organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2,4-Di­fluoro­benzaldehyde benzoyl­hydrazone and 2,4-di­chloro­benz­aldehyde benzoyl­hydrazone are isostructural at 120 K with Z′ = 2: complex sheets built from N—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 16 January 2006; accepted 17 January 2006; online 11 February 2006)

At 120 K, 2,4-difluoro­benzaldehyde benzoyl­hydrazone, C14H10­F2N2O, (I)[link], and 2,4-dichloro­benzaldehyde benzoyl­hydrazone, C14H10Cl2N2O, (II)[link], are isomorphous and isostructural in P21/n with Z′ = 2. In each structure, eight independent hydrogen bonds, viz. two of N—H⋯O type, five of C—H⋯O type and one of C—H⋯π(arene) type, link the mol­ecules into complex sheets, within which two independent one-dimensional substructures can be identified.

Comment

As part of our continuing studies of the supermolecular structures of imines and hydrazones, we now report the structures of the title compounds, (I)[link] and (II)[link] (Figs. 1[link] and 2[link], respectively). The title compounds were initially prepared as part of a programme to test and compare the bactericidal activities of aroyl and pyridinoyl benzene­carbaldehyde hydrazones, ArCH=NNHCOPh and ArCH=NNHCOC5H5N. The pyridinoyl compounds possessed such activities, but the benzoyl derivatives were found not to be active. While the influence of the pyridine N atom is clear, structural differences may also be of importance.

Compounds (I)[link] and (II)[link] both crystallize with Z′ = 2 in space group P21/n. The unit-cell dimensions and atomic coordinates indicate that the two compounds are isomorphous and isostructural. The structure of compound (II)[link] has been reported very recently using diffraction data collected at 294 (2) K (Jing et al., 2005[Jing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o4316-o4317.]), and it is clear that no phase change occurs between 294 and 120 K. Although the N—H⋯O and C—H⋯O hydrogen bonds were identified in the structure of (II)[link], a description of the supramolecular structure was not given.

[Scheme 1]

In each compound, the mol­ecules deviate only slightly from being fully planar, as shown by the values of the five torsion angles defining the conformation of each independent mol­ecule (Table 1[link]). In compound (I)[link], none of these torsion angles deviates from 180° by more than 10° and the deviations indicate clearly that the two mol­ecules selected to form the asymmetric unit of (I)[link] are, in fact, approximately enantio­morphous. A careful search for possible additional crystallographic symmetry, however, revealed none. The precision of the structure determination for compound (II)[link] is rather less good than that for compound (I)[link], but the same conclusions apply. The bond lengths and angles present no unexpected values.

In each of (I)[link] and (II)[link], the mol­ecules are linked into complex sheets by a total of eight independent hydrogen bonds (Tables 2[link] and 3[link]), and the formation of the sheet is readily analysed in terms of two independent one-dimensional substructures. We discuss in detail here only the supramolecular structure of compound (I)[link]. Within the selected asymmetric unit (Fig. 1[link]), the two mol­ecules are linked by three hydrogen bonds, all utilizing atom O47 as the acceptor, and with atoms C17, N21 and C26 as the donors. In an entirely similar way, atoms C37, N41 and C46 at (x, y, z) all act as hydrogen-bond donors to atom O27 at (−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), hence forming a complex chain of rings running parallel to the [101] direction, as generated by the n-glide plane at y = [{1 \over 4}] (Fig. 3[link]). This chain contains two independent pairs of edge-fused R21(6) and R21(7) rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and the corresponding pairs of hydrogen bonds generate three independent chains of C22(8), C22(10) and C22(12) types, where the donors are atoms N21 and N41, C26 and C46, and C17 and C37, respectively.

In the second one-dimensional substructure, the bimolecular aggregates (Fig. 1[link]) are linked by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond. Aryl atom C13 at (x, y, z) acts as donor to atom O27 at ([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), while atom C23 at (x, y, z) acts as donor to the fluorinated aryl ring C31–C36 at (−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z). The concerted action of these two hydrogen bonds, together with that of the hydrogen bonds within the asymmetric unit, produces a second chain of rings, this time running parallel to the [10[\overline{1}]] direction, but again generated by the n-glide plane at y = [{1 \over 4}] (Fig. 4[link]). The combination of these two chains lying along [101] and [10[\overline{1}]] and inclined to one another by ca 70° then generates a very complex sheet lying parallel to (010). Two such sheets, generated by the n-glide planes at y = [{1 \over 4}] and y = [{3 \over 4}], respectively, and related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent sheets.

In compound (II)[link], the N—H⋯O and C—H⋯O hydrogen bonds (Table 3[link]) play exactly the same role as those in compound (I)[link], but the C—H⋯π(arene) hydrogen bond in (II)[link] reinforces the [101] chain, rather than the [10[\overline{1}]] chain as in compound (I)[link].

[Figure 1]
Figure 1
The two independent mol­ecules of compound (I)[link], showing the atom-labelling scheme and the three hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The two independent mol­ecules of compound (II)[link], showing the atom-labelling scheme and the three hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of rings along [101]. For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded chain of rings along [10[\overline{1}]]. For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.

Experimental

A solution of benzohydrazide (PhCONHNH2, 5 mmol) and the appropriate substituted benzaldehyde (5 mmol) in tetra­hydro­furan (20 ml) was heated under reflux for 15–18 h under an atmosphere of dinitro­gen. After the solution had been cooled, the solvent was removed under reduced pressure and the resulting solid was washed successively with propan-2-ol and diethyl ether. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in methanol–heptane [3:1 v/v for (I)[link] and 2:1 v/v for (II)]. Analysis for compound (I)[link]: yield 78%, m.p. 461–463 K; MS, m/z 260, [M]+; 1H NMR (DMSO-d6,): δ 7.23 (1H, dd, J = 8.2 and 8.5 Hz, H5), 7.39 (1H, dd, J = 9.4 and 9.2 Hz, H6), 7.55 (2H, dd, J = 7.2 and 7.5 Hz, H3′ and H5′), 7.62 (1H, d, J = 7.2 Hz, H4′), 7.94 (2H, d, J = 7.5 Hz, H2′ and H6′), 8.02 (1H, dd, J = 8.2 and 15.0 Hz, H3′), 8.67 (1H, s, N=C—H), 12.02 (1H, s, NH); 13C NMR (DMSO-d6): δ 104.5 (t, J = 25.0 Hz, C3), 112.7 (dd, J = 2.5 and 22.5 Hz, C5), 118.8 (dd, J = 2.5 and 10.0 Hz, C1), 127.5, 127.7, 128.6, 132.0, 133.2, 139.7 (C=N), 161.0 (dd, J = 12.4 and 250.9 Hz, C4), 163.2, 163.3 (dd, J = 12.2 and 248.2 Hz, C2); IR (KBr pellet, ν, cm−1): 3177 (NH), 1654 (CO). Analysis for compound (II)[link]: yield 74%, m.p. 462–464 K; MS, m/z 293, [M]+; 1H NMR (DMSO-d6): δ 7.55 (1H, d, J = 8.5 Hz, H5), 7.56 (2H, J = 7.5 Hz, H3′ and H5′), 7.62 (1H, d, J = 7.5 Hz, H4′), 7.74 (1H, s, H3), 7.95 (2H, d, J = 7.5 Hz, H2′ and H6′), 8.04 (1H, d, J = 8.5 Hz, H6), 8.83 (1H, s, N=C—H), 12.16 (1H, s, NH); 13C NMR (DMSO-d6): δ 127.5, 128.1, 128.6, 129.4, 130.8, 132.1, 133.0, 133.9, 135.1, 142.5, 166.4; IR (KBr pellet, ν, cm−1): 3086 (NH), 1680 (CO).

Compound (I)[link]

Crystal data
  • C14H10F2N2O

  • Mr = 260.24

  • Monoclinic, P 21 /n

  • a = 10.1310 (3) Å

  • b = 17.2172 (6) Å

  • c = 14.4288 (5) Å

  • β = 103.957 (2)°

  • V = 2442.48 (14) Å3

  • Z = 8

  • Dx = 1.415 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5577 reflections

  • θ = 3.0–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.36 × 0.11 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.973, Tmax = 0.997

  • 26932 measured reflections

  • 5577 independent reflections

  • 3589 reflections with I > 2σ(I)

  • Rint = 0.080

  • θmax = 27.5°

  • h = −13 → 13

  • k = −21 → 22

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.130

  • S = 1.04

  • 5577 reflections

  • 343 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0499P)2 + 0.8675P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected torsion angles (°) for compounds (I)[link] and (II)[link]

Parameter (I)[link]   (II)[link]  
  x = 1, y = 2 x = 3, y = 4 x = 1, y = 2 x = 3, y = 4
Cx1—Cx7—Nx1—Ny1 177.66 (16) −177.09 (17) 175.3 (3) −174.9 (3)
Cx7—Nx1—Ny1—Cy7 −177.33 (17) 179.69 (19) −179.4 (3) 177.3 (3)
Nx1—Ny1—Ny7—Cy1 172.31 (16) −173.40 (17) 170.4 (3) −168.8 (3)
Cx2—Cx1—Cx7—Nx1 176.80 (19) −171.9 (2) 168.6 (4) −166.3 (3)
Cy2—Cy1—Cy7—Ny1 177.65 (17) −175.2 (2) −176.6 (3) −167.0 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O47 0.88 2.02 2.889 (2) 170
N41—H41⋯O27i 0.88 2.12 2.916 (2) 150
C13—H13⋯O27ii 0.95 2.37 3.286 (3) 162
C17—H17⋯O47 0.95 2.47 3.277 (2) 143
C26—H26⋯O47 0.95 2.41 3.340 (3) 167
C37—H37⋯O27i 0.95 2.50 3.251 (2) 136
C46—H46⋯O27i 0.95 2.47 3.402 (2) 165
C23—H23⋯Cg1iii 0.95 2.91 3.859 (3) 174
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}},] [z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C14H10Cl2N2O

  • Mr = 293.14

  • Monoclinic, P 21 /n

  • a = 10.5093 (5) Å

  • b = 17.6499 (9) Å

  • c = 14.7982 (5) Å

  • β = 104.732 (2)°

  • V = 2654.7 (2) Å3

  • Z = 8

  • Dx = 1.467 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6060 reflections

  • θ = 3.0–27.5°

  • μ = 0.48 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.12 × 0.03 × 0.03 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.964, Tmax = 0.986

  • 38980 measured reflections

  • 6060 independent reflections

  • 3687 reflections with I > 2σ(I)

  • Rint = 0.102

  • θmax = 27.5°

  • h = −13 → 13

  • k = −22 → 22

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.155

  • S = 1.04

  • 6060 reflections

  • 343 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0527P)2 + 3.4899P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.70 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O47 0.88 2.10 2.969 (3) 168
N41—H41⋯O27i 0.88 2.20 2.989 (4) 150
C13—H13⋯O27ii 0.95 2.47 3.425 (4) 179
C17—H17⋯O47 0.95 2.49 3.311 (4) 145
C26—H26⋯O47 0.95 2.41 3.354 (4) 171
C37—H37⋯O27i 0.95 2.59 3.300 (4) 131
C46—H46⋯O27i 0.95 2.44 3.381 (4) 170
C35—H35⋯Cg2iii 0.95 2.88 3.480 (5) 122
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}},] [ z+{\script{1\over 2}}].

For both compounds, the space group P21/n was uniquely assigned from the systematic absences. All H atoms were located in difference maps and subsequently treated as riding atoms, with distances C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

For both compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of our continuing studies of the supermolecular structures of imines and hydrazones, we now report the structures of the title compounds, (I) and (II) (Figs. 1 and 2, respectively). The title compounds were initially prepared as part of a programme to test and compare the bactericidal activities of aroyl and pyridinoyl benzenecarboxaldehydehydrazones, ArCHNNHCOPh and ArCH NNHCOC5H5N. The pyridinoyl compounds possessed such activities, but the benzoyl derivatives were found not to be active. While the influence of the pyridine N atom is clear, structural differences may also be of importance.

Compounds (I) and (II) both crystallize with Z' = 2 in space group P21/n. The unit-cell dimensions and atomic coordinates indicate that the two compounds are isomorphous and isostructural. The structure of compound (II) has been reported very recently using diffraction data collected at 294 (2) K (Jing et al., 2005), and it is clear that no phase change occurs between 294 and 120 K. Although those authors identified the N—H.·O and C—H.·O hydrogen bonds in the structure of (II), they did not give any description of the supramolecular structure, as provided here.

In each compound, the molecules deviate only slightly from being fully planar, as shown by the values of the five torsion angles defining the conformation of each independent molecule (Table 1). In compound (I), none of these torsion angles deviates from 180° by more than 10° and the deviations indicate clearly that the two molecules selected to form the asymmetric unit of (I) are, in fact, approximately enantiomorphous. A careful search for possible additional crystallographic symmetry, however, revealed none. The precision of the structure determination for compound (II) is rather less good than that for compound (I), but the same conclusions apply. The bond lengths and angles present no unexpected values.

In each of (I) and (II), the molecules are linked into complex sheets by a total of eight independent hydrogen bonds (Tables 2 and 3), and the formation of the sheet is readily analysed in terms of two independent one-dimensional sub-structures. We discuss in detail here only the supramolecular structure of compound (I). Within the selected asymmetric unit (Fig. 1), the two molecules are linked by three hydrogen bonds, all utilizing atom O47 as the acceptor, and with atoms C17, N21 and C26 as the donors. In an entirely similar way, the atoms C37, N41 and C46 at (x, y, z) all act as hydrogen-bond donors to atom O27 at (−1/2 + x, 1/2 − y, −1/2 + z), hence forming a complex chain of rings running parallel to the [101] direction, as generated by the n-glide plane at y = 1/4 (Fig. 3). This chain contains two independent pairs of edge-fused R21(6) and R21(7) rings (Bernstein et al., 1995), and the corresponding pairs of hydrogen bonds generate three independent chains of C22(8), C22(10) and C22(12) types, where the donors are atoms N21 and N41, C26 and C46, and C17 and C37, respectively.

In the second one-dimensional sub-structure, the bimolecular aggregates (Fig. 1) are linked by a combination of one C—H···O hydrogen bond and one C—H..π(arene) hydrogen bond. Aryl atom C13 at (x, y, z) acts as donor to atom O27 at (1/2 + x, 1/2 − y, −1/2 + z), while atom C23 at (x, y, z) acts as donor to the fluorinated aryl ring C31–C36 at (−1/2 + x, 1/2 − y, 1/2 + z). The concerted action of these two hydrogen bonds, together with that of the hydrogen bonds within the asymmetric unit, produces a second chain of rings, this time running parallel to the [101] direction, but again generated by the n-glide plane at y = 1/4 (Fig. 4). The combination of these two chains lying along [101] and [101] and inclined to one another by ca 70° then generates a very complex sheet lying parallel to (010). Two such sheets, generated by the n-glide planes at y = 1/4 and y = 3/4, respectively, and related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

In compound (II), the N—H···O and C—H.·O hydrogen bonds (Table 3) play exactly the same role as those in compound (I), but the C—H···π(arene) hydrogen bond in (II) reinforces the [101] chain, rather than the [101] chain as in compound (I).

Experimental top

A solution of benzhydrazide (PhCONHNH2, 5 mmol) and the appropriate substituted benzaldehyde (5 mmol) in tetrahydrofuran (20 ml) was heated under reflux for 15–18 h in an atmosphere of dinitrogen. After the solution had been cooled, the solvent was removed under reduced pressure and the resulting solid was washed successively with propan-2-ol and ethyl [Diethyl?] ether. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in methanol–heptane [3:1 v/v for (I), and 2:1 v/v for (II)]. Analysis for compound (I): yield 78%, m.p. 461–463 K; MS, m/z 260, [M]+; 1H NMR (DMSO-d6, δ, p.p.m.): 7.23 (1H, dd, J = 8.2 and 8.5 Hz, H5), 7.39 (1H, dd, J = 9.4 and 9.2 Hz, H6), 7.55 (2H, dd, J = 7.2 and 7.5 Hz, H3' and H5'), 7.62 (1H, d, J = 7.2 Hz, H4'), 7.94 (2H, d, J = 7.5 Hz, H2' and H6'), 8.02 (1H, dd, J = 8.2 and 15.0 Hz, H3'), 8.67 (1H, s, NC—H), 12.02 (1H, s, NH); 13C NMR (DMSO-d6, δ, p.p.m.): 104.5 (t, J = 25.0 Hz, C3), 112.7 (dd, J = 2.5 and 22.5 Hz, C5), 118.8 (dd, J = 2.5 and 10.0 Hz, C1), 127.5, 127.7, 128.6, 132.0, 133.2, 139.7 (CN), 161.0 (dd, J = 12.4 and 250.9 Hz, C4), 163.2, 163.3 (dd, J = 12.2 and 248.2 Hz, C2); IR (KBr pellet, ν, cm−1): 3177 (NH), 1654 (CO). Analysis for compound (II): yield 74%, m.p. 462–464 K; MS, m/z 293, [M]+; 1H NMR (DMSO-d6, δ, p.p.m.): 7.55 (1H, d, J = 8.5 Hz, H5), 7.56 (2H, J = 7.5 Hz, H3' and H5'), 7.62 (1H, d, J = 7.5 Hz, H4'), 7.74 (1H, s, H3), 7.95 (2H, d, J = 7.5 Hz, H2' and H6'), 8.04 (1H, d, J = 8.5 Hz, H6), 8.83 (1H, s, NC—H), 12.16 (1H, s, NH); 13C NMR (DMSO-d6, δ, p.p.m.): 127.5, 128.1, 128.6, 129.4, 130.8, 132.1, 133.0, 133.9, 135.1, 142.5, 166.4; IR (KBr pellet, ν, cm−1): 3086 (NH), 1680 (CO).

Refinement top

For both compounds, the space group P21/n was uniquely assigned from the systematic absences. All H atoms were located in difference maps and subsequently treated as riding atoms, with distances C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of compound (I), showing the atom-labelling scheme and the three hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules of compound (II), showing the atom-labelling scheme and the three hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings along [101]. For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings along [101]. For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.
(I) 2,4-difluorobenzaldehyde benzoylhydrazone top
Crystal data top
C14H10F2N2OF(000) = 1072
Mr = 260.24Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5577 reflections
a = 10.1310 (3) Åθ = 3.0–27.5°
b = 17.2172 (6) ŵ = 0.11 mm1
c = 14.4288 (5) ÅT = 120 K
β = 103.957 (2)°Lath, colourless
V = 2442.48 (14) Å30.36 × 0.11 × 0.03 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5577 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2122
Tmin = 0.973, Tmax = 0.997l = 1818
26932 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.8675P]
where P = (Fo2 + 2Fc2)/3
5577 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H10F2N2OV = 2442.48 (14) Å3
Mr = 260.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.1310 (3) ŵ = 0.11 mm1
b = 17.2172 (6) ÅT = 120 K
c = 14.4288 (5) Å0.36 × 0.11 × 0.03 mm
β = 103.957 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5577 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3589 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.997Rint = 0.080
26932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
5577 reflectionsΔρmin = 0.29 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.99764 (19)0.27524 (11)0.42068 (15)0.0239 (4)
C121.0390 (2)0.25610 (12)0.33871 (15)0.0265 (5)
F120.94624 (12)0.25951 (8)0.25303 (9)0.0423 (4)
C131.1691 (2)0.23343 (12)0.33807 (15)0.0294 (5)
C141.26080 (19)0.23045 (12)0.42535 (16)0.0279 (5)
F141.39040 (12)0.20814 (8)0.42768 (10)0.0419 (4)
C151.2284 (2)0.24928 (11)0.50982 (16)0.0277 (5)
C161.09665 (19)0.27149 (12)0.50665 (15)0.0259 (5)
C170.85690 (19)0.29890 (11)0.41486 (15)0.0253 (5)
N110.81731 (15)0.31313 (9)0.49087 (12)0.0236 (4)
N210.68381 (15)0.33782 (9)0.47659 (12)0.0246 (4)
C270.63571 (19)0.35462 (11)0.55360 (15)0.0224 (4)
O270.70367 (13)0.34086 (8)0.63547 (10)0.0281 (3)
C210.49811 (18)0.39067 (11)0.53653 (15)0.0231 (4)
C220.4473 (2)0.40510 (12)0.61610 (16)0.0295 (5)
C230.3216 (2)0.44082 (13)0.60593 (18)0.0374 (6)
C240.2462 (2)0.46161 (13)0.51643 (18)0.0372 (6)
C250.2953 (2)0.44722 (12)0.43656 (17)0.0329 (5)
C260.42156 (19)0.41249 (11)0.44662 (16)0.0268 (5)
C310.61992 (18)0.07412 (11)0.28898 (15)0.0235 (4)
C320.61079 (19)0.00380 (12)0.26511 (16)0.0278 (5)
F320.51203 (13)0.02688 (7)0.18904 (11)0.0494 (4)
C330.6983 (2)0.05991 (12)0.31253 (17)0.0314 (5)
C340.8001 (2)0.03505 (12)0.38748 (16)0.0318 (5)
F340.88836 (13)0.08888 (7)0.43573 (10)0.0469 (4)
C350.8163 (2)0.04103 (13)0.41593 (17)0.0387 (6)
C360.7253 (2)0.09501 (12)0.36670 (16)0.0321 (5)
C370.52320 (19)0.13100 (12)0.23681 (15)0.0257 (5)
N310.54556 (15)0.20317 (10)0.25460 (12)0.0247 (4)
N410.44667 (15)0.25306 (9)0.20581 (12)0.0246 (4)
C470.46447 (19)0.33006 (12)0.22207 (14)0.0243 (4)
O470.56955 (13)0.35678 (8)0.27418 (10)0.0277 (3)
C410.34917 (19)0.38236 (11)0.17673 (14)0.0243 (4)
C420.3717 (2)0.46184 (12)0.18762 (16)0.0335 (5)
C430.2679 (2)0.51418 (13)0.15371 (17)0.0405 (6)
C440.1399 (2)0.48801 (13)0.10782 (17)0.0360 (6)
C450.1168 (2)0.40922 (13)0.09610 (17)0.0352 (6)
C460.2200 (2)0.35639 (12)0.12975 (15)0.0301 (5)
H131.19410.22060.28060.035*
H151.29500.24700.56870.033*
H161.07260.28460.56440.031*
H170.79470.30370.35430.030*
H210.64040.34560.41670.030*
H220.49880.39050.67770.035*
H230.28760.45090.66060.045*
H240.16020.48590.50960.045*
H250.24270.46110.37500.039*
H260.45600.40350.39190.032*
H330.68860.11300.29430.038*
H350.88820.05620.46820.046*
H360.73460.14780.38620.039*
H370.44480.11460.19030.031*
H410.37190.23590.16650.030*
H420.45950.48040.21880.040*
H430.28460.56830.16200.049*
H440.06840.52390.08450.043*
H450.02890.39110.06450.042*
H460.20290.30230.12080.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0253 (10)0.0206 (10)0.0251 (12)0.0019 (8)0.0043 (9)0.0016 (9)
C120.0297 (10)0.0279 (11)0.0199 (11)0.0048 (9)0.0020 (9)0.0008 (9)
F120.0417 (7)0.0572 (9)0.0245 (7)0.0154 (6)0.0013 (6)0.0036 (6)
C130.0352 (11)0.0310 (11)0.0251 (12)0.0070 (9)0.0137 (10)0.0013 (9)
C140.0232 (10)0.0262 (11)0.0358 (13)0.0049 (8)0.0103 (9)0.0025 (10)
F140.0285 (6)0.0514 (8)0.0481 (9)0.0108 (6)0.0138 (6)0.0014 (7)
C150.0256 (10)0.0291 (11)0.0271 (12)0.0001 (9)0.0038 (9)0.0025 (9)
C160.0258 (10)0.0278 (11)0.0245 (12)0.0002 (9)0.0069 (9)0.0002 (9)
C170.0257 (10)0.0261 (11)0.0223 (12)0.0014 (8)0.0026 (9)0.0001 (9)
N110.0187 (8)0.0264 (9)0.0246 (10)0.0022 (7)0.0029 (7)0.0008 (7)
N210.0195 (8)0.0303 (9)0.0220 (10)0.0046 (7)0.0012 (7)0.0013 (7)
C270.0230 (9)0.0191 (10)0.0240 (12)0.0017 (8)0.0037 (9)0.0011 (8)
O270.0271 (7)0.0347 (8)0.0217 (8)0.0035 (6)0.0040 (6)0.0044 (6)
C210.0197 (9)0.0203 (10)0.0287 (12)0.0014 (8)0.0050 (9)0.0010 (9)
C220.0282 (10)0.0304 (11)0.0309 (13)0.0012 (9)0.0087 (9)0.0004 (10)
C230.0318 (11)0.0405 (13)0.0448 (15)0.0035 (10)0.0188 (11)0.0039 (11)
C240.0229 (10)0.0325 (12)0.0565 (17)0.0045 (9)0.0100 (11)0.0014 (11)
C250.0250 (10)0.0323 (12)0.0393 (14)0.0066 (9)0.0039 (10)0.0035 (10)
C260.0257 (10)0.0257 (10)0.0287 (12)0.0014 (8)0.0062 (9)0.0000 (9)
C310.0214 (9)0.0255 (10)0.0239 (12)0.0012 (8)0.0059 (8)0.0001 (9)
C320.0193 (9)0.0322 (11)0.0298 (12)0.0031 (9)0.0016 (9)0.0054 (10)
F320.0393 (7)0.0364 (8)0.0587 (10)0.0018 (6)0.0154 (7)0.0141 (7)
C330.0299 (11)0.0242 (10)0.0406 (14)0.0003 (9)0.0093 (10)0.0008 (10)
C340.0287 (11)0.0285 (11)0.0356 (14)0.0042 (9)0.0028 (10)0.0062 (10)
F340.0449 (8)0.0322 (7)0.0542 (9)0.0083 (6)0.0066 (7)0.0099 (6)
C350.0392 (12)0.0315 (12)0.0370 (14)0.0003 (10)0.0070 (11)0.0032 (10)
C360.0370 (12)0.0239 (11)0.0319 (13)0.0011 (9)0.0013 (10)0.0023 (9)
C370.0224 (10)0.0279 (11)0.0257 (12)0.0003 (8)0.0037 (9)0.0010 (9)
N310.0221 (8)0.0285 (9)0.0228 (10)0.0040 (7)0.0037 (7)0.0024 (7)
N410.0201 (8)0.0251 (9)0.0248 (10)0.0027 (7)0.0022 (7)0.0002 (7)
C470.0242 (10)0.0294 (11)0.0190 (11)0.0003 (8)0.0049 (9)0.0001 (9)
O470.0248 (7)0.0293 (8)0.0246 (8)0.0028 (6)0.0027 (6)0.0019 (6)
C410.0275 (10)0.0252 (10)0.0190 (11)0.0020 (8)0.0032 (8)0.0016 (9)
C420.0323 (11)0.0278 (11)0.0357 (14)0.0003 (9)0.0008 (10)0.0014 (10)
C430.0490 (14)0.0259 (11)0.0410 (15)0.0045 (10)0.0003 (12)0.0017 (11)
C440.0374 (12)0.0347 (13)0.0333 (14)0.0121 (10)0.0033 (10)0.0042 (10)
C450.0264 (11)0.0399 (13)0.0354 (14)0.0029 (10)0.0002 (10)0.0053 (11)
C460.0281 (10)0.0296 (11)0.0301 (13)0.0015 (9)0.0019 (9)0.0034 (10)
Geometric parameters (Å, º) top
C11—C121.386 (3)C31—C321.383 (3)
C11—C161.396 (3)C31—C361.396 (3)
C11—C171.466 (3)C31—C371.459 (3)
C12—F121.362 (2)C32—F321.354 (2)
C12—C131.378 (3)C32—C331.376 (3)
C13—C141.374 (3)C33—C341.371 (3)
C13—H130.95C33—H330.95
C14—F141.361 (2)C34—F341.358 (2)
C14—C151.375 (3)C34—C351.371 (3)
C15—C161.379 (3)C35—C361.379 (3)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—N111.279 (3)C37—N311.278 (3)
C17—H170.95C37—H370.95
N11—N211.385 (2)N31—N411.377 (2)
N21—C271.348 (3)N41—C471.351 (3)
N21—H210.88N41—H410.88
C27—O271.238 (2)C47—O471.235 (2)
C27—C211.491 (3)C47—C411.495 (3)
C21—C221.389 (3)C41—C421.390 (3)
C21—C261.393 (3)C41—C461.394 (3)
C22—C231.390 (3)C42—C431.381 (3)
C22—H220.95C42—H420.95
C23—C241.380 (3)C43—C441.382 (3)
C23—H230.95C43—H430.95
C24—C251.383 (3)C44—C451.380 (3)
C24—H240.95C44—H440.95
C25—C261.388 (3)C45—C461.383 (3)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—C11—C16116.55 (18)C32—C31—C36116.25 (18)
C12—C11—C17120.46 (18)C32—C31—C37121.76 (18)
C16—C11—C17122.98 (19)C36—C31—C37121.98 (18)
F12—C12—C13117.26 (19)F32—C32—C33117.27 (18)
F12—C12—C11118.71 (17)F32—C32—C31118.59 (18)
C13—C12—C11124.03 (19)C33—C32—C31124.12 (19)
C14—C13—C12116.2 (2)C34—C33—C32116.42 (19)
C14—C13—H13121.9C34—C33—H33121.8
C12—C13—H13121.9C32—C33—H33121.8
F14—C14—C13117.92 (19)F34—C34—C35118.84 (19)
F14—C14—C15118.66 (18)F34—C34—C33117.96 (19)
C13—C14—C15123.42 (18)C35—C34—C33123.20 (19)
C14—C15—C16118.16 (19)C34—C35—C36118.2 (2)
C14—C15—H15120.9C34—C35—H35120.9
C16—C15—H15120.9C36—C35—H35120.9
C15—C16—C11121.7 (2)C35—C36—C31121.8 (2)
C15—C16—H16119.2C35—C36—H36119.1
C11—C16—H16119.2C31—C36—H36119.1
N11—C17—C11120.40 (18)N31—C37—C31118.97 (18)
N11—C17—H17119.8N31—C37—H37120.5
C11—C17—H17119.8C31—C37—H37120.5
C17—N11—N21115.35 (16)C37—N31—N41115.59 (16)
C27—N21—N11118.51 (16)C47—N41—N31118.24 (16)
C27—N21—H21125.6C47—N41—H41120.0
N11—N21—H21115.6N31—N41—H41121.8
O27—C27—N21121.13 (18)O47—C47—N41122.07 (18)
O27—C27—C21121.32 (19)O47—C47—C41120.66 (18)
N21—C27—C21117.55 (17)N41—C47—C41117.24 (16)
C22—C21—C26119.18 (18)C42—C41—C46118.67 (18)
C22—C21—C27117.11 (18)C42—C41—C47117.00 (17)
C26—C21—C27123.67 (19)C46—C41—C47124.22 (18)
C21—C22—C23120.3 (2)C43—C42—C41120.8 (2)
C21—C22—H22119.8C43—C42—H42119.6
C23—C22—H22119.8C41—C42—H42119.6
C24—C23—C22120.0 (2)C42—C43—C44120.2 (2)
C24—C23—H23120.0C42—C43—H43119.9
C22—C23—H23120.0C44—C43—H43119.9
C23—C24—C25120.3 (2)C45—C44—C43119.4 (2)
C23—C24—H24119.9C45—C44—H44120.3
C25—C24—H24119.9C43—C44—H44120.3
C24—C25—C26119.8 (2)C44—C45—C46120.8 (2)
C24—C25—H25120.1C44—C45—H45119.6
C26—C25—H25120.1C46—C45—H45119.6
C25—C26—C21120.4 (2)C45—C46—C41120.1 (2)
C25—C26—H26119.8C45—C46—H46119.9
C21—C26—H26119.8C41—C46—H46119.9
C16—C11—C12—F12179.48 (18)C36—C31—C32—F32178.66 (19)
C17—C11—C12—F120.2 (3)C37—C31—C32—F322.4 (3)
C16—C11—C12—C130.7 (3)C36—C31—C32—C330.3 (3)
C17—C11—C12—C13179.93 (19)C37—C31—C32—C33179.2 (2)
F12—C12—C13—C14180.00 (18)F32—C32—C33—C34178.0 (2)
C11—C12—C13—C140.1 (3)C31—C32—C33—C340.3 (3)
C12—C13—C14—F14179.87 (18)C32—C33—C34—F34179.87 (19)
C12—C13—C14—C150.6 (3)C32—C33—C34—C350.4 (4)
F14—C14—C15—C16179.74 (17)F34—C34—C35—C36179.6 (2)
C13—C14—C15—C160.7 (3)C33—C34—C35—C360.1 (4)
C14—C15—C16—C110.1 (3)C34—C35—C36—C310.8 (4)
C12—C11—C16—C150.5 (3)C32—C31—C36—C350.9 (3)
C17—C11—C16—C15179.76 (18)C37—C31—C36—C35179.8 (2)
C12—C11—C17—N11176.80 (19)C32—C31—C37—N31171.9 (2)
C16—C11—C17—N114.0 (3)C36—C31—C37—N319.2 (3)
C11—C17—N11—N21177.66 (16)C31—C37—N31—N41177.09 (17)
C17—N11—N21—C27179.33 (17)C37—N31—N41—C47179.69 (19)
N11—N21—C27—O277.4 (3)N31—N41—C47—O474.6 (3)
N11—N21—C27—C21172.31 (16)N31—N41—C47—C41173.40 (17)
O27—C27—C21—C222.6 (3)O47—C47—C41—C426.7 (3)
N21—C27—C21—C22177.65 (17)N41—C47—C41—C42175.2 (2)
O27—C27—C21—C26175.21 (18)O47—C47—C41—C46169.4 (2)
N21—C27—C21—C264.5 (3)N41—C47—C41—C468.7 (3)
C26—C21—C22—C230.0 (3)C46—C41—C42—C430.8 (3)
C27—C21—C22—C23177.97 (19)C47—C41—C42—C43175.5 (2)
C21—C22—C23—C240.5 (3)C41—C42—C43—C440.3 (4)
C22—C23—C24—C250.1 (3)C42—C43—C44—C450.1 (4)
C23—C24—C25—C260.7 (3)C43—C44—C45—C460.1 (4)
C24—C25—C26—C211.2 (3)C44—C45—C46—C410.4 (4)
C22—C21—C26—C250.9 (3)C42—C41—C46—C450.8 (3)
C27—C21—C26—C25178.67 (19)C47—C41—C46—C45175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O470.882.022.889 (2)170
N41—H41···O27i0.882.122.916 (2)150
C13—H13···O27ii0.952.373.286 (3)162
C17—H17···O470.952.473.277 (2)143
C26—H26···O470.952.413.340 (3)167
C37—H37···O27i0.952.503.251 (2)136
C46—H46···O27i0.952.473.402 (2)165
C23—H23···Cg1iii0.952.913.859 (3)174
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
(II) 2,4-dichlorobenzaldehyde benzoylhydrazone top
Crystal data top
C14H10Cl2N2OF(000) = 1200
Mr = 293.14Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6060 reflections
a = 10.5093 (5) Åθ = 3.0–27.5°
b = 17.6499 (9) ŵ = 0.48 mm1
c = 14.7982 (5) ÅT = 120 K
β = 104.732 (2)°Needle, colourless
V = 2654.7 (2) Å30.12 × 0.03 × 0.03 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
6060 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2222
Tmin = 0.964, Tmax = 0.986l = 1919
38980 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 3.4899P]
where P = (Fo2 + 2Fc2)/3
6060 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C14H10Cl2N2OV = 2654.7 (2) Å3
Mr = 293.14Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.5093 (5) ŵ = 0.48 mm1
b = 17.6499 (9) ÅT = 120 K
c = 14.7982 (5) Å0.12 × 0.03 × 0.03 mm
β = 104.732 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
6060 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3687 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.986Rint = 0.102
38980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
6060 reflectionsΔρmin = 0.70 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.9744 (3)0.2791 (2)0.4130 (2)0.0297 (8)
C121.0069 (4)0.2530 (2)0.3333 (2)0.0366 (9)
Cl120.88367 (11)0.24508 (8)0.22962 (7)0.0652 (4)
C131.1341 (4)0.2319 (2)0.3322 (2)0.0373 (9)
C141.2304 (3)0.2401 (2)0.4129 (2)0.0316 (8)
Cl141.38988 (9)0.21204 (6)0.41435 (7)0.0436 (3)
C151.2047 (3)0.2684 (2)0.4935 (2)0.0378 (9)
C161.0782 (3)0.2879 (2)0.4932 (2)0.0345 (8)
C170.8401 (3)0.30026 (19)0.4129 (2)0.0299 (8)
N110.8088 (2)0.31225 (16)0.48924 (18)0.0276 (6)
N210.6809 (2)0.33750 (15)0.47809 (18)0.0269 (6)
C270.6388 (3)0.35245 (19)0.5553 (2)0.0272 (7)
O270.7063 (2)0.33619 (14)0.63429 (15)0.0317 (5)
C210.5089 (3)0.39111 (19)0.5402 (2)0.0273 (7)
C220.4681 (3)0.4105 (2)0.6196 (2)0.0342 (8)
C230.3509 (3)0.4491 (2)0.6110 (3)0.0405 (9)
C240.2736 (3)0.4686 (2)0.5233 (3)0.0380 (9)
C250.3138 (3)0.4495 (2)0.4452 (3)0.0374 (9)
C260.4316 (3)0.4117 (2)0.4533 (2)0.0307 (8)
C310.6153 (3)0.08524 (19)0.2827 (2)0.0282 (7)
C320.6209 (3)0.0106 (2)0.2537 (2)0.0319 (8)
Cl320.52231 (9)0.01937 (6)0.14709 (7)0.0473 (3)
C330.7043 (3)0.0421 (2)0.3072 (3)0.0365 (8)
C340.7821 (4)0.0205 (2)0.3925 (3)0.0386 (9)
Cl340.88383 (11)0.08745 (6)0.46080 (8)0.0576 (3)
C350.7790 (4)0.0525 (2)0.4258 (3)0.0393 (9)
C360.6955 (3)0.1049 (2)0.3702 (2)0.0349 (8)
C370.5242 (3)0.1414 (2)0.2283 (2)0.0298 (8)
N310.5423 (3)0.21111 (16)0.24940 (18)0.0282 (6)
N410.4467 (3)0.25948 (16)0.20021 (18)0.0292 (6)
C470.4585 (3)0.3342 (2)0.2229 (2)0.0286 (7)
O470.5583 (2)0.36061 (14)0.27595 (15)0.0336 (6)
C410.3420 (3)0.3832 (2)0.1820 (2)0.0300 (8)
C420.3613 (4)0.4617 (2)0.1883 (2)0.0383 (9)
C430.2562 (4)0.5106 (2)0.1570 (3)0.0461 (10)
C440.1312 (4)0.4825 (2)0.1200 (3)0.0433 (10)
C450.1109 (4)0.4053 (2)0.1131 (3)0.0439 (10)
C460.2154 (3)0.3552 (2)0.1441 (2)0.0356 (8)
H131.15310.21240.27720.045*
H151.27380.27420.54860.045*
H161.06070.30780.54840.041*
H170.77540.30510.35520.036*
H210.63840.34980.42070.032*
H220.52060.39710.67970.041*
H230.32340.46230.66530.049*
H240.19320.49500.51760.046*
H250.26050.46220.38510.045*
H260.45960.39990.39870.037*
H330.70780.09250.28530.044*
H350.83260.06660.48530.047*
H360.69290.15520.39230.042*
H370.45300.12600.17810.036*
H410.37450.24180.16210.035*
H420.44690.48140.21420.046*
H430.27030.56380.16100.055*
H440.05920.51620.09940.052*
H450.02500.38610.08700.053*
H460.20060.30210.13950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0274 (17)0.035 (2)0.0250 (16)0.0012 (15)0.0034 (13)0.0004 (14)
C120.037 (2)0.042 (2)0.0278 (18)0.0082 (17)0.0027 (15)0.0017 (16)
Cl120.0516 (6)0.0989 (10)0.0353 (5)0.0291 (6)0.0069 (4)0.0224 (6)
C130.044 (2)0.042 (2)0.0285 (18)0.0037 (17)0.0144 (16)0.0002 (15)
C140.0282 (17)0.0290 (19)0.040 (2)0.0011 (15)0.0136 (15)0.0014 (15)
Cl140.0308 (5)0.0503 (6)0.0515 (6)0.0003 (4)0.0140 (4)0.0079 (4)
C150.0288 (19)0.051 (2)0.0312 (18)0.0039 (17)0.0031 (15)0.0051 (16)
C160.0344 (19)0.041 (2)0.0276 (17)0.0023 (16)0.0069 (15)0.0041 (15)
C170.0277 (17)0.0313 (19)0.0269 (17)0.0037 (15)0.0000 (14)0.0016 (14)
N110.0212 (13)0.0323 (16)0.0274 (14)0.0037 (12)0.0028 (11)0.0031 (12)
N210.0213 (13)0.0320 (16)0.0250 (14)0.0067 (12)0.0015 (11)0.0008 (12)
C270.0238 (16)0.0250 (18)0.0316 (18)0.0047 (14)0.0051 (14)0.0002 (14)
O270.0241 (12)0.0443 (15)0.0252 (12)0.0040 (11)0.0033 (9)0.0036 (10)
C210.0206 (16)0.0271 (18)0.0330 (17)0.0018 (13)0.0047 (13)0.0004 (14)
C220.0272 (18)0.040 (2)0.0345 (19)0.0001 (16)0.0068 (15)0.0025 (16)
C230.0311 (19)0.044 (2)0.049 (2)0.0006 (17)0.0131 (17)0.0094 (18)
C240.0252 (18)0.037 (2)0.051 (2)0.0029 (16)0.0086 (16)0.0020 (17)
C250.0293 (19)0.037 (2)0.042 (2)0.0051 (16)0.0036 (16)0.0031 (17)
C260.0266 (17)0.031 (2)0.0330 (18)0.0016 (15)0.0054 (14)0.0009 (15)
C310.0218 (16)0.0309 (19)0.0323 (18)0.0019 (14)0.0079 (13)0.0016 (14)
C320.0254 (17)0.034 (2)0.0379 (19)0.0045 (15)0.0118 (15)0.0026 (15)
Cl320.0376 (5)0.0474 (6)0.0522 (6)0.0016 (4)0.0026 (4)0.0182 (5)
C330.0326 (19)0.030 (2)0.051 (2)0.0012 (16)0.0180 (17)0.0008 (17)
C340.036 (2)0.036 (2)0.045 (2)0.0055 (17)0.0138 (17)0.0137 (17)
Cl340.0626 (7)0.0435 (6)0.0636 (7)0.0166 (5)0.0102 (5)0.0225 (5)
C350.039 (2)0.040 (2)0.0336 (19)0.0021 (17)0.0001 (16)0.0049 (16)
C360.0356 (19)0.032 (2)0.0345 (19)0.0024 (16)0.0040 (16)0.0035 (15)
C370.0237 (17)0.039 (2)0.0267 (17)0.0008 (15)0.0065 (13)0.0000 (15)
N310.0239 (14)0.0315 (17)0.0281 (14)0.0044 (12)0.0043 (11)0.0026 (12)
N410.0226 (14)0.0341 (17)0.0256 (14)0.0022 (12)0.0037 (11)0.0008 (12)
C470.0283 (18)0.037 (2)0.0202 (15)0.0035 (15)0.0050 (13)0.0023 (14)
O470.0279 (12)0.0373 (14)0.0287 (12)0.0006 (11)0.0056 (10)0.0025 (10)
C410.0301 (18)0.034 (2)0.0236 (16)0.0050 (15)0.0033 (14)0.0011 (14)
C420.037 (2)0.036 (2)0.036 (2)0.0019 (16)0.0017 (16)0.0049 (16)
C430.052 (2)0.034 (2)0.046 (2)0.0134 (19)0.0010 (19)0.0039 (18)
C440.040 (2)0.046 (3)0.040 (2)0.0192 (19)0.0042 (17)0.0006 (18)
C450.0302 (19)0.054 (3)0.044 (2)0.0072 (18)0.0039 (17)0.0017 (19)
C460.0302 (18)0.037 (2)0.0361 (19)0.0039 (16)0.0021 (15)0.0016 (16)
Geometric parameters (Å, º) top
C11—C121.387 (5)C31—C321.391 (5)
C11—C161.401 (4)C31—C361.397 (5)
C11—C171.459 (5)C31—C371.468 (5)
C12—C131.392 (5)C32—C331.382 (5)
C12—Cl121.744 (3)C32—Cl321.735 (3)
C13—C141.362 (5)C33—C341.372 (5)
C13—H130.95C33—H330.95
C14—C151.382 (5)C34—C351.383 (5)
C14—Cl141.743 (3)C34—Cl341.735 (4)
C15—C161.372 (5)C35—C361.391 (5)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—N111.273 (4)C37—N311.271 (4)
C17—H170.95C37—H370.95
N11—N211.386 (4)N31—N411.377 (4)
N21—C271.352 (4)N41—C471.360 (4)
N21—H210.88N41—H410.88
C27—O271.236 (4)C47—O471.230 (4)
C27—C211.492 (4)C47—C411.496 (4)
C21—C261.384 (4)C41—C461.396 (5)
C21—C221.392 (5)C41—C421.398 (5)
C22—C231.385 (5)C42—C431.386 (5)
C22—H220.95C42—H420.95
C23—C241.387 (5)C43—C441.381 (6)
C23—H230.95C43—H430.95
C24—C251.371 (5)C44—C451.377 (6)
C24—H240.95C44—H440.95
C25—C261.384 (5)C45—C461.394 (5)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—C11—C16116.7 (3)C32—C31—C36117.3 (3)
C12—C11—C17122.1 (3)C32—C31—C37122.9 (3)
C16—C11—C17121.2 (3)C36—C31—C37119.8 (3)
C11—C12—C13123.0 (3)C33—C32—C31122.1 (3)
C11—C12—Cl12119.1 (3)C33—C32—Cl32117.4 (3)
C13—C12—Cl12117.9 (3)C31—C32—Cl32120.5 (3)
C14—C13—C12117.6 (3)C34—C33—C32118.8 (3)
C14—C13—H13121.2C34—C33—H33120.6
C12—C13—H13121.2C32—C33—H33120.6
C13—C14—C15122.0 (3)C33—C34—C35121.6 (3)
C13—C14—Cl14118.6 (3)C33—C34—Cl34118.7 (3)
C15—C14—Cl14119.4 (3)C35—C34—Cl34119.6 (3)
C16—C15—C14119.3 (3)C34—C35—C36118.5 (3)
C16—C15—H15120.3C34—C35—H35120.7
C14—C15—H15120.3C36—C35—H35120.7
C15—C16—C11121.3 (3)C35—C36—C31121.6 (3)
C15—C16—H16119.3C35—C36—H36119.2
C11—C16—H16119.3C31—C36—H36119.2
N11—C17—C11120.6 (3)N31—C37—C31118.9 (3)
N11—C17—H17119.7N31—C37—H37120.6
C11—C17—H17119.7C31—C37—H37120.6
C17—N11—N21114.2 (3)C37—N31—N41115.3 (3)
C27—N21—N11118.5 (2)C47—N41—N31117.6 (3)
C27—N21—H21124.9C47—N41—H41120.9
N11—N21—H21115.7N31—N41—H41120.9
O27—C27—N21121.4 (3)O47—C47—N41122.3 (3)
O27—C27—C21122.1 (3)O47—C47—C41121.1 (3)
N21—C27—C21116.5 (3)N41—C47—C41116.6 (3)
C26—C21—C22119.1 (3)C46—C41—C42119.0 (3)
C26—C21—C27123.9 (3)C46—C41—C47123.8 (3)
C22—C21—C27116.9 (3)C42—C41—C47117.1 (3)
C23—C22—C21120.0 (3)C43—C42—C41120.3 (3)
C23—C22—H22120.0C43—C42—H42119.8
C21—C22—H22120.0C41—C42—H42119.8
C22—C23—C24120.3 (4)C44—C43—C42120.3 (4)
C22—C23—H23119.9C44—C43—H43119.8
C24—C23—H23119.9C42—C43—H43119.8
C25—C24—C23119.6 (3)C45—C44—C43119.9 (3)
C25—C24—H24120.2C45—C44—H44120.0
C23—C24—H24120.2C43—C44—H44120.1
C24—C25—C26120.4 (3)C44—C45—C46120.6 (4)
C24—C25—H25119.8C44—C45—H45119.7
C26—C25—H25119.8C46—C45—H45119.7
C25—C26—C21120.5 (3)C45—C46—C41119.9 (4)
C25—C26—H26119.8C45—C46—H46120.1
C21—C26—H26119.8C41—C46—H46120.1
C16—C11—C12—C133.8 (6)C36—C31—C32—C331.7 (5)
C17—C11—C12—C13179.3 (4)C37—C31—C32—C33177.9 (3)
C16—C11—C12—Cl12177.0 (3)C36—C31—C32—Cl32178.7 (3)
C17—C11—C12—Cl120.1 (5)C37—C31—C32—Cl322.5 (5)
C11—C12—C13—C142.4 (6)C31—C32—C33—C341.4 (5)
Cl12—C12—C13—C14178.3 (3)Cl32—C32—C33—C34179.0 (3)
C12—C13—C14—C150.0 (6)C32—C33—C34—C350.1 (6)
C12—C13—C14—Cl14178.5 (3)C32—C33—C34—Cl34178.4 (3)
C13—C14—C15—C160.9 (6)C33—C34—C35—C360.7 (6)
Cl14—C14—C15—C16177.6 (3)Cl34—C34—C35—C36179.2 (3)
C14—C15—C16—C110.6 (6)C34—C35—C36—C310.3 (6)
C12—C11—C16—C152.8 (5)C32—C31—C36—C350.9 (5)
C17—C11—C16—C15179.7 (3)C37—C31—C36—C35177.2 (3)
C12—C11—C17—N11168.6 (4)C32—C31—C37—N31166.3 (3)
C16—C11—C17—N1114.6 (5)C36—C31—C37—N3117.7 (5)
C11—C17—N11—N21175.3 (3)C31—C37—N31—N41174.9 (3)
C17—N11—N21—C27179.4 (3)C37—N31—N41—C47177.3 (3)
N11—N21—C27—O278.1 (5)N31—N41—C47—O479.6 (5)
N11—N21—C27—C21170.4 (3)N31—N41—C47—C41168.8 (3)
O27—C27—C21—C26178.6 (3)O47—C47—C41—C46161.1 (3)
N21—C27—C21—C260.0 (5)N41—C47—C41—C4617.3 (5)
O27—C27—C21—C222.0 (5)O47—C47—C41—C4214.6 (5)
N21—C27—C21—C22176.6 (3)N41—C47—C41—C42167.0 (3)
C26—C21—C22—C230.7 (5)C46—C41—C42—C430.2 (5)
C27—C21—C22—C23177.5 (3)C47—C41—C42—C43176.1 (3)
C21—C22—C23—C240.1 (6)C41—C42—C43—C440.6 (6)
C22—C23—C24—C250.1 (6)C42—C43—C44—C450.8 (6)
C23—C24—C25—C260.8 (6)C43—C44—C45—C460.7 (6)
C24—C25—C26—C211.6 (6)C44—C45—C46—C410.4 (6)
C22—C21—C26—C251.5 (5)C42—C41—C46—C450.1 (5)
C27—C21—C26—C25178.1 (3)C47—C41—C46—C45175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O470.882.102.969 (3)168
N41—H41···O27i0.882.202.989 (4)150
C13—H13···O27ii0.952.473.425 (4)179
C17—H17···O470.952.493.311 (4)145
C26—H26···O470.952.413.354 (4)171
C37—H37···O27i0.952.593.300 (4)131
C46—H46···O27i0.952.443.381 (4)170
C35—H35···Cg2iii0.952.883.480 (5)122
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H10F2N2OC14H10Cl2N2O
Mr260.24293.14
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)10.1310 (3), 17.2172 (6), 14.4288 (5)10.5093 (5), 17.6499 (9), 14.7982 (5)
β (°) 103.957 (2) 104.732 (2)
V3)2442.48 (14)2654.7 (2)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.110.48
Crystal size (mm)0.36 × 0.11 × 0.030.12 × 0.03 × 0.03
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.973, 0.9970.964, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
26932, 5577, 3589 38980, 6060, 3687
Rint0.0800.102
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.130, 1.04 0.061, 0.155, 1.04
No. of reflections55776060
No. of parameters343343
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.290.53, 0.70

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O470.882.022.889 (2)170
N41—H41···O27i0.882.122.916 (2)150
C13—H13···O27ii0.952.373.286 (3)162
C17—H17···O470.952.473.277 (2)143
C26—H26···O470.952.413.340 (3)167
C37—H37···O27i0.952.503.251 (2)136
C46—H46···O27i0.952.473.402 (2)165
C23—H23···Cg1iii0.952.913.859 (3)174
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O470.882.102.969 (3)168
N41—H41···O27i0.882.202.989 (4)150
C13—H13···O27ii0.952.473.425 (4)179
C17—H17···O470.952.493.311 (4)145
C26—H26···O470.952.413.354 (4)171
C37—H37···O27i0.952.593.300 (4)131
C46—H46···O27i0.952.443.381 (4)170
C35—H35···Cg2iii0.952.883.480 (5)122
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
Selected torsion angles (°) for compounds (I) and (II) top
Parameter(I)(II)
x = 1, y = 2x = 3, y = 4x = 1, y = 2x = 3, y = 4
Cx1-Cx7-Nx1-Ny1177.66 (16)-177.09 (17)175.3 (3)-174.9 (3)
Cx7-Nx1-Ny1-Cy7-177.33 (17)179.69 (19)-179.4 (3)177.3 (3)
Nx1-Ny1-Ny7-Cy1172.31 (16)-173.40 (17)170.4 (3)-168.8 (3)
Cx2-Cx1-Cx7-Nx1176.80 (19)-171.9 (2)168.6 (4)-166.3 (3)
Cn2-Cy1-Cy7-Ny1177.65 (17)-175.2 (2)-176.6 (3)-167.0 (3)
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o4316–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds