280.12190.35710.038*
N160.1571 (3)0.16418 (12)0.21137 (12)0.0175 (6)
C1600.2093 (4)0.18347 (16)0.16753 (16)0.0248 (8)
H1600.24780.22270.17360.030*
C1610.2084 (4)0.14774 (18)0.11370 (17)0.0325 (9)
H1610.24480.16290.08420.039*
C1620.1525 (4)0.08894 (18)0.10426 (17)0.0324 (9)
H1620.15130.06380.06860.039*
C1630.1019 (3)0.10761 (15)0.20130 (16)0.0236 (8)
H1630.06380.09380.23110.028*
C1640.0986 (4)0.06875 (16)0.14916 (17)0.0288 (9)
H1640.06060.02950.14440.035*
P10.88486 (9)0.13150 (4)0.56716 (4)0.0238 (2)
F11.0168 (2)0.16826 (13)0.58152 (12)0.0523 (7)
F20.9375 (3)0.08779 (18)0.51542 (13)0.0796 (12)
F30.9312 (3)0.08648 (11)0.61017 (12)0.0461 (7)
F40.7521 (2)0.09423 (10)0.55402 (13)0.0508 (8)
F50.8301 (3)0.17430 (11)0.61873 (10)0.0431 (6)
F60.8402 (2)0.17718 (13)0.52466 (11)0.0491 (7)
P20.65490 (9)0.37860 (4)0.43452 (4)0.0265 (2)
F100.5672 (2)0.42200 (12)0.47243 (11)0.0450 (6)
F70.7323 (5)0.3402 (2)0.3874 (2)0.0428 (4)*0.565 (5)
F80.7571 (5)0.3747 (2)0.4846 (2)0.0428 (4)*0.565 (5)
F90.5748 (5)0.3199 (2)0.4407 (2)0.0428 (4)*0.565 (5)
F110.5525 (4)0.3899 (3)0.38080 (19)0.0428 (4)*0.565 (5)
F120.7273 (5)0.4414 (2)0.4237 (2)0.0428 (4)*0.565 (5)
F7B0.7569 (6)0.3323 (3)0.4081 (3)0.0428 (4)*0.435 (5)
F8B0.7567 (6)0.3948 (3)0.4918 (3)0.0428 (4)*0.435 (5)
F9B0.6046 (6)0.3228 (3)0.4667 (3)0.0428 (4)*0.435 (5)
F11B0.5565 (6)0.3590 (3)0.3831 (3)0.0428 (4)*0.435 (5)
F12B0.7173 (7)0.4308 (3)0.4080 (3)0.0428 (4)*0.435 (5)
P30.61714 (9)0.37994 (4)0.07085 (4)0.0221 (2)
F130.6866 (2)0.34074 (11)0.02128 (10)0.0385 (6)
F140.7324 (2)0.37176 (14)0.11620 (11)0.0521 (7)
F150.5503 (2)0.31830 (10)0.08343 (11)0.0376 (6)
F160.5471 (3)0.41810 (11)0.12085 (11)0.0423 (6)
F170.5020 (2)0.38578 (13)0.02535 (10)0.0458 (7)
F180.6838 (3)0.44119 (12)0.05854 (14)0.0626 (9)
P40.06571 (9)0.86950 (4)0.06303 (4)0.0223 (2)
F190.1253 (5)0.8097 (2)0.0306 (2)0.0447 (4)*0.600 (4)
F200.1049 (5)0.8470 (2)0.12424 (17)0.0447 (4)*0.600 (4)
F210.0644 (4)0.8311 (2)0.0587 (2)0.0447 (4)*0.600 (4)
F220.0071 (5)0.9274 (2)0.0997 (2)0.0447 (4)*0.600 (4)
F230.0262 (5)0.8922 (2)0.00514 (18)0.0447 (4)*0.600 (4)
F240.1970 (4)0.9078 (2)0.0721 (2)0.0447 (4)*0.600 (4)
F19B0.1043 (7)0.7992 (3)0.0442 (3)0.0447 (4)*0.400 (4)
F20B0.1468 (7)0.8674 (3)0.1209 (2)0.0447 (4)*0.400 (4)
F21B0.0604 (6)0.8395 (3)0.0828 (3)0.0447 (4)*0.400 (4)
F22B0.0139 (7)0.9351 (3)0.0789 (3)0.0447 (4)*0.400 (4)
F23B0.0120 (6)0.8647 (3)0.0000 (2)0.0447 (4)*0.400 (4)
F24B0.1869 (6)0.8958 (3)0.0389 (3)0.0447 (4)*0.400 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0103 (2)0.0075 (2)0.0199 (2)0.00214 (15)0.00011 (16)0.00900 (16)
C10.0123 (15)0.0108 (15)0.0176 (16)0.0025 (12)0.0017 (12)0.0047 (12)
O10.0143 (11)0.0121 (11)0.0273 (13)0.0030 (9)0.0004 (9)0.0123 (9)
O20.0118 (11)0.0086 (10)0.0225 (12)0.0028 (8)0.0008 (9)0.0077 (9)
C20.0115 (16)0.0145 (16)0.040 (2)0.0017 (13)0.0004 (14)0.0105 (14)
C30.0095 (15)0.0098 (14)0.0173 (15)0.0011 (11)0.0004 (12)0.0056 (12)
O30.0119 (11)0.0116 (11)0.0305 (13)0.0010 (9)0.0001 (9)0.0108 (9)
O40.0100 (11)0.0111 (11)0.0268 (13)0.0006 (9)0.0001 (9)0.0079 (9)
C40.0081 (16)0.0181 (17)0.041 (2)0.0021 (13)0.0038 (14)0.0133 (15)
Co20.0084 (2)0.00418 (19)0.0163 (2)0.00018 (15)0.00162 (16)0.00532 (16)
C50.0093 (15)0.0114 (14)0.0181 (16)0.0028 (12)0.0021 (12)0.0066 (12)
C60.0115 (16)0.0163 (16)0.035 (2)0.0009 (13)0.0033 (14)0.0113 (14)
O50.0107 (11)0.0102 (10)0.0258 (12)0.0008 (8)0.0003 (9)0.0080 (9)
O60.0120 (11)0.0096 (10)0.0299 (13)0.0015 (9)0.0011 (9)0.0086 (9)
Co30.0100 (2)0.0070 (2)0.0216 (2)0.00147 (15)0.00033 (16)0.00854 (16)
C70.0143 (16)0.0100 (14)0.0197 (16)0.0017 (12)0.0013 (12)0.0034 (12)
O70.0110 (11)0.0076 (10)0.0228 (12)0.0032 (8)0.0007 (9)0.0080 (8)
O80.0150 (12)0.0127 (11)0.0309 (13)0.0018 (9)0.0003 (10)0.0145 (10)
C80.0126 (16)0.0131 (15)0.034 (2)0.0005 (12)0.0005 (14)0.0095 (14)
Co40.0126 (2)0.0085 (2)0.0217 (2)0.00040 (16)0.00088 (17)0.00924 (16)
C1B0.0120 (15)0.0082 (14)0.0176 (16)0.0011 (11)0.0025 (12)0.0019 (12)
O90.0160 (12)0.0139 (11)0.0276 (13)0.0005 (9)0.0006 (10)0.0131 (9)
O100.0094 (11)0.0116 (11)0.0308 (13)0.0035 (9)0.0004 (9)0.0092 (9)
C2B0.0149 (17)0.0167 (16)0.0316 (19)0.0038 (13)0.0033 (14)0.0091 (14)
C3B0.0146 (16)0.0105 (14)0.0179 (16)0.0009 (12)0.0002 (12)0.0028 (12)
O110.0184 (12)0.0124 (11)0.0311 (13)0.0009 (9)0.0004 (10)0.0133 (10)
O120.0109 (11)0.0076 (10)0.0236 (12)0.0003 (8)0.0004 (9)0.0066 (8)
Co50.0086 (2)0.00394 (19)0.0184 (2)0.00091 (15)0.00121 (16)0.00565 (16)
C4B0.0137 (16)0.0142 (15)0.0263 (18)0.0010 (12)0.0008 (13)0.0064 (13)
C5B0.0128 (15)0.0103 (14)0.0157 (15)0.0017 (12)0.0007 (12)0.0041 (12)
O130.0089 (11)0.0118 (10)0.0281 (13)0.0048 (8)0.0007 (9)0.0080 (9)
O140.0149 (12)0.0118 (11)0.0320 (13)0.0004 (9)0.0008 (10)0.0120 (10)
C6B0.0126 (16)0.0159 (16)0.034 (2)0.0029 (13)0.0034 (14)0.0113 (14)
C7B0.0139 (16)0.0092 (14)0.0190 (16)0.0002 (12)0.0006 (12)0.0048 (12)
O150.0111 (11)0.0070 (10)0.0238 (12)0.0009 (8)0.0015 (9)0.0082 (9)
O160.0151 (12)0.0114 (11)0.0300 (13)0.0004 (9)0.0015 (10)0.0110 (9)
C8B0.0124 (16)0.0164 (16)0.0316 (19)0.0008 (13)0.0008 (14)0.0090 (14)
Co60.0128 (2)0.0071 (2)0.0226 (2)0.00051 (16)0.00019 (17)0.00901 (17)
N10.0162 (14)0.0117 (13)0.0206 (14)0.0009 (11)0.0004 (11)0.0090 (11)
C100.0234 (18)0.0178 (16)0.0252 (18)0.0051 (14)0.0023 (14)0.0113 (14)
C110.030 (2)0.0273 (19)0.0230 (19)0.0028 (16)0.0055 (15)0.0101 (15)
C120.0264 (19)0.0205 (17)0.0212 (18)0.0041 (14)0.0005 (14)0.0040 (14)
C130.029 (2)0.0142 (16)0.0267 (19)0.0046 (14)0.0024 (15)0.0087 (14)
C140.0178 (17)0.0145 (15)0.0223 (17)0.0031 (13)0.0022 (13)0.0092 (13)
N20.0198 (15)0.0124 (13)0.0226 (15)0.0009 (11)0.0015 (11)0.0093 (11)
C200.0192 (17)0.0155 (16)0.0254 (18)0.0016 (13)0.0019 (14)0.0137 (13)
C210.029 (2)0.0174 (17)0.0274 (19)0.0034 (15)0.0028 (15)0.0131 (14)
C220.040 (2)0.0193 (18)0.035 (2)0.0004 (16)0.0073 (18)0.0196 (16)
C230.035 (2)0.027 (2)0.053 (3)0.0048 (17)0.020 (2)0.0248 (19)
C240.0224 (19)0.0216 (18)0.045 (2)0.0038 (15)0.0075 (16)0.0206 (16)
N30.0244 (16)0.0116 (13)0.0218 (15)0.0005 (11)0.0006 (12)0.0084 (11)
C300.032 (2)0.031 (2)0.0244 (19)0.0138 (17)0.0014 (16)0.0102 (16)
C310.053 (3)0.045 (3)0.025 (2)0.028 (2)0.0049 (19)0.0082 (18)
C320.059 (3)0.029 (2)0.024 (2)0.008 (2)0.0022 (19)0.0004 (16)
C330.041 (2)0.035 (2)0.027 (2)0.0124 (19)0.0113 (18)0.0092 (17)
C340.026 (2)0.0264 (19)0.0241 (19)0.0040 (15)0.0007 (15)0.0080 (15)
N40.0140 (13)0.0077 (12)0.0192 (14)0.0000 (10)0.0018 (11)0.0059 (10)
C400.0147 (17)0.0191 (17)0.0254 (18)0.0003 (13)0.0008 (13)0.0023 (14)
C410.027 (2)0.029 (2)0.027 (2)0.0062 (16)0.0011 (15)0.0004 (15)
C420.035 (2)0.0205 (18)0.0211 (18)0.0019 (15)0.0038 (15)0.0011 (14)
C430.0229 (19)0.0238 (18)0.0246 (19)0.0022 (15)0.0107 (15)0.0072 (14)
C440.0164 (16)0.0143 (15)0.0226 (17)0.0040 (13)0.0009 (13)0.0077 (13)
N50.0163 (14)0.0064 (12)0.0174 (14)0.0031 (10)0.0041 (11)0.0049 (10)
C500.0156 (16)0.0133 (15)0.0222 (17)0.0006 (12)0.0040 (13)0.0072 (13)
C510.027 (2)0.0175 (17)0.0258 (19)0.0049 (14)0.0122 (15)0.0089 (14)
C520.044 (2)0.0205 (18)0.0178 (18)0.0053 (16)0.0034 (16)0.0005 (14)
C530.029 (2)0.034 (2)0.026 (2)0.0141 (17)0.0013 (16)0.0009 (16)
C540.0197 (18)0.0208 (17)0.0222 (18)0.0080 (14)0.0035 (14)0.0044 (14)
N60.0200 (15)0.0123 (13)0.0241 (15)0.0005 (11)0.0015 (12)0.0078 (11)
C600.0238 (19)0.0161 (16)0.0268 (19)0.0023 (14)0.0004 (14)0.0070 (14)
C610.038 (2)0.0226 (19)0.031 (2)0.0027 (17)0.0091 (17)0.0063 (16)
C620.059 (3)0.030 (2)0.023 (2)0.010 (2)0.0003 (19)0.0026 (16)
C630.038 (2)0.036 (2)0.033 (2)0.0111 (18)0.0107 (18)0.0096 (17)
C640.0223 (19)0.0281 (19)0.0274 (19)0.0050 (15)0.0035 (15)0.0081 (15)
N70.0195 (15)0.0115 (13)0.0217 (14)0.0002 (11)0.0002 (11)0.0099 (11)
C700.0187 (17)0.0113 (15)0.0242 (17)0.0005 (12)0.0030 (13)0.0100 (13)
C710.029 (2)0.0172 (17)0.0240 (18)0.0027 (14)0.0038 (15)0.0099 (14)
C720.041 (2)0.0188 (18)0.029 (2)0.0014 (16)0.0057 (17)0.0163 (15)
C730.032 (2)0.0223 (19)0.048 (2)0.0020 (16)0.0169 (18)0.0182 (17)
C740.0211 (18)0.0173 (17)0.040 (2)0.0048 (14)0.0071 (16)0.0147 (15)
N80.0143 (14)0.0114 (13)0.0207 (14)0.0009 (10)0.0002 (11)0.0079 (11)
C800.0206 (18)0.0174 (16)0.0254 (18)0.0054 (14)0.0011 (14)0.0098 (14)
C810.027 (2)0.0285 (19)0.0207 (18)0.0011 (15)0.0039 (15)0.0078 (15)
C820.032 (2)0.0173 (17)0.0242 (19)0.0066 (15)0.0035 (15)0.0001 (14)
C830.0213 (18)0.0132 (16)0.0255 (18)0.0033 (13)0.0011 (14)0.0075 (13)
C840.035 (2)0.0110 (16)0.0287 (19)0.0035 (14)0.0059 (16)0.0043 (14)
N90.0175 (14)0.0114 (13)0.0241 (15)0.0032 (11)0.0032 (11)0.0051 (11)
C900.030 (2)0.0140 (17)0.037 (2)0.0017 (15)0.0087 (16)0.0078 (15)
C910.039 (2)0.0169 (18)0.050 (3)0.0075 (17)0.012 (2)0.0045 (17)
C920.040 (3)0.034 (2)0.041 (2)0.0142 (19)0.001 (2)0.0135 (19)
C930.044 (3)0.038 (2)0.026 (2)0.0056 (19)0.0035 (18)0.0059 (17)
C940.031 (2)0.0180 (17)0.0268 (19)0.0019 (15)0.0005 (15)0.0063 (14)
N100.0224 (15)0.0095 (13)0.0245 (15)0.0015 (11)0.0019 (12)0.0114 (11)
C1000.0251 (19)0.0205 (17)0.0285 (19)0.0076 (15)0.0016 (15)0.0113 (15)
C1010.035 (2)0.0198 (18)0.034 (2)0.0114 (16)0.0017 (17)0.0137 (15)
C1020.049 (3)0.0140 (17)0.030 (2)0.0043 (16)0.0088 (18)0.0117 (15)
C1030.042 (2)0.0198 (18)0.035 (2)0.0065 (17)0.0005 (18)0.0174 (16)
C1040.0246 (19)0.0185 (17)0.039 (2)0.0028 (15)0.0002 (16)0.0154 (16)
N110.0252 (16)0.0139 (13)0.0227 (15)0.0015 (12)0.0015 (12)0.0106 (11)
C1100.030 (2)0.0243 (19)0.031 (2)0.0003 (16)0.0078 (16)0.0119 (15)
C1110.048 (3)0.029 (2)0.034 (2)0.0061 (19)0.0173 (19)0.0107 (17)
C1120.061 (3)0.030 (2)0.026 (2)0.005 (2)0.006 (2)0.0050 (17)
C1130.046 (3)0.024 (2)0.030 (2)0.0018 (18)0.0057 (18)0.0053 (16)
C1140.030 (2)0.0177 (17)0.0263 (19)0.0014 (15)0.0011 (15)0.0058 (14)
N120.0159 (14)0.0082 (12)0.0186 (14)0.0006 (10)0.0002 (11)0.0038 (10)
C1200.0178 (17)0.0159 (16)0.0235 (18)0.0006 (13)0.0016 (13)0.0079 (13)
C1210.0254 (19)0.0260 (19)0.0252 (19)0.0008 (15)0.0074 (15)0.0085 (15)
C1220.041 (2)0.027 (2)0.0195 (18)0.0039 (17)0.0037 (16)0.0020 (15)
C1230.031 (2)0.0201 (17)0.0234 (19)0.0091 (15)0.0046 (15)0.0040 (14)
C1240.0186 (17)0.0162 (16)0.0224 (17)0.0047 (13)0.0007 (13)0.0068 (13)
N130.0169 (14)0.0069 (12)0.0209 (14)0.0004 (10)0.0002 (11)0.0041 (10)
C1300.0163 (17)0.0133 (15)0.0253 (18)0.0020 (13)0.0017 (13)0.0077 (13)
C1310.0233 (19)0.0184 (17)0.0274 (19)0.0046 (14)0.0060 (15)0.0081 (14)
C1320.036 (2)0.0202 (17)0.0194 (18)0.0010 (15)0.0008 (15)0.0029 (14)
C1330.0234 (19)0.0220 (18)0.0255 (19)0.0013 (14)0.0063 (15)0.0046 (14)
C1340.0166 (17)0.0141 (15)0.0245 (18)0.0001 (13)0.0008 (13)0.0054 (13)
N140.0235 (16)0.0137 (13)0.0237 (15)0.0006 (11)0.0005 (12)0.0090 (11)
C1400.0276 (19)0.0124 (16)0.0270 (19)0.0009 (14)0.0032 (15)0.0085 (13)
C1410.037 (2)0.0208 (18)0.031 (2)0.0007 (16)0.0088 (17)0.0063 (15)
C1420.050 (3)0.031 (2)0.024 (2)0.0021 (19)0.0001 (18)0.0039 (16)
C1430.051 (3)0.032 (2)0.032 (2)0.003 (2)0.014 (2)0.0037 (17)
C1440.033 (2)0.0243 (19)0.031 (2)0.0048 (16)0.0054 (17)0.0096 (16)
N150.0216 (15)0.0104 (13)0.0239 (15)0.0017 (11)0.0012 (12)0.0110 (11)
C1500.0249 (19)0.0170 (17)0.030 (2)0.0059 (14)0.0017 (15)0.0108 (14)
C1510.033 (2)0.0220 (18)0.035 (2)0.0099 (16)0.0003 (17)0.0134 (16)
C1520.049 (3)0.0171 (17)0.0242 (19)0.0082 (17)0.0033 (17)0.0143 (15)
C1530.043 (2)0.0216 (19)0.044 (2)0.0022 (17)0.0137 (19)0.0236 (17)
C1540.025 (2)0.0242 (19)0.053 (3)0.0065 (16)0.0095 (18)0.0249 (18)
N160.0170 (14)0.0107 (13)0.0257 (15)0.0025 (11)0.0021 (11)0.0075 (11)
C1600.028 (2)0.0175 (17)0.031 (2)0.0003 (15)0.0010 (16)0.0093 (15)
C1610.043 (2)0.030 (2)0.026 (2)0.0016 (18)0.0058 (17)0.0078 (16)
C1620.041 (2)0.026 (2)0.029 (2)0.0076 (17)0.0043 (18)0.0011 (16)
C1630.0270 (19)0.0137 (16)0.031 (2)0.0022 (14)0.0024 (15)0.0085 (14)
C1640.037 (2)0.0133 (17)0.034 (2)0.0002 (15)0.0102 (17)0.0029 (15)
P10.0272 (5)0.0186 (4)0.0237 (5)0.0019 (4)0.0075 (4)0.0030 (4)
F10.0328 (14)0.0671 (18)0.0595 (17)0.0170 (13)0.0141 (12)0.0320 (15)
F20.070 (2)0.113 (3)0.0451 (17)0.057 (2)0.0120 (15)0.0227 (18)
F30.0456 (16)0.0345 (13)0.0606 (17)0.0053 (12)0.0128 (13)0.0237 (12)
F40.0385 (15)0.0222 (12)0.084 (2)0.0087 (11)0.0259 (14)0.0034 (12)
F50.0581 (17)0.0325 (13)0.0373 (14)0.0114 (12)0.0052 (12)0.0009 (11)
F60.0383 (15)0.0687 (18)0.0493 (16)0.0053 (13)0.0037 (12)0.0399 (14)
P20.0267 (5)0.0211 (5)0.0292 (5)0.0039 (4)0.0029 (4)0.0022 (4)
F100.0461 (16)0.0439 (15)0.0477 (15)0.0156 (12)0.0144 (12)0.0073 (12)
P30.0276 (5)0.0140 (4)0.0243 (5)0.0012 (4)0.0008 (4)0.0030 (3)
F130.0341 (13)0.0411 (14)0.0373 (13)0.0107 (11)0.0034 (11)0.0047 (11)
F140.0348 (15)0.075 (2)0.0396 (15)0.0048 (14)0.0139 (12)0.0006 (13)
F150.0386 (14)0.0213 (11)0.0548 (15)0.0028 (10)0.0002 (11)0.0152 (10)
F160.0551 (17)0.0303 (13)0.0400 (14)0.0007 (12)0.0174 (12)0.0052 (10)
F170.0451 (15)0.0664 (18)0.0325 (13)0.0304 (14)0.0025 (11)0.0220 (12)
F180.078 (2)0.0277 (14)0.089 (2)0.0079 (14)0.0428 (18)0.0141 (14)
P40.0216 (5)0.0177 (4)0.0272 (5)0.0021 (4)0.0032 (4)0.0049 (4)
Geometric parameters (Å, º) top
Co1—O32.016 (2)C62—H620.9300
Co1—N22.112 (3)C63—C641.379 (5)
Co1—O12.125 (2)C63—H630.9300
Co1—N12.183 (3)C64—H640.9300
Co1—N32.185 (3)N7—C741.341 (5)
Co1—O22.203 (2)N7—C701.343 (4)
Co1—C12.513 (3)C70—C711.377 (5)
C1—O11.264 (4)C70—H700.9300
C1—O21.277 (4)C71—C721.374 (5)
C1—C21.494 (4)C71—H710.9300
O2—Co22.154 (2)C72—C731.385 (5)
C2—H2A0.9600C72—H720.9300
C2—H2B0.9600C73—C741.392 (5)
C2—H2C0.9600C73—H730.9300
C3—O41.248 (4)C74—H740.9300
C3—O31.272 (4)N8—C831.336 (4)
C3—C41.499 (4)N8—C801.341 (4)
O4—Co22.057 (2)C80—C811.389 (5)
C4—H4A0.9600C80—H800.9300
C4—H4B0.9600C81—C821.385 (5)
C4—H4C0.9600C81—H810.9300
Co2—O52.060 (2)C82—C841.385 (5)
Co2—O72.134 (2)C82—H820.9300
Co2—N52.139 (3)C83—C841.385 (5)
Co2—N42.140 (3)C83—H830.9300
C5—O51.253 (4)C84—H840.9300
C5—O61.264 (4)N9—C941.338 (5)
C5—C61.510 (4)N9—C901.339 (4)
C6—H6A0.9600C90—C911.373 (6)
C6—H6B0.9600C90—H900.9300
C6—H6C0.9600C91—C921.376 (7)
O6—Co32.014 (2)C91—H910.9300
Co3—N72.119 (3)C92—C931.394 (6)
Co3—O82.138 (2)C92—H920.9300
Co3—N82.178 (3)C93—C941.377 (5)
Co3—N62.183 (3)C93—H930.9300
Co3—O72.199 (2)C94—H940.9300
C7—O81.257 (4)N10—C1041.338 (5)
C7—O71.286 (4)N10—C1001.339 (5)
C7—C81.497 (4)C100—C1011.383 (5)
C8—H8A0.9600C100—H1000.9300
C8—H8B0.9600C101—C1021.372 (6)
C8—H8C0.9600C101—H1010.9300
Co4—O92.019 (2)C102—C1031.377 (6)
Co4—O112.119 (2)C102—H1020.9300
Co4—N102.120 (3)C103—C1041.393 (5)
Co4—N112.163 (3)C103—H1030.9300
Co4—N92.179 (3)C104—H1040.9300
Co4—O122.193 (2)N11—C1141.345 (5)
Co4—C3B2.509 (3)N11—C1101.350 (5)
C1B—O101.256 (4)C110—C1111.379 (5)
C1B—O91.262 (4)C110—H1100.9300
C1B—C2B1.507 (4)C111—C1121.385 (6)
O10—Co52.053 (2)C111—H1110.9300
C2B—H2B10.9600C112—C1131.381 (6)
C2B—H2B20.9600C112—H1120.9300
C2B—H2B30.9600C113—C1141.383 (5)
C3B—O111.262 (4)C113—H1130.9300
C3B—O121.278 (4)C114—H1140.9300
C3B—C4B1.496 (4)N12—C1241.342 (4)
O12—Co52.144 (2)N12—C1201.347 (4)
Co5—O132.054 (2)C120—C1211.385 (5)
Co5—N122.137 (3)C120—H1200.9300
Co5—N132.144 (3)C121—C1221.386 (5)
Co5—O152.145 (2)C121—H1210.9300
C4B—H4B10.9600C122—C1231.381 (6)
C4B—H4B20.9600C122—H1220.9300
C4B—H4B30.9600C123—C1241.375 (5)
C5B—O131.245 (4)C123—H1230.9300
C5B—O141.269 (4)C124—H1240.9300
C5B—C6B1.507 (4)N13—C1341.344 (4)
O14—Co62.026 (2)N13—C1301.344 (4)
C6B—H6B10.9600C130—C1311.386 (5)
C6B—H6B20.9600C130—H1300.9300
C6B—H6B30.9600C131—C1321.373 (5)
C7B—O161.252 (4)C131—H1310.9300
C7B—O151.282 (4)C132—C1331.388 (5)
C7B—C8B1.503 (4)C132—H1320.9300
C7B—Co62.501 (3)C133—C1341.383 (5)
O15—Co62.183 (2)C133—H1330.9300
O16—Co62.129 (2)C134—H1340.9300
C8B—H8B10.9600N14—C1441.344 (5)
C8B—H8B20.9600N14—C1401.345 (5)
C8B—H8B30.9600C140—C1411.386 (5)
Co6—N152.122 (3)C140—H1400.9300
Co6—N142.161 (3)C141—C1421.378 (6)
Co6—N162.182 (3)C141—H1410.9300
N1—C141.332 (4)C142—C1431.384 (6)
N1—C101.345 (4)C142—H1420.9300
C10—C111.386 (5)C143—C1441.370 (6)
C10—H100.9300C143—H1430.9300
C11—C121.381 (5)C144—H1440.9300
C11—H110.9300N15—C1501.331 (5)
C12—C131.381 (5)N15—C1541.339 (5)
C12—H120.9300C150—C1511.386 (5)
C13—C141.390 (5)C150—H1500.9300
C13—H130.9300C151—C1521.380 (6)
C14—H140.9300C151—H1510.9300
N2—C241.335 (5)C152—C1531.371 (6)
N2—C201.345 (4)C152—H1520.9300
C20—C211.379 (5)C153—C1541.388 (5)
C20—H200.9300C153—H1530.9300
C21—C221.389 (6)C154—H1540.9300
C21—H210.9300N16—C1601.339 (5)
C22—C231.380 (6)N16—C1631.340 (4)
C22—H220.9300C160—C1611.382 (5)
C23—C241.385 (5)C160—H1600.9300
C23—H230.9300C161—C1621.387 (6)
C24—H240.9300C161—H1610.9300
N3—C301.337 (5)C162—C1641.378 (6)
N3—C341.342 (5)C162—H1620.9300
C30—C311.376 (5)C163—C1641.379 (5)
C30—H300.9300C163—H1630.9300
C31—C321.381 (6)C164—H1640.9300
C31—H310.9300P1—F51.587 (2)
C32—C331.371 (6)P1—F11.587 (3)
C32—H320.9300P1—F21.589 (3)
C33—C341.382 (5)P1—F61.595 (2)
C33—H330.9300P1—F31.597 (2)
C34—H340.9300P1—F41.598 (3)
N4—C441.341 (4)P2—F11B1.533 (6)
N4—C401.342 (4)P2—F81.557 (4)
C40—C411.372 (5)P2—F12B1.557 (7)
C40—H400.9300P2—F91.564 (4)
C41—C421.388 (5)P2—F101.596 (2)
C41—H410.9300P2—F71.600 (4)
C42—C431.379 (5)P2—F7B1.624 (5)
C42—H420.9300P2—F121.632 (5)
C43—C441.387 (5)P2—F8B1.645 (5)
C43—H430.9300P2—F9B1.649 (5)
C44—H440.9300P2—F111.662 (4)
N5—C541.342 (4)P3—F181.588 (3)
N5—C501.346 (4)P3—F171.589 (3)
C50—C511.389 (5)P3—F131.597 (2)
C50—H500.9300P3—F161.598 (2)
C51—C521.381 (6)P3—F151.599 (2)
C51—H510.9300P3—F141.600 (3)
C52—C531.391 (6)P4—F231.562 (4)
C52—H520.9300P4—F20B1.564 (5)
C53—C541.385 (5)P4—F22B1.574 (5)
C53—H530.9300P4—F24B1.592 (5)
C54—H540.9300P4—F211.593 (4)
N6—C601.341 (4)P4—F241.596 (4)
N6—C641.345 (5)P4—F191.602 (4)
C60—C611.377 (5)P4—F221.608 (4)
C60—H600.9300P4—F21B1.623 (5)
C61—C621.378 (6)P4—F19B1.627 (5)
C61—H610.9300P4—F23B1.627 (5)
C62—C631.380 (6)P4—F201.631 (4)
O3—Co1—N2102.10 (10)C51—C52—H52120.7
O3—Co1—O1160.92 (9)C53—C52—H52120.7
N2—Co1—O196.73 (10)C54—C53—C52119.1 (4)
O3—Co1—N188.61 (10)C54—C53—H53120.5
N2—Co1—N190.96 (10)C52—C53—H53120.5
O1—Co1—N188.01 (10)N5—C54—C53122.9 (3)
O3—Co1—N392.98 (10)N5—C54—H54118.5
N2—Co1—N385.05 (10)C53—C54—H54118.5
O1—Co1—N391.68 (10)C60—N6—C64116.7 (3)
N1—Co1—N3175.94 (10)C60—N6—Co3122.9 (2)
O3—Co1—O2101.10 (8)C64—N6—Co3120.1 (2)
N2—Co1—O2155.93 (10)N6—C60—C61123.5 (4)
O1—Co1—O260.63 (8)N6—C60—H60118.2
N1—Co1—O295.94 (9)C61—C60—H60118.2
N3—Co1—O287.43 (9)C60—C61—C62118.9 (4)
O3—Co1—C1131.56 (9)C60—C61—H61120.5
N2—Co1—C1126.19 (11)C62—C61—H61120.5
O1—Co1—C130.18 (9)C61—C62—C63118.7 (4)
N1—Co1—C193.66 (10)C61—C62—H62120.7
N3—Co1—C188.09 (11)C63—C62—H62120.7
O2—Co1—C130.52 (9)C64—C63—C62118.8 (4)
O1—C1—O2118.7 (3)C64—C63—H63120.6
O1—C1—C2119.9 (3)C62—C63—H63120.6
O2—C1—C2121.4 (3)N6—C64—C63123.4 (4)
O1—C1—Co157.65 (16)N6—C64—H64118.3
O2—C1—Co161.20 (16)C63—C64—H64118.3
C2—C1—Co1174.2 (2)C74—N7—C70118.0 (3)
C1—O1—Co192.17 (18)C74—N7—Co3119.2 (2)
C1—O2—Co2147.3 (2)C70—N7—Co3122.5 (2)
C1—O2—Co188.28 (18)N7—C70—C71122.7 (3)
Co2—O2—Co1122.57 (10)N7—C70—H70118.7
C1—C2—H2A109.5C71—C70—H70118.7
C1—C2—H2B109.5C72—C71—C70119.3 (3)
H2A—C2—H2B109.5C72—C71—H71120.4
C1—C2—H2C109.5C70—C71—H71120.4
H2A—C2—H2C109.5C71—C72—C73119.0 (3)
H2B—C2—H2C109.5C71—C72—H72120.5
O4—C3—O3125.2 (3)C73—C72—H72120.5
O4—C3—C4118.3 (3)C72—C73—C74118.5 (4)
O3—C3—C4116.5 (3)C72—C73—H73120.8
C3—O3—Co1128.7 (2)C74—C73—H73120.8
C3—O4—Co2149.2 (2)N7—C74—C73122.6 (3)
C3—C4—H4A109.5N7—C74—H74118.7
C3—C4—H4B109.5C73—C74—H74118.7
H4A—C4—H4B109.5C83—N8—C80116.9 (3)
C3—C4—H4C109.5C83—N8—Co3120.5 (2)
H4A—C4—H4C109.5C80—N8—Co3122.6 (2)
H4B—C4—H4C109.5N8—C80—C81123.1 (3)
O4—Co2—O5179.18 (9)N8—C80—H80118.4
O4—Co2—O791.29 (8)C81—C80—H80118.4
O5—Co2—O789.02 (8)C82—C81—C80119.3 (3)
O4—Co2—N590.20 (10)C82—C81—H81120.4
O5—Co2—N590.55 (10)C80—C81—H81120.4
O7—Co2—N591.66 (9)C84—C82—C81117.9 (3)
O4—Co2—N490.06 (10)C84—C82—H82121.0
O5—Co2—N489.19 (10)C81—C82—H82121.0
O7—Co2—N487.41 (9)N8—C83—C84123.8 (3)
N5—Co2—N4179.04 (9)N8—C83—H83118.1
O4—Co2—O288.54 (8)C84—C83—H83118.1
O5—Co2—O291.17 (8)C82—C84—C83119.0 (3)
O7—Co2—O2178.77 (8)C82—C84—H84120.5
N5—Co2—O287.13 (9)C83—C84—H84120.5
N4—Co2—O293.81 (9)C94—N9—C90117.1 (3)
O5—C5—O6125.6 (3)C94—N9—Co4122.2 (2)
O5—C5—C6117.6 (3)C90—N9—Co4120.7 (3)
O6—C5—C6116.8 (3)N9—C90—C91123.6 (4)
C5—C6—H6A109.5N9—C90—H90118.2
C5—C6—H6B109.5C91—C90—H90118.2
H6A—C6—H6B109.5C90—C91—C92118.7 (4)
C5—C6—H6C109.5C90—C91—H91120.7
H6A—C6—H6C109.5C92—C91—H91120.7
H6B—C6—H6C109.5C91—C92—C93118.9 (4)
C5—O5—Co2146.7 (2)C91—C92—H92120.6
C5—O6—Co3128.4 (2)C93—C92—H92120.6
O6—Co3—N7107.47 (10)C94—C93—C92118.3 (4)
O6—Co3—O8160.29 (9)C94—C93—H93120.8
N7—Co3—O891.90 (10)C92—C93—H93120.9
O6—Co3—N888.16 (10)N9—C94—C93123.4 (3)
N7—Co3—N891.41 (10)N9—C94—H94118.3
O8—Co3—N887.75 (10)C93—C94—H94118.3
O6—Co3—N690.64 (10)C104—N10—C100118.3 (3)
N7—Co3—N685.04 (10)C104—N10—Co4121.9 (2)
O8—Co3—N694.72 (10)C100—N10—Co4119.7 (2)
N8—Co3—N6175.73 (10)N10—C100—C101122.6 (4)
O6—Co3—O7100.76 (8)N10—C100—H100118.7
N7—Co3—O7151.33 (10)C101—C100—H100118.7
O8—Co3—O760.39 (8)C102—C101—C100119.3 (4)
N8—Co3—O794.45 (9)C102—C101—H101120.4
N6—Co3—O789.81 (9)C100—C101—H101120.4
O8—C7—O7118.2 (3)C101—C102—C103118.6 (3)
O8—C7—C8120.4 (3)C101—C102—H102120.7
O7—C7—C8121.4 (3)C103—C102—H102120.7
C7—O7—Co2146.7 (2)C102—C103—C104119.5 (4)
C7—O7—Co388.92 (18)C102—C103—H103120.3
Co2—O7—Co3122.52 (10)C104—C103—H103120.3
C7—O8—Co392.45 (19)N10—C104—C103121.8 (4)
C7—C8—H8A109.5N10—C104—H104119.1
C7—C8—H8B109.5C103—C104—H104119.1
H8A—C8—H8B109.5C114—N11—C110117.6 (3)
C7—C8—H8C109.5C114—N11—Co4119.6 (2)
H8A—C8—H8C109.5C110—N11—Co4122.2 (2)
H8B—C8—H8C109.5N11—C110—C111122.7 (4)
O9—Co4—O11162.22 (9)N11—C110—H110118.7
O9—Co4—N1097.29 (10)C111—C110—H110118.7
O11—Co4—N10100.03 (10)C110—C111—C112119.3 (4)
O9—Co4—N1195.05 (10)C110—C111—H111120.4
O11—Co4—N1189.96 (10)C112—C111—H111120.4
N10—Co4—N1186.60 (11)C113—C112—C111118.5 (4)
O9—Co4—N988.22 (10)C113—C112—H112120.7
O11—Co4—N988.00 (10)C111—C112—H112120.7
N10—Co4—N989.34 (10)C112—C113—C114119.1 (4)
N11—Co4—N9175.08 (10)C112—C113—H113120.4
O9—Co4—O12101.79 (8)C114—C113—H113120.4
O11—Co4—O1260.79 (8)N11—C114—C113122.8 (4)
N10—Co4—O12160.80 (10)N11—C114—H114118.6
N11—Co4—O1293.71 (9)C113—C114—H114118.6
N9—Co4—O1289.20 (9)C124—N12—C120117.8 (3)
O9—Co4—C3B132.38 (9)C124—N12—Co5120.7 (2)
O11—Co4—C3B30.18 (9)C120—N12—Co5121.4 (2)
N10—Co4—C3B130.21 (11)N12—C120—C121122.7 (3)
N11—Co4—C3B91.42 (11)N12—C120—H120118.7
N9—Co4—C3B89.07 (10)C121—C120—H120118.7
O12—Co4—C3B30.62 (9)C120—C121—C122118.7 (3)
O10—C1B—O9125.5 (3)C120—C121—H121120.6
O10—C1B—C2B117.3 (3)C122—C121—H121120.6
O9—C1B—C2B117.2 (3)C123—C122—C121118.6 (3)
C1B—O9—Co4128.2 (2)C123—C122—H122120.7
C1B—O10—Co5149.1 (2)C121—C122—H122120.7
C1B—C2B—H2B1109.5C124—C123—C122119.5 (3)
C1B—C2B—H2B2109.5C124—C123—H123120.3
H2B1—C2B—H2B2109.5C122—C123—H123120.3
C1B—C2B—H2B3109.5N12—C124—C123122.6 (3)
H2B1—C2B—H2B3109.5N12—C124—H124118.7
H2B2—C2B—H2B3109.5C123—C124—H124118.7
O11—C3B—O12118.5 (3)C134—N13—C130117.2 (3)
O11—C3B—C4B119.8 (3)C134—N13—Co5121.8 (2)
O12—C3B—C4B121.7 (3)C130—N13—Co5120.9 (2)
O11—C3B—Co457.59 (16)N13—C130—C131123.0 (3)
O12—C3B—Co460.92 (16)N13—C130—H130118.5
C4B—C3B—Co4175.9 (2)C131—C130—H130118.5
C3B—O11—Co492.23 (19)C132—C131—C130118.9 (3)
C3B—O12—Co5147.8 (2)C132—C131—H131120.5
C3B—O12—Co488.46 (17)C130—C131—H131120.5
Co5—O12—Co4121.30 (10)C131—C132—C133119.2 (3)
O10—Co5—O13178.96 (9)C131—C132—H132120.4
O10—Co5—N1292.36 (10)C133—C132—H132120.4
O13—Co5—N1288.51 (10)C134—C133—C132118.2 (3)
O10—Co5—O1289.30 (8)C134—C133—H133120.9
O13—Co5—O1291.26 (8)C132—C133—H133120.9
N12—Co5—O1290.64 (9)N13—C134—C133123.4 (3)
O10—Co5—N1388.66 (10)N13—C134—H134118.3
O13—Co5—N1390.46 (10)C133—C134—H134118.3
N12—Co5—N13178.72 (10)C144—N14—C140117.3 (3)
O12—Co5—N1390.15 (9)C144—N14—Co6120.0 (2)
O10—Co5—O1590.23 (8)C140—N14—Co6121.9 (2)
O13—Co5—O1589.23 (8)N14—C140—C141122.9 (4)
N12—Co5—O1588.05 (9)N14—C140—H140118.5
O12—Co5—O15178.58 (8)C141—C140—H140118.5
N13—Co5—O1591.17 (9)C142—C141—C140118.8 (4)
C3B—C4B—H4B1109.5C142—C141—H141120.6
C3B—C4B—H4B2109.5C140—C141—H141120.6
H4B1—C4B—H4B2109.5C141—C142—C143118.6 (4)
C3B—C4B—H4B3109.5C141—C142—H142120.7
H4B1—C4B—H4B3109.5C143—C142—H142120.7
H4B2—C4B—H4B3109.5C144—C143—C142119.3 (4)
O13—C5B—O14125.5 (3)C144—C143—H143120.4
O13—C5B—C6B117.6 (3)C142—C143—H143120.4
O14—C5B—C6B116.8 (3)N14—C144—C143123.1 (4)
C5B—O13—Co5149.7 (2)N14—C144—H144118.5
C5B—O14—Co6127.2 (2)C143—C144—H144118.5
C5B—C6B—H6B1109.5C150—N15—C154117.9 (3)
C5B—C6B—H6B2109.5C150—N15—Co6119.7 (2)
H6B1—C6B—H6B2109.5C154—N15—Co6122.4 (2)
C5B—C6B—H6B3109.5N15—C150—C151123.5 (4)
H6B1—C6B—H6B3109.5N15—C150—H150118.3
H6B2—C6B—H6B3109.5C151—C150—H150118.3
O16—C7B—O15119.0 (3)C152—C151—C150118.2 (4)
O16—C7B—C8B119.9 (3)C152—C151—H151120.9
O15—C7B—C8B121.0 (3)C150—C151—H151120.9
O16—C7B—Co658.29 (16)C153—C152—C151118.9 (3)
O15—C7B—Co660.76 (15)C153—C152—H152120.6
C8B—C7B—Co6178.0 (2)C151—C152—H152120.6
C7B—O15—Co5148.4 (2)C152—C153—C154119.6 (4)
C7B—O15—Co688.41 (17)C152—C153—H153120.2
Co5—O15—Co6121.45 (10)C154—C153—H153120.2
C7B—O16—Co691.69 (19)N15—C154—C153122.0 (4)
C7B—C8B—H8B1109.5N15—C154—H154119.0
C7B—C8B—H8B2109.5C153—C154—H154119.0
H8B1—C8B—H8B2109.5C160—N16—C163117.2 (3)
C7B—C8B—H8B3109.5C160—N16—Co6123.8 (2)
H8B1—C8B—H8B3109.5C163—N16—Co6119.0 (2)
H8B2—C8B—H8B3109.5N16—C160—C161122.9 (3)
O14—Co6—N15100.42 (10)N16—C160—H160118.5
O14—Co6—O16162.49 (9)C161—C160—H160118.5
N15—Co6—O1696.29 (10)C160—C161—C162119.1 (4)
O14—Co6—N1495.28 (11)C160—C161—H161120.4
N15—Co6—N1485.65 (11)C162—C161—H161120.4
O16—Co6—N1491.14 (10)C164—C162—C161118.3 (4)
O14—Co6—N1688.19 (10)C164—C162—H162120.9
N15—Co6—N1689.42 (10)C161—C162—H162120.9
O16—Co6—N1686.79 (10)N16—C163—C164123.5 (4)
N14—Co6—N16174.41 (10)N16—C163—H163118.2
O14—Co6—O15102.54 (8)C164—C163—H163118.2
N15—Co6—O15157.04 (10)C162—C164—C163119.0 (3)
O16—Co6—O1560.85 (8)C162—C164—H164120.5
N14—Co6—O1592.24 (9)C163—C164—H164120.5
N16—Co6—O1591.28 (9)F5—P1—F190.70 (16)
O14—Co6—C7B133.21 (9)F5—P1—F2178.9 (2)
N15—Co6—C7B126.26 (11)F1—P1—F290.34 (19)
O16—Co6—C7B30.02 (9)F5—P1—F689.73 (15)
N14—Co6—C7B91.56 (11)F1—P1—F690.52 (15)
N16—Co6—C7B89.24 (10)F2—P1—F690.49 (18)
O15—Co6—C7B30.83 (9)F5—P1—F390.02 (14)
C14—N1—C10116.9 (3)F1—P1—F388.68 (14)
C14—N1—Co1120.5 (2)F2—P1—F389.78 (17)
C10—N1—Co1122.7 (2)F6—P1—F3179.15 (16)
N1—C10—C11123.0 (3)F5—P1—F488.64 (16)
N1—C10—H10118.5F1—P1—F4178.83 (16)
C11—C10—H10118.5F2—P1—F490.32 (18)
C12—C11—C10119.3 (3)F6—P1—F490.44 (15)
C12—C11—H11120.4F3—P1—F490.37 (14)
C10—C11—H11120.4F11B—P2—F12B94.6 (3)
C13—C12—C11118.3 (3)F8—P2—F996.6 (3)
C13—C12—H12120.8F8—P2—F1096.1 (2)
C11—C12—H12120.8F9—P2—F1091.8 (2)
C12—C13—C14118.6 (3)F8—P2—F792.8 (3)
C12—C13—H13120.7F9—P2—F791.6 (3)
C14—C13—H13120.7F10—P2—F7170.1 (2)
N1—C14—C13123.9 (3)F11B—P2—F7B93.8 (3)
N1—C14—H14118.1F12B—P2—F7B89.4 (4)
C13—C14—H14118.1F9—P2—F7B86.5 (3)
C24—N2—C20117.7 (3)F8—P2—F1288.9 (3)
C24—N2—Co1119.5 (2)F9—P2—F12174.4 (3)
C20—N2—Co1122.5 (2)F10—P2—F1286.7 (2)
N2—C20—C21122.7 (3)F7—P2—F1289.1 (3)
N2—C20—H20118.6F11B—P2—F8B175.5 (3)
C21—C20—H20118.6F12B—P2—F8B89.9 (3)
C20—C21—C22119.1 (3)F7B—P2—F8B85.6 (3)
C20—C21—H21120.5F11B—P2—F9B91.3 (3)
C22—C21—H21120.5F12B—P2—F9B173.4 (4)
C23—C22—C21118.5 (3)F7B—P2—F9B87.2 (3)
C23—C22—H22120.8F8—P2—F11174.0 (3)
C21—C22—H22120.8F9—P2—F1189.3 (3)
C22—C23—C24118.9 (4)F10—P2—F1182.8 (2)
C22—C23—H23120.6F7—P2—F1188.0 (2)
C24—C23—H23120.6F7B—P2—F11108.3 (3)
N2—C24—C23123.1 (4)F12—P2—F1185.2 (3)
N2—C24—H24118.4F8B—P2—F11159.0 (3)
C23—C24—H24118.4F9B—P2—F11111.5 (3)
C30—N3—C34116.7 (3)F18—P3—F1791.27 (18)
C30—N3—Co1120.4 (2)F18—P3—F1390.18 (15)
C34—N3—Co1122.8 (2)F17—P3—F1390.13 (13)
N3—C30—C31123.6 (4)F18—P3—F1690.78 (14)
N3—C30—H30118.2F17—P3—F1690.11 (14)
C31—C30—H30118.2F13—P3—F16179.01 (15)
C30—C31—C32118.7 (4)F18—P3—F15179.8 (2)
C30—C31—H31120.6F17—P3—F1588.90 (14)
C32—C31—H31120.6F13—P3—F1589.88 (14)
C33—C32—C31118.8 (4)F16—P3—F1589.16 (14)
C33—C32—H32120.6F18—P3—F1490.28 (18)
C31—C32—H32120.6F17—P3—F14178.19 (16)
C32—C33—C34118.8 (4)F13—P3—F1488.94 (14)
C32—C33—H33120.6F16—P3—F1490.80 (15)
C34—C33—H33120.6F15—P3—F1489.55 (15)
N3—C34—C33123.4 (4)F20B—P4—F22B98.7 (4)
N3—C34—H34118.3F20B—P4—F24B88.5 (4)
C33—C34—H34118.3F22B—P4—F24B92.9 (4)
C44—N4—C40117.1 (3)F23—P4—F2190.7 (2)
C44—N4—Co2122.8 (2)F23—P4—F2493.0 (2)
C40—N4—Co2119.9 (2)F21—P4—F24176.1 (2)
N4—C40—C41123.2 (3)F23—P4—F1992.5 (2)
N4—C40—H40118.4F21—P4—F1989.1 (2)
C41—C40—H40118.4F24—P4—F1992.2 (2)
C40—C41—C42119.3 (4)F23—P4—F2291.6 (2)
C40—C41—H41120.3F21—P4—F2290.2 (3)
C42—C41—H41120.3F24—P4—F2288.3 (2)
C43—C42—C41118.2 (3)F19—P4—F22175.9 (2)
C43—C42—H42120.9F20B—P4—F21B94.8 (4)
C41—C42—H42120.9F22B—P4—F21B89.5 (4)
C42—C43—C44118.9 (3)F24B—P4—F21B175.6 (4)
C42—C43—H43120.6F20B—P4—F19B85.3 (4)
C44—C43—H43120.6F22B—P4—F19B174.0 (4)
N4—C44—C43123.2 (3)F24B—P4—F19B91.6 (4)
N4—C44—H44118.4F21B—P4—F19B85.8 (4)
C43—C44—H44118.4F20B—P4—F23B173.7 (4)
C54—N5—C50117.5 (3)F22B—P4—F23B87.5 (4)
C54—N5—Co2119.5 (2)F24B—P4—F23B90.4 (4)
C50—N5—Co2122.8 (2)F21B—P4—F23B86.1 (4)
N5—C50—C51123.1 (3)F19B—P4—F23B88.5 (4)
N5—C50—H50118.4F23—P4—F20178.7 (2)
C51—C50—H50118.4F21—P4—F2089.0 (2)
C52—C51—C50118.8 (3)F24—P4—F2087.3 (2)
C52—C51—H51120.6F19—P4—F2088.8 (2)
C50—C51—H51120.6F22—P4—F2087.1 (2)
C51—C52—C53118.6 (3)
(II) top
Crystal data top
[Co3(C2H3O2)4(C5H5N)8](PF6)2Z = 1
Mr = 1335.71F(000) = 679
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.67110 Å
a = 10.688 (4) ÅCell parameters from 3499 reflections
b = 11.839 (4) Åθ = 3.0–26.9°
c = 12.480 (4) ŵ = 1.05 mm1
α = 98.149 (5)°T = 120 K
β = 103.605 (5)°Needle, pink
γ = 111.722 (5)°0.1 × 0.02 × 0.02 mm
V = 1379.3 (8) Å3
Data collection top
Bruker D8
diffractometer
5565 independent reflections
Radiation source: Daresbury SRS Station 9.83897 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.052
ω rotation with narrow frames scansθmax = 24.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.207, Tmax = 1k = 1414
11698 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1413P)2 + 0.0662P]
where P = (Fo2 + 2Fc2)/3
5565 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Co3(C2H3O2)4(C5H5N)8](PF6)2γ = 111.722 (5)°
Mr = 1335.71V = 1379.3 (8) Å3
Triclinic, P1Z = 1
a = 10.688 (4) ÅSynchrotron radiation, λ = 0.67110 Å
b = 11.839 (4) ŵ = 1.05 mm1
c = 12.480 (4) ÅT = 120 K
α = 98.149 (5)°0.1 × 0.02 × 0.02 mm
β = 103.605 (5)°
Data collection top
Bruker D8
diffractometer
5565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3897 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 1Rint = 0.052
11698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.03Δρmax = 1.29 e Å3
5565 reflectionsΔρmin = 0.84 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.0251 (3)
O10.0951 (4)0.1167 (3)0.0320 (3)0.0316 (8)
O20.0088 (4)0.3256 (3)0.0552 (3)0.0371 (9)
C10.0998 (6)0.2202 (5)0.0310 (4)0.0314 (11)
C20.2417 (6)0.2246 (6)0.0035 (5)0.0418 (13)
H2A0.30480.16240.06830.063*
H2B0.23080.30870.00410.063*
H2C0.28240.20550.06490.063*
Co20.21063 (7)0.35336 (6)0.07863 (6)0.0318 (2)
O30.1867 (4)0.1623 (3)0.0132 (3)0.0311 (8)
O40.3916 (4)0.3243 (3)0.0648 (3)0.0356 (8)
C30.3190 (5)0.2063 (5)0.0248 (4)0.0313 (11)
C40.3864 (6)0.1229 (5)0.0078 (5)0.0369 (12)
H4A0.31330.03720.04360.055*
H4B0.45440.12300.06030.055*
H4C0.43590.15360.06180.055*
N10.0725 (4)0.0084 (4)0.1758 (4)0.0297 (9)
C100.0119 (6)0.0034 (6)0.2405 (5)0.0398 (13)
H100.10130.00440.20840.048*
C110.0264 (7)0.0031 (7)0.3525 (5)0.0539 (17)
H110.03740.00860.39530.065*
C120.1550 (7)0.0015 (7)0.4014 (5)0.0493 (16)
H120.18200.00670.47810.059*
C130.2456 (6)0.0077 (5)0.3370 (5)0.0374 (12)
H130.33710.01060.36890.045*
C140.2003 (5)0.0124 (5)0.2257 (4)0.0299 (11)
H140.26300.01890.18180.036*
N20.1892 (5)0.3914 (4)0.0887 (4)0.0338 (10)
C200.2854 (6)0.4924 (5)0.1048 (5)0.0375 (12)
H200.36950.54280.04320.045*
C210.2687 (7)0.5273 (5)0.2069 (5)0.0409 (13)
H210.33980.60010.21470.049*
C220.1481 (7)0.4553 (6)0.2962 (5)0.0450 (14)
H220.13240.47830.36640.054*
C230.0502 (7)0.3487 (7)0.2819 (5)0.0567 (18)
H230.03280.29500.34320.068*
C240.0739 (7)0.3211 (6)0.1784 (5)0.0495 (16)
H240.00460.24790.16950.059*
N30.3173 (5)0.5473 (4)0.1667 (4)0.0371 (10)
C300.4553 (7)0.6139 (5)0.1883 (5)0.0413 (13)
H300.50530.57760.15210.050*
C310.5305 (7)0.7337 (6)0.2608 (5)0.0491 (16)
H310.62860.77940.27150.059*
C320.4595 (8)0.7850 (6)0.3171 (6)0.0509 (16)
H320.50860.86550.36950.061*
C330.3181 (8)0.7184 (6)0.2963 (6)0.0566 (17)
H330.26680.75200.33350.068*
C340.2496 (7)0.6006 (6)0.2202 (6)0.0498 (15)
H340.15040.55560.20510.060*
N40.2392 (5)0.3279 (4)0.2510 (4)0.0401 (11)
C400.3638 (7)0.3365 (5)0.3152 (5)0.0451 (14)
H400.43330.33760.27940.054*
C410.3959 (8)0.3436 (7)0.4293 (6)0.0555 (17)
H410.48550.34930.47120.067*
C420.2966 (9)0.3426 (7)0.4829 (6)0.066 (2)
H420.31750.35050.56260.079*
C430.1672 (9)0.3301 (8)0.4184 (6)0.070 (2)
H430.09520.32600.45210.084*
C440.1434 (7)0.3235 (6)0.3042 (5)0.0521 (16)
H440.05340.31550.26040.063*
P10.69698 (16)0.16469 (15)0.35473 (13)0.0398 (4)
F10.6597 (7)0.2811 (5)0.3789 (5)0.0922 (17)
F20.5529 (5)0.0923 (6)0.2524 (4)0.0865 (16)
F30.7788 (5)0.2235 (4)0.2704 (4)0.0707 (12)
F40.7324 (4)0.0456 (4)0.3302 (3)0.0585 (10)
F50.8387 (5)0.2319 (4)0.4577 (3)0.0755 (13)
F60.6166 (4)0.1054 (3)0.4400 (3)0.0474 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0219 (5)0.0304 (5)0.0264 (5)0.0100 (4)0.0148 (4)0.0076 (4)
O10.0296 (19)0.0335 (19)0.037 (2)0.0135 (16)0.0185 (16)0.0097 (15)
O20.034 (2)0.038 (2)0.047 (2)0.0157 (17)0.0240 (18)0.0146 (17)
C10.033 (3)0.042 (3)0.024 (2)0.018 (2)0.015 (2)0.008 (2)
C20.040 (3)0.046 (3)0.045 (3)0.022 (3)0.017 (3)0.011 (3)
Co20.0306 (4)0.0302 (4)0.0327 (4)0.0079 (3)0.0165 (3)0.0050 (3)
O30.0268 (19)0.0376 (19)0.0306 (19)0.0096 (15)0.0179 (15)0.0096 (15)
O40.0246 (18)0.038 (2)0.038 (2)0.0040 (16)0.0142 (16)0.0075 (16)
C30.027 (3)0.041 (3)0.024 (2)0.010 (2)0.012 (2)0.011 (2)
C40.029 (3)0.048 (3)0.042 (3)0.017 (2)0.020 (2)0.015 (3)
N10.028 (2)0.031 (2)0.030 (2)0.0095 (18)0.0156 (18)0.0064 (18)
C100.039 (3)0.062 (4)0.032 (3)0.028 (3)0.020 (2)0.017 (3)
C110.047 (4)0.096 (5)0.035 (3)0.038 (4)0.026 (3)0.021 (3)
C120.051 (4)0.079 (5)0.031 (3)0.035 (4)0.020 (3)0.020 (3)
C130.032 (3)0.045 (3)0.031 (3)0.014 (2)0.009 (2)0.005 (2)
C140.024 (2)0.032 (3)0.034 (3)0.010 (2)0.013 (2)0.007 (2)
N20.032 (2)0.031 (2)0.038 (3)0.0105 (19)0.017 (2)0.0071 (19)
C200.035 (3)0.036 (3)0.041 (3)0.010 (2)0.021 (3)0.007 (2)
C210.049 (4)0.041 (3)0.034 (3)0.015 (3)0.020 (3)0.008 (2)
C220.051 (4)0.054 (4)0.040 (3)0.026 (3)0.024 (3)0.019 (3)
C230.045 (4)0.069 (4)0.034 (3)0.004 (3)0.011 (3)0.005 (3)
C240.043 (3)0.046 (3)0.039 (3)0.000 (3)0.014 (3)0.001 (3)
N30.037 (3)0.034 (2)0.034 (2)0.007 (2)0.014 (2)0.0037 (19)
C300.046 (3)0.038 (3)0.036 (3)0.014 (3)0.013 (3)0.008 (2)
C310.046 (4)0.038 (3)0.043 (3)0.002 (3)0.008 (3)0.003 (3)
C320.066 (5)0.033 (3)0.045 (4)0.015 (3)0.016 (3)0.004 (3)
C330.068 (5)0.046 (4)0.058 (4)0.026 (3)0.028 (4)0.002 (3)
C340.049 (4)0.045 (3)0.051 (4)0.016 (3)0.023 (3)0.001 (3)
N40.040 (3)0.034 (2)0.038 (3)0.006 (2)0.017 (2)0.005 (2)
C400.052 (4)0.041 (3)0.037 (3)0.013 (3)0.018 (3)0.005 (3)
C410.067 (5)0.064 (4)0.037 (3)0.029 (4)0.017 (3)0.013 (3)
C420.080 (6)0.073 (5)0.039 (4)0.024 (4)0.025 (4)0.010 (3)
C430.060 (5)0.097 (6)0.036 (4)0.013 (4)0.028 (4)0.001 (4)
C440.048 (4)0.065 (4)0.037 (3)0.013 (3)0.023 (3)0.005 (3)
P10.0408 (9)0.0527 (9)0.0337 (8)0.0205 (7)0.0200 (7)0.0171 (7)
F10.145 (5)0.087 (3)0.117 (4)0.080 (4)0.094 (4)0.060 (3)
F20.054 (3)0.157 (5)0.044 (2)0.043 (3)0.010 (2)0.021 (3)
F30.086 (3)0.093 (3)0.068 (3)0.044 (3)0.057 (3)0.049 (2)
F40.068 (3)0.061 (2)0.062 (2)0.033 (2)0.038 (2)0.0168 (19)
F50.051 (2)0.083 (3)0.049 (2)0.009 (2)0.0092 (19)0.000 (2)
F60.046 (2)0.059 (2)0.0417 (19)0.0172 (17)0.0269 (16)0.0154 (16)
Geometric parameters (Å, º) top
Co1—O12.044 (3)C21—C221.368 (9)
Co1—N12.122 (4)C21—H210.9500
Co1—O32.150 (3)C22—C231.377 (9)
O1—C11.246 (6)C22—H220.9500
O2—C11.285 (7)C23—C241.366 (9)
O2—Co21.999 (4)C23—H230.9500
C1—C21.496 (7)C24—H240.9500
C2—H2A0.9800N3—C301.328 (8)
C2—H2B0.9800N3—C341.347 (8)
C2—H2C0.9800C30—C311.389 (8)
Co2—O42.126 (4)C30—H300.9500
Co2—N32.130 (5)C31—C321.382 (10)
Co2—N22.176 (5)C31—H310.9500
Co2—N42.181 (5)C32—C331.360 (10)
Co2—O32.190 (4)C32—H320.9500
O3—C31.276 (6)C33—C341.387 (9)
O4—C31.273 (6)C33—H330.9500
C3—C41.487 (8)C34—H340.9500
C4—H4A0.9800N4—C441.335 (8)
C4—H4B0.9800N4—C401.341 (8)
C4—H4C0.9800C40—C411.367 (9)
N1—C101.337 (7)C40—H400.9500
N1—C141.341 (6)C41—C421.378 (10)
C10—C111.382 (8)C41—H410.9500
C10—H100.9500C42—C431.368 (11)
C11—C121.359 (9)C42—H420.9500
C11—H110.9500C43—C441.374 (9)
C12—C131.381 (8)C43—H430.9500
C12—H120.9500C44—H440.9500
C13—C141.376 (7)P1—F51.575 (4)
C13—H130.9500P1—F11.579 (5)
C14—H140.9500P1—F21.589 (5)
N2—C201.335 (7)P1—F31.596 (4)
N2—C241.338 (8)P1—F41.598 (4)
C20—C211.387 (8)P1—F61.599 (3)
C20—H200.9500
O1—Co1—O1i180.0 (2)C13—C14—H14118.1
O1—Co1—N1i88.44 (15)C20—N2—C24116.6 (5)
O1i—Co1—N1i91.56 (15)C20—N2—Co2121.4 (4)
O1—Co1—N191.56 (15)C24—N2—Co2121.9 (4)
O1i—Co1—N188.44 (15)N2—C20—C21123.2 (6)
N1i—Co1—N1180.00 (8)N2—C20—H20118.4
O1—Co1—O388.62 (14)C21—C20—H20118.4
O1i—Co1—O391.38 (14)C22—C21—C20118.9 (5)
N1i—Co1—O387.68 (14)C22—C21—H21120.6
N1—Co1—O392.32 (14)C20—C21—H21120.6
O1—Co1—O3i91.38 (14)C21—C22—C23118.4 (6)
O1i—Co1—O3i88.62 (14)C21—C22—H22120.8
N1i—Co1—O3i92.32 (14)C23—C22—H22120.8
N1—Co1—O3i87.68 (14)C24—C23—C22119.2 (6)
O3—Co1—O3i180.0 (3)C24—C23—H23120.4
C1—O1—Co1148.0 (3)C22—C23—H23120.4
C1—O2—Co2127.5 (3)N2—C24—C23123.7 (6)
O1—C1—O2125.1 (5)N2—C24—H24118.2
O1—C1—C2118.3 (5)C23—C24—H24118.2
O2—C1—C2116.6 (5)C30—N3—C34116.9 (5)
C1—C2—H2A109.5C30—N3—Co2122.9 (4)
C1—C2—H2B109.5C34—N3—Co2119.2 (4)
H2A—C2—H2B109.5N3—C30—C31123.5 (6)
C1—C2—H2C109.5N3—C30—H30118.2
H2A—C2—H2C109.5C31—C30—H30118.2
H2B—C2—H2C109.5C32—C31—C30118.5 (6)
O2—Co2—O4161.20 (15)C32—C31—H31120.8
O2—Co2—N3100.56 (17)C30—C31—H31120.8
O4—Co2—N397.84 (17)C33—C32—C31118.9 (6)
O2—Co2—N288.23 (16)C33—C32—H32120.5
O4—Co2—N286.76 (15)C31—C32—H32120.5
N3—Co2—N293.59 (17)C32—C33—C34119.2 (6)
O2—Co2—N492.53 (17)C32—C33—H33120.4
O4—Co2—N493.60 (17)C34—C33—H33120.4
N3—Co2—N482.83 (17)N3—C34—C33123.0 (6)
N2—Co2—N4176.41 (17)N3—C34—H34118.5
O2—Co2—O3101.43 (14)C33—C34—H34118.5
O4—Co2—O360.72 (13)C44—N4—C40116.3 (6)
N3—Co2—O3157.39 (16)C44—N4—Co2121.8 (5)
N2—Co2—O392.30 (15)C40—N4—Co2121.0 (4)
N4—Co2—O390.99 (15)N4—C40—C41123.4 (6)
C3—O3—Co1146.3 (3)N4—C40—H40118.3
C3—O3—Co289.3 (3)C41—C40—H40118.3
Co1—O3—Co2121.64 (16)C40—C41—C42119.1 (7)
C3—O4—Co292.2 (3)C40—C41—H41120.4
O4—C3—O3117.8 (5)C42—C41—H41120.4
O4—C3—C4120.9 (5)C43—C42—C41118.4 (7)
O3—C3—C4121.3 (5)C43—C42—H42120.8
C3—C4—H4A109.5C41—C42—H42120.8
C3—C4—H4B109.5C42—C43—C44118.8 (7)
H4A—C4—H4B109.5C42—C43—H43120.6
C3—C4—H4C109.5C44—C43—H43120.6
H4A—C4—H4C109.5N4—C44—C43123.9 (7)
H4B—C4—H4C109.5N4—C44—H44118.1
C10—N1—C14117.0 (5)C43—C44—H44118.1
C10—N1—Co1120.5 (4)F5—P1—F191.1 (3)
C14—N1—Co1122.4 (3)F5—P1—F2177.9 (3)
N1—C10—C11122.3 (5)F1—P1—F290.4 (3)
N1—C10—H10118.9F5—P1—F390.4 (3)
C11—C10—H10118.9F1—P1—F390.8 (2)
C12—C11—C10120.1 (6)F2—P1—F391.0 (3)
C12—C11—H11119.9F5—P1—F489.5 (3)
C10—C11—H11119.9F1—P1—F4179.2 (3)
C11—C12—C13118.5 (6)F2—P1—F489.0 (3)
C11—C12—H12120.8F3—P1—F489.8 (2)
C13—C12—H12120.8F5—P1—F689.1 (2)
C14—C13—C12118.4 (5)F1—P1—F689.7 (2)
C14—C13—H13120.8F2—P1—F689.5 (2)
C12—C13—H13120.8F3—P1—F6179.3 (2)
N1—C14—C13123.7 (5)F4—P1—F689.7 (2)
N1—C14—H14118.1
Symmetry code: (i) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co3(C2H3O2)4(C5H5N)8](PF6)2[Co3(C2H3O2)4(C5H5N)8](PF6)2
Mr1335.711335.71
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)10.7354 (6), 22.1257 (12), 23.6103 (13)10.688 (4), 11.839 (4), 12.480 (4)
α, β, γ (°)99.380 (1), 95.008 (1), 92.238 (1)98.149 (5), 103.605 (5), 111.722 (5)
V3)5503.9 (5)1379.3 (8)
Z41
Radiation typeSynchrotron, λ = 0.84610 ÅSynchrotron, λ = 0.67110 Å
µ (mm1)1.051.05
Crystal size (mm)0.25 × 0.1 × 0.050.1 × 0.02 × 0.02
Data collection
DiffractometerBruker D8
diffractometer
Bruker D8
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.463, 0.9490.207, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
38731, 21108, 17966 11698, 5565, 3897
Rint0.0300.052
(sin θ/λ)max1)0.6200.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.05 0.072, 0.214, 1.03
No. of reflections211085565
No. of parameters1432369
No. of restraints660
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 1.461.29, 0.84

Computer programs: APEX2 (Bruker, 2004), APEX2, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Version 1.64; Farrugia, 1999) and PLATON (Spek, 2003), SHEXLX97.

 

Acknowledgements

JB thanks Jesus College, Cambridge University, for a Junior Research Fellowship.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, including SAINT (Version 7.0) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChudnovsky, E. M. (1996). Science, 274, 938–939.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHagen, K. S., Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321–1324.  CSD CrossRef Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N., Chae, H. K. & Eddaoudi, M. (2003). Nature (London), 423, 705–714.  CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds