metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Racemic cis-methoxobis(2-methyl-3-oxo-4H-pyran-4-olato)oxovanadium(V) redetermined at 120 K: hydrogen-bonded ribbons containing R22(7), R22(14) and R44(18) rings

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 24 January 2006; accepted 27 January 2006; online 28 February 2006)

In the title compound, [V(CH3O)(C6H5O3)2O], the V—O bond lengths to the oxo and methoxo ligands are 1.593 (3) and 1.768 (3) Å, respectively, at 120 K; the V—O bond lengths trans to these two ligands are 2.246 (3) and 2.116 (3) Å. Mol­ecules are linked by three C—H⋯O hydrogen bonds into complex ribbons containing three types of ring.

Comment

3-Hydr­oxy-2-methyl-4-pyrone (maltol) is both a food additive (E636) and a versatile ligand for the design of insulin-enhancing vanadium complexes, and several vanadium complexes of maltol derivatives have been shown to be active insulin enhancers (McNeill et al., 1992[McNeill, J. H., Yuen, V. G., Hoveyda, H. R. & Orvig, C. (1992). J. Med. Chem. 35, 1489-1491.]; Thompson et al., 2003[Thompson, K. H., Liboiron, B. D., Sun, Y., Bellman, K., Seyawati, I. A., Patrick, B. O., Karumaratne, V., Rawji, G., Wheeler, J., Sutton, K., Bhanot, S., Cassidy, C., McNeill, J. H., Yuen, V. G. & Orvig, C. (2003). J. Biol. Inorg. Chem. 8, 66-74.]; Saatchi et al., 2005[Saatchi, K., Thompson, K. H., Patrick, B. O., Pink, M., Yuen, V. G., McNeill, J. H. & Orvig, C. (2005). Inorg. Chem. 44, 2689-2697.]). The reaction between maltol and tris­(pentane-2,4-dionato)vanadium(III) was studied in the hope of producing a mixed-ligand complex of vanadium(III)

[Scheme 1]
containing both maltolate and pentane-2,4-dionate ligands; in the event, the crystalline product isolated is the title compound, (I)[link] (Fig. 1[link]), a complex of vanadium(V) containing no pentane-2,4-dionate ligands.

The structure of (I)[link] has been reported previously from diffraction data collected at ambient temperature (Sun et al., 1996[Sun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667-1673.]); in that study, the compound had been formed as the product of aerial oxidation of bis(2-methyl-3-oxo-4-pyronido)oxo­vana­dium(IV) in methanol solution. The ready formation of (I)[link] from both vanadium(III) and vanadium(IV) precursors indicates its high thermodynamic stability. This earlier structure determination (Sun et al., 1996[Sun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667-1673.]) was intended as a proof of composition and constitution, and no mention whatever was made of any inter­molecular inter­actions. We have now taken the opportunity to redetermine this structure using diffraction data collected at 120 K, and we also present a full description of the supramolecular aggregation. The unit-cell dimensions and the space group indicate that no phase change has occurred between ambient temperature and 120 K.

Apart from the oxo and methoxo substituents, the remainder of the complex has approximately twofold rotational symmetry, but overall there is no even approximate inter­nal symmetry. Accordingly, the mol­ecules are chiral, although the compound is racemic. The centrosymmetric space group accommodates equal numbers of Λ and Δ enanti­omers; the selected reference mol­ecule has the Λ configuration. The inter­molecular geometry found at 120 K closely resembles that reported at ambient temperature. The bond distances (Table 1[link]) for the pyran ligands support the bond-fixed form (A) (see scheme[link]), although the C14—O14 and C24—O24 bonds are long for their type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). However, the differences between the C16—O11 and C26—O21 bond distances on the one hand, and C12—O11 and C22—O21 on the other, which are also apparent in the ambient-temperature structure although not remarked upon (Sun et al., 1996[Sun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667-1673.]), have no obvious simple explanation.

The mol­ecules of (I)[link] are linked into a rather complex ribbon by three independent C—H⋯O hydrogen bonds (Table 2[link]) in which the acceptors are three of the four O atoms in the chelate rings; surprisingly, oxo ligand O41 is not involved in the hydrogen bonding. The formation of the chain is readily analysed in terms of two simple substructures. In the first substructure, atom C16 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O24 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a cyclic centrosymmetric R22(14) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer (Fig. 2[link]), which contains one Λ mol­ecule and one Δ mol­ecule and so is itself achiral.

In the second substructure, atoms C25 and C26 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms O14 and O23, both in the mol­ecule at (x, 1 − y, [{1\over 2}] + z), so forming a C(6)C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = [1 \over 2] (Fig. 2[link]). The combination of these two motifs then generates a ribbon along [001]; in the central strip of this ribbon, there are R22(14) rings centred at [[1 \over 2], [1 \over 2], (n + 1)/2] (n = zero or integer) alternating with R44(18) rings, and this chain of edge-fused rings is flanked by two anti­parallel arrays of R22(7) rings (Fig. 2[link]). Two such ribbons, related to one another by the C-centring operation, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
The Λ enanti­omer of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded ribbon along [001]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

A mixture of tris­(pentane-2,4-dionato)vanadium(III) (0.30 g) and 3-hydr­oxy-2-methyl-4-pyrone (0.19 g) in methanol (30 ml) was heated under reflux for 3 h under an atmosphere of dinitro­gen. The resulting solution was cooled and then concentrated under reduced pressure to provide crystals of (I)[link] suitable for single-crystal X-ray diffraction (no melting point, decomposition above 570 K).

Crystal data
  • [V(CH3O)(C6H5O3)2O]

  • Mr = 348.17

  • Monoclinic, C 2/c

  • a = 28.007 (2) Å

  • b = 7.6637 (6) Å

  • c = 13.3083 (10) Å

  • β = 93.937 (4)°

  • V = 2849.7 (4) Å3

  • Z = 8

  • Dx = 1.623 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3249 reflections

  • θ = 3.1–27.5°

  • μ = 0.74 mm−1

  • T = 120 (2) K

  • Plate, red

  • 0.10 × 0.03 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.954, Tmax = 0.993

  • 10000 measured reflections

  • 3249 independent reflections

  • 1976 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 27.5°

  • h = −36 → 29

  • k = −9 → 8

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.158

  • S = 1.03

  • 3249 reflections

  • 202 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0522P)2 + 6.4183P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

V1—O13 1.947 (3) 
V1—O14 2.116 (3)
V1—O31 1.768 (3)
C13—O13 1.347 (5)
C14—O14 1.265 (5)
C12—C13 1.360 (6)
C13—C14 1.425 (7)
C14—C15 1.425 (7)
C15—C16 1.357 (7)
O11—C12 1.375 (6)
O11—C16 1.331 (7)
V1—O23 1.915 (3)
V1—O24 2.246 (3)
V1—O41 1.593 (3)
C23—O23 1.342 (5)
C24—O24 1.263 (5)
C22—C23 1.354 (6)
C23—C24 1.433 (5)
C24—C25 1.432 (6)
C25—C26 1.331 (6)
O21—C22 1.370 (5)
O21—C26 1.339 (5)
O13—V1—O14 78.67 (12)
O23—V1—O24 77.88 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O24i 0.95 2.42 3.174 (6) 136
C25—H25⋯O14ii 0.95 2.48 3.331 (5) 149
C26—H26⋯O23ii 0.95 2.44 3.351 (5) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}].

The systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by the subsequent structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (ring H atoms) or 0.98 Å (methyl H atoms), and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

3-Hydroxy-2-methyl-4-pyrone (maltol) is both a food additive (E636) and a versatile ligand for the design of insulin-enhancing vanadium complexes, and several vanadium complexes of maltol derivatives have been shown to be active insulin enhancers (McNeill et al., 1992; Thompson et al., 2003; Saatchi et al., 2005). The reaction between maltol and tris(pentane-2,4-dionato)vanadium(III) was studied in the hope of producing a mixed-ligand complex of vanadium(III) containing both maltolate and pentane-2,4-dionate ligands; in the event, the crystalline product isolated is the title compound, (I) (Fig. 1), a complex of vanadium(V) containing no pentane-2,4-dionate ligands.

The structure of (I) has been reported from diffraction data collected at ambient temperature (Sun et al., 1996); in that study, the compound had been formed as the product of aerial oxidation of [bis-(2-methyl-3-oxo-4-pyronido)oxovanadium(IV)] in methanol solution. The ready formation of (I) from both vanadium(III) and vanadium(IV) precursors indicates its high thermodynamic stability. This earlier structure determination (Sun et al., 1996) was intended as a proof of composition and constitution, and no mention whatever was made of any intermolecular interactions. We have now taken the opportunity to redetermine this structure using diffraction data collected at 120 K, and we also present a full description of the supramolecular aggregation. The unit-cell dimensions and the space group indicate that no phase change has occurred between ambient temperature and 120 K.

Apart from the oxo and methoxo substituents, the remainder of the complex has approximately twofold rotational symmetry, but overall there is no even approximate internal symmetry. Accordingly the molecules are chiral, although the compound is racemic. The centrosymmetric space group accommodates equal numbers of Λ and Δ enantiomers; the selected reference molecule has the Λ configuration. The intermolecular geometry found at 120 K closely resembles that reported at ambient temperature. The bond distances (Table 1) for the pyronide ligands support the bond-fixed form (A) (see scheme), although the C14—O14 and C24—O24 bonds are long for their type (Allen et al., 1987). However, the differences between the C16—O11 and C26—O21 bond distances on the one hand, and C12—O11 and C22—O21 on the other, which are also apparent in the ambient-temperature structure although not remarked upon (Sun et al., 1996), have no obvious simple explanation.

The molecules of (I) are linked into a rather complex ribbon by three independent C—H···O hydrogen bonds (Table 2) in which the acceptors are three of the four O atoms in the chelate rings: surprisingly, the oxo ligand O41 is not involved in the hydrogen bonding. The formation of the chain is readily analysed in terms of two simple substructures. In the first substructure, atom C16 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O24 in the molecule at (1 − x, 1 − y, 1 − z), so forming a cyclic centrosymmetric R22(14) (Bernstein et al., 1995) dimer (Fig. 2), which contains one Λ molecule and one Δ molecule and so is itself achiral.

In the second substructure, atoms C25 and C26 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms O14 and O23, both in the molecule at (x, 1 − y, 1/2 + z), so forming a C(6) C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = 1/2 (Fig. 2). The combination of these two motifs then generates a ribbon along [001]; in the central strip of this ribbon there are R22(14) rings centred at [1/2, 1/2, (n + 1)/2] (n = zero or integer) alternating with R44(18) rings, and this chain of edge-fused rings is flanked by two antiparallel arrays of R22(7) rings (Fig. 2). Two such ribbons, related to one another by the C-centring operation, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

Experimental top

A mixture of tris(pentane-2,4-dionato)vanadium(III) (0.30 g) and 3-hydroxy-2-methyl-4-pyrone (0.19 g) in methanol (30 ml) was heated under reflux for 3 h in an atmosphere of dinitrogen. The resulting solution was cooled and then concentrated under reduced pressure to provide crystals of compound (I) suitable for single-crystal X-ray diffraction (no melting point, decomposes above 570 K).

Refinement top

The systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected, and confirmed by the subsequent structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (ring H atoms) or 0.98 Å (methyl H atoms), and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The Λ enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded ribbon along [001]. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
Racemic cis-methoxobis(2-methyl-3-oxo-4H-pyran-4-olato)oxovanadium(V) top
Crystal data top
[V(CH3O)(C6H5O3)2O]F(000) = 1424
Mr = 348.17Dx = 1.623 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3249 reflections
a = 28.007 (2) Åθ = 3.1–27.5°
b = 7.6637 (6) ŵ = 0.74 mm1
c = 13.3083 (10) ÅT = 120 K
β = 93.937 (4)°Plate, red
V = 2849.7 (4) Å30.10 × 0.03 × 0.01 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3249 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 3629
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 98
Tmin = 0.954, Tmax = 0.993l = 1717
10000 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0522P)2 + 6.4183P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[V(CH3O)(C6H5O3)2O]V = 2849.7 (4) Å3
Mr = 348.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.007 (2) ŵ = 0.74 mm1
b = 7.6637 (6) ÅT = 120 K
c = 13.3083 (10) Å0.10 × 0.03 × 0.01 mm
β = 93.937 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1976 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.993Rint = 0.092
10000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3249 reflectionsΔρmin = 0.49 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.37224 (3)0.17205 (10)0.36110 (5)0.0282 (2)
O110.54468 (12)0.4003 (6)0.3918 (2)0.0473 (10)
C120.51825 (16)0.2490 (7)0.3870 (3)0.0411 (12)
C1210.54684 (18)0.0873 (8)0.3974 (4)0.0523 (15)
C130.46975 (16)0.2619 (7)0.3751 (3)0.0351 (11)
O130.44055 (10)0.1220 (4)0.3727 (2)0.0336 (8)
C140.44647 (16)0.4263 (6)0.3609 (3)0.0330 (11)
O140.40143 (10)0.4243 (4)0.3447 (2)0.0298 (7)
C150.47552 (17)0.5791 (7)0.3678 (3)0.0412 (13)
C160.52349 (19)0.5554 (8)0.3828 (3)0.0474 (14)
O210.26444 (10)0.5505 (4)0.5724 (2)0.0313 (7)
C220.26864 (15)0.4695 (5)0.4816 (3)0.0266 (10)
C2210.22651 (15)0.4982 (6)0.4090 (3)0.0313 (10)
C230.30830 (14)0.3761 (5)0.4646 (3)0.0224 (9)
O230.31374 (9)0.2955 (4)0.3766 (2)0.0261 (7)
C240.34654 (15)0.3577 (5)0.5412 (3)0.0251 (9)
O240.38196 (10)0.2650 (4)0.5213 (2)0.0278 (7)
C250.34060 (16)0.4485 (5)0.6335 (3)0.0273 (10)
C260.30033 (17)0.5371 (6)0.6438 (3)0.0316 (10)
O310.35924 (10)0.0332 (4)0.4134 (2)0.0325 (7)
C310.3448 (2)0.1890 (7)0.3612 (5)0.0543 (15)
O410.35987 (10)0.1349 (4)0.2444 (2)0.0343 (8)
H12A0.55820.07130.46810.078*
H12B0.57430.09580.35580.078*
H12C0.52690.01250.37510.078*
H150.46190.69250.36220.049*
H160.54330.65630.38730.057*
H22A0.23140.60450.37000.047*
H22B0.19760.51080.44600.047*
H22C0.22280.39820.36320.047*
H250.36500.44570.68660.033*
H260.29680.59460.70610.038*
H31A0.31280.22290.37980.081*
H31B0.36760.28260.37960.081*
H31C0.34410.16850.28850.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0238 (4)0.0334 (4)0.0273 (4)0.0011 (3)0.0008 (3)0.0054 (3)
O110.0266 (18)0.087 (3)0.0279 (18)0.0104 (19)0.0018 (14)0.0070 (19)
C120.026 (2)0.074 (4)0.024 (2)0.006 (3)0.0023 (19)0.007 (2)
C1210.029 (3)0.088 (4)0.041 (3)0.012 (3)0.009 (2)0.007 (3)
C130.026 (2)0.060 (3)0.020 (2)0.005 (2)0.0007 (18)0.003 (2)
O130.0240 (16)0.0435 (19)0.0331 (17)0.0014 (14)0.0002 (13)0.0016 (15)
C140.031 (3)0.055 (3)0.013 (2)0.008 (2)0.0033 (18)0.001 (2)
O140.0255 (17)0.0385 (18)0.0248 (15)0.0041 (13)0.0013 (13)0.0032 (13)
C150.033 (3)0.068 (4)0.022 (2)0.015 (2)0.002 (2)0.008 (2)
C160.042 (3)0.078 (4)0.022 (2)0.021 (3)0.002 (2)0.009 (3)
O210.0327 (17)0.0312 (17)0.0307 (17)0.0017 (14)0.0072 (14)0.0062 (14)
C220.031 (2)0.024 (2)0.026 (2)0.0057 (19)0.0059 (19)0.0040 (18)
C2210.028 (2)0.028 (2)0.038 (3)0.0026 (19)0.002 (2)0.003 (2)
C230.025 (2)0.020 (2)0.021 (2)0.0020 (17)0.0005 (17)0.0002 (17)
O230.0218 (14)0.0332 (17)0.0230 (15)0.0006 (12)0.0003 (12)0.0077 (12)
C240.026 (2)0.026 (2)0.024 (2)0.0048 (19)0.0008 (17)0.0065 (18)
O240.0251 (15)0.0311 (16)0.0267 (15)0.0009 (13)0.0018 (12)0.0003 (13)
C250.034 (2)0.025 (2)0.022 (2)0.007 (2)0.0023 (19)0.0006 (18)
C260.043 (3)0.029 (2)0.023 (2)0.001 (2)0.004 (2)0.0045 (19)
O310.0288 (16)0.0281 (17)0.0411 (18)0.0006 (13)0.0054 (14)0.0040 (14)
C310.049 (3)0.037 (3)0.078 (4)0.004 (3)0.011 (3)0.016 (3)
O410.0267 (16)0.049 (2)0.0272 (16)0.0005 (14)0.0009 (13)0.0102 (15)
Geometric parameters (Å, º) top
V1—O131.947 (3)V1—O411.593 (3)
V1—O142.116 (3)C23—O231.342 (5)
V1—O311.768 (3)C24—O241.263 (5)
C13—O131.347 (5)C22—C231.354 (6)
C14—O141.265 (5)C23—C241.433 (5)
C12—C131.360 (6)C24—C251.432 (6)
C13—C141.425 (7)C25—C261.331 (6)
C14—C151.425 (7)O21—C221.370 (5)
C15—C161.357 (7)O21—C261.339 (5)
O11—C121.375 (6)C22—C2211.489 (6)
O11—C161.331 (7)C221—H22A0.98
C12—C1211.476 (7)C221—H22B0.98
C121—H12A0.98C221—H22C0.98
C121—H12B0.98C25—H250.95
C121—H12C0.98C26—H260.95
C15—H150.95O31—C311.426 (5)
C16—H160.95C31—H31A0.98
V1—O231.915 (3)C31—H31B0.98
V1—O242.246 (3)C31—H31C0.98
O41—V1—O31100.83 (15)C14—C15—H15121.5
O41—V1—O2393.61 (13)O11—C16—C15124.3 (5)
O31—V1—O23101.32 (13)O11—C16—H16117.8
O41—V1—O13100.87 (14)C15—C16—H16117.8
O31—V1—O1391.23 (13)C26—O21—C22119.1 (3)
O23—V1—O13158.74 (12)C23—C22—O21120.5 (4)
O41—V1—O1497.05 (14)C23—C22—C221126.3 (4)
O31—V1—O14160.85 (13)O21—C22—C221113.2 (4)
O23—V1—O1484.21 (12)C22—C221—H22A109.5
O13—V1—O1478.67 (12)C22—C221—H22B109.5
O41—V1—O24170.29 (14)H22A—C221—H22B109.5
O31—V1—O2485.59 (12)C22—C221—H22C109.5
O23—V1—O2477.88 (11)H22A—C221—H22C109.5
O13—V1—O2486.15 (11)H22B—C221—H22C109.5
O14—V1—O2477.61 (11)O23—C23—C22122.2 (3)
C16—O11—C12121.0 (4)O23—C23—C24116.8 (4)
C13—C12—O11118.3 (5)C22—C23—C24121.0 (4)
C13—C12—C121127.1 (5)C23—O23—V1118.1 (2)
O11—C12—C121114.6 (4)O24—C24—C25126.3 (4)
C12—C121—H12A109.5O24—C24—C23117.8 (4)
C12—C121—H12B109.5C25—C24—C23115.9 (4)
H12A—C121—H12B109.5C24—O24—V1109.4 (2)
C12—C121—H12C109.5C26—C25—C24119.1 (4)
H12A—C121—H12C109.5C26—C25—H25120.5
H12B—C121—H12C109.5C24—C25—H25120.5
O13—C13—C12123.0 (5)C25—C26—O21124.4 (4)
O13—C13—C14115.4 (4)C25—C26—H26117.8
C12—C13—C14121.6 (5)O21—C26—H26117.8
C13—O13—V1115.9 (3)C31—O31—V1127.7 (3)
O14—C14—C13117.0 (4)O31—C31—H31A109.5
O14—C14—C15125.4 (5)O31—C31—H31B109.5
C13—C14—C15117.6 (4)H31A—C31—H31B109.5
C14—O14—V1112.4 (3)O31—C31—H31C109.5
C16—C15—C14117.0 (5)H31A—C31—H31C109.5
C16—C15—H15121.5H31B—C31—H31C109.5
C16—O11—C12—C131.4 (6)O21—C22—C23—O23179.8 (3)
C16—O11—C12—C121179.5 (4)C221—C22—C23—O230.3 (7)
O11—C12—C13—O13177.9 (4)O21—C22—C23—C240.7 (6)
C121—C12—C13—O131.1 (7)C221—C22—C23—C24179.8 (4)
O11—C12—C13—C144.2 (6)C22—C23—O23—V1178.5 (3)
C121—C12—C13—C14176.8 (4)C24—C23—O23—V11.9 (4)
C12—C13—O13—V1177.3 (3)O41—V1—O23—C23172.5 (3)
C14—C13—O13—V14.7 (5)O31—V1—O23—C2385.6 (3)
O41—V1—O13—C13101.4 (3)O13—V1—O23—C2339.4 (5)
O31—V1—O13—C13157.4 (3)O14—V1—O23—C2375.8 (3)
O23—V1—O13—C1330.7 (5)O24—V1—O23—C232.7 (3)
O14—V1—O13—C136.3 (3)O23—C23—C24—O241.3 (5)
O24—V1—O13—C1371.9 (3)C22—C23—C24—O24178.2 (4)
O13—C13—C14—O142.0 (5)O23—C23—C24—C25178.4 (3)
C12—C13—C14—O14176.1 (4)C22—C23—C24—C252.1 (6)
O13—C13—C14—C15176.9 (4)C25—C24—O24—V1176.4 (3)
C12—C13—C14—C155.0 (6)C23—C24—O24—V13.3 (4)
C13—C14—O14—V17.0 (4)O31—V1—O24—C24105.9 (3)
C15—C14—O14—V1171.8 (3)O23—V1—O24—C243.3 (3)
O41—V1—O14—C14107.0 (3)O13—V1—O24—C24162.6 (3)
O31—V1—O14—C1452.0 (5)O14—V1—O24—C2483.4 (3)
O23—V1—O14—C14160.0 (3)O24—C24—C25—C26178.0 (4)
O13—V1—O14—C147.3 (3)C23—C24—C25—C262.3 (6)
O24—V1—O14—C1481.2 (3)C24—C25—C26—O211.2 (6)
O14—C14—C15—C16178.2 (4)C22—O21—C26—C250.3 (6)
C13—C14—C15—C162.9 (6)O41—V1—O31—C313.7 (4)
C12—O11—C16—C150.6 (7)O23—V1—O31—C3199.6 (4)
C14—C15—C16—O110.3 (7)O13—V1—O31—C3197.6 (4)
C26—O21—C22—C230.6 (6)O14—V1—O31—C31155.1 (4)
C26—O21—C22—C221179.0 (4)O24—V1—O31—C31176.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O24i0.952.423.174 (6)136
C25—H25···O14ii0.952.483.331 (5)149
C26—H26···O23ii0.952.443.351 (5)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[V(CH3O)(C6H5O3)2O]
Mr348.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)28.007 (2), 7.6637 (6), 13.3083 (10)
β (°) 93.937 (4)
V3)2849.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.10 × 0.03 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10000, 3249, 1976
Rint0.092
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.158, 1.03
No. of reflections3249
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.49

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
V1—O131.947 (3)V1—O231.915 (3)
V1—O142.116 (3)V1—O242.246 (3)
V1—O311.768 (3)V1—O411.593 (3)
C13—O131.347 (5)C23—O231.342 (5)
C14—O141.265 (5)C24—O241.263 (5)
C12—C131.360 (6)C22—C231.354 (6)
C13—C141.425 (7)C23—C241.433 (5)
C14—C151.425 (7)C24—C251.432 (6)
C15—C161.357 (7)C25—C261.331 (6)
O11—C121.375 (6)O21—C221.370 (5)
O11—C161.331 (7)O21—C261.339 (5)
O13—V1—O1478.67 (12)O23—V1—O2477.88 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O24i0.952.423.174 (6)136
C25—H25···O14ii0.952.483.331 (5)149
C26—H26···O23ii0.952.443.351 (5)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMcNeill, J. H., Yuen, V. G., Hoveyda, H. R. & Orvig, C. (1992). J. Med. Chem. 35, 1489–1491.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaatchi, K., Thompson, K. H., Patrick, B. O., Pink, M., Yuen, V. G., McNeill, J. H. & Orvig, C. (2005). Inorg. Chem. 44, 2689–2697.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667–1673.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationThompson, K. H., Liboiron, B. D., Sun, Y., Bellman, K., Seyawati, I. A., Patrick, B. O., Karumaratne, V., Rawji, G., Wheeler, J., Sutton, K., Bhanot, S., Cassidy, C., McNeill, J. H., Yuen, V. G. & Orvig, C. (2003). J. Biol. Inorg. Chem. 8, 66–74.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds