organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Isolated mol­ecules in 2-ethyl­sulfanyl-7-methyl-4-(4-methyl­phen­yl)­pyrazolo­[1,5-a][1,3,5]triazine and hydrogen-bonded sheets of R22(10), R22(16), R44(22) and R44(24) rings in 2-ethyl­sulfanyl-7-methyl-4-(4-nitro­phen­yl)­pyrazolo[1,5-a][1,3,5]triazine

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria Torobajo, AA 1175 Pasto, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 20 January 2006; accepted 24 January 2006; online 11 February 2006)

In each of 2-ethyl­sulfanyl-7-methyl-4-(4-methyl­phen­yl)­pyra­zolo­[1,5-a][1,3,5]triazine, C15H16N4S, (I), and 2-ethyl­sulfan­yl-7-methyl-4-(4-nitro­phen­yl)pyrazolo[1,5-a][1,3,5]tri­azine, C14H13N5O2S, (II), there is significant bond fixation in the heterocyclic component. While there are no direction-specific inter­molecular inter­actions in the structure of (I), the mol­ecules of (II) are linked by a combination of C—H⋯O and C—H⋯S hydrogen bonds into sheets containing four types of ring, all centrosymmetric.

Comment

Pyrazolo[1,5-a][1,3,5]triazines have attracted considerable inter­est from the medicinal chemistry community because of their wide range of biological activities (De Zwart et al., 1999[De Zwart, M., Vollinga, R. C., Beukers, M. W., Sleegers, D. F., Von Frijtag Drabbe, K., Jacobien, K., De Groote, M. & Ijzerman, A. P. (1999). Drug Dev. Res. 48, 95-103.]; He et al., 2000[He, L., Gilligan, P. J., Zaczek, R., Fitzgerald, L. W., McElroy, J., Shen, H. S., Saye, J. A., Kalin, N. H., Shelton, S., Christ, D., Trainor, G. & Hartig, P. (2000). J. Med. Chem. 43, 449-456.]). Derivatives containing such ring systems have been synthesized from 5-amino­pyrazoles and an appropriate bis-electrophilic reagent (Strohmeyer et al., 1985[Strohmeyer, T. W., Sliskovic, D. R., Lang, S. A. & Ling, Y.-I. (1985). J. Heterocycl. Chem. 22, 7-10.]; Ried & Aboul-Fetouh, 1988[Ried, W. & Aboul-Fetouh, S. (1988). Tetrahedron, 44, 7155-7162.]; Elgemeie et al., 2001[Elgemeie, G. H., El-Ezbawy, S. R. & El-Aziz, H. A. (2001). Synth. Commun. 31, 3453-3458.]). We report here the structures of two closely related pyrazolo[1,5-a]-1,3,5-triazines, viz. 2-ethyl­sulfanyl-7-methyl-4-(4-methyl­phen­yl)­pyrazolo[1,5-a][1,3,5]triazine, (I)[link] (Fig. 1[link]), and 2-ethyl­sulfanyl-7-methyl-4-(4-nitro­phen­yl)pyrazolo[1,5-a][1,3,5]triazine, (II)[link] (Fig. 2[link]), which were obtained from the reactions of 5-amino-3-methyl­pyrazole with the appropriate 4-substituted S,S-diethyl aroylimino­dithio­carbonates.

In the fused heterobicyclic components of the mol­ecules, the corresponding bond lengths for compounds (I)[link] and (II)[link] are very similar (Table 1[link]), and they show a number of inter­esting features. Firstly, the N1—C2 and N3—C4 bonds are significantly shorter than the C2—N3, C4—N5 and C9—N1

[Scheme 1]
bonds, while the cross-ring bond N5—C9 is by far the longest of the C—N bonds in this system; secondly, the C8—C9 bond is significantly shorter than the C7—C8 bond. These observations provide evidence for a significant measure of bond fixation within this ring system. In each of (I)[link] and (II)[link], the pendent aryl ring is almost coplanar with the heterocyclic system, and this configuration may be associated with the presence, in each compound, of an intra­molecular C—H⋯N contact to pyrazole atom N6. In (II)[link], the nitro group is nearly coplanar with the aryl ring, with a dihedral angle between the planes of the aryl group and the C—NO2 unit of only 14.3 (2)°. However, the conformation of the ethyl­sulfanyl substituent differs between compounds (I)[link] and (II)[link], with the C21—C22 bond anti­periplanar to C2—S2 in (I)[link] but synclinal in (II)[link] (Table 1[link]); the exocyclic C2—S2 distances are significantly different in the two compounds, possibly as a consequence of the conformational difference, although the S2—C21 distances are not significantly different.

There are no direction-specific inter­molecular inter­actions in the structure of (I)[link]. However, the mol­ecules of (II)[link] are linked by two independent C—H⋯O hydrogen bonds (Table 2[link]) into chains of edge-fused rings, which are themselves further linked, albeit rather weakly, by a single C—H⋯S hydrogen bond.

Pyrazole atom C8 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O441 in the mol­ecule at (1 + x, −1 + y, 1 + z), so generating by translation a C(11) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [1[\overline{1}]1] direction. There are two chains of this type passing through each unit cell, related by inversion and hence anti­parallel to one another, and such pairs of anti­parallel chains are linked by the second C—H⋯O hydrogen bond. Aryl atom C45 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O442 in the mol­ecule at (1 − x, 1 − y, −z), so generating by translation and inversion a chain of edge-fused R22(10) and R44(24) rings running along [1[\overline{1}]1] (Fig. 3[link]). Finally, aryl atom C43 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom S2 in the mol­ecule at (1 − x, 2 − y, 1 − z), so linking the [1[\overline{1}]1] chains into (21[\overline{1}]) sheets built from four types of ring, viz. R22(10), R22(16), R44(22) and R44(24), all of them centrosymmetric (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (II)[link], showing the formation of a (21[\overline{1}]) sheet built from four types of ring. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

A solution of 5-amino-3-methyl­pyrazole (0.034 mol) and the appropriate S,S-diethyl aroylimino­dithio­carbonate (0.034 mol) in di­methyl­formamide (2 ml) was heated under reflux until the reaction was complete. The solid products were precipitated by addition of cold water to the reaction mixture, collected by filtration and purified by column chromatography on silica gel, using a mixture of hexanes/ethyl acetate (4:1 v/v) as eluant. Compound (I)[link] was obtained after heating for 1 h, and evaporation of the solution in hexanes/ethyl acetate (4:1 v/v) provided crystals suitable for single-crystal X-ray diffraction (yield 63%, m.p. 388 K). Compound (II)[link] was obtained after heating for 30 min; recrystallization from absolute ethanol provided crystals suitable for single-crystal X-ray diffraction (yield 50%, m.p. 393 K).

Compound (I)[link]

Crystal data
  • C15H16N4S

  • Mr = 284.38

  • Monoclinic, P 21 /c

  • a = 16.0941 (5) Å

  • b = 5.5573 (2) Å

  • c = 15.2495 (5) Å

  • β = 96.2994 (17)°

  • V = 1355.68 (8) Å3

  • Z = 4

  • Dx = 1.393 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3092 reflections

  • θ = 3.8–27.5°

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.54 × 0.32 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.884, Tmax = 0.977

  • 14663 measured reflections

  • 3092 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.5°

  • h = −20 → 20

  • k = −7 → 7

  • l = −17 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.05

  • 3092 reflections

  • 184 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.065P)2 + 0.834P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Compound (II)[link]

Crystal data
  • C14H13N5O2S

  • Mr = 315.35

  • Triclinic, [P \overline 1]

  • a = 7.9401 (2) Å

  • b = 8.8642 (3) Å

  • c = 11.3717 (4) Å

  • α = 68.7710 (17)°

  • β = 85.792 (2)°

  • γ = 72.214 (2)°

  • V = 709.77 (4) Å3

  • Z = 2

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3255 reflections

  • θ = 3.2–27.6°

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.24 × 0.16 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.939, Tmax = 0.990

  • 16065 measured reflections

  • 3255 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.6°

  • h = −10 → 10

  • k = −11 → 11

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.06

  • 3255 reflections

  • 201 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2934P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °) for compounds (I) and (II)

  (I) (II)
N1—C2 1.316 (2) 1.310 (2)
C2—N3 1.360 (2) 1.370 (2)
N3—C4 1.317 (2) 1.310 (2)
C4—N5 1.374 (2) 1.370 (2)
N5—N6 1.376 (2) 1.375 (2)
N6—C7 1.339 (2) 1.341 (2)
C7—C8 1.402 (3) 1.403 (3)
C8—C9 1.376 (3) 1.371 (2)
C9—N1 1.361 (2) 1.360 (2)
N5—C9 1.401 (2) 1.409 (2)
C2—S2 1.7499 (19) 1.7432 (18)
S2—C21 1.8099 (19) 1.8063 (18)
C2—S2—C21—C22 179.01 (13) 78.57 (15)
N3—C4—C41—C42 2.5 (3) −1.1 (2)
C43—C44—N44—O441 14.5 (2)

Table 2
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I) and (II)

Compound D—H⋯A D—H H⋯A D⋯A D—H⋯A
(I) C46—H46⋯N6 0.95 2.24 2.909 (2) 127
           
(II) C46—H46⋯N6 0.95 2.26 2.929 (2) 127
  C8—H8⋯O441i 0.95 2.53 3.444 (2) 161
  C43—H43⋯S2ii 0.95 2.84 3.453 (2) 123
  C45—H45⋯O442iii 0.95 2.50 3.437 (2) 169
Symmetry codes: (i) 1 + x, -1 + y, 1 + z; (ii) 1 - x, 2 - y, 1 - z; (iii) 1 - x, 1 - y, -z.

For (I)[link], the space group P21/c was uniquely assigned from the systematic absences; crystals of (II)[link] are triclinic, and the space group P[\overline{1}] was selected and subsequently confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (CH), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

For both compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Pyrazolo[1,5-a]-1,3,5-triazines have attracted considerable interest from the medicinal chemistry community because of their wide range of biological activities (De Zwart et al., 1999; He et al., 2000). Derivatives containing such ring system have been synthesized from 5-aminopyrazoles and an appropriate bis-electrophilic reagent (Strohmeyer et al., 1985; Ried & Aboul-Fetouh, 1988; Elgemeie et al., 2001). We report here the structures of two closely related pyrazolo[1,5-a]-1,3,5-triazines, 2-ethylsulfanyl-7-methyl-4- (4-methylphenyl)pyrazolo[1,5-a][1,3,5]triazine, (I), and 2-ethylsulfanyl-7-methyl-4- (4-nitrophenyl)pyrazolo[1,5-a][1,3,5]triazine, (II) (Figs. 1 and 2), which were obtained from the reactions of 5-amino-3-methylpyrazol with the appropriate 4-substitued S,S-diethyl aroyliminodithiocarbonates (see scheme).

In the fused heterobicyclic components of the molecules, the corresponding bond lengths for compounds (I) and (II) are very similar (Table 1), and they show a number of interesting features. Firstly, the N1—C2 and N3—C4 bonds are significantly shorter than the C2—N3, C4—N5 and C9—N1 bonds, while the cross-ring bond N5—C9 is by far the longest of the C—N bonds in this system; secondly, the C8—C9 bond is significantly shorter than the C7—C8 bond. These observations provide evidence for a significant measure of bond fixation within this ring system. In each of (I) and (II), the pendent aryl ring is almost coplanar with the heterocyclic system, and this may be associated with the presence, in each compound, of an intramolecular C—H···N contact to the pyrazole atom N6. In (II), the nitro group is nearly coplanar with the aryl ring, with a dihedral angle between the planes of the aryl group and the C—NO2 unit of only 14.3 (2)°. However, the conformation of the ethylsulfanyl substituent differs between compounds (I) and (II), with the C21—C22 bond antiperiplanar to C2—S2 in (I) but synclinal in (II) (Table 1); the exocyclic C2—S2 distances are significantly different in the two compounds, possibly as a consequence of the conformational difference, although the S2—C21 distances are not significantly different.

There are no direction-specific intermolecular interactions in the structure of compound (I). However, the molecules of (II) are linked by two independent C—H···O hydrogen bonds (Table 2) into chains of edge-fused rings which are themselves further linked, albeit rather weakly, by a single C—H···S hydrogen bond to form sheets built from four different types of ring, all of them centrosymmetric.

Pyrazole atom C8 in the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O441 in the molecule at (1 + x, −1 + y, 1 + z), so generating by translation a C(11) (Bernstein et al., 1995) chain running parallel to the [111] direction. There are two chains of this type passing through each unit cell, related by inversion and hence antiparallel to one another, and such pairs of antiparallel chains are linked by the second C—H···O hydrogen bond. Aryl atom C45 in the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O442 in the molecule at (1 − x, 1 − y, −z), so generating by translation and inversion a chain of edge-fused R22(10) and R44(24) rings running along [111] (Fig. 3). Finally, aryl atom C43 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom S2 in the molecule at (1 − x, 2 − y, 1 − z), so linking the [111] chains into (211) sheets built from four types of ring: R22(10), R22(16), R44(22) and R44(24), all of them centrosymmetric (Fig. 3).

Experimental top

A solution of 5-amino-3-methylpyrazole (0.034 mol) and the appropriate S,S-diethyl aroyliminodithiocarbonate (0.034 mol) in N,N-dimethylformamide (2 ml) was heated under reflux until the reaction was complete. The solid products were precipitated by addition of cold water to the reaction mixture, collected by filtration and purified by column chromatography on silica gel, using a mixture of hexanes/ethyl acetate (4:1 v/v) as eluant. Compound (I) was obtained after heating for 1 h, and evaporation of the solution in hexanes/ethyl acetate (4:1 v/v) provided crystals suitable for single-crystal X-ray diffraction (yield 63%, m.p. 388 K), Compound (II) was obtained after heating for 30 min; recrystallization from absolute ethanol provided crystals suitable for single-crystal X-ray diffraction (yield 50%, m. p. 393 K).

Refinement top

For compound (I), the space group P21/c was uniquely assigned from the systematic absences; crystals of compound (II) are triclinic, and the space group P1 was selected and subsequently confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances 0.95 Å (CH), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (II), showing the formation of a (211) sheet built from four types of rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2-ethylsulfanyl-7-methyl-4-(4-methylphenyl)pyrazolo[1,5-a][1,3,5]triazine top
Crystal data top
C15H16N4SF(000) = 600
Mr = 284.38Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3092 reflections
a = 16.0941 (5) Åθ = 3.8–27.5°
b = 5.5573 (2) ŵ = 0.23 mm1
c = 15.2495 (5) ÅT = 120 K
β = 96.2994 (17)°Lath, yellow
V = 1355.68 (8) Å30.54 × 0.32 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3092 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.8°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.884, Tmax = 0.977l = 1719
14663 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.065P)2 + 0.834P]
where P = (Fo2 + 2Fc2)/3
3092 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H16N4SV = 1355.68 (8) Å3
Mr = 284.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0941 (5) ŵ = 0.23 mm1
b = 5.5573 (2) ÅT = 120 K
c = 15.2495 (5) Å0.54 × 0.32 × 0.10 mm
β = 96.2994 (17)°
Data collection top
Nonius KappaCCD
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2458 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.977Rint = 0.041
14663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3092 reflectionsΔρmin = 0.36 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.73644 (3)0.22676 (8)0.15228 (3)0.01885 (16)
N10.85263 (9)0.5314 (3)0.22717 (10)0.0173 (3)
N30.71078 (9)0.5693 (3)0.25980 (10)0.0158 (3)
N50.80915 (9)0.8325 (3)0.32592 (10)0.0146 (3)
N60.84111 (9)1.0209 (3)0.37761 (10)0.0169 (3)
C20.77360 (11)0.4657 (3)0.22036 (12)0.0159 (4)
C40.72754 (11)0.7569 (3)0.31145 (12)0.0150 (4)
C70.92221 (11)1.0238 (3)0.36538 (12)0.0166 (4)
C80.94393 (11)0.8442 (3)0.30743 (13)0.0183 (4)
C90.87100 (11)0.7216 (3)0.28209 (12)0.0153 (4)
C210.82573 (11)0.1502 (4)0.09527 (14)0.0215 (4)
C220.80139 (13)0.0615 (4)0.03433 (13)0.0239 (4)
C410.65740 (11)0.8811 (3)0.34668 (12)0.0154 (4)
C420.57715 (11)0.7834 (3)0.32526 (13)0.0171 (4)
C430.50737 (11)0.9010 (3)0.34861 (12)0.0177 (4)
C440.51392 (11)1.1193 (3)0.39387 (12)0.0172 (4)
C450.59374 (12)1.2112 (3)0.41742 (13)0.0214 (4)
C460.66473 (11)1.0964 (3)0.39455 (13)0.0201 (4)
C710.97850 (12)1.2103 (3)0.41093 (14)0.0209 (4)
C4410.43738 (12)1.2527 (4)0.41553 (14)0.0209 (4)
H80.99760.81380.28950.022*
H21A0.84200.28960.06050.026*
H21B0.87380.10600.13840.026*
H22A0.79060.20310.06970.036*
H22B0.84710.09680.00120.036*
H22C0.75080.02090.00470.036*
H420.57090.63490.29440.021*
H430.45370.83180.33350.021*
H44A0.38781.18660.38070.031*
H44B0.44291.42370.40150.031*
H44C0.43151.23460.47850.031*
H450.59971.35680.45010.026*
H460.71841.16390.41140.024*
H71A0.97001.36400.37970.031*
H71B1.03681.15970.41110.031*
H71C0.96551.22930.47180.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0159 (2)0.0200 (3)0.0207 (3)0.00095 (17)0.00251 (18)0.00497 (18)
N10.0155 (8)0.0174 (8)0.0191 (8)0.0006 (6)0.0024 (6)0.0004 (6)
N30.0144 (7)0.0160 (8)0.0172 (8)0.0001 (6)0.0021 (6)0.0002 (6)
N50.0129 (7)0.0146 (7)0.0163 (8)0.0010 (6)0.0011 (6)0.0000 (6)
N60.0149 (8)0.0178 (8)0.0179 (8)0.0038 (6)0.0004 (6)0.0018 (6)
C20.0160 (9)0.0163 (9)0.0153 (9)0.0025 (7)0.0014 (7)0.0018 (7)
C40.0137 (8)0.0172 (9)0.0139 (9)0.0011 (7)0.0004 (7)0.0021 (7)
C70.0131 (8)0.0198 (9)0.0166 (9)0.0012 (7)0.0001 (7)0.0028 (7)
C80.0139 (9)0.0202 (9)0.0209 (10)0.0001 (7)0.0025 (7)0.0018 (8)
C90.0135 (8)0.0174 (9)0.0152 (9)0.0026 (7)0.0029 (7)0.0024 (7)
C210.0162 (9)0.0241 (10)0.0242 (11)0.0018 (8)0.0028 (8)0.0061 (8)
C220.0267 (10)0.0228 (10)0.0213 (11)0.0059 (8)0.0011 (8)0.0023 (8)
C410.0140 (8)0.0177 (9)0.0145 (9)0.0006 (7)0.0016 (7)0.0025 (7)
C420.0161 (9)0.0173 (9)0.0178 (10)0.0002 (7)0.0010 (7)0.0012 (7)
C430.0140 (9)0.0207 (9)0.0182 (10)0.0002 (7)0.0009 (7)0.0008 (7)
C440.0160 (9)0.0204 (9)0.0150 (9)0.0031 (7)0.0016 (7)0.0020 (7)
C450.0200 (9)0.0198 (9)0.0242 (11)0.0002 (7)0.0022 (8)0.0054 (8)
C460.0146 (9)0.0209 (10)0.0249 (11)0.0021 (7)0.0021 (8)0.0050 (8)
C710.0169 (9)0.0229 (10)0.0223 (11)0.0050 (7)0.0001 (8)0.0002 (8)
C4410.0170 (9)0.0239 (10)0.0219 (11)0.0035 (7)0.0024 (8)0.0023 (8)
Geometric parameters (Å, º) top
N1—C21.316 (2)C43—H430.95
N1—C91.361 (2)C44—C451.392 (3)
C2—N31.360 (2)C44—C4411.505 (3)
C2—S21.7499 (19)C45—C461.386 (3)
S2—C211.8099 (19)C45—H450.95
C21—C221.524 (3)C46—H460.95
C21—H21A0.99C441—H44A0.98
C21—H21B0.99C441—H44B0.98
C22—H22A0.98C441—H44C0.98
C22—H22B0.98N5—N61.376 (2)
C22—H22C0.98N5—C91.401 (2)
N3—C41.317 (2)N6—C71.339 (2)
C4—N51.374 (2)C7—C81.402 (3)
C4—C411.474 (3)C7—C711.497 (2)
C41—C461.400 (3)C71—H71A0.98
C41—C421.406 (2)C71—H71B0.98
C42—C431.379 (3)C71—H71C0.98
C42—H420.95C8—C91.376 (3)
C43—C441.394 (3)C8—H80.95
C2—N1—C9114.02 (16)C43—C44—C441121.20 (16)
N1—C2—N3127.33 (17)C46—C45—C44121.94 (18)
N1—C2—S2121.45 (14)C46—C45—H45119.0
N3—C2—S2111.19 (13)C44—C45—H45119.0
C2—S2—C21103.05 (9)C45—C46—C41119.99 (17)
C22—C21—S2108.06 (13)C45—C46—H46120.0
C22—C21—H21A110.1C41—C46—H46120.0
S2—C21—H21A110.1C44—C441—H44A109.5
C22—C21—H21B110.1C44—C441—H44B109.5
S2—C21—H21B110.1H44A—C441—H44B109.5
H21A—C21—H21B108.4C44—C441—H44C109.5
C21—C22—H22A109.5H44A—C441—H44C109.5
C21—C22—H22B109.5H44B—C441—H44C109.5
H22A—C22—H22B109.5C4—N5—N6127.99 (15)
C21—C22—H22C109.5C4—N5—C9120.37 (15)
H22A—C22—H22C109.5N6—N5—C9111.56 (14)
H22B—C22—H22C109.5C7—N6—N5103.78 (15)
C4—N3—C2119.11 (15)N6—C7—C8113.18 (16)
N3—C4—N5117.89 (16)N6—C7—C71119.56 (17)
N3—C4—C41118.29 (16)C8—C7—C71127.25 (17)
N5—C4—C41123.74 (16)C7—C71—H71A109.5
C46—C41—C42118.28 (17)C7—C71—H71B109.5
C46—C41—C4124.48 (16)H71A—C71—H71B109.5
C42—C41—C4117.09 (16)C7—C71—H71C109.5
C43—C42—C41120.68 (17)H71A—C71—H71C109.5
C43—C42—H42119.7H71B—C71—H71C109.5
C41—C42—H42119.7C9—C8—C7105.40 (16)
C42—C43—C44121.38 (17)C9—C8—H8127.3
C42—C43—H43119.3C7—C8—H8127.3
C44—C43—H43119.3N1—C9—C8132.76 (17)
C45—C44—C43117.66 (17)N1—C9—N5121.16 (16)
C45—C44—C441121.14 (17)C8—C9—N5106.08 (16)
C9—N1—C2—N31.6 (3)C42—C41—C46—C451.8 (3)
C9—N1—C2—S2179.37 (13)C4—C41—C46—C45173.69 (18)
N1—C2—S2—C216.52 (18)N3—C4—N5—N6179.30 (16)
N3—C2—S2—C21171.56 (13)C41—C4—N5—N63.9 (3)
C2—S2—C21—C22179.01 (13)N3—C4—N5—C94.1 (2)
N1—C2—N3—C40.1 (3)C41—C4—N5—C9172.68 (16)
S2—C2—N3—C4178.06 (13)C4—N5—N6—C7177.04 (17)
C2—N3—C4—N52.8 (2)C9—N5—N6—C70.20 (19)
C2—N3—C4—C41174.17 (16)N5—N6—C7—C80.1 (2)
N3—C4—C41—C46173.04 (17)N5—N6—C7—C71179.17 (16)
N5—C4—C41—C463.7 (3)N6—C7—C8—C90.0 (2)
N3—C4—C41—C422.5 (3)C71—C7—C8—C9178.98 (18)
N5—C4—C41—C42179.27 (16)C2—N1—C9—C8179.91 (19)
C46—C41—C42—C431.9 (3)C2—N1—C9—N50.2 (2)
C4—C41—C42—C43173.91 (17)C7—C8—C9—N1179.83 (19)
C41—C42—C43—C440.0 (3)C7—C8—C9—N50.1 (2)
C42—C43—C44—C452.1 (3)C4—N5—C9—N12.6 (3)
C42—C43—C44—C441177.15 (18)N6—N5—C9—N1179.75 (15)
C43—C44—C45—C462.2 (3)C4—N5—C9—C8177.30 (15)
C441—C44—C45—C46177.03 (19)N6—N5—C9—C80.2 (2)
C44—C45—C46—C410.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···N60.952.242.909 (2)127
(II) 2-ethylsulfanyl-7-methyl-4-(4-nitrophenyl)pyrazolo[1,5-a][1,3,5]triazine top
Crystal data top
C14H13N5O2SZ = 2
Mr = 315.35F(000) = 328
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9401 (2) ÅCell parameters from 3255 reflections
b = 8.8642 (3) Åθ = 3.2–27.6°
c = 11.3717 (4) ŵ = 0.24 mm1
α = 68.7710 (17)°T = 120 K
β = 85.792 (2)°Plate, yellow
γ = 72.214 (2)°0.24 × 0.16 × 0.04 mm
V = 709.77 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3255 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.939, Tmax = 0.990l = 1414
16065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2934P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H13N5O2Sγ = 72.214 (2)°
Mr = 315.35V = 709.77 (4) Å3
Triclinic, P1Z = 2
a = 7.9401 (2) ÅMo Kα radiation
b = 8.8642 (3) ŵ = 0.24 mm1
c = 11.3717 (4) ÅT = 120 K
α = 68.7710 (17)°0.24 × 0.16 × 0.04 mm
β = 85.792 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2475 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.990Rint = 0.052
16065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
3255 reflectionsΔρmin = 0.40 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.65933 (6)0.79303 (6)0.75064 (4)0.02523 (15)
O4410.2715 (2)0.91128 (19)0.00481 (15)0.0514 (5)
O4420.37066 (17)0.65981 (17)0.00215 (12)0.0306 (3)
N10.87188 (19)0.48893 (18)0.75728 (13)0.0209 (3)
N30.67349 (19)0.66664 (18)0.57816 (13)0.0197 (3)
N50.85634 (18)0.40828 (17)0.57876 (13)0.0179 (3)
N60.93182 (19)0.27691 (18)0.53614 (13)0.0209 (3)
N440.3581 (2)0.7613 (2)0.04943 (14)0.0251 (4)
C20.7501 (2)0.6287 (2)0.69349 (16)0.0195 (4)
C40.7250 (2)0.5561 (2)0.52146 (16)0.0179 (4)
C71.0470 (2)0.1625 (2)0.63002 (17)0.0222 (4)
C81.0480 (2)0.2153 (2)0.73220 (17)0.0223 (4)
C90.9272 (2)0.3737 (2)0.69906 (16)0.0193 (4)
C210.7724 (2)0.7145 (2)0.90290 (16)0.0230 (4)
C220.9584 (2)0.7286 (2)0.89856 (18)0.0282 (4)
C410.6352 (2)0.5985 (2)0.39846 (15)0.0175 (4)
C420.5003 (2)0.7535 (2)0.35603 (17)0.0229 (4)
C430.4101 (2)0.8065 (2)0.24201 (17)0.0233 (4)
C440.4540 (2)0.7025 (2)0.17160 (16)0.0202 (4)
C450.5829 (2)0.5471 (2)0.21184 (16)0.0218 (4)
C460.6751 (2)0.4955 (2)0.32572 (16)0.0213 (4)
C711.1603 (3)0.0013 (2)0.61612 (19)0.0298 (4)
H81.11790.15400.80860.027*
H21A0.70140.77800.95480.028*
H21B0.77820.59380.94570.028*
H22A1.03140.66320.84980.042*
H22B1.00970.68370.98470.042*
H22C0.95450.84790.85840.042*
H420.47070.82270.40620.027*
H430.31970.91230.21260.028*
H450.60810.47680.16250.026*
H460.76560.38970.35430.026*
H71A1.08480.06260.60570.045*
H71B1.23830.06690.69170.045*
H71C1.23200.02770.54180.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0272 (3)0.0242 (3)0.0232 (3)0.00026 (19)0.00623 (18)0.01183 (19)
O4410.0752 (12)0.0289 (8)0.0364 (9)0.0093 (8)0.0328 (8)0.0099 (7)
O4420.0321 (7)0.0384 (8)0.0255 (7)0.0072 (6)0.0053 (6)0.0177 (6)
N10.0224 (8)0.0211 (8)0.0185 (8)0.0055 (6)0.0018 (6)0.0069 (6)
N30.0211 (7)0.0192 (8)0.0185 (7)0.0052 (6)0.0015 (6)0.0068 (6)
N50.0193 (7)0.0159 (7)0.0177 (7)0.0040 (6)0.0019 (6)0.0055 (6)
N60.0213 (8)0.0171 (7)0.0229 (8)0.0021 (6)0.0020 (6)0.0082 (6)
N440.0267 (8)0.0266 (9)0.0207 (8)0.0055 (7)0.0041 (6)0.0079 (7)
C20.0205 (9)0.0211 (9)0.0182 (9)0.0077 (7)0.0003 (7)0.0070 (7)
C40.0175 (8)0.0165 (8)0.0189 (9)0.0059 (7)0.0008 (7)0.0045 (7)
C70.0203 (9)0.0201 (9)0.0242 (9)0.0060 (7)0.0022 (7)0.0052 (7)
C80.0229 (9)0.0199 (9)0.0204 (9)0.0041 (7)0.0055 (7)0.0037 (7)
C90.0210 (9)0.0208 (9)0.0165 (8)0.0085 (7)0.0013 (7)0.0047 (7)
C210.0273 (9)0.0244 (10)0.0175 (9)0.0051 (8)0.0009 (7)0.0094 (7)
C220.0258 (10)0.0284 (10)0.0294 (10)0.0037 (8)0.0048 (8)0.0119 (8)
C410.0179 (8)0.0170 (8)0.0173 (8)0.0070 (7)0.0001 (7)0.0042 (7)
C420.0257 (9)0.0199 (9)0.0230 (9)0.0040 (8)0.0039 (7)0.0091 (7)
C430.0249 (9)0.0174 (9)0.0241 (10)0.0007 (7)0.0066 (7)0.0065 (7)
C440.0220 (9)0.0224 (9)0.0158 (8)0.0076 (7)0.0027 (7)0.0048 (7)
C450.0231 (9)0.0237 (9)0.0201 (9)0.0059 (8)0.0000 (7)0.0100 (7)
C460.0209 (9)0.0201 (9)0.0210 (9)0.0035 (7)0.0021 (7)0.0068 (7)
C710.0315 (10)0.0203 (10)0.0328 (11)0.0009 (8)0.0059 (8)0.0097 (8)
Geometric parameters (Å, º) top
N1—C21.310 (2)C43—H430.95
N1—C91.360 (2)C44—C451.380 (3)
C2—N31.370 (2)C44—N441.473 (2)
C2—S21.7432 (18)N44—O4421.2175 (19)
S2—C211.8063 (18)N44—O4411.225 (2)
C21—C221.515 (3)C45—C461.388 (2)
C21—H21A0.99C45—H450.95
C21—H21B0.99C46—H460.95
C22—H22A0.98N5—N61.3747 (19)
C22—H22B0.98N5—C91.409 (2)
C22—H22C0.98N6—C71.341 (2)
N3—C41.310 (2)C7—C81.403 (3)
C4—N51.370 (2)C7—C711.494 (2)
C4—C411.486 (2)C71—H71A0.98
C41—C461.397 (2)C71—H71B0.98
C41—C421.402 (2)C71—H71C0.98
C42—C431.380 (2)C8—C91.371 (2)
C42—H420.95C8—H80.95
C43—C441.382 (2)
C2—N1—C9114.82 (15)C45—C44—N44119.49 (15)
N1—C2—N3126.81 (16)C43—C44—N44118.06 (15)
N1—C2—S2122.54 (13)O442—N44—O441123.74 (16)
N3—C2—S2110.63 (12)O442—N44—C44118.63 (15)
C2—S2—C21103.18 (8)O441—N44—C44117.63 (15)
C22—C21—S2114.83 (13)C44—C45—C46118.74 (16)
C22—C21—H21A108.6C44—C45—H45120.6
S2—C21—H21A108.6C46—C45—H45120.6
C22—C21—H21B108.6C45—C46—C41120.20 (16)
S2—C21—H21B108.6C45—C46—H46119.9
H21A—C21—H21B107.5C41—C46—H46119.9
C21—C22—H22A109.5C4—N5—N6128.48 (14)
C21—C22—H22B109.5C4—N5—C9120.07 (14)
H22A—C22—H22B109.5N6—N5—C9111.42 (13)
C21—C22—H22C109.5C7—N6—N5103.92 (14)
H22A—C22—H22C109.5N6—C7—C8112.96 (16)
H22B—C22—H22C109.5N6—C7—C71119.64 (16)
C4—N3—C2118.91 (15)C8—C7—C71127.37 (17)
N3—C4—N5118.63 (15)C7—C71—H71A109.5
N3—C4—C41117.62 (15)C7—C71—H71B109.5
N5—C4—C41123.74 (15)H71A—C71—H71B109.5
C46—C41—C42119.42 (16)C7—C71—H71C109.5
C46—C41—C4124.79 (15)H71A—C71—H71C109.5
C42—C41—C4115.79 (15)H71B—C71—H71C109.5
C43—C42—C41120.59 (16)C9—C8—C7105.78 (16)
C43—C42—H42119.7C9—C8—H8127.1
C41—C42—H42119.7C7—C8—H8127.1
C42—C43—C44118.57 (16)N1—C9—C8133.41 (16)
C42—C43—H43120.7N1—C9—N5120.68 (15)
C44—C43—H43120.7C8—C9—N5105.91 (15)
C45—C44—C43122.45 (16)
C9—N1—C2—N31.3 (2)N44—C44—C45—C46178.38 (15)
C9—N1—C2—S2179.62 (12)C44—C45—C46—C411.0 (3)
N1—C2—S2—C210.30 (16)C42—C41—C46—C450.6 (2)
N3—C2—S2—C21178.24 (12)C4—C41—C46—C45179.98 (15)
C2—S2—C21—C2278.57 (15)N3—C4—N5—N6179.08 (14)
N1—C2—N3—C41.0 (3)C41—C4—N5—N61.6 (3)
S2—C2—N3—C4179.47 (12)N3—C4—N5—C93.1 (2)
C2—N3—C4—N51.3 (2)C41—C4—N5—C9176.20 (14)
C2—N3—C4—C41178.03 (14)C4—N5—N6—C7177.59 (15)
N3—C4—C41—C46179.53 (15)C9—N5—N6—C70.39 (17)
N5—C4—C41—C461.2 (3)N5—N6—C7—C80.24 (19)
N3—C4—C41—C421.1 (2)N5—N6—C7—C71178.14 (15)
N5—C4—C41—C42178.22 (15)N6—C7—C8—C90.8 (2)
C46—C41—C42—C431.6 (3)C71—C7—C8—C9177.45 (17)
C4—C41—C42—C43179.00 (15)C2—N1—C9—C8179.53 (18)
C41—C42—C43—C440.9 (3)C2—N1—C9—N50.6 (2)
C42—C43—C44—C450.8 (3)C7—C8—C9—N1178.95 (18)
C42—C43—C44—N44179.32 (15)C7—C8—C9—N50.94 (18)
C45—C44—N44—O44213.5 (2)C4—N5—C9—N12.8 (2)
C43—C44—N44—O442166.37 (16)N6—N5—C9—N1179.05 (13)
C45—C44—N44—O441165.64 (17)C4—N5—C9—C8177.31 (14)
C43—C44—N44—O44114.5 (2)N6—N5—C9—C80.87 (18)
C43—C44—C45—C461.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O441i0.952.533.444 (2)161
C43—H43···S2ii0.952.843.453 (2)123
C45—H45···O442iii0.952.503.437 (2)169
C46—H46···N60.952.262.929 (2)127
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H16N4SC14H13N5O2S
Mr284.38315.35
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)120120
a, b, c (Å)16.0941 (5), 5.5573 (2), 15.2495 (5)7.9401 (2), 8.8642 (3), 11.3717 (4)
α, β, γ (°)90, 96.2994 (17), 9068.7710 (17), 85.792 (2), 72.214 (2)
V3)1355.68 (8)709.77 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.230.24
Crystal size (mm)0.54 × 0.32 × 0.100.24 × 0.16 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.884, 0.9770.939, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14663, 3092, 2458 16065, 3255, 2475
Rint0.0410.052
(sin θ/λ)max1)0.6500.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.05 0.043, 0.106, 1.06
No. of reflections30923255
No. of parameters184201
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.360.28, 0.40

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, °) for compounds (I) and (II) top
Parameter(I)(II)
N1—C21.316 (2)1.310 (2)
C2—N31.360 (2)1.370 (2)
N3—C41.317 (2)1.310 (2)
C4—N51.374 (2)1.370 (2)
N5—N61.376 (2)1.375 (2)
N6—C71.339 (2)1.341 (2)
C7—C81.402 (3)1.403 (3)
C8—C91.376 (3)1.371 (2)
C9—N11.361 (2)1.360 (2)
N5—C91.401 (2)1.409 (2)
C2—S21.7499 (19)1.7432 (18)
S2—C211.8099 (19)1.8063 (18)
C2—S2—C21—C22179.01 (13)78.57 (15)
N3—C4—C41—C422.5 (3)-1.1 (2)
C43—C44—N44—O44114.5 (2)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C46—H46···N60.952.242.909 (2)127
(II)C46—H46···N60.952.262.929 (2)127
C8—H8···O441i0.952.533.444 (2)161
C43—H43···S2ii0.952.843.453 (2)123
C45—H45···O442iii0.952.503.437 (2)169
Symmetry codes: (i) 1 + x, −1 + y, 1 + z; (ii) 1 − x, 2 − y, 1 − z; (iii) 1 − x, 1 − y, −z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. HI and ME thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDe Zwart, M., Vollinga, R. C., Beukers, M. W., Sleegers, D. F., Von Frijtag Drabbe, K., Jacobien, K., De Groote, M. & Ijzerman, A. P. (1999). Drug Dev. Res. 48, 95–103.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., El-Ezbawy, S. R. & El-Aziz, H. A. (2001). Synth. Commun. 31, 3453–3458.  Web of Science CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHe, L., Gilligan, P. J., Zaczek, R., Fitzgerald, L. W., McElroy, J., Shen, H. S., Saye, J. A., Kalin, N. H., Shelton, S., Christ, D., Trainor, G. & Hartig, P. (2000). J. Med. Chem. 43, 449–456.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRied, W. & Aboul-Fetouh, S. (1988). Tetrahedron, 44, 7155–7162.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrohmeyer, T. W., Sliskovic, D. R., Lang, S. A. & Ling, Y.-I. (1985). J. Heterocycl. Chem. 22, 7–10.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds