organic compounds
Hydrogen-bonding patterns in trimethoprim picolinate and 2-amino-4,6-dimethylpyrimidinium picolinate hemihydrate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title compounds, namely 2,4-diamino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-1-ium pyridine-2-carboxylate, C14H19N4O3+·C6H4NO2−, (I), and 2-amino-4,6-dimethylpyrimidin-1-ium pyridine-2-carboxylate hemihydrate, C6H10N3+·C6H4NO2−·0.5H2O, (II), the trimethoprim and 2-amino-4,6-dimethylpyrimidin-1-ium cations are protonated at one of the pyrimidine N atoms. In (I), bifurcated hydrogen bonds are observed between a picolinate O atom, the protonated N atom and the 2-amino group; the graph-set designator is R21(6). The pyrimidine moieties of the trimethoprim cations are centrosymmetrically paired through a pair of N—H⋯N hydrogen bonds. In addition to the one of the picolinate O atoms bridges the 2- and 4-amino groups on either side of the paired bases, resulting in a complementary DADA array. In (II), the carboxylate group of the picolinate anion binds with the protonated pyrimidine N atom and the 2-amino group of the pyrimidine moiety through a pair of N—H⋯O hydrogen bonds, leading to the common ring motif R22(8). The water molecule, which resides on a twofold rotation axis, bridges the carboxylate group of the picolinate anion via O—H⋯O hydrogen bonds.
Comment
Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important as they occur in nature as components of nucleic acid. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Trimethoprim [2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine, TMP] is a well known antifolate drug. It selectively inhibits the bacterial dihydrofolate reductase (DHFR) enzyme (Hitchings et al., 1988). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). The crystal structures of a dinuclear oxomolybdenum(V) complex of picolinate (Okabe et al., 2002), of catena-poly[[[bis(2-pyridinecarboxylato)copper(II)]-μ-benzene-1,2,4,5-tetracarboxylic acid] dihydrate] (Wang et al., 2005) and of trans-dichloro(dimethyl sulfoxide)(2-picoline)platinum(II) (Melanson et al., 1978) have been reported. In this paper, the crystal structures of trimethoprim (TMP) picolinate, (I), and 2-amino-4,6-dimethylpyrimidinium (AMPY) picolinate hemihydrate, (II), are described.
Views of (I) and (II) are shown in Figs. 1(a) and 1(b), respectively. In (I), the contains a trimethoprim cation and a picolinate anion. In (II), one 2-amino-4,6-dimethylpyrimidinium cation, one picolinate anion and one half-molecule of water (the O atom of the water molecule lies on a twofold axis) constitute the asymmetic unit. In both structures, the pyrimidine moieties are protonated at N1, leading to an increase in internal angles (see angles C2—N1—C6 in Tables 1 and 3) compared with neutral TMP (Koetzle & Williams, 1976) and AMPY (Panneerselvam et al., 2004). In (I), the dihedral angle between the pyrimidine and benzene rings is 76.06 (7)°. This value is close to that found in TMP–carboxylate salts (Raj, Stanley et al., 2003). The C4—C5—C7—C8 and C5—C7—C8—C9 torsion angles are −68.79 (18) and 168.05 (14)°, respectively.
In (I), atom O5 of the carboxylate group accepts a H atom from protonated atom N1 and the 2-amino group of the pyrimidine ring, forming a cyclic hydrogen-bonded bimolecular pattern [graph-set R21(6); Etter, 1990; Bernstein et al., 1995]. A similar pattern was also observed in the of trimethoprim 3-carboxy-4-hydroxybenzenesulfonate dihydrate (Raj, Sethuraman et al., 2003). This is different from the common R22(8) pattern observed in the crystal structures of aminopyrimidine–carboxylate salts (Stanley et al., 2002). The pyrimidine moieties form base pairs through N4—H⋯N3 (Table 2) hydrogen bonds involving the 4-amino group and atom N3. In addition to the a hydrogen-bonded acceptor (atom O4 from the picolinate anion) bridges the 4- and 2-amino groups on both sides of the pairing, leading to a complementary linear DADA array (D = donor in hydrogen bonds and A = acceptor in hydrogen bonds), with the rings having the graph-set notations R23(8), R22(8) and R23(8). The same type of DADA array has also been observed in the crystal structures of trimethoprim trifluoroacetate (Francis et al., 2002) and a copper(II) phthalate trimethoprim complex (Raj, Muthiah et al., 2003). The characteristic hydrogen-bonded rings observed in the structure aggregate into a supramolecular ladder consisting of a pair of chains, each of which is built up of alternating TMP and picolinate anions (Fig. 2).
In (II), the carboxylate group (atoms O1 and O2) of the picolinate anion interacts with protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H⋯O hydrogen bonds, leading to the common ring motif with graph-set notation R22(8) (Lynch et al., 2004). This is reminiscent of the trimethoprim–carboxylate interactions observed in the DHFR–TMP complexes (Kuyper, 1989). The water molecule, which resides on a twofold rotation axis, bridges the carboxylate groups of the picolinate anions via O—H⋯O hydrogen bonds. One of the H atoms of the 2-amino group is also involved in bifurcated hydrogen bonding with carboxyl atom O2 and the pyridine N atom to form a five-membered hydrogen-bonded ring [R21(5); Fig. 3].
Experimental
A hot methanol solution of picolinic acid (61.5 mg, obtained from SD Fine Chemicals Ltd) was mixed with a hot aqueous solution of trimethoprim [for (I); 145 mg, obtained from Shilpa Antibiotics Ltd] or 2-amino-4,6-dimethylpyrimidine [for (II); 63.25 mg, obtained from Merck]. The mixtures were cooled slowly and kept at room temperature. After a few days, colourless block-shaped crystals of (I) and (II) were obtained from the corresponding solutions.
Compound (I)
Crystal data
|
Data collection
|
Refinement
|
|
Compound (II)
Crystal data
|
Data collection
|
Refinement
|
|
For compound (I), all H atoms were placed in idealized positions and refined as riding, with C—H = 0.93–0.97 Å and N—H = 0.88 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C,N). For compound (II), the H atoms of the water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.98 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were placed in idealized positions and refined as riding, with C—H = 0.95–0.98 Å and N—H = 0.88 Å, and Uiso(H) = 1.2Ueq(C,N). The highest peak in the final difference map was found at a distance of 1.29 Å from H13 and the deepest hole was 0.72 Å from C14.
For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S0108270105037856/sq1233sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock pmt2. DOI: 10.1107/S0108270105037856/sq1233Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270105037856/sq1233IIsup3.hkl
A hot methanolic solution of picolinic acid (61.5 mg, obtained from SD Fine Chemicals Ltd) was mixed with a hot aqueous solution of trimethoprim [for (I)] (145 mg, obtained from Shilpa Antibiotics Ltd) or 2-amino-4,6-dimethylpyrimidine [for (II)] (63.25 mg, obtained from Merck). The mixtures were cooled slowly and kept at room temperature. After a few days, blocks of colourless crystals of (I) and (II) were obtained from the corresponding solutions.
For compound (I), all H atoms were placed in idealized locations and refined as riding, with C—H = 0.93–0.97 Å and N—H = 0.88 Å, and with Uiso(H) = ?Ueq(C,N). Please complete.
For compound (II), the H atoms of the water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.98 Å and with Uiso(H) = ?Ueq(O). Please complete. The other H atoms were placed in idealized locations and refined as riding, with C—H = 0.95–0.98 Å and N—H = 0.88 Å, and with Uiso(H) = ?Ueq(C,N). Please complete. The highest peak in the difference map was found at a distance of 1.29 Å from H13 and the deepest hole is 0.72 Å from C14.
For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell
DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.Fig. 1. Views of (a) (I) and (b) (II), with the atom-labelling schemes and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. The hydrogen-bonding patterns in (I) (dashed lines). [Symmetry codes: (i) x, 1 + y, z; (ii) 2 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) x − 1, y, z.] | |
Fig. 3. The hydrogen-bonding patterns in (II) (dashed lines). [Symmetry code: (i) 1/2 − x, 3/2 − y, 1 − z.] |
C14H19N4O3+·C6H4NO2− | Z = 2 |
Mr = 413.43 | F(000) = 436 |
Triclinic, P1 | Dx = 1.394 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0642 (3) Å | Cell parameters from 3758 reflections |
b = 10.2730 (3) Å | θ = 3.1–27.6° |
c = 12.1188 (4) Å | µ = 0.10 mm−1 |
α = 108.051 (17)° | T = 120 K |
β = 98.741 (2)° | Block, colourless |
γ = 107.517 (2)° | 0.22 × 0.20 × 0.16 mm |
V = 985.03 (14) Å3 |
Nonius KappaCCD area-detector diffractometer | 3758 reflections with I > 2σ(I) |
Radiation source: Bruker Nonius FR591 rotating anode | Rint = 0.036 |
Graphite monochromator | θmax = 27.6°, θmin = 3.1° |
ϕ and ω scans | h = −11→11 |
17816 measured reflections | k = −13→13 |
4537 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0748P)2 + 0.2682P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
4537 reflections | Δρmax = 0.47 e Å−3 |
275 parameters | Δρmin = −0.47 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.138 (9) |
C14H19N4O3+·C6H4NO2− | γ = 107.517 (2)° |
Mr = 413.43 | V = 985.03 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0642 (3) Å | Mo Kα radiation |
b = 10.2730 (3) Å | µ = 0.10 mm−1 |
c = 12.1188 (4) Å | T = 120 K |
α = 108.051 (17)° | 0.22 × 0.20 × 0.16 mm |
β = 98.741 (2)° |
Nonius KappaCCD area-detector diffractometer | 3758 reflections with I > 2σ(I) |
17816 measured reflections | Rint = 0.036 |
4537 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 2 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.47 e Å−3 |
4537 reflections | Δρmin = −0.47 e Å−3 |
275 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.29547 (13) | 0.29892 (14) | −0.04713 (10) | 0.0319 (4) | |
O2 | −0.03386 (13) | 0.12018 (12) | −0.17057 (9) | 0.0258 (3) | |
O3 | −0.26112 (13) | 0.17969 (13) | −0.07534 (10) | 0.0317 (3) | |
N1 | 0.56507 (14) | 0.87061 (13) | 0.40540 (11) | 0.0196 (3) | |
N2 | 0.79043 (15) | 0.84689 (14) | 0.50036 (12) | 0.0254 (4) | |
N3 | 0.54430 (14) | 0.66108 (13) | 0.45274 (10) | 0.0183 (3) | |
N4 | 0.30117 (14) | 0.47725 (13) | 0.40408 (11) | 0.0200 (3) | |
C2 | 0.63246 (17) | 0.79137 (15) | 0.45279 (12) | 0.0186 (4) | |
C4 | 0.38491 (16) | 0.60563 (15) | 0.40065 (12) | 0.0171 (4) | |
C5 | 0.30918 (16) | 0.67967 (15) | 0.34116 (12) | 0.0178 (4) | |
C6 | 0.40562 (16) | 0.81274 (15) | 0.34830 (12) | 0.0188 (4) | |
C7 | 0.13508 (16) | 0.61038 (15) | 0.27220 (12) | 0.0191 (4) | |
C8 | 0.09541 (17) | 0.47753 (15) | 0.15650 (12) | 0.0187 (4) | |
C9 | −0.06572 (17) | 0.38872 (16) | 0.09793 (12) | 0.0208 (4) | |
C10 | −0.10754 (17) | 0.27040 (16) | −0.01023 (13) | 0.0222 (4) | |
C11 | 0.01190 (17) | 0.23695 (16) | −0.06140 (12) | 0.0213 (4) | |
C12 | 0.17131 (17) | 0.32655 (17) | −0.00353 (13) | 0.0218 (4) | |
C13 | 0.21267 (17) | 0.44543 (16) | 0.10498 (13) | 0.0216 (4) | |
C14 | 0.2884 (3) | 0.2868 (3) | −0.16859 (18) | 0.0454 (7) | |
C15 | −0.0113 (2) | −0.00803 (18) | −0.16083 (15) | 0.0330 (5) | |
C16 | −0.38648 (19) | 0.1978 (2) | −0.02138 (16) | 0.0418 (6) | |
O4 | 1.00904 (12) | 1.29703 (12) | 0.42584 (10) | 0.0273 (3) | |
O5 | 0.84420 (13) | 1.09113 (12) | 0.43359 (11) | 0.0299 (3) | |
N5 | 0.58438 (15) | 1.12103 (13) | 0.31752 (11) | 0.0224 (3) | |
C17 | 0.45697 (18) | 1.14181 (17) | 0.26488 (13) | 0.0244 (4) | |
C18 | 0.46611 (19) | 1.26903 (17) | 0.24437 (13) | 0.0253 (4) | |
C19 | 0.61429 (19) | 1.38263 (17) | 0.28288 (14) | 0.0260 (4) | |
C20 | 0.74732 (18) | 1.36326 (16) | 0.33792 (13) | 0.0224 (4) | |
C21 | 0.72833 (17) | 1.23095 (15) | 0.35188 (12) | 0.0195 (4) | |
C22 | 0.87224 (17) | 1.20425 (16) | 0.40862 (13) | 0.0212 (4) | |
H1 | 0.63090 | 0.95500 | 0.40720 | 0.0500* | |
H2A | 0.84000 | 0.79300 | 0.52200 | 0.0500* | |
H2B | 0.84700 | 0.92960 | 0.49470 | 0.0500* | |
H4A | 0.35340 | 0.44340 | 0.44890 | 0.0500* | |
H4B | 0.19580 | 0.44170 | 0.38280 | 0.0500* | |
H6 | 0.36170 | 0.86620 | 0.31320 | 0.0230* | |
H7A | 0.10310 | 0.68410 | 0.25210 | 0.0230* | |
H7B | 0.07190 | 0.57990 | 0.32390 | 0.0230* | |
H9 | −0.14560 | 0.40910 | 0.13180 | 0.0250* | |
H13 | 0.32030 | 0.50390 | 0.14320 | 0.0260* | |
H14A | 0.23610 | 0.18520 | −0.22170 | 0.0540* | |
H14B | 0.39540 | 0.32420 | −0.17620 | 0.0540* | |
H14C | 0.22900 | 0.34290 | −0.18950 | 0.0540* | |
H15A | 0.09990 | 0.01630 | −0.12350 | 0.0400* | |
H15B | −0.04250 | −0.08340 | −0.23980 | 0.0400* | |
H15C | −0.07600 | −0.04320 | −0.11270 | 0.0400* | |
H16A | −0.37200 | 0.18020 | 0.05210 | 0.0500* | |
H16B | −0.48850 | 0.12900 | −0.07580 | 0.0500* | |
H16C | −0.38340 | 0.29650 | −0.00410 | 0.0500* | |
H17 | 0.35670 | 1.06660 | 0.24070 | 0.0290* | |
H18 | 0.37490 | 1.27780 | 0.20570 | 0.0300* | |
H19 | 0.62450 | 1.47040 | 0.27210 | 0.0310* | |
H20 | 0.84820 | 1.43820 | 0.36510 | 0.0270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0238 (6) | 0.0449 (7) | 0.0257 (6) | 0.0175 (5) | 0.0085 (4) | 0.0061 (5) |
O2 | 0.0292 (6) | 0.0270 (6) | 0.0170 (5) | 0.0120 (5) | 0.0025 (4) | 0.0030 (4) |
O3 | 0.0182 (5) | 0.0372 (7) | 0.0232 (6) | 0.0041 (5) | 0.0019 (4) | −0.0026 (5) |
N1 | 0.0184 (6) | 0.0172 (6) | 0.0213 (6) | 0.0048 (5) | 0.0031 (5) | 0.0077 (5) |
N2 | 0.0179 (6) | 0.0226 (6) | 0.0335 (7) | 0.0032 (5) | 0.0002 (5) | 0.0150 (6) |
N3 | 0.0173 (6) | 0.0182 (6) | 0.0173 (6) | 0.0051 (5) | 0.0022 (4) | 0.0067 (5) |
N4 | 0.0178 (6) | 0.0198 (6) | 0.0208 (6) | 0.0044 (5) | 0.0022 (5) | 0.0095 (5) |
C2 | 0.0188 (7) | 0.0201 (7) | 0.0161 (6) | 0.0068 (5) | 0.0040 (5) | 0.0067 (5) |
C4 | 0.0188 (7) | 0.0180 (6) | 0.0127 (6) | 0.0067 (5) | 0.0041 (5) | 0.0038 (5) |
C5 | 0.0187 (7) | 0.0184 (7) | 0.0152 (6) | 0.0074 (5) | 0.0038 (5) | 0.0047 (5) |
C6 | 0.0195 (7) | 0.0196 (7) | 0.0175 (6) | 0.0086 (5) | 0.0033 (5) | 0.0068 (5) |
C7 | 0.0165 (7) | 0.0199 (7) | 0.0197 (7) | 0.0069 (5) | 0.0027 (5) | 0.0068 (5) |
C8 | 0.0203 (7) | 0.0202 (7) | 0.0166 (6) | 0.0081 (6) | 0.0028 (5) | 0.0087 (5) |
C9 | 0.0180 (7) | 0.0245 (7) | 0.0184 (7) | 0.0078 (6) | 0.0042 (5) | 0.0064 (6) |
C10 | 0.0178 (7) | 0.0247 (7) | 0.0200 (7) | 0.0059 (6) | 0.0016 (5) | 0.0068 (6) |
C11 | 0.0237 (7) | 0.0228 (7) | 0.0154 (7) | 0.0092 (6) | 0.0033 (5) | 0.0050 (5) |
C12 | 0.0200 (7) | 0.0278 (8) | 0.0214 (7) | 0.0126 (6) | 0.0070 (5) | 0.0098 (6) |
C13 | 0.0180 (7) | 0.0241 (7) | 0.0204 (7) | 0.0069 (6) | 0.0021 (5) | 0.0079 (6) |
C14 | 0.0455 (11) | 0.0667 (14) | 0.0455 (11) | 0.0300 (10) | 0.0296 (9) | 0.0322 (10) |
C15 | 0.0374 (9) | 0.0266 (8) | 0.0289 (8) | 0.0143 (7) | 0.0029 (7) | 0.0029 (7) |
C16 | 0.0181 (8) | 0.0458 (11) | 0.0364 (10) | 0.0032 (7) | 0.0048 (7) | −0.0075 (8) |
O4 | 0.0191 (5) | 0.0228 (6) | 0.0380 (6) | 0.0038 (4) | 0.0037 (4) | 0.0147 (5) |
O5 | 0.0199 (5) | 0.0265 (6) | 0.0451 (7) | 0.0052 (4) | 0.0030 (5) | 0.0217 (5) |
N5 | 0.0200 (6) | 0.0209 (6) | 0.0241 (6) | 0.0071 (5) | 0.0027 (5) | 0.0077 (5) |
C17 | 0.0216 (7) | 0.0235 (7) | 0.0241 (7) | 0.0081 (6) | 0.0027 (6) | 0.0055 (6) |
C18 | 0.0284 (8) | 0.0306 (8) | 0.0215 (7) | 0.0170 (7) | 0.0068 (6) | 0.0099 (6) |
C19 | 0.0342 (8) | 0.0243 (7) | 0.0274 (8) | 0.0162 (7) | 0.0120 (6) | 0.0133 (6) |
C20 | 0.0243 (7) | 0.0204 (7) | 0.0232 (7) | 0.0081 (6) | 0.0089 (6) | 0.0080 (6) |
C21 | 0.0206 (7) | 0.0188 (7) | 0.0177 (6) | 0.0067 (6) | 0.0054 (5) | 0.0055 (5) |
C22 | 0.0207 (7) | 0.0185 (7) | 0.0222 (7) | 0.0055 (6) | 0.0049 (5) | 0.0070 (6) |
O1—C12 | 1.381 (2) | C9—C10 | 1.387 (2) |
O1—C14 | 1.428 (2) | C10—C11 | 1.404 (2) |
O2—C11 | 1.3826 (18) | C11—C12 | 1.385 (2) |
O2—C15 | 1.429 (2) | C12—C13 | 1.393 (2) |
O3—C10 | 1.363 (2) | C6—H6 | 0.9306 |
O3—C16 | 1.425 (2) | C7—H7B | 0.9702 |
O4—C22 | 1.255 (2) | C7—H7A | 0.9705 |
O5—C22 | 1.253 (2) | C9—H9 | 0.9300 |
N1—C2 | 1.359 (2) | C13—H13 | 0.9298 |
N1—C6 | 1.358 (2) | C14—H14A | 0.9599 |
N2—C2 | 1.327 (2) | C14—H14B | 0.9600 |
N3—C2 | 1.336 (2) | C14—H14C | 0.9602 |
N3—C4 | 1.347 (2) | C15—H15A | 0.9606 |
N4—C4 | 1.326 (2) | C15—H15B | 0.9603 |
N1—H1 | 0.8838 | C15—H15C | 0.9600 |
N2—H2B | 0.8798 | C16—H16B | 0.9602 |
N2—H2A | 0.8838 | C16—H16C | 0.9604 |
N4—H4A | 0.8821 | C16—H16A | 0.9599 |
N4—H4B | 0.8769 | C17—C18 | 1.385 (2) |
N5—C21 | 1.344 (2) | C18—C19 | 1.383 (3) |
N5—C17 | 1.340 (2) | C19—C20 | 1.386 (2) |
C4—C5 | 1.440 (2) | C20—C21 | 1.384 (2) |
C5—C6 | 1.351 (2) | C21—C22 | 1.520 (2) |
C5—C7 | 1.500 (2) | C17—H17 | 0.9300 |
C7—C8 | 1.524 (2) | C18—H18 | 0.9298 |
C8—C9 | 1.397 (2) | C19—H19 | 0.9301 |
C8—C13 | 1.383 (2) | C20—H20 | 0.9300 |
O1···O2 | 2.8568 (17) | C11···H14A | 3.0654 |
O1···C15 | 3.231 (2) | C11···H7Aii | 2.8326 |
O1···C16i | 3.349 (2) | C12···H15A | 2.8795 |
O2···O3 | 2.6443 (17) | C13···H18vii | 2.9832 |
O2···C14 | 2.899 (3) | C14···H19xiii | 3.0778 |
O2···O1 | 2.8568 (17) | C14···H15A | 3.0507 |
O3···O2 | 2.6443 (17) | C15···H14A | 2.8712 |
O3···C6ii | 3.4012 (18) | C15···H17ii | 2.9470 |
O3···C17ii | 3.141 (2) | C16···H9 | 2.5185 |
O4···N2iii | 2.8693 (19) | C17···H6 | 2.9689 |
O4···N4iv | 2.8412 (18) | C18···H4Axii | 3.0848 |
O5···N1 | 2.7308 (19) | C18···H16Aiv | 2.9905 |
O5···N5 | 2.7047 (19) | C19···H16Aiv | 2.9696 |
O5···C2 | 3.200 (2) | C19···H9iv | 3.0539 |
O5···N2iii | 3.1021 (19) | C20···H9iv | 2.9316 |
O5···N2 | 2.7982 (19) | C21···H1 | 3.0193 |
O1···H16Ci | 2.8871 | C22···H1 | 2.8163 |
O1···H15A | 2.6770 | C22···H2Aiii | 2.6049 |
O2···H14C | 2.8591 | C22···H15Bvi | 2.9407 |
O2···H17ii | 2.7965 | H1···O5 | 1.9244 |
O2···H14A | 2.5595 | H1···N5 | 2.3897 |
O2···H7Aii | 2.6861 | H1···C21 | 3.0193 |
O3···H6ii | 2.7319 | H1···C22 | 2.8163 |
O3···H17ii | 2.4857 | H1···H2B | 2.2084 |
O4···H20v | 2.8471 | H2A···O4iii | 1.9971 |
O4···H2Aiii | 1.9971 | H2A···C22iii | 2.6049 |
O4···H15Bvi | 2.7447 | H2A···O5iii | 2.6427 |
O4···H20 | 2.5256 | H2B···O5iii | 2.8930 |
O4···H4Biv | 2.1403 | H2B···H1 | 2.2084 |
O5···H2Aiii | 2.6427 | H2B···O5 | 2.0209 |
O5···H2B | 2.0209 | H4A···C18vii | 3.0848 |
O5···H1 | 1.9244 | H4A···C4viii | 3.0296 |
O5···H2Biii | 2.8930 | H4A···N3viii | 2.1187 |
N1···N5 | 3.0441 (19) | H4A···C2viii | 3.0287 |
N1···O5 | 2.7308 (19) | H4A···H4Aviii | 2.4891 |
N2···O5iii | 3.1021 (19) | H4B···C7 | 2.6252 |
N2···C22iii | 3.338 (2) | H4B···C8 | 2.9246 |
N2···O5 | 2.7982 (19) | H4B···O4x | 2.1403 |
N2···O4iii | 2.8693 (19) | H4B···H7B | 2.2651 |
N3···C19vii | 3.265 (2) | H6···N5 | 2.7626 |
N3···N4viii | 2.9966 (18) | H6···C17 | 2.9689 |
N3···C17ix | 3.3975 (19) | H6···O3ii | 2.7319 |
N4···C20ix | 3.214 (2) | H6···H17 | 2.4854 |
N4···O4x | 2.8412 (18) | H6···H7A | 2.3487 |
N4···C8 | 3.2846 (19) | H7A···O2ii | 2.6861 |
N4···C18vii | 3.286 (2) | H7A···H6 | 2.3487 |
N4···N3viii | 2.9966 (18) | H7A···C11ii | 2.8326 |
N5···C6 | 3.259 (2) | H7B···H4B | 2.2651 |
N5···O5 | 2.7047 (19) | H7B···N4 | 2.7777 |
N5···N1 | 3.0441 (19) | H7B···H9 | 2.5251 |
N3···H19vii | 2.8002 | H7B···H20x | 2.3369 |
N3···H4Aviii | 2.1187 | H9···C16 | 2.5185 |
N4···H7B | 2.7777 | H9···C19x | 3.0539 |
N4···H18vii | 2.9470 | H9···C20x | 2.9316 |
N5···H1 | 2.3897 | H9···H7B | 2.5251 |
N5···H6 | 2.7626 | H9···H16A | 2.3998 |
C2···O5 | 3.200 (2) | H9···H16C | 2.2217 |
C2···C14vi | 3.522 (3) | H13···C5 | 2.5543 |
C2···C17ix | 3.544 (2) | H13···C4 | 2.8679 |
C4···C13 | 3.329 (2) | H13···H14Bvi | 2.5355 |
C4···C21ix | 3.423 (2) | H14A···C15 | 2.8712 |
C4···C20ix | 3.512 (2) | H14A···C11 | 3.0654 |
C6···N5 | 3.259 (2) | H14A···O2 | 2.5595 |
C6···O3ii | 3.4012 (18) | H14A···H15A | 2.5274 |
C8···N4 | 3.2846 (19) | H14B···H13vi | 2.5355 |
C8···C10ii | 3.549 (2) | H14C···O2 | 2.8591 |
C10···C8ii | 3.549 (2) | H14C···H19xiii | 2.5504 |
C13···C4 | 3.329 (2) | H14C···C11 | 2.8554 |
C14···C2vi | 3.522 (3) | H15A···C12 | 2.8795 |
C14···O2 | 2.899 (3) | H15A···O1 | 2.6770 |
C14···C15 | 3.444 (4) | H15A···C14 | 3.0507 |
C15···O1 | 3.231 (2) | H15A···H14A | 2.5274 |
C15···C14 | 3.444 (4) | H15B···O4vi | 2.7447 |
C16···O1xi | 3.349 (2) | H15B···C22vi | 2.9407 |
C16···C19x | 3.584 (2) | H16A···C19x | 2.9696 |
C17···N3ix | 3.3975 (19) | H16A···H9 | 2.3998 |
C17···O3ii | 3.141 (2) | H16A···C9 | 2.7962 |
C17···C2ix | 3.544 (2) | H16A···C18x | 2.9905 |
C18···N4xii | 3.286 (2) | H16C···O1xi | 2.8871 |
C19···N3xii | 3.265 (2) | H16C···C9 | 2.6959 |
C19···C16iv | 3.584 (2) | H16C···H9 | 2.2217 |
C20···N4ix | 3.214 (2) | H17···H6 | 2.4854 |
C20···C4ix | 3.512 (2) | H17···O2ii | 2.7965 |
C21···C4ix | 3.423 (2) | H17···O3ii | 2.4857 |
C22···N2iii | 3.338 (2) | H17···C15ii | 2.9470 |
C2···H4Aviii | 3.0287 | H18···N4xii | 2.9470 |
C4···H13 | 2.8679 | H18···C13xii | 2.9832 |
C4···H4Aviii | 3.0296 | H19···N3xii | 2.8002 |
C5···H13 | 2.5543 | H19···C14xiii | 3.0778 |
C7···H4B | 2.6252 | H19···H14Cxiii | 2.5504 |
C8···H4B | 2.9246 | H20···O4 | 2.5256 |
C9···H16A | 2.7962 | H20···H7Biv | 2.3369 |
C9···H16C | 2.6959 | H20···O4v | 2.8471 |
C11···H14C | 2.8554 | ||
C12—O1—C14 | 116.33 (16) | C8—C7—H7B | 108.66 |
C11—O2—C15 | 113.92 (12) | H7A—C7—H7B | 107.61 |
C10—O3—C16 | 117.20 (13) | C8—C7—H7A | 108.69 |
C2—N1—C6 | 119.87 (14) | C10—C9—H9 | 119.75 |
C2—N3—C4 | 118.52 (14) | C8—C9—H9 | 119.69 |
C2—N1—H1 | 116.97 | C8—C13—H13 | 119.62 |
C6—N1—H1 | 122.87 | C12—C13—H13 | 119.64 |
C2—N2—H2A | 120.56 | O1—C14—H14B | 109.48 |
H2A—N2—H2B | 119.60 | O1—C14—H14C | 109.46 |
C2—N2—H2B | 118.40 | O1—C14—H14A | 109.46 |
H4A—N4—H4B | 119.60 | H14A—C14—H14C | 109.52 |
C4—N4—H4A | 116.20 | H14B—C14—H14C | 109.45 |
C4—N4—H4B | 121.58 | H14A—C14—H14B | 109.45 |
C17—N5—C21 | 117.35 (14) | O2—C15—H15A | 109.49 |
N2—C2—N3 | 119.92 (14) | O2—C15—H15B | 109.46 |
N1—C2—N3 | 121.87 (14) | H15A—C15—H15B | 109.42 |
N1—C2—N2 | 118.21 (14) | H15A—C15—H15C | 109.47 |
N4—C4—C5 | 121.38 (14) | O2—C15—H15C | 109.51 |
N3—C4—N4 | 116.74 (14) | H15B—C15—H15C | 109.48 |
N3—C4—C5 | 121.86 (14) | O3—C16—H16B | 109.52 |
C4—C5—C6 | 115.90 (14) | O3—C16—H16C | 109.41 |
C4—C5—C7 | 121.75 (14) | O3—C16—H16A | 109.49 |
C6—C5—C7 | 122.32 (14) | H16A—C16—H16C | 109.50 |
N1—C6—C5 | 121.73 (14) | H16B—C16—H16C | 109.45 |
C5—C7—C8 | 114.30 (13) | H16A—C16—H16B | 109.45 |
C7—C8—C13 | 122.39 (14) | N5—C17—C18 | 123.71 (16) |
C9—C8—C13 | 118.92 (13) | C17—C18—C19 | 118.32 (16) |
C7—C8—C9 | 118.64 (14) | C18—C19—C20 | 118.74 (16) |
C8—C9—C10 | 120.56 (15) | C19—C20—C21 | 119.22 (16) |
O3—C10—C9 | 124.86 (15) | N5—C21—C20 | 122.62 (15) |
O3—C10—C11 | 114.79 (13) | N5—C21—C22 | 116.73 (14) |
C9—C10—C11 | 120.35 (15) | C20—C21—C22 | 120.65 (14) |
C10—C11—C12 | 118.74 (14) | O4—C22—O5 | 125.62 (15) |
O2—C11—C10 | 118.93 (14) | O4—C22—C21 | 117.18 (14) |
O2—C11—C12 | 122.26 (14) | O5—C22—C21 | 117.20 (14) |
O1—C12—C11 | 122.04 (14) | N5—C17—H17 | 118.19 |
O1—C12—C13 | 117.24 (14) | C18—C17—H17 | 118.11 |
C11—C12—C13 | 120.66 (15) | C17—C18—H18 | 120.83 |
C8—C13—C12 | 120.74 (15) | C19—C18—H18 | 120.85 |
C5—C6—H6 | 119.16 | C18—C19—H19 | 120.64 |
N1—C6—H6 | 119.11 | C20—C19—H19 | 120.62 |
C5—C7—H7A | 108.70 | C19—C20—H20 | 120.42 |
C5—C7—H7B | 108.69 | C21—C20—H20 | 120.36 |
C14—O1—C12—C11 | 55.3 (2) | C7—C8—C9—C10 | 177.28 (14) |
C14—O1—C12—C13 | −127.54 (19) | C13—C8—C9—C10 | −0.1 (2) |
C15—O2—C11—C10 | −105.07 (17) | C7—C8—C13—C12 | −177.29 (15) |
C15—O2—C11—C12 | 78.1 (2) | C9—C8—C13—C12 | 0.0 (2) |
C16—O3—C10—C9 | −7.5 (2) | C8—C9—C10—C11 | 1.0 (2) |
C16—O3—C10—C11 | 173.07 (15) | C8—C9—C10—O3 | −178.44 (15) |
C6—N1—C2—N3 | −4.9 (2) | C9—C10—C11—O2 | −178.65 (14) |
C6—N1—C2—N2 | 175.31 (13) | O3—C10—C11—C12 | 177.75 (15) |
C2—N1—C6—C5 | 2.7 (2) | C9—C10—C11—C12 | −1.7 (2) |
C4—N3—C2—N1 | 2.1 (2) | O3—C10—C11—O2 | 0.8 (2) |
C4—N3—C2—N2 | −178.08 (13) | C10—C11—C12—C13 | 1.6 (2) |
C2—N3—C4—N4 | −178.97 (13) | O2—C11—C12—O1 | −4.5 (2) |
C2—N3—C4—C5 | 2.7 (2) | C10—C11—C12—O1 | 178.69 (15) |
C17—N5—C21—C20 | 1.9 (2) | O2—C11—C12—C13 | 178.43 (15) |
C21—N5—C17—C18 | 0.0 (2) | C11—C12—C13—C8 | −0.8 (3) |
C17—N5—C21—C22 | −178.53 (13) | O1—C12—C13—C8 | −177.98 (15) |
N4—C4—C5—C6 | 177.17 (13) | N5—C17—C18—C19 | −1.6 (2) |
N3—C4—C5—C7 | 173.50 (13) | C17—C18—C19—C20 | 1.3 (2) |
N3—C4—C5—C6 | −4.5 (2) | C18—C19—C20—C21 | 0.5 (2) |
N4—C4—C5—C7 | −4.8 (2) | C19—C20—C21—C22 | 178.27 (14) |
C6—C5—C7—C8 | 109.13 (16) | C19—C20—C21—N5 | −2.2 (2) |
C7—C5—C6—N1 | −176.29 (13) | N5—C21—C22—O4 | 170.51 (13) |
C4—C5—C7—C8 | −68.79 (18) | C20—C21—C22—O4 | −9.9 (2) |
C4—C5—C6—N1 | 1.8 (2) | C20—C21—C22—O5 | 170.47 (14) |
C5—C7—C8—C13 | −14.7 (2) | N5—C21—C22—O5 | −9.1 (2) |
C5—C7—C8—C9 | 168.05 (14) |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z; (iii) −x+2, −y+2, −z+1; (iv) x+1, y+1, z; (v) −x+2, −y+3, −z+1; (vi) −x+1, −y+1, −z; (vii) x, y−1, z; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+2, −z+1; (x) x−1, y−1, z; (xi) x−1, y, z; (xii) x, y+1, z; (xiii) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5 | 0.88 | 1.92 | 2.7308 (19) | 151 |
N1—H1···N5 | 0.88 | 2.39 | 3.0441 (19) | 131 |
N2—H2A···O4iii | 0.88 | 2.00 | 2.8693 (19) | 169 |
N2—H2B···O5 | 0.88 | 2.02 | 2.7982 (19) | 147 |
N4—H4A···N3viii | 0.88 | 2.12 | 2.9966 (18) | 173 |
N4—H4B···O4x | 0.88 | 2.14 | 2.8412 (18) | 137 |
C14—H14A···O2 | 0.96 | 2.56 | 2.899 (3) | 101 |
C17—H17···O3ii | 0.93 | 2.49 | 3.141 (2) | 128 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) −x+2, −y+2, −z+1; (viii) −x+1, −y+1, −z+1; (x) x−1, y−1, z. |
C6H10N3+·C6H4NO2−·0.5H2O | F(000) = 1080 |
Mr = 255.28 | Dx = 1.355 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2204 reflections |
a = 15.7666 (4) Å | θ = 3.3–26.0° |
b = 8.7980 (1) Å | µ = 0.10 mm−1 |
c = 18.5038 (4) Å | T = 120 K |
β = 102.740 (1)° | Block, colourless |
V = 2503.55 (9) Å3 | 0.4 × 0.2 × 0.1 mm |
Z = 8 |
Nonius KappaCCD area-detector diffractometer | 2204 reflections with I > 2σ(I) |
Radiation source: Bruker Nonius FR591 rotating anode | Rint = 0.026 |
Graphite monochromator | θmax = 26.0°, θmin = 3.3° |
ϕ and ω scans | h = −19→19 |
16549 measured reflections | k = −10→10 |
2451 independent reflections | l = −22→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0834P)2 + 1.0121P] where P = (Fo2 + 2Fc2)/3 |
S = 1.26 | (Δ/σ)max < 0.001 |
2451 reflections | Δρmax = 0.78 e Å−3 |
171 parameters | Δρmin = −0.82 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.060 (4) |
C6H10N3+·C6H4NO2−·0.5H2O | V = 2503.55 (9) Å3 |
Mr = 255.28 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.7666 (4) Å | µ = 0.10 mm−1 |
b = 8.7980 (1) Å | T = 120 K |
c = 18.5038 (4) Å | 0.4 × 0.2 × 0.1 mm |
β = 102.740 (1)° |
Nonius KappaCCD area-detector diffractometer | 2204 reflections with I > 2σ(I) |
16549 measured reflections | Rint = 0.026 |
2451 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.78 e Å−3 |
2451 reflections | Δρmin = −0.82 e Å−3 |
171 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.00471 (7) | 0.71894 (12) | 0.48590 (6) | 0.0174 (3) | |
N2 | 0.13114 (7) | 0.79667 (13) | 0.54980 (6) | 0.0195 (3) | |
N3 | 0.01063 (8) | 0.89924 (13) | 0.58351 (6) | 0.0190 (3) | |
C2 | 0.04584 (9) | 0.80507 (14) | 0.54005 (7) | 0.0172 (4) | |
C4 | −0.07541 (9) | 0.90978 (15) | 0.56940 (8) | 0.0197 (4) | |
C5 | −0.13012 (9) | 0.82756 (16) | 0.51217 (8) | 0.0208 (4) | |
C6 | −0.09286 (9) | 0.72949 (15) | 0.47096 (8) | 0.0189 (4) | |
C7 | −0.11364 (10) | 1.01425 (18) | 0.61770 (8) | 0.0251 (4) | |
C8 | −0.14136 (9) | 0.63004 (17) | 0.41025 (8) | 0.0233 (4) | |
O1 | 0.06155 (6) | 0.55173 (12) | 0.39158 (6) | 0.0251 (3) | |
O2 | 0.19643 (7) | 0.59392 (13) | 0.45783 (6) | 0.0264 (3) | |
N4 | 0.26418 (7) | 0.48590 (13) | 0.34444 (6) | 0.0192 (3) | |
C9 | 0.17995 (9) | 0.46233 (15) | 0.34366 (7) | 0.0176 (4) | |
C10 | 0.12663 (10) | 0.37113 (17) | 0.29108 (8) | 0.0227 (4) | |
C11 | 0.16146 (11) | 0.30355 (17) | 0.23621 (8) | 0.0260 (5) | |
C12 | 0.24774 (11) | 0.32921 (16) | 0.23601 (8) | 0.0259 (5) | |
C13 | 0.29686 (10) | 0.41996 (16) | 0.29116 (8) | 0.0227 (4) | |
C14 | 0.14375 (9) | 0.54243 (15) | 0.40325 (8) | 0.0183 (4) | |
O1W | 0.00000 | 0.7153 (2) | 0.25000 | 0.0556 (7) | |
H1 | 0.02020 | 0.65550 | 0.46020 | 0.0210* | |
H2A | 0.16470 | 0.85190 | 0.58430 | 0.0230* | |
H2B | 0.15450 | 0.73580 | 0.52180 | 0.0230* | |
H5 | −0.19140 | 0.84000 | 0.50250 | 0.0250* | |
H7A | −0.13480 | 0.95450 | 0.65480 | 0.0300* | |
H7B | −0.16210 | 1.07090 | 0.58720 | 0.0300* | |
H7C | −0.06900 | 1.08570 | 0.64270 | 0.0300* | |
H8A | −0.11540 | 0.63850 | 0.36690 | 0.0280* | |
H8B | −0.20230 | 0.66210 | 0.39680 | 0.0280* | |
H8C | −0.13820 | 0.52430 | 0.42720 | 0.0280* | |
H10 | 0.06750 | 0.35530 | 0.29270 | 0.0270* | |
H11 | 0.12650 | 0.24090 | 0.19960 | 0.0310* | |
H12 | 0.27310 | 0.28560 | 0.19880 | 0.0310* | |
H13 | 0.35640 | 0.43610 | 0.29110 | 0.0270* | |
H1W | 0.01610 | 0.64410 | 0.29200 | 0.0670* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0181 (6) | 0.0184 (6) | 0.0161 (6) | 0.0009 (4) | 0.0048 (5) | −0.0014 (4) |
N2 | 0.0178 (6) | 0.0228 (6) | 0.0180 (6) | −0.0007 (4) | 0.0043 (5) | −0.0047 (4) |
N3 | 0.0214 (6) | 0.0192 (6) | 0.0173 (6) | 0.0005 (5) | 0.0065 (5) | −0.0002 (4) |
C2 | 0.0217 (7) | 0.0156 (7) | 0.0146 (7) | 0.0000 (5) | 0.0049 (5) | 0.0029 (5) |
C4 | 0.0235 (7) | 0.0180 (7) | 0.0197 (7) | 0.0010 (5) | 0.0091 (6) | 0.0043 (5) |
C5 | 0.0181 (7) | 0.0219 (7) | 0.0231 (7) | 0.0004 (5) | 0.0060 (6) | 0.0026 (6) |
C6 | 0.0196 (7) | 0.0187 (7) | 0.0182 (7) | −0.0004 (5) | 0.0038 (5) | 0.0046 (5) |
C7 | 0.0260 (7) | 0.0266 (8) | 0.0257 (8) | 0.0018 (6) | 0.0121 (6) | −0.0033 (6) |
C8 | 0.0217 (7) | 0.0241 (8) | 0.0228 (7) | −0.0015 (6) | 0.0024 (6) | −0.0014 (6) |
O1 | 0.0182 (5) | 0.0321 (6) | 0.0247 (6) | 0.0019 (4) | 0.0040 (4) | −0.0080 (4) |
O2 | 0.0205 (5) | 0.0359 (6) | 0.0224 (6) | −0.0001 (4) | 0.0038 (4) | −0.0115 (4) |
N4 | 0.0223 (6) | 0.0184 (6) | 0.0180 (6) | 0.0009 (5) | 0.0065 (5) | −0.0003 (4) |
C9 | 0.0208 (7) | 0.0169 (7) | 0.0148 (7) | 0.0020 (5) | 0.0031 (5) | 0.0012 (5) |
C10 | 0.0228 (7) | 0.0239 (7) | 0.0201 (7) | 0.0002 (6) | 0.0018 (6) | −0.0016 (5) |
C11 | 0.0358 (9) | 0.0229 (8) | 0.0179 (7) | −0.0016 (6) | 0.0027 (6) | −0.0044 (5) |
C12 | 0.0399 (9) | 0.0212 (7) | 0.0199 (8) | 0.0010 (6) | 0.0139 (6) | −0.0017 (6) |
C13 | 0.0269 (8) | 0.0205 (7) | 0.0237 (7) | 0.0004 (6) | 0.0119 (6) | 0.0013 (5) |
C14 | 0.0196 (7) | 0.0174 (7) | 0.0176 (7) | 0.0009 (5) | 0.0036 (5) | 0.0005 (5) |
O1W | 0.0824 (16) | 0.0339 (10) | 0.0387 (11) | 0.0000 | −0.0120 (10) | 0.0000 |
O1—C14 | 1.2687 (18) | C6—C8 | 1.494 (2) |
O2—C14 | 1.2430 (18) | C5—H5 | 0.9493 |
O1W—H1W | 0.9868 | C7—H7C | 0.9803 |
O1W—H1Wi | 0.9868 | C7—H7A | 0.9798 |
N1—C2 | 1.3642 (17) | C7—H7B | 0.9801 |
N1—C6 | 1.3591 (18) | C8—H8A | 0.9805 |
N2—C2 | 1.3190 (18) | C8—H8C | 0.9795 |
N3—C4 | 1.3270 (19) | C8—H8B | 0.9794 |
N3—C2 | 1.3558 (18) | C9—C14 | 1.5218 (19) |
N1—H1 | 0.8799 | C9—C10 | 1.392 (2) |
N2—H2A | 0.8801 | C10—C11 | 1.390 (2) |
N2—H2B | 0.8804 | C11—C12 | 1.380 (2) |
N4—C13 | 1.3409 (19) | C12—C13 | 1.389 (2) |
N4—C9 | 1.3410 (18) | C10—H10 | 0.9496 |
C4—C5 | 1.409 (2) | C11—H11 | 0.9497 |
C4—C7 | 1.498 (2) | C12—H12 | 0.9500 |
C5—C6 | 1.367 (2) | C13—H13 | 0.9497 |
O1···O1W | 2.9588 (14) | C9···H12vii | 3.0840 |
O1···N1 | 2.6657 (15) | C10···H7Aiii | 3.0282 |
O1···C8 | 3.3640 (18) | C10···H1W | 2.9695 |
O1···O1W | 2.9588 (14) | C13···H8Bvi | 2.9928 |
O1W···O1 | 2.9588 (14) | C13···H8Avi | 3.0257 |
O1W···O1i | 2.9588 (14) | C13···H11vii | 3.0612 |
O2···N2 | 2.8125 (16) | C13···H2Aii | 3.0151 |
O2···N2ii | 2.9166 (16) | C14···H2B | 2.7516 |
O2···N4 | 2.7267 (16) | C14···H1 | 2.6077 |
O2···C8iii | 3.3955 (18) | C14···H1W | 2.6946 |
O1···H10 | 2.5335 | H1···C14 | 2.6077 |
O1···H8A | 2.8307 | H1···O1 | 1.7989 |
O1···H1W | 1.9967 | H1···H2B | 2.2842 |
O1···H1 | 1.7989 | H1···O2 | 2.8407 |
O1W···H7Civ | 2.6904 | H1···H8A | 2.4384 |
O1W···H7Cv | 2.6904 | H1W···C14 | 2.6946 |
O2···H8Ciii | 2.7041 | H1W···C10 | 2.9695 |
O2···H1 | 2.8407 | H1W···C9 | 3.0093 |
O2···H2B | 1.9343 | H1W···O1 | 1.9967 |
O2···H7Bvi | 2.8968 | H2A···O2ii | 2.5262 |
O2···H2Bii | 2.7422 | H2A···C13ii | 3.0151 |
O2···H5vi | 2.8560 | H2A···H11viii | 2.4795 |
O2···H2Aii | 2.5262 | H2A···C9ii | 3.0012 |
N1···O1 | 2.6657 (15) | H2A···N4ii | 2.0929 |
N1···C14 | 3.4363 (18) | H2B···H8Ciii | 2.5100 |
N2···N4ii | 2.9645 (16) | H2B···O2ii | 2.7422 |
N2···O2 | 2.8125 (16) | H2B···H1 | 2.2842 |
N2···C4v | 3.3841 (18) | H2B···C14 | 2.7516 |
N2···O2ii | 2.9166 (16) | H2B···O2 | 1.9343 |
N3···C2v | 3.4482 (17) | H5···H8B | 2.4812 |
N4···O2 | 2.7267 (16) | H5···O2ix | 2.8560 |
N4···C12vii | 3.3543 (18) | H5···H7B | 2.5450 |
N4···N2ii | 2.9645 (16) | H5···H5xi | 2.4198 |
N2···H8Ciii | 2.8543 | H7A···C10iii | 3.0282 |
N2···H11viii | 2.8084 | H7B···N2v | 2.9271 |
N2···H7Bv | 2.9271 | H7B···O2ix | 2.8968 |
N3···H11viii | 2.7823 | H7B···H5 | 2.5450 |
N4···H12vii | 2.7804 | H7C···O1Wxii | 2.6904 |
N4···H2Aii | 2.0929 | H7C···O1Wv | 2.6904 |
C2···C4v | 3.3210 (19) | H8A···H1 | 2.4384 |
C2···N3v | 3.4482 (17) | H8A···O1 | 2.8307 |
C4···C2v | 3.3210 (19) | H8A···C13ix | 3.0257 |
C4···N2v | 3.3841 (18) | H8B···H5 | 2.4812 |
C6···C14iii | 3.551 (2) | H8B···C13ix | 2.9928 |
C8···C13ix | 3.371 (2) | H8C···H2Biii | 2.5100 |
C8···O1 | 3.3640 (18) | H8C···N2iii | 2.8543 |
C8···O2iii | 3.3955 (18) | H8C···O2iii | 2.7040 |
C11···C13x | 3.496 (2) | H10···O1 | 2.5335 |
C12···N4x | 3.3543 (18) | H10···H10i | 2.3546 |
C13···C8vi | 3.371 (2) | H11···N3xiii | 2.7823 |
C13···C11vii | 3.496 (2) | H11···C2xiii | 2.9734 |
C14···C6iii | 3.551 (2) | H11···H2Axiii | 2.4795 |
C14···N1 | 3.4363 (18) | H11···C13x | 3.0612 |
C2···H11viii | 2.9734 | H11···N2xiii | 2.8084 |
C9···H2Aii | 3.0012 | H12···N4x | 2.7804 |
C9···H1W | 3.0093 | H12···C9x | 3.0840 |
H1W—O1W—H1Wi | 101.19 | H7B—C7—H7C | 109.45 |
C2—N1—C6 | 121.13 (12) | C6—C8—H8B | 109.46 |
C2—N3—C4 | 117.42 (12) | C6—C8—H8C | 109.51 |
C2—N1—H1 | 119.42 | H8A—C8—H8C | 109.46 |
C6—N1—H1 | 119.45 | H8B—C8—H8C | 109.43 |
H2A—N2—H2B | 120.01 | C6—C8—H8A | 109.50 |
C2—N2—H2A | 120.00 | H8A—C8—H8B | 109.47 |
C2—N2—H2B | 119.99 | N4—C9—C14 | 116.70 (12) |
C9—N4—C13 | 117.73 (12) | C10—C9—C14 | 120.55 (13) |
N1—C2—N2 | 118.83 (12) | N4—C9—C10 | 122.74 (13) |
N1—C2—N3 | 121.72 (13) | C9—C10—C11 | 118.84 (15) |
N2—C2—N3 | 119.45 (12) | C10—C11—C12 | 118.72 (14) |
C5—C4—C7 | 120.20 (13) | C11—C12—C13 | 118.84 (14) |
N3—C4—C7 | 116.99 (12) | N4—C13—C12 | 123.12 (15) |
N3—C4—C5 | 122.80 (13) | O1—C14—O2 | 126.11 (14) |
C4—C5—C6 | 118.43 (13) | O2—C14—C9 | 117.86 (13) |
C5—C6—C8 | 125.26 (13) | O1—C14—C9 | 116.03 (12) |
N1—C6—C8 | 116.34 (12) | C9—C10—H10 | 120.56 |
N1—C6—C5 | 118.40 (13) | C11—C10—H10 | 120.60 |
C6—C5—H5 | 120.82 | C12—C11—H11 | 120.70 |
C4—C5—H5 | 120.75 | C10—C11—H11 | 120.58 |
C4—C7—H7B | 109.49 | C11—C12—H12 | 120.57 |
H7A—C7—H7B | 109.49 | C13—C12—H12 | 120.59 |
H7A—C7—H7C | 109.48 | N4—C13—H13 | 118.45 |
C4—C7—H7C | 109.48 | C12—C13—H13 | 118.43 |
C4—C7—H7A | 109.44 | ||
C6—N1—C2—N2 | −176.44 (12) | C7—C4—C5—C6 | −177.79 (13) |
C6—N1—C2—N3 | 3.15 (19) | C4—C5—C6—C8 | 177.75 (13) |
C2—N1—C6—C5 | −0.75 (19) | C4—C5—C6—N1 | −1.7 (2) |
C2—N1—C6—C8 | 179.76 (12) | N4—C9—C10—C11 | −1.2 (2) |
C4—N3—C2—N1 | −2.83 (18) | C14—C9—C10—C11 | 178.09 (13) |
C4—N3—C2—N2 | 176.76 (12) | N4—C9—C14—O2 | −16.38 (18) |
C2—N3—C4—C5 | 0.3 (2) | C10—C9—C14—O1 | −16.52 (19) |
C2—N3—C4—C7 | −179.95 (13) | C10—C9—C14—O2 | 164.34 (13) |
C9—N4—C13—C12 | −0.1 (2) | N4—C9—C14—O1 | 162.77 (12) |
C13—N4—C9—C10 | 1.1 (2) | C9—C10—C11—C12 | 0.1 (2) |
C13—N4—C9—C14 | −178.13 (12) | C10—C11—C12—C13 | 0.8 (2) |
N3—C4—C5—C6 | 2.0 (2) | C11—C12—C13—N4 | −0.9 (2) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, −y+2, z−1/2; (v) −x, −y+2, −z+1; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x, −y+1, z+1/2; (ix) x−1/2, y+1/2, z; (x) −x+1/2, y−1/2, −z+1/2; (xi) −x−1/2, −y+3/2, −z+1; (xii) x, −y+2, z+1/2; (xiii) x, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.80 | 2.6657 (15) | 168 |
O1W—H1W···O1 | 0.99 | 2.00 | 2.9588 (14) | 164 |
N2—H2A···O2ii | 0.88 | 2.53 | 2.9166 (16) | 108 |
N2—H2A···N4ii | 0.88 | 2.09 | 2.9645 (16) | 170 |
N2—H2B···O2 | 0.88 | 1.93 | 2.8125 (16) | 175 |
Symmetry code: (ii) −x+1/2, −y+3/2, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C14H19N4O3+·C6H4NO2− | C6H10N3+·C6H4NO2−·0.5H2O |
Mr | 413.43 | 255.28 |
Crystal system, space group | Triclinic, P1 | Monoclinic, C2/c |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 9.0642 (3), 10.2730 (3), 12.1188 (4) | 15.7666 (4), 8.7980 (1), 18.5038 (4) |
α, β, γ (°) | 108.051 (17), 98.741 (2), 107.517 (2) | 90, 102.740 (1), 90 |
V (Å3) | 985.03 (14) | 2503.55 (9) |
Z | 2 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.10 | 0.10 |
Crystal size (mm) | 0.22 × 0.20 × 0.16 | 0.4 × 0.2 × 0.1 |
Data collection | ||
Diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17816, 4537, 3758 | 16549, 2451, 2204 |
Rint | 0.036 | 0.026 |
(sin θ/λ)max (Å−1) | 0.653 | 0.617 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.141, 1.13 | 0.060, 0.143, 1.26 |
No. of reflections | 4537 | 2451 |
No. of parameters | 275 | 171 |
No. of restraints | 2 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.47 | 0.78, −0.82 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.
O1—C12 | 1.381 (2) | O3—C10 | 1.363 (2) |
O1—C14 | 1.428 (2) | O3—C16 | 1.425 (2) |
O2—C11 | 1.3826 (18) | O4—C22 | 1.255 (2) |
O2—C15 | 1.429 (2) | O5—C22 | 1.253 (2) |
C2—N1—C6 | 119.87 (14) | N1—C2—N3 | 121.87 (14) |
C2—N3—C4 | 118.52 (14) | N1—C2—N2 | 118.21 (14) |
N2—C2—N3 | 119.92 (14) | N3—C4—N4 | 116.74 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5 | 0.88 | 1.92 | 2.7308 (19) | 151 |
N1—H1···N5 | 0.88 | 2.39 | 3.0441 (19) | 131 |
N2—H2A···O4i | 0.88 | 2.00 | 2.8693 (19) | 169 |
N2—H2B···O5 | 0.88 | 2.02 | 2.7982 (19) | 147 |
N4—H4A···N3ii | 0.88 | 2.12 | 2.9966 (18) | 173 |
N4—H4B···O4iii | 0.88 | 2.14 | 2.8412 (18) | 137 |
C14—H14A···O2 | 0.96 | 2.56 | 2.899 (3) | 101 |
C17—H17···O3iv | 0.93 | 2.49 | 3.141 (2) | 128 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y−1, z; (iv) −x, −y+1, −z. |
O1—C14 | 1.2687 (18) | N3—C4 | 1.3270 (19) |
O2—C14 | 1.2430 (18) | N3—C2 | 1.3558 (18) |
N1—C2 | 1.3642 (17) | N4—C13 | 1.3409 (19) |
N1—C6 | 1.3591 (18) | N4—C9 | 1.3410 (18) |
N2—C2 | 1.3190 (18) | ||
C2—N1—C6 | 121.13 (12) | N1—C6—C8 | 116.34 (12) |
C2—N3—C4 | 117.42 (12) | N1—C6—C5 | 118.40 (13) |
C9—N4—C13 | 117.73 (12) | N4—C9—C14 | 116.70 (12) |
N1—C2—N2 | 118.83 (12) | N4—C9—C10 | 122.74 (13) |
N1—C2—N3 | 121.72 (13) | N4—C13—C12 | 123.12 (15) |
N2—C2—N3 | 119.45 (12) | O1—C14—O2 | 126.11 (14) |
N3—C4—C7 | 116.99 (12) | O2—C14—C9 | 117.86 (13) |
N3—C4—C5 | 122.80 (13) | O1—C14—C9 | 116.03 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.80 | 2.6657 (15) | 168 |
O1W—H1W···O1 | 0.99 | 2.00 | 2.9588 (14) | 164 |
N2—H2A···O2i | 0.88 | 2.53 | 2.9166 (16) | 108 |
N2—H2A···N4i | 0.88 | 2.09 | 2.9645 (16) | 170 |
N2—H2B···O2 | 0.88 | 1.93 | 2.8125 (16) | 175 |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
Acknowledgements
MH thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship (SRF) [reference No. 9/475(123)/2004-EMR-I]. DL thanks the EPSRC National Crystallographic Service, Southampton, England, for the X-ray data collection.
References
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 44, 1252–1257. CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Francis, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2002). Acta Cryst. E58, o717–o719. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hitchings, G. H., Kuyper, L. F. & Baccananari, D. P. (1988). Design of Enzyme Inhibitors as Drugs, edited by M. Sandler & H. J. Smith, p. 343. New York: Oxford University Press. Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CAS PubMed Web of Science Google Scholar
Koetzle, T. F. & Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074–2078. CSD CrossRef PubMed CAS Web of Science Google Scholar
Kuyper, L. F. (1989). Computer-Aided Drug Design: Methods and Applications, edited by T. J. Perun & C. L. Propst, ch. 9, pp. 327–370. New York: Marcel Dekker Inc. Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801–803. New York: Harper and Row Publishers. Google Scholar
Melanson, R. & Rochon, F. D. (1978). Acta Cryst. B34, 1125–1127. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327–332. Web of Science CrossRef PubMed CAS Google Scholar
Okabe, N., Isomoto, N. & Odoko, M. (2002). Acta Cryst. E58, m1–m3. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raj, S. B., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Inorg. Chem. Commun. 6, 748–751. Web of Science CSD CrossRef CAS Google Scholar
Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76. Web of Science CSD CrossRef CAS Google Scholar
Raj, S. B., Stanley, N., Muthiah, P. T., Bocelli, G., Oll'a, R. & Cantoni, A. (2003). Cryst. Growth Des. 3, 567–571. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210. Web of Science CSD CrossRef CAS Google Scholar
Stanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. & Weber, M. (2002). Cryst. Growth Des. 6, 631–635. Web of Science CSD CrossRef Google Scholar
Wang, L., Zhou, D.-H. & Zhang, J.-P. (2005). Acta Cryst. E61, m958–m960. Web of Science CSD CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important as they occur in nature as components of nucleic acid. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Trimethoprim [2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine, TMP] is a well known antifolate drug. It selectively inhibits the bacterial dihydrofolate reductase (DHFR) enzyme (Hitchings et al., 1988). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). The crystal structures of a dinuclear oxomolybdenum(V) complex of picolinate (Okabe et al., 2002), of catena-poly[[bis(2-pyridinecarboxylic acid] dihydrate (Wang et al., 2005) and of trans-dichloro(dimethylsulfoxide)(2-picoline)platinum(II) (Melanson et al., 1978) have been reported. In this paper, the crystal structures of trimethoprim (TMP) picolinate, (I), and 2-amino-4,6-dimethylpyrimidinium (AMPY) picolinate hemihydrate, (II), are described.
Views of (I) and (II) are shown in Figs. 1(a) and 1(b), respectively. In (I), the asymmetric unit contains a trimethoprim cation and a picolinate anion. In (II), one 2-amino-4,6-dimethylpyrimidinium cation, one picolinate anion and one half of a water molecule (the O atom of the water molecule lies on a twofold axis) constitute the asymmetic unit. In both structures, the pyrimidine moieties are protonated at N1, leading to an increase in internal angles (see angles C2—N1—C6 in Tables 1 and 3) compared with neutral TMP (Koetzle & Williams, 1976) and AMPY (Panneerselvam et al., 2004). In (I), the dihedral angle between the pyrimidine and phenyl rings is 76.06 (7)°. This value is close to that found in TMP-carboxylate salts (Raj et al., 2003 Which reference?). The C4—C5—C7—C8 and C5—C7—C8—C9 torsion angles are −68.79 (18) and 168.05 (14)°, respectively.
In (I), atom O5 of the carboxylate accepts an H atom from the protonated atom N1 and the 2-amino group of the pyrimidine ring, forming a cyclic hydrogen-bonded bimolecular pattern [graph-set R21(6); Etter, 1990; Bernstein et al., 1995]. A similar pattern was also observed in the crystal structure of trimethoprim 3-carboxy-4-hydroxybenzenesulfonate dihydrate (Raj, Muthiah et al., 2003 Correct?). This is different from the common R22(8) pattern observed in the crystal structures of aminopyrimidine–carboxylate salts (Stanley et al., 2002). The pyrimidine moieties form base pairs through N4—H···N3 (Table 2) hydrogen bonds involving the 4-amino group and atom N3. In addition to the base pairing, a hydrogen-bonded acceptor (atom O4 from the picolinate anion) bridges the 4-amino and 2-amino groups on both sides of the pairing, leading to a complementary linear DADA array (D = donor in hydrogen bonds and A = acceptor in hydrogen bonds), with the rings having the graph-set notations R23(8), R22(8) and R23(8). The same type of DADA array has also been observed in the crystal structures of trimethoprim trifluoroacetate (Francis et al., 2002) and a copper(II) phthalate trimethoprim complex (Raj et al., 2003 Which reference?). The characteristic hydrogen-bonded rings observed in the structure aggregate into a supramolecular ladder consisting of a pair of chains, each of which is built up of alternating TMP and picolinate anions (Fig. 2).
In (II), the carboxylate group (atoms O1 and O2) of the picolinate anion interacts with protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, leading to the common ring motif with graph-set notation R22(8) (Lynch et al., 2004). This is reminiscent of the trimethoprim–carboxylate interactions observed in the DHFR–TMP complexes (Kuyper, 1989). The water molecule, which resides on a twofold rotation axis, bridges the carboxylate groups of the picolinate anions via O—H···O hydrogen bonds. One of the H atoms of the 2-amino group is also involved in bifurcated hydrogen bonding with the carboxyl atom O2 and the pyridine N atom to form a five-membered hydrogen-bonded ring [R21(5); Fig. 3].
Please ensure the three Raj et al. (2003) references are each uniquely cited.