metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Poly[piperazinium(2+) [hexa-μ-hydrogen phosphito-μ-piperazine-penta­zinc(II)]]

aDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 23 February 2006; accepted 2 March 2006; online 31 March 2006)

The title compound, {(C4H12N2)[Zn5(HPO3)6(C4H10N2)]}n contains ZnO4, ZnO3N and HPO3 polyhedral building units linked by Zn—O—P bridges (mean Zn—O—P = 133.6°). The organic species exists in two forms, i.e. as neutral mol­ecules that bond directly to zinc as ligands via both N atoms and as diprotonated cations that inter­act with the framework by way of N—H⋯O hydrogen bonds. Both organic components lie across centres of inversion.

Comment

The title compound, (I)[link], complements the growing family of organically templated zinc–hydrogen phosphite networks (Rodgers & Harrison, 2000[Rodgers, J. & Harrison, W. T. A. (2000). Chem. Commun. pp. 2385-2386.]; Harrison, 2001[Harrison, W. T. A. (2001). J. Solid State Chem. 160, 4-7.]; Dong et al., 2003[Dong, W., Li, G., Shi, Z., Fu, W., Zhang, D., Chen, X., Dai, Z. & Wang, L. (2003). Inorg. Chem. Commun. 6, 776-780.]; Lin et al., 2004[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G. Y. (2004). Solid State Sci. 6, 371-376.]).

[Scheme 1]

As shown in Fig. 1[link], there are five distinct Zn atoms in (I)[link]. Three of these metal ions are bonded to four O-atom neighbours in a tetra­hedral geometry, and two (Zn4 and Zn5) are bonded to three O atoms and one N atom, the latter atom being part of a piperazine mol­ecule. The mean Zn—O bond length [1.935 (3) Å] is typical for this family of phases (Harrison, 2001[Harrison, W. T. A. (2001). J. Solid State Chem. 160, 4-7.]), and the Zn—N bonds (Table 1[link]) are also characteristically longer (Kirkpatrick & Harrison, 2004[Kirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593-598.]) than the Zn—O links.

The six P atoms all form the centres of tetra­hedral [HPO3]2− anions. Because the P—H vertex of this species does not participate in chemical bonds, the shape of this group is often described as pseudo-pyramidal. The mean P—O bond length in (I)[link] [1.516 (3) Å] and the narrow range of P—O distances [1.498 (3)–1.532 (3) Å] is normal (Lin et al., 2004[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G. Y. (2004). Solid State Sci. 6, 371-376.]).

The 18 O atoms in (I)[link] all exist as Zn—O—P bridges, with a mean bond angle of 133.6° [range 123.30 (17)–144.69 (19)°]; thus, in (I)[link] there are no terminal or `dangling' P=O or P—OH bonds, like those seen in some related phases (Harrison, 2001[Harrison, W. T. A. (2001). J. Solid State Chem. 160, 4-7.]). Also, there are no Zn—O—Zn or P—O—P bridges in (I)[link].

The organic species exists in both neutral and diprotonated forms in (I)[link]. There are four distinct half-mol­ecules in the asymmetric unit (two neutral and two protonated). The four complete mol­ecules are generated by inversion symmetry in every case and the resulting mol­ecular conformations are typical six-membered-ring chairs. The neutral piperazine mol­ecules (containing atoms N1 and N2) form ligand-like bonds to Zn atoms from both their N atoms, i.e. they act as framework bridges (Ritchie & Harrison, 2004[Ritchie, L. K. & Harrison, W. T. A. (2004). Acta Cryst. C60, m634-m636.]). The Zn atoms are in equatorial positions with respect to the six-membered ring, and the axial H atoms form N—H⋯O hydrogen bonds (Table 2[link]).

The two diprotonated piperazinium ions (containing atoms N3 and N4) inter­act with the zincophosphite network by way of N—H⋯O hydrogen bonds. Each N atom makes two N—H⋯O bonds [mean H⋯O = 1.97, mean N⋯O = 2.816 (4) Å and mean N—H⋯O = 159°] and occupies a polyhedral 12-ring (Fig. 2[link]).

The complex structure of (I)[link] can be decomposed into several distinctive subunits. However, the description presented here certainly is not intended to imply that these subunits necessarily play a well defined stepwise role in the formation of (I)[link] from small atomic/mol­ecular units in solution. Firstly, the Zn1-, Zn2-, Zn3-, P2-, P5- and P6-centred polyhedra combine to form chains of alternating polyhedral six- (i.e. three ZnO4 tetra­hedra + three HPO3 pseudo-pyramids) and four-rings propagating in the [101] direction (Fig. 3[link]). In turn, the P1 phosphite groups link to atoms Zn1 and Zn2, and thus crosslink the [101] chains into an infinite (010) sheet.

Considered in isolation, the Zn4- and P4-centred polyhedra and the N1-containing piperazine ring form a distinctive hybrid organic/inorganic chain propagating in [100]. The chain consists of inversion-symmetry-generated four-rings (two Zn4 + two P4), bridged by the piperazine mol­ecules (Fig. 4[link]). The Zn5 and P3 groups and the N2-containing piperazine species form a very similar chain that also propagates in the [100] direction. These two chains alternate with respect to the c direction.

When these subunits are conceptually assembled together, a complex three-dimensional framework results. There are lacunae in the hybrid organic/inorganic network that accommodate the N3- and N4-containing diprotonated piperazinium cations as described above. When viewed down [110], there appear to be channels present in the framework (Fig. 5[link]). However, it is notable that, in every channel, the ligand-like and protonated organic species alternate; thus, it is extremely unlikely that the hydrogen-bonded piperazinium species could be removed without drastic changes in the hybrid framework.

Compound (I)[link] complements several other piperazinium zinc phosphites, including (C4H12N2)[Zn6(HPO3)8]·2H3O (Dong et al., 2003[Dong, W., Li, G., Shi, Z., Fu, W., Zhang, D., Chen, X., Dai, Z. & Wang, L. (2003). Inorg. Chem. Commun. 6, 776-780.]), (C4H12N2)[Zn3(HPO3)4] (Lin et al., 2004[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G. Y. (2004). Solid State Sci. 6, 371-376.]) and (C4H12N2)[Zn(HPO3)2] (Shi et al., 2004[Shi, S., Wei, Q., Li, G., Li, W., Yuan, H., Xu, J., Zhu, G., Song, T. & Qiu, S. (2004). J. Solid State Chem. 177, 3038-3044.]). These are more conventional templated networks in which the protonated organic species inter­acts with the inorganic network by way of N—H⋯O bonds (Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3269-3292.]). Thus, as seen for other templating species, a wide variety of templated networks can arise (Kirkpatrick & Harrison, 2004[Kirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593-598.]) for the same combination of metal, oxo-anion and template depending on synthesis conditions. Compound (I)[link] is particularly notable for the dual role – as a framework bridge and as a protonated template – played by the organic species.

[Figure 1]
Figure 1
A fragment of (I)[link], showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms; C- and N-bound H atoms have been omitted for clarity). [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z; (iii) −x + 2, −y + 1, −z + 2; (iv) x, y + 1, z; (v) −x + 1, −y + 1, −z + 2; (vi) −x + 2, −y, −z + 1; (vii) −x + 2, −y + 2, −z + 2; (viii) −x + 1, −y, −z + 1; (ix) −x + 2, −y + 1, − z + 1.]
[Figure 2]
Figure 2
The environment of the N3-containing piperazinium cation in (I)[link], with hydrogen bonds shown as dashed lines. For symmetry codes, see Fig. 1[link]. The N4-containing cation has a similar environment.
[Figure 3]
Figure 3
Part of an inorganic chain in (I)[link], showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Symmetry codes are as in Fig. 1[link].
[Figure 4]
Figure 4
Part of a hybrid chain in (I)[link], showing 50% probability displacement ellipsoids and arbitary spheres for the H atoms. [Symmetry codes: (iii) −x + 2, −y + 1, −z + 2; (v) −x + 1, −y + 1, −z + 2; (x) x, y − 1, z; (xi) −x + 1, −y, −z + 2.] The chain involving the Zn5 and P3 polyhedra and the N2-containing piperazine mol­ecule is very similar.
[Figure 5]
Figure 5
A polyhedral representation of the unit-cell packing for (I)[link], with C- and N-bound H atoms omitted for clarity.

Experimental

A mixture of ZnO (0.814 g, 10 mmol), H3PO3 (0.820 g, 10 mmol), piperazine hexa­hydrate (0.971 g, 5 mmol) and water (20 ml) was sealed in a plastic bottle and heated to 353 K for five days. After cooling to room temperature, colourless rods and blocks of (I)[link] were recovered by vacuum filtration and washing with water and acetone.

Crystal data
  • (C4H12N2)[Zn5(HPO3)6(C4H10N2)]

  • Mr = 981.01

  • Triclinic, [P \overline 1]

  • a = 8.8634 (4) Å

  • b = 12.6390 (6) Å

  • c = 12.8768 (6) Å

  • α = 89.182 (1)°

  • β = 89.913 (1)°

  • γ = 86.941 (1)°

  • V = 1440.31 (12) Å3

  • Z = 2

  • Dx = 2.262 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4175 reflections

  • θ = 2.2–30.0°

  • μ = 4.52 mm−1

  • T = 293 (2) K

  • Rod, colourless

  • 0.13 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.583, Tmax = 0.763

  • 16520 measured reflections

  • 8229 independent reflections

  • 5216 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 30.0°

  • h = −12 → 12

  • k = −17 → 17

  • l = −18 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.077

  • S = 0.90

  • 8229 reflections

  • 370 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0273P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn4—N1 2.065 (3)
Zn5—N2 2.042 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O32iv 0.91 2.12 2.993 (4) 160
N2—H2A⋯O63 0.91 2.15 2.967 (4) 150
N3—H3A⋯O11i 0.90 1.93 2.799 (4) 163
N3—H3B⋯O62 0.90 1.96 2.841 (5) 165
N4—H4A⋯O53 0.90 2.10 2.853 (5) 141
N4—H4B⋯O41 0.90 1.89 2.772 (4) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (iv) x, y+1, z.

H atoms were located in difference maps and then placed in idealized locations (P—H = 1.32 Å, C—H = 0.97 Å, and N—H = 0.90 and 0.91 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), complements the growing family of organically templated zinc–hydrogen phosphite networks (Rodgers & Harrison, 2000; Harrison, 2001; Dong et al., 2003; Lin et al., 2004).

As shown in Fig. 1, there are five distinct Zn atoms in (I). Three of these metal ions are bonded to four O-atom neighbours in tetrahdral geometry, and two (Zn4 and Zn5) are bonded to three O atoms and one N atom, the latter atom being part of a piperazine molecule. The mean Zn—O bond length [1.935 (3) Å] is typical for this family of phases (Harrison, 2001) and the Zn—N bonds (Table 1) are also characteristically longer (Kirkpatrick & Harrison, 2004) than the Zn—O links.

The six P atoms all form the centres of tetrahedral [HPO3]2− anions. Because the P—H vertex of this species does not participate in chemical bonds, the shape of this group is often described as pseudo-pyramidal. The mean P—O bond length in (I) [1.516 (3) Å] and the narrow spread of P—O distances [1.498 (3)–1.532 (3) Å] is normal (Lin et al., 2004).

The 18 O atoms in (I) all exist as Zn—O—P bridges, with a mean bond angle of 133.6° [spread of values = 123.30 (17)–144.69 (19)°], thus there are no terminal or `dangling' PO or P—OH bonds in (I) as seen in some related phases (Harrison, 2001). There are no Zn—O—Zn or P—O—P bridges in (I).

The organic species exists in both neutral and diprotonated forms in (I). There are four distinct half molecules in the asymmetric unit (two neutral and two protonated). The four complete molecules are generated by inversion symmetry in every case and the resulting molecular conformations are typical six-ring chairs. The neutral piperazine molecules (containing atoms N1 and N2) form ligand-like bonds to Zn atoms from both their N atoms, i.e. they are acting as framework bridges (Ritchie & Harrison, 2005). The Zn atoms are in equatorial positions with respect to the six-membered ring, and the axial H atoms form N—H···O hydrogen bonds (Table 2).

The two diprotonated piperazinium ions (containing atoms N3 and N4) interact with the zincophosphite network by way of N—H···O hydrogen bonds. Each N atom makes two N—H···O bonds [mean H···O = 1.97, mean N···O = 2.816 (4) Å and mean N—H···O = 159°] and occupies a polyhedral 12 ring (Fig. 2).

The complex structure of (I) can be decomposed into several distinctive subunits. However, the description presented here certainly is not intended to imply that these subunits necessarily play a well defined step-wise role in the formation of (I) from small atomic/molecular units in solution. First, the Zn1, Zn2, Zn3, P2, P5 and P6-centred polyhedra combine to form chains of alternating polyhedral six (i.e. three ZnO4 tetrahedra + three HPO3 pseudo-pyramids) and four rings propagating in the [101] direction (Fig. 3). In turn, the P1 phosphite groups link to atoms Zn1 and Zn2 and thus crosslink the [101] chains into an infinite (010) sheet.

Considered in isolation, the Zn4- and P4-centred polyhedra and the N1-containing piperazine ring form a distinctive hybrid organic/inorganic chain propagating in [100]. The chain consists of inversion-symmetry-generated four rings (2 Zn4 + 2 P4), bridged by the piperazine molecules (Fig. 4). The Zn5 and P3 groups and the N2-containing piperazine species form a very similar chain that also propagates in the [100] direction. These two chains alternate with respect to the c direction.

When these subunits are conceptually assembled together, a complex three-dimensional framework results. There are lacunae in the hybrid organic/inorganic network that accommodate the N3 and N4-containing diprotonated piperazinium cations as described above. When viewed down [110] there appear to be channels present in the framework (Fig. 5). However, it is notable that, in every channel, the ligand-like and protonated organic species alternate; thus it is extremely unlikely that the hydrogen-bonded piperazinium species could be removed without drastic changes in the hybrid framework.

Compound (I) complements several other piperazinium zinc phosphites including C4H12N2·Zn6(HPO3)8·2H3O (Dong et al., 2003), C4H12N2·Zn3(HPO3)4 (Lin et al., 2004) and C4H12N2·Zn(HPO3)2 (Shi et al., 2004). These are more conventional templated networks in which the protonated organic speices interacts with the inorganic network by way of N—H···O bonds (Cheetham et al., 1999). Thus, as seen for other templating species, a wide variety of templated networks can arise (Kirkpatrick & Harrison, 2004) for the same combination of metal, oxo-anion and template depending on synthesis conditions. Compound (I) is particularly notable for the dual role – as a framework bridge and as a protonated template – played by the organic speices.

Experimental top

A mixture of ZnO (0.814 g, 10 mmol), H3PO3 (0.820 g, 10 mmol), piperazine hexahydrate (0.971 g, 5 mmol) and water (20 ml) was sealed in a plastic bottle and heated to 353 K for five days. After cooling to room temperature, colourless rods and blocks of (I) were recovered by vacuum filtration and washing with water and acetone.

Refinement top

H atoms were located in difference maps and then placed in idealized locations (P—H = 1.32 Å, C—H = 0.97 Å, and N—H = 0.90 and 0.91 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A fragment of (I), showing 50% probablity displacement ellipsoids (arbitrary spheres for the H atoms; C– and N-bound H atoms have bene omitted for clarity). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x + 1, y, z; (iii) 2 − x, 1 − y, 2 − z; (iv) x, y + 1, z; (v) 1 − x, 1 − y, 2 − z; (vi) 2 − x, −y, 1 − z; (vii) 2 − x, 2 − y, 2 − z; (viii) 1 − x, −y, 1 − z; (ix) 2 − x, 1 − y, 1 − z.]
[Figure 2] Fig. 2. The environment of the N3-containing piperazinium cation in (I), with hydrogen bonds shown as dashed lines. For symmetry codes, see Fig. 1. The N4-containing cation has a similar environment.
[Figure 3] Fig. 3. Part of an inorganic chain in (I), showing 50% probability displacement ellipsoids and arbitary spheres for the H atoms. [Symmetry codes as in Fig. 1.]
[Figure 4] Fig. 4. Part of a hybrid chain in (I) showing 50% displacement ellipsoids and arbitary spheres for the H atoms. [Symmetry codes: (iii) 2 − x, 1 − y, 2 − z; (x) x, y − 1, z; (v) 1 − x, 1 − y, 2 − z; (xi) 1 − x, −y, 2 − z.] The chain involving the Zn5 and P3 polyhedra and the N2-containing piperizine molecule is very similar.
[Figure 5] Fig. 5. Polyhedral representation of the unit-cell packing for (I) with C– and N-bound H atoms omitted for clarity.
Poly[piperazinium(2+) [hexa-µ-hydrogen phosphito-µ-piperazine-pentazinc(II)]] top
Crystal data top
(C4H12N2)[Zn5(HPO3)6(C4H10N2)Z = 2
Mr = 981.01F(000) = 976
Triclinic, P1Dx = 2.262 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8634 (4) ÅCell parameters from 4175 reflections
b = 12.6390 (6) Åθ = 2.2–30.0°
c = 12.8768 (6) ŵ = 4.52 mm1
α = 89.182 (1)°T = 293 K
β = 89.913 (1)°Rod, colourless
γ = 86.941 (1)°0.13 × 0.07 × 0.06 mm
V = 1440.31 (12) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
8229 independent reflections
Radiation source: fine-focus sealed tube5216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.583, Tmax = 0.763k = 1717
16520 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
8229 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
(C4H12N2)[Zn5(HPO3)6(C4H10N2)γ = 86.941 (1)°
Mr = 981.01V = 1440.31 (12) Å3
Triclinic, P1Z = 2
a = 8.8634 (4) ÅMo Kα radiation
b = 12.6390 (6) ŵ = 4.52 mm1
c = 12.8768 (6) ÅT = 293 K
α = 89.182 (1)°0.13 × 0.07 × 0.06 mm
β = 89.913 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
8229 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5216 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.763Rint = 0.039
16520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.90Δρmax = 1.14 e Å3
8229 reflectionsΔρmin = 0.59 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.58057 (5)0.60145 (4)0.61549 (4)0.02379 (11)
Zn21.05294 (5)0.60445 (4)0.88464 (4)0.02315 (11)
Zn30.75704 (5)0.22882 (4)0.75293 (3)0.02176 (11)
Zn40.66727 (5)0.91001 (4)0.90014 (4)0.02276 (11)
Zn50.83361 (5)0.11580 (4)0.43915 (4)0.02166 (11)
P10.29585 (11)0.71177 (8)0.72813 (8)0.0210 (2)
H10.38310.79000.74970.025*
P20.80154 (11)0.73085 (8)0.75991 (8)0.0217 (2)
H20.91440.78290.72100.026*
P31.01828 (12)0.09579 (8)0.65812 (8)0.0224 (2)
H31.12390.15750.69010.027*
P50.98326 (13)0.37003 (9)0.86947 (8)0.0256 (2)
H51.07040.28320.88440.031*
P40.47874 (12)0.13830 (8)0.87516 (8)0.0231 (2)
H40.38270.16630.80020.028*
P60.53186 (12)0.35199 (8)0.60917 (8)0.0232 (2)
H60.44980.36800.69370.028*
O110.1944 (3)0.7493 (2)0.6375 (2)0.0274 (6)
O120.2110 (3)0.6860 (2)0.8264 (2)0.0334 (7)
O130.3989 (3)0.6181 (2)0.6964 (2)0.0380 (8)
O210.6762 (3)0.8129 (2)0.7858 (2)0.0313 (7)
O220.7563 (3)0.6549 (3)0.6785 (2)0.0454 (9)
O230.8601 (3)0.6740 (3)0.8573 (2)0.0373 (8)
O311.0892 (4)0.0150 (2)0.6602 (2)0.0434 (9)
O320.8929 (3)0.1047 (2)0.7392 (2)0.0326 (7)
O330.9699 (3)0.1384 (2)0.5521 (2)0.0314 (7)
O410.6098 (3)0.2119 (2)0.8642 (2)0.0323 (7)
O420.5249 (3)0.0237 (2)0.8574 (2)0.0364 (8)
O430.3974 (4)0.1620 (2)0.9749 (2)0.0408 (8)
O511.0863 (3)0.4583 (2)0.8435 (2)0.0328 (7)
O520.8777 (4)0.3486 (2)0.7800 (2)0.0361 (8)
O530.8933 (3)0.3887 (3)0.9691 (2)0.0351 (8)
O610.4234 (3)0.3337 (2)0.5215 (2)0.0380 (8)
O620.6249 (3)0.4496 (2)0.5933 (2)0.0300 (7)
O630.6348 (3)0.2542 (2)0.6296 (2)0.0325 (7)
N10.8661 (3)0.9790 (2)0.9365 (2)0.0211 (7)
H1A0.87931.03000.88720.025*
C11.0053 (5)0.9083 (3)0.9357 (4)0.0329 (11)
H1B1.01760.87760.86740.040*
H1C0.99410.85080.98530.040*
C20.8537 (5)1.0344 (4)1.0377 (3)0.0343 (11)
H2B0.83510.98291.09230.041*
H2C0.76781.08521.03530.041*
N20.6290 (4)0.0694 (3)0.4905 (2)0.0225 (7)
H2A0.59430.11940.53610.027*
C30.5128 (5)0.0647 (5)0.4097 (4)0.0470 (14)
H3C0.54780.01430.35770.056*
H3D0.49980.13360.37590.056*
C40.6397 (5)0.0328 (4)0.5493 (4)0.0439 (13)
H4C0.70840.02680.60720.053*
H4D0.68140.08790.50440.053*
N30.9023 (4)0.4150 (3)0.4853 (3)0.0335 (9)
H3A0.88270.35370.45450.040*
H3B0.82360.43320.52670.040*
C51.0398 (5)0.3985 (4)0.5494 (3)0.0339 (11)
H5A1.12220.36970.50690.041*
H5B1.02190.34780.60470.041*
C60.9171 (5)0.4983 (4)0.4045 (3)0.0340 (11)
H6A0.82190.50950.36790.041*
H6B0.99340.47490.35470.041*
N40.5710 (4)0.4009 (3)0.9699 (3)0.0309 (8)
H4A0.66110.40221.00180.037*
H4B0.56900.33980.93490.037*
C70.4492 (5)0.4049 (3)1.0487 (3)0.0338 (11)
H7A0.46610.34721.09840.041*
H7B0.35260.39671.01520.041*
C80.5538 (6)0.4910 (3)0.8960 (3)0.0369 (11)
H8A0.46080.48610.85720.044*
H8B0.63710.48770.84700.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0240 (2)0.0230 (3)0.0241 (3)0.00284 (19)0.00203 (19)0.0049 (2)
Zn20.0229 (2)0.0268 (3)0.0199 (2)0.00321 (19)0.00083 (19)0.0014 (2)
Zn30.0252 (2)0.0203 (2)0.0195 (2)0.00133 (19)0.00315 (19)0.00139 (19)
Zn40.0204 (2)0.0220 (2)0.0262 (3)0.00298 (18)0.00162 (19)0.0058 (2)
Zn50.0208 (2)0.0193 (2)0.0249 (3)0.00121 (18)0.00180 (19)0.0003 (2)
P10.0191 (5)0.0218 (5)0.0222 (5)0.0039 (4)0.0029 (4)0.0015 (4)
P20.0192 (5)0.0236 (6)0.0226 (5)0.0010 (4)0.0002 (4)0.0079 (4)
P30.0223 (5)0.0237 (6)0.0208 (5)0.0014 (4)0.0004 (4)0.0035 (4)
P50.0350 (6)0.0213 (6)0.0211 (6)0.0061 (5)0.0004 (5)0.0006 (5)
P40.0246 (5)0.0193 (5)0.0250 (6)0.0016 (4)0.0023 (4)0.0005 (4)
P60.0259 (5)0.0231 (6)0.0202 (5)0.0019 (4)0.0004 (4)0.0002 (4)
O110.0308 (16)0.0194 (15)0.0322 (16)0.0050 (12)0.0056 (13)0.0043 (13)
O120.0359 (17)0.0386 (19)0.0269 (17)0.0129 (14)0.0132 (13)0.0002 (14)
O130.0318 (17)0.0388 (19)0.0420 (19)0.0118 (14)0.0085 (15)0.0023 (15)
O210.0322 (17)0.0289 (17)0.0317 (16)0.0099 (13)0.0076 (13)0.0109 (13)
O220.0317 (18)0.049 (2)0.055 (2)0.0078 (15)0.0137 (15)0.0388 (18)
O230.0257 (16)0.052 (2)0.0332 (18)0.0086 (15)0.0001 (13)0.0039 (15)
O310.057 (2)0.0365 (19)0.0341 (18)0.0228 (16)0.0081 (16)0.0058 (15)
O320.0354 (17)0.0290 (17)0.0317 (17)0.0114 (13)0.0125 (13)0.0060 (14)
O330.0304 (16)0.0418 (19)0.0224 (15)0.0054 (14)0.0021 (13)0.0032 (14)
O410.0361 (17)0.0289 (17)0.0330 (17)0.0086 (13)0.0175 (14)0.0083 (14)
O420.0370 (18)0.0189 (16)0.053 (2)0.0049 (13)0.0088 (15)0.0111 (15)
O430.051 (2)0.0311 (18)0.0409 (19)0.0058 (15)0.0267 (16)0.0040 (15)
O510.0396 (18)0.0269 (17)0.0332 (17)0.0127 (14)0.0107 (14)0.0040 (14)
O520.051 (2)0.0341 (18)0.0245 (16)0.0173 (15)0.0031 (14)0.0022 (14)
O530.0350 (17)0.053 (2)0.0182 (15)0.0121 (15)0.0032 (13)0.0031 (14)
O610.0374 (18)0.043 (2)0.0347 (18)0.0117 (15)0.0113 (14)0.0123 (15)
O620.0308 (16)0.0184 (15)0.0408 (18)0.0004 (12)0.0008 (14)0.0052 (13)
O630.0460 (19)0.0204 (15)0.0301 (17)0.0085 (13)0.0104 (14)0.0041 (13)
N10.0221 (17)0.0199 (18)0.0220 (17)0.0074 (13)0.0011 (14)0.0014 (14)
C10.029 (2)0.031 (3)0.039 (3)0.0001 (19)0.0061 (19)0.018 (2)
C20.024 (2)0.042 (3)0.038 (3)0.004 (2)0.0025 (19)0.015 (2)
N20.0262 (18)0.0178 (17)0.0243 (18)0.0062 (14)0.0048 (14)0.0064 (14)
C30.032 (3)0.074 (4)0.036 (3)0.024 (3)0.005 (2)0.024 (3)
C40.028 (2)0.050 (3)0.054 (3)0.013 (2)0.009 (2)0.030 (3)
N30.034 (2)0.023 (2)0.045 (2)0.0100 (16)0.0022 (18)0.0087 (17)
C50.040 (3)0.029 (2)0.032 (3)0.001 (2)0.001 (2)0.002 (2)
C60.039 (3)0.037 (3)0.027 (2)0.007 (2)0.005 (2)0.001 (2)
N40.0290 (19)0.0252 (19)0.038 (2)0.0026 (15)0.0009 (16)0.0124 (17)
C70.038 (3)0.026 (2)0.037 (3)0.0008 (19)0.012 (2)0.001 (2)
C80.053 (3)0.028 (3)0.029 (2)0.002 (2)0.017 (2)0.003 (2)
Geometric parameters (Å, º) top
Zn1—O221.917 (3)O12—Zn2vii1.927 (3)
Zn1—O131.920 (3)O31—Zn5vi1.918 (3)
Zn1—O61i1.934 (3)O42—Zn4viii1.935 (3)
Zn1—O621.963 (3)O43—Zn4v1.939 (3)
Zn2—O231.910 (3)O53—Zn2iii1.947 (3)
Zn2—O12ii1.927 (3)O61—Zn1i1.934 (3)
Zn2—O511.936 (3)N1—C11.484 (5)
Zn2—O53iii1.947 (3)N1—C21.490 (5)
Zn3—O521.935 (3)N1—H1A0.9100
Zn3—O321.936 (3)C1—C2ix1.520 (6)
Zn3—O631.937 (3)C1—H1B0.9700
Zn3—O411.953 (3)C1—H1C0.9700
Zn4—O211.929 (3)C2—C1ix1.520 (6)
Zn4—O42iv1.935 (3)C2—H2B0.9700
Zn4—O43v1.939 (3)C2—H2C0.9700
Zn4—N12.065 (3)N2—C31.469 (5)
Zn5—O31vi1.918 (3)N2—C41.486 (5)
Zn5—O331.927 (3)N2—H2A0.9100
Zn5—O11i1.962 (3)C3—C4x1.522 (6)
Zn5—N22.042 (3)C3—H3C0.9700
P1—O121.512 (3)C3—H3D0.9700
P1—O131.517 (3)C4—C3x1.522 (6)
P1—O111.529 (3)C4—H4C0.9700
P1—H11.3200C4—H4D0.9700
P2—O221.501 (3)N3—C51.477 (5)
P2—O231.515 (3)N3—C61.480 (5)
P2—O211.519 (3)N3—H3A0.9000
P2—H21.3200N3—H3B0.9000
P3—O311.504 (3)C5—C6xi1.508 (6)
P3—O331.514 (3)C5—H5A0.9700
P3—O321.524 (3)C5—H5B0.9700
P3—H31.3200C6—C5xi1.508 (6)
P5—O511.513 (3)C6—H6A0.9700
P5—O521.522 (3)C6—H6B0.9700
P5—O531.524 (3)N4—C81.475 (5)
P5—H51.3200N4—C71.480 (5)
P4—O431.498 (3)N4—H4A0.9000
P4—O421.505 (3)N4—H4B0.9000
P4—O411.532 (3)C7—C8v1.504 (6)
P4—H41.3200C7—H7A0.9700
P6—O611.512 (3)C7—H7B0.9700
P6—O631.517 (3)C8—C7v1.504 (6)
P6—O621.531 (3)C8—H8A0.9700
P6—H61.3200C8—H8B0.9700
O11—Zn5i1.962 (3)
O22—Zn1—O13114.90 (13)P5—O51—Zn2125.14 (17)
O22—Zn1—O61i103.70 (14)P5—O52—Zn3130.99 (19)
O13—Zn1—O61i116.69 (13)P5—O53—Zn2iii134.11 (19)
O22—Zn1—O62106.78 (13)P6—O61—Zn1i127.73 (19)
O13—Zn1—O62108.43 (13)P6—O62—Zn1132.85 (17)
O61i—Zn1—O62105.56 (13)P6—O63—Zn3125.10 (17)
O23—Zn2—O12ii110.10 (13)C1—N1—C2109.5 (3)
O23—Zn2—O51118.36 (14)C1—N1—Zn4116.3 (2)
O12ii—Zn2—O51108.82 (12)C2—N1—Zn4111.2 (2)
O23—Zn2—O53iii111.56 (13)C1—N1—H1A106.4
O12ii—Zn2—O53iii99.06 (13)C2—N1—H1A106.4
O51—Zn2—O53iii107.18 (13)Zn4—N1—H1A106.4
O52—Zn3—O32107.92 (14)N1—C1—C2ix112.8 (3)
O52—Zn3—O63110.81 (13)N1—C1—H1B109.0
O32—Zn3—O63111.64 (12)C2ix—C1—H1B109.0
O52—Zn3—O41110.23 (12)N1—C1—H1C109.0
O32—Zn3—O41112.09 (12)C2ix—C1—H1C109.0
O63—Zn3—O41104.17 (13)H1B—C1—H1C107.8
O21—Zn4—O42iv105.25 (12)N1—C2—C1ix112.8 (3)
O21—Zn4—O43v109.86 (13)N1—C2—H2B109.0
O42iv—Zn4—O43v112.16 (13)C1ix—C2—H2B109.0
O21—Zn4—N1116.26 (13)N1—C2—H2C109.0
O42iv—Zn4—N1106.77 (13)C1ix—C2—H2C109.0
O43v—Zn4—N1106.62 (14)H2B—C2—H2C107.8
O31vi—Zn5—O33113.98 (13)C3—N2—C4109.3 (4)
O31vi—Zn5—O11i105.62 (13)C3—N2—Zn5114.9 (3)
O33—Zn5—O11i107.15 (12)C4—N2—Zn5113.0 (3)
O31vi—Zn5—N2108.36 (14)C3—N2—H2A106.3
O33—Zn5—N2112.03 (13)C4—N2—H2A106.3
O11i—Zn5—N2109.44 (12)Zn5—N2—H2A106.3
O12—P1—O13110.55 (18)N2—C3—C4x113.7 (4)
O12—P1—O11114.12 (17)N2—C3—H3C108.8
O13—P1—O11110.46 (17)C4x—C3—H3C108.8
O12—P1—H1107.1N2—C3—H3D108.8
O13—P1—H1107.1C4x—C3—H3D108.8
O11—P1—H1107.1H3C—C3—H3D107.7
O22—P2—O23112.0 (2)N2—C4—C3x112.5 (4)
O22—P2—O21112.80 (17)N2—C4—H4C109.1
O23—P2—O21110.84 (16)C3x—C4—H4C109.1
O22—P2—H2106.9N2—C4—H4D109.1
O23—P2—H2106.9C3x—C4—H4D109.1
O21—P2—H2106.9H4C—C4—H4D107.8
O31—P3—O33115.57 (17)C5—N3—C6112.5 (3)
O31—P3—O32109.40 (17)C5—N3—H3A109.1
O33—P3—O32113.35 (16)C6—N3—H3A109.1
O31—P3—H3105.9C5—N3—H3B109.1
O33—P3—H3105.9C6—N3—H3B109.1
O32—P3—H3105.9H3A—N3—H3B107.8
O51—P5—O52111.88 (17)N3—C5—C6xi110.5 (3)
O51—P5—O53113.23 (17)N3—C5—H5A109.6
O52—P5—O53110.35 (18)C6xi—C5—H5A109.6
O51—P5—H5107.0N3—C5—H5B109.6
O52—P5—H5107.0C6xi—C5—H5B109.6
O53—P5—H5107.0H5A—C5—H5B108.1
O43—P4—O42115.98 (18)N3—C6—C5xi111.8 (3)
O43—P4—O41108.78 (17)N3—C6—H6A109.3
O42—P4—O41113.26 (17)C5xi—C6—H6A109.3
O43—P4—H4106.0N3—C6—H6B109.3
O42—P4—H4106.0C5xi—C6—H6B109.3
O41—P4—H4106.0H6A—C6—H6B107.9
O61—P6—O63110.93 (18)C8—N4—C7111.3 (3)
O61—P6—O62114.00 (17)C8—N4—H4A109.4
O63—P6—O62110.48 (17)C7—N4—H4A109.4
O61—P6—H6107.0C8—N4—H4B109.3
O63—P6—H6107.0C7—N4—H4B109.4
O62—P6—H6107.0H4A—N4—H4B108.0
P1—O11—Zn5i133.44 (17)N4—C7—C8v110.0 (4)
P1—O12—Zn2vii144.69 (19)N4—C7—H7A109.7
P1—O13—Zn1134.7 (2)C8v—C7—H7A109.7
P2—O21—Zn4127.89 (17)N4—C7—H7B109.7
P2—O22—Zn1141.20 (19)C8v—C7—H7B109.7
P2—O23—Zn2129.84 (18)H7A—C7—H7B108.2
P3—O31—Zn5vi137.0 (2)N4—C8—C7v111.3 (4)
P3—O32—Zn3123.30 (17)N4—C8—H8A109.4
P3—O33—Zn5142.7 (2)C7v—C8—H8A109.4
P4—O41—Zn3131.28 (17)N4—C8—H8B109.4
P4—O42—Zn4viii143.3 (2)C7v—C8—H8B109.4
P4—O43—Zn4v139.8 (2)H8A—C8—H8B108.0
O12—P1—O11—Zn5i114.4 (2)O23—Zn2—O51—P550.6 (3)
O13—P1—O11—Zn5i120.3 (2)O12ii—Zn2—O51—P5177.2 (2)
O13—P1—O12—Zn2vii71.4 (4)O53iii—Zn2—O51—P576.6 (2)
O11—P1—O12—Zn2vii53.9 (4)O51—P5—O52—Zn3163.8 (2)
O12—P1—O13—Zn1155.6 (2)O53—P5—O52—Zn369.2 (3)
O11—P1—O13—Zn177.1 (3)O32—Zn3—O52—P561.6 (3)
O22—Zn1—O13—P169.6 (3)O63—Zn3—O52—P5175.9 (2)
O61i—Zn1—O13—P152.1 (3)O41—Zn3—O52—P561.1 (3)
O62—Zn1—O13—P1171.1 (3)O51—P5—O53—Zn2iii66.5 (3)
O22—P2—O21—Zn4168.3 (2)O52—P5—O53—Zn2iii167.2 (2)
O23—P2—O21—Zn441.8 (3)O63—P6—O61—Zn1i111.5 (2)
O42iv—Zn4—O21—P2158.2 (2)O62—P6—O61—Zn1i14.0 (3)
O43v—Zn4—O21—P280.9 (3)O61—P6—O62—Zn181.1 (3)
N1—Zn4—O21—P240.3 (3)O63—P6—O62—Zn1153.2 (2)
O23—P2—O22—Zn1105.8 (4)O22—Zn1—O62—P6137.6 (2)
O21—P2—O22—Zn120.1 (4)O13—Zn1—O62—P613.3 (3)
O13—Zn1—O22—P220.8 (4)O61i—Zn1—O62—P6112.5 (2)
O61i—Zn1—O22—P2107.8 (4)O61—P6—O63—Zn3164.8 (2)
O62—Zn1—O22—P2141.0 (4)O62—P6—O63—Zn367.8 (3)
O22—P2—O23—Zn278.2 (3)O52—Zn3—O63—P651.4 (3)
O21—P2—O23—Zn2154.8 (2)O32—Zn3—O63—P6171.7 (2)
O12ii—Zn2—O23—P240.9 (3)O41—Zn3—O63—P667.1 (2)
O51—Zn2—O23—P285.1 (3)O21—Zn4—N1—C142.3 (3)
O53iii—Zn2—O23—P2149.8 (2)O42iv—Zn4—N1—C1159.3 (3)
O33—P3—O31—Zn5vi11.9 (4)O43v—Zn4—N1—C180.6 (3)
O32—P3—O31—Zn5vi141.2 (3)O21—Zn4—N1—C2168.5 (3)
O31—P3—O32—Zn3173.1 (2)O42iv—Zn4—N1—C274.4 (3)
O33—P3—O32—Zn342.5 (3)O43v—Zn4—N1—C245.6 (3)
O52—Zn3—O32—P358.9 (2)C2—N1—C1—C2ix53.5 (5)
O63—Zn3—O32—P363.1 (3)Zn4—N1—C1—C2ix179.5 (3)
O41—Zn3—O32—P3179.6 (2)C1—N1—C2—C1ix53.5 (5)
O31—P3—O33—Zn563.6 (4)Zn4—N1—C2—C1ix176.6 (3)
O32—P3—O33—Zn563.8 (3)O31vi—Zn5—N2—C361.3 (3)
O31vi—Zn5—O33—P386.1 (3)O33—Zn5—N2—C3172.1 (3)
O11i—Zn5—O33—P3157.4 (3)O11i—Zn5—N2—C353.4 (3)
N2—Zn5—O33—P337.4 (3)O31vi—Zn5—N2—C465.1 (3)
O43—P4—O41—Zn3177.4 (2)O33—Zn5—N2—C461.5 (3)
O42—P4—O41—Zn352.1 (3)O11i—Zn5—N2—C4179.8 (3)
O52—Zn3—O41—P4172.8 (2)C4—N2—C3—C4x53.3 (6)
O32—Zn3—O41—P467.0 (3)Zn5—N2—C3—C4x178.4 (3)
O63—Zn3—O41—P453.9 (3)C3—N2—C4—C3x52.6 (6)
O43—P4—O42—Zn4viii73.7 (4)Zn5—N2—C4—C3x178.0 (3)
O41—P4—O42—Zn4viii53.1 (4)C6—N3—C5—C6xi54.3 (5)
O42—P4—O43—Zn4v2.9 (4)C5—N3—C6—C5xi55.0 (5)
O41—P4—O43—Zn4v126.1 (3)C8—N4—C7—C8v56.2 (5)
O52—P5—O51—Zn298.3 (2)C7—N4—C8—C7v56.9 (5)
O53—P5—O51—Zn227.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x, y+1, z; (v) x+1, y+1, z+2; (vi) x+2, y, z+1; (vii) x1, y, z; (viii) x, y1, z; (ix) x+2, y+2, z+2; (x) x+1, y, z+1; (xi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O32iv0.912.122.993 (4)160
N2—H2A···O630.912.152.967 (4)150
N3—H3A···O11i0.901.932.799 (4)163
N3—H3B···O620.901.962.841 (5)165
N4—H4A···O530.902.102.853 (5)141
N4—H4B···O410.901.892.772 (4)168
Symmetry codes: (i) x+1, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Zn5(HPO3)6(C4H10N2)
Mr981.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8634 (4), 12.6390 (6), 12.8768 (6)
α, β, γ (°)89.182 (1), 89.913 (1), 86.941 (1)
V3)1440.31 (12)
Z2
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.13 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.583, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
16520, 8229, 5216
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.077, 0.90
No. of reflections8229
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.59

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
Zn4—N12.065 (3)Zn5—N22.042 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O32i0.912.122.993 (4)160
N2—H2A···O630.912.152.967 (4)150
N3—H3A···O11ii0.901.932.799 (4)163
N3—H3B···O620.901.962.841 (5)165
N4—H4A···O530.902.102.853 (5)141
N4—H4B···O410.901.892.772 (4)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Laura Gordon for experimental assistance.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3269–3292.  Web of Science CrossRef Google Scholar
First citationDong, W., Li, G., Shi, Z., Fu, W., Zhang, D., Chen, X., Dai, Z. & Wang, L. (2003). Inorg. Chem. Commun. 6, 776–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2001). J. Solid State Chem. 160, 4–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593–598.  CSD CrossRef CAS Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G. Y. (2004). Solid State Sci. 6, 371–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationRitchie, L. K. & Harrison, W. T. A. (2004). Acta Cryst. C60, m634–m636.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodgers, J. & Harrison, W. T. A. (2000). Chem. Commun. pp. 2385–2386.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShi, S., Wei, Q., Li, G., Li, W., Yuan, H., Xu, J., Zhu, G., Song, T. & Qiu, S. (2004). J. Solid State Chem. 177, 3038–3044.  CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds