organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2-(4-Chloro­anilino)- and 2-(4-meth­oxy­anilino)-1,2-di­phenyl­ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bDepartment of Chemistry, University of Oriente, P. Lumumba s/n, Santiago de Cuba 90500, Cuba
*Correspondence e-mail: o.au-alvarez@cnt.uo.edu.cu

(Received 27 March 2006; accepted 9 April 2006; online 29 April 2006)

The title compounds, C20H16ClNO and C21H19NO2, adopt syn orientations of the C=O and N—H bonds but, like their analogues, form no strong inter­molecular hydrogen bonds.

Comment

Few 1-aryl­anilinoethanone derivatives have been structurally studied so far, although some of them are important in synthesis (Saraogi et al., 2003[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2003). Acta Cryst. E59, o443-o444.]), while others possess inter­esting charge-transfer properties (Abdulla et al., 1985[Abdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502-3505.]). These compounds also display rather unusual supra­molecular arrangements (see below). The present low-temperature study of compounds (I)[link] and (II)[link] follows on from our structural determinations of the parent compound 2-anilino-1,2-diphenyl­ethanone, (III)[link] (Au & Tafeenko, 1987[Au, O. & Tafeenko, V. (1987). Rev. Cubana Quim. 3, 79-86.]), its methyl derivative 1,2-diphenyl-2-(p-toluidino)ethanone, (IV)[link] (Au & Tafeenko, 1986[Au, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65-74.]), and 1,2-bis­(2-fur­yl)-2-(p-toluidino)­ethanone, (V) (Au & Tafeenko, 1988[Au, O. & Tafeenko, V. A. (1988). Rev. Cubana Quim. 4, 31-36.]).

[Scheme 1]

The structures of (I)[link] and (II)[link] both contain one mol­ecule per asymmetric unit. Crystals of (I)[link] and (IV)[link] are isostructural, the Cl atom of van der Waals radius 1.76 Å (Rowland & Taylor, 1996[Rowland, B. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) replacing the methyl group of effective radius 2.0 Å. In (I)[link], the C3—C1—C2—N—C15 backbone adopts an all-trans conformation and is planar within ±0.1 Å (Fig. 1[link]). The terminal benzene rings, A and B, are nearly coplanar, whereas the central ring, C, is nearly normal to them [inter­planar angles: 6.1 (1)° for A/B, 81.7 (1)° for A/C and 86.1 (1)° for B/C]. Very similar conformations have been observed previously in (III)[link], (IV)[link] and (V), as well as in analogues without substituents in the 2-position, such as (VI)[link] (Saraogi et al., 2003[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2003). Acta Cryst. E59, o443-o444.]) or (VII)[link] (Abdulla et al., 1985[Abdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502-3505.]). Such a conformation brings the C1=O1 and N—H1 bonds into a syn orientation, and apparently favours the formation of a centrosymmetric dimer of mol­ecules, linked via a pair of strong N—H⋯O hydrogen bonds. A dimer of topology R22(10) according to the graph-set nomenclature (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) is present in the structure (Fig. 2[link]), but the mol­ecules are so widely separated that only weak N—H⋯O inter­actions can exist. The N⋯O1′ distance [3.479 (2) Å] is much longer and the corrected H1⋯O1′ distance [2.59 (2) Å] is only marginally shorter than the corresponding sums of van der Waals radii, 3.22 and 2.68 Å (Rowland & Taylor, 1996[Rowland, B. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]).

Two mol­ecules of (I)[link], related via the inversion (2 − x, −y, 1 − z), have their PhCOCNHC6H4Cl systems stacked face-to-face, the C=O bond of each mol­ecule overlapping with the B ring of another. Notwithstanding the tight inter­planar separation of 3.33 Å, there is no evidence of inter­molecular charge transfer, such as occurs in the intensely coloured crystal of (VII)[link]. The formation of continuous stacks is rendered impossible by the perpendicular phenyl ring C.

Compound (II)[link] (Fig. 1[link]) has a more twisted conformation of the backbone (see Fig. 3[link], and the torsion angles in Tables 1[link] and 3[link]), and the inter-ring angles are 64.0 (1)° for A/B, 85.0 (1)° for A/C and 77.3 (1)° for B/C. Nevertheless, the C=O and N—H bonds remain in a syn orientation. Unlike (I)[link], the structure contains no dimers. The N—H bond points roughly toward the pπ orbital of atom C6 of an adjacent mol­ecule, related via an inversion at (−x, 1 − y, −z), the corrected H⋯C distance being 2.90 (2) Å.

Thus, a prominent feature of both structures is the absence of strong inter­molecular hydrogen bonds. The intra­molecular H1⋯O1 contacts (Tables 2[link] and 4[link]) have awkward angular geometry, quite atypical for unconstrained hydrogen bonds, although these inter­actions probably help to stabilize the syn conformations of the mol­ecules. Compounds (IV)[link], (VI)[link] and (VII)[link] form `distant dimers', as in (I)[link], with N⋯O distances of 3.57, 3.41 and 3.60 Å, respectively. The structures of (III)[link] and (V), in broad resemblance of (II)[link], contain no dimers at all, but show inter­molecular N—H⋯C(ar­yl) contacts, in both cases with the ortho atom of the `anilinic' benzene ring (ring B in Fig. 1[link]). The H⋯C distances of 2.97 Å in (III) and 3.05 Å in (V) are unexceptional.

Thus, none of the structurally characterized 1-aryl­anilino­ethanones forms strong inter­molecular hydrogen bonds. If the terminal benzene rings (A and B) are coplanar with the mol­ecular backbone, as in (I)[link], their steric repulsion can prevent closer approach of the polar groups to one another. Thus, in (I)[link], the intra­dimer distances H8⋯H16′ and H16⋯H8′ (Fig. 2[link]) are 2.14 Å, i.e. they constitute close van der Waals contacts. However, in principle, the rings could adopt a less hindering orientation.

The N atom has planar–trigonal geometry in (I)[link] but is significantly pyramidal in (II)[link], the refined position of atom H1 deviating from the C2/N/C15 plane by 0.038 (18) and 0.354 (15) Å, respectively. It is noteworthy that the N atom is also nearly planar in (IV)[link], (VI)[link] and (VII)[link] but strongly pyramidal in (III)[link] and (V). In other words, planar geometry always accompanies `distant dimers', whereas pyramidalization accompanies N—H⋯C(ar­yl) contacts. Thus, even these apparently weak inter­molecular inter­actions can influence the mol­ecular geometry.

[Figure 1]
Figure 1
The mol­ecular structures of (I)[link] (top) and (II)[link] (bottom). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
`Distant' dimers in the structure of (I)[link]. Primed atoms are generated by an inversion at (1 − x, −y, 1 − z).
[Figure 3]
Figure 3
A comparison of the conformations of (I)[link] (dashed lines) and (II)[link] (solid lines).

Experimental

Compounds (I)[link] and (II)[link] were prepared by refluxing benzoin (28 mmol) with p-chloro­aniline or p-methoxy­aniline (28 mmol), respectively, in dimethyl­formamide (1 ml) for 4 h. Crystals of X-ray quality were grown from ethanol [m.p. 435–436 K for (I)[link] and 373–374 K for (II)]. IR (cm−1): ν(C=O) 1670 (I)[link], 1673 (II)[link]; ν(N—H) 3391 (I)[link], 3400 (II)[link]; ν(C—Cl) 752 (I)[link].

Compound (I)[link]

Crystal data
  • C20H16ClNO

  • Mr = 321.79

  • Triclinic, [P \overline 1]

  • a = 5.7748 (8) Å

  • b = 11.485 (2) Å

  • c = 13.086 (2) Å

  • α = 113.47 (1)°

  • β = 100.39 (1)°

  • γ = 97.29 (1)°

  • V = 763.8 (2) Å3

  • Z = 2

  • Dx = 1.399 Mg m−3

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Thin plate, colourless

  • 0.52 × 0.12 × 0.04 mm

Data collection
  • Bruker PROTEUMM APEX CCD area-detector diffractometer

  • ω scans

  • 8385 measured reflections

  • 3452 independent reflections

  • 2860 reflections with I > 2σ(I)

  • Rint = 0.099

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 3452 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0218P)2 + 0.0976P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

O1—C1 1.2237 (16)
N—C15 1.3718 (19)
N—C2 1.4423 (18)
C1—C3 1.487 (2)
C1—C2 1.5375 (19)
C15—N—C2 122.94 (11)
C15—N—H1 119.2 (14)
C2—N—H1 117.8 (14)
C3—C1—C2—N −165.81 (12)
C1—C2—N—C15 178.20 (12)
O1—C1—C2—N 15.53 (18)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O1 0.817 (17) 2.238 (19) 2.6259 (17) 109.5 (16)
N—H1⋯O1i 0.817 (17) 2.756 (18) 3.4791 (15) 148.6 (17)
Symmetry code: (i) -x+1, -y, -z+1.

Compound (II)[link]

Crystal data
  • C21H19NO2

  • Mr = 317.37

  • Monoclinic, P 21 /n

  • a = 5.8230 (8) Å

  • b = 10.069 (1) Å

  • c = 27.316 (3) Å

  • β = 91.75 (1)°

  • V = 1600.8 (3) Å3

  • Z = 4

  • Dx = 1.317 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, light yellow

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD 6K area-detector diffractometer

  • ω scans

  • 21531 measured reflections

  • 4666 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.02

  • 4666 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0577P)2 + 0.5575P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

N—C15 1.3900 (13)
N—C2 1.4472 (13)
O1—C1 1.2174 (13)
C1—C3 1.4898 (14)
C1—C2 1.5348 (14)
C15—N—C2 121.91 (9)
C15—N—H1 117.7 (10)
C2—N—H1 115.0 (10)
C3—C1—C2—N −147.78 (9)
C1—C2—N—C15 154.74 (10)
O1—C1—C2—N 33.86 (13)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O1 0.878 (15) 2.300 (15) 2.6875 (12) 106.7 (12)
N—H1⋯C6i 0.878 (15) 3.021 (16) 3.8499 (16) 158.1 (13)
Symmetry code: (i) -x, -y+1, -z.

The amine H atoms were refined freely in isotropic approximation; the methyl group in (II)[link] was refined as a rigid body (C—H = 0.98 Å) with a single refined Uiso(H) value. All other H atoms were treated as riding on their carrier C atoms (Csp2—H = 0.95 Å and Csp3—H = 1.00 Å), with Uiso(H) values of 1.2Ueq(C). The discussion of inter­molecular contacts refers to idealized H-atom positions, corresponding to the `neutron' bond lengths (N—H = 1.01 Å and C—H = 1.08 Å).

For both compounds, data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT [Version 6.45A (Bruker, 2003[Bruker (2003). SAINT (Version 6.45A) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]) for (I) and Version 6.02A (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]) for (II)]; data reduction: SAINT [Version 6.45A for (I) and Version 6.02A for (II)]; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SAINT (Version 6.45A) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Few 1-arylanilinoethanone derivatives have been structurally studied so far, although some of them are important in synthesis (Saraogi et al., 2003), while others possess interesting charge-transfer properties (Abdulla et al., 1985). They also display rather unusual supramolecular arrangements (see below). The present low-temperature study of compounds (I) and (II) follows on from our structural determinations of the parent compound 1,2-diphenylanilinoethanone, (III) (Au & Tafeenko, 1987), its methyl derivative 2-(p-toluidino)-1,2-diphenylethanone, (IV) (Au & Tafeenko, 1986), and 2-(p-toluidino)-1,2-bis(2-furyl)ethanone, (V) (Au & Tafeenko, 1988).

The structures of (I) and (II) both contain one molecule per asymmetric unit. Crystals of (I) and (IV) are isostructural, the Cl atom of van der Waals radius 1.76 Å (Rowland & Taylor, 1996) replacing the methyl group of effective radius 2.0 Å. In (I), the C3—C1—C2—N—C15 backbone adopts an all-trans conformation and is planar within ±0.1 Å (Fig. 1). The terminal benzene rings, A and B, are nearly coplanar, whereas the central ring, C, is nearly normal to them [the interplanar angles are 6.1 (1)° for A/B, 81.7 (1)° for A/C and 86.1 (1)° for B/C]. Very similar conformations have been observed previously in (III), (IV) and (V), as well as in analogues without substituents in the 2-position, such as (VI) (Saraogi et al., 2003) or (VII) (Abdulla et al., 1999) (see scheme). Such conformation brings the C1O1 and N—H1 bonds into a syn orientation, and apparently favours the formation of a centrosymmetric dimer of molecules, linked via a pair of strong N—H···O hydrogen bonds. A dimer of such topology R22(10) according to the graph-set nomenclature (Etter, 1990), is present in the structure (Fig. 2), but the molecules are so widely separated that only weak N—H···O interactions can exist. The N···O1' distance [3.479 (2) Å] is much longer, and the corrected H1···O1' distance [2.59 (2) Å] is only marginally shorter than the corresponding sums of van der Waals radii, 3.22 and 2.68 Å (Rowland & Taylor, 1996).

Two molecules of (I), related via the inversion 2 − x, −y, 1 − z, have their PhCOCNHC6H4Cl groups stacked face-to-face, the CO bond of each molecule overlapping with the B ring of another. Notwithstanding the tight interplanar separation of 3.33 Å, there is no evidence of intermolecular charge transfer, such as occurs in the intensely coloured crystal of (VII). Formation of continuous stacks is rendered impossible by the perpendicular phenyl ring C.

Compound (II) (Fig. 1) has a more twisted conformation of the backbone (see Fig. 3, and the torsion angles in Tables 1 and 3), and the inter-ring angles are 64.0 (1)° for A/B, 85.0 (1)° for A/C and 77.3 (1)° for B/C. Nevertheless, the CO and N—H bonds remain in a syn orientation. Unlike (I), the structure contains no dimers. The N—H bond points roughly toward the pπ orbital of atom C6 of an adjacent molecule, related via an inversion (−x, 1 − y, −z), the corrected H···C distance being 2.90 (2) Å.

Thus a prominent feature of both structures is the absense of strong intermolecular hydrogen bonds. The intramolecular H1···O1 contacts of 2.18 (2) Å in (I) and 2.27 (2) Å in (II), have awkward angular geometry, quite atypical for unconstrained hydrogen bonds, although probably these interactions help to stabilize the syn conformations of the molecules. Compounds (IV), (VI) and (VII) form `distant dimers', as in (I), with N···O distances of 3.57, 3.41 and 3.60 Å, respectively. The structures of (III) and (V), in broad resemblance of (II), contain no dimers at all, but show intermolecular NH···C(aryl) contacts, in both cases with the ortho-atom of the `anilinic' benzene ring (ring B in Fig. 1). The H···C distances of 2.97 Å in (III) and 3.05 Å in (V) are inexceptional [exceptional, unexceptional?].

Thus, none of the structurally characterized 1-arylanilinoethanones forms strong intermolecular hydrogen bonds. If the terminal benzene rings (A and B) are coplanar with the molecular backbone, as in (I), their steric repulsion can prevent closer approach of the polar groups to one another. Thus, in (I) the intradimer distances H8···H16' and H16···H8' (Fig. 2) are 2.14 Å, i.e. constitute close van der Waals contacts. However, in principle the rings could adopt a less hindering orientation.

The N atom has planar–trigonal geometry in (I) but is significantly pyramidal in (II), the refined position of atom H1 deviating from the C2/N/C15 plane by 0.038 (18) and 0.354 (15) Å, respectively. It is noteworthy that the N atom is also nearly planar in (IV), (VI) and (VII) but strongly pyramidal in (III) and (V). In other words, planar geometry always accompanies `distant dimers', whereas pyramidalization accompanies NH···C(aryl) contacts. Thus even these apparently weak intermolecular interactions can influence the molecular geometry.

Experimental top

Compounds (I) and (II) were prepared by refluxing 28 mmol of benzoin with 28 mmol of p-chloroaniline or p-methoxyaniline, respectively, in 1 ml of dimethylformamide for 4 h. Crystals of X-ray quality were grown from ethanol [m.p. 435–436 K for (I) and 373–374 K for (II)]. IR (cm−1): ν(CO) 1670 (I), 1673 (II); ν(N—H) 3391 (I), 3400 (II); ν(C—Cl) 752 (I).

Refinement top

The amine H atoms were refined freely in isotropic approximation; the methyl group in (II) was refined as a rigid body (C—H = 0.98 Å) with a single refined Uiso(H). All other H atoms were treated as riding on the carrier C atoms (Csp2—H = 0.95 Å and Csp3—H 1.00 Å) with Uiso(H) values of 1.2Ueq(C). The discussion of intermolecular contacts refers to idealized H-atom positions, corresponding to the `neutron' bond lengths (N—H = 1.01 Å and C—H = 1.08 Å).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001). Cell refinement: SAINT (Version 6.45A; Bruker, 2003) for (I); SAINT (Version 6.02A; Bruker, 2001) for (II). Data reduction: SAINT (Version 6.45A) for (I); SAINT (Version 6.02A) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) (top) and (II) (bottom). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. `Distant' dimers in the structure of (I). Primed atoms are generated by the inversion (1 − x, −y, 1 − z).
[Figure 3] Fig. 3. A comparison of the conformations of (I) (dashed lines) and (II) (solid lines).
(I) 2-(4-chloroaniline)-1,2-diphenylethanone top
Crystal data top
C20H16ClNOZ = 2
Mr = 321.79F(000) = 336
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Melting point: 436(1) K
a = 5.7748 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.485 (2) ÅCell parameters from 4129 reflections
c = 13.086 (2) Åθ = 3.2–29.3°
α = 113.47 (1)°µ = 0.25 mm1
β = 100.39 (1)°T = 120 K
γ = 97.29 (1)°Thin plate, colourless
V = 763.8 (2) Å30.52 × 0.12 × 0.04 mm
Data collection top
ProteumM APEX CCD area-detector
diffractometer
2860 reflections with I > 2σ(I)
Radiation source: 60W microfocus Bede Microsource with glass polycapillary opticsRint = 0.099
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 8 pixels mm-1h = 77
ω scansk = 1414
8385 measured reflectionsl = 1616
3452 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.0976P]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H16ClNOγ = 97.29 (1)°
Mr = 321.79V = 763.8 (2) Å3
Triclinic, P1Z = 2
a = 5.7748 (8) ÅMo Kα radiation
b = 11.485 (2) ŵ = 0.25 mm1
c = 13.086 (2) ÅT = 120 K
α = 113.47 (1)°0.52 × 0.12 × 0.04 mm
β = 100.39 (1)°
Data collection top
ProteumM APEX CCD area-detector
diffractometer
2860 reflections with I > 2σ(I)
8385 measured reflectionsRint = 0.099
3452 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
3452 reflectionsΔρmin = 0.20 e Å3
212 parameters
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 runs of narrow-frame ω-scans (scan width 0.3° ω), every run at a different ϕ angle. Crystal to detector distance 4.96 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Amino H1 atom was refined in isotropic approximation, other H atoms were included in riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.71577 (6)0.46113 (4)0.88681 (3)0.02593 (12)
O10.45508 (17)0.00405 (10)0.35124 (10)0.0240 (2)
N0.8733 (2)0.12372 (12)0.49961 (11)0.0182 (3)
H10.751 (3)0.0962 (17)0.5136 (16)0.029 (5)*
C10.6187 (2)0.00749 (13)0.30583 (13)0.0171 (3)
C20.8650 (2)0.09654 (13)0.38132 (12)0.0160 (3)
H20.99650.05110.35790.019*
C30.5800 (2)0.06112 (13)0.17882 (13)0.0179 (3)
C40.7621 (3)0.05376 (14)0.12232 (14)0.0237 (3)
H40.91840.00150.16560.028*
C50.7152 (3)0.12205 (15)0.00382 (15)0.0279 (4)
H50.83860.11490.03380.034*
C60.4906 (3)0.20073 (16)0.05995 (15)0.0298 (4)
H60.45950.24750.14120.036*
C70.3104 (3)0.21092 (16)0.00462 (14)0.0295 (4)
H70.15670.26640.04790.035*
C80.3538 (3)0.14060 (15)0.11298 (14)0.0233 (3)
H80.22800.14650.14970.028*
C90.8911 (2)0.22060 (13)0.36177 (12)0.0160 (3)
C100.7374 (2)0.30467 (13)0.39645 (13)0.0184 (3)
H100.61920.28520.43270.022*
C110.7549 (3)0.41642 (14)0.37888 (14)0.0218 (3)
H110.64930.47310.40320.026*
C120.9266 (3)0.44563 (14)0.32580 (14)0.0232 (3)
H120.93650.52130.31230.028*
C131.0831 (2)0.36414 (15)0.29262 (14)0.0226 (3)
H131.20260.38460.25750.027*
C141.0659 (2)0.25224 (14)0.31067 (13)0.0188 (3)
H141.17430.19680.28790.023*
C151.0720 (2)0.19796 (13)0.58880 (12)0.0152 (3)
C161.0584 (2)0.23800 (13)0.70349 (13)0.0176 (3)
H160.91170.21000.71870.021*
C171.2533 (2)0.31719 (14)0.79477 (13)0.0195 (3)
H171.24040.34320.87170.023*
C181.4688 (2)0.35861 (14)0.77318 (13)0.0184 (3)
C191.4890 (2)0.31783 (13)0.66101 (13)0.0179 (3)
H191.63730.34480.64660.021*
C201.2943 (2)0.23808 (13)0.56997 (13)0.0173 (3)
H201.31090.20990.49340.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0228 (2)0.0270 (2)0.0195 (2)0.00290 (14)0.00042 (14)0.00615 (15)
O10.0175 (5)0.0262 (6)0.0243 (6)0.0023 (4)0.0071 (4)0.0083 (5)
N0.0138 (5)0.0236 (6)0.0178 (6)0.0015 (5)0.0044 (5)0.0109 (5)
C10.0155 (6)0.0135 (6)0.0231 (8)0.0025 (5)0.0044 (6)0.0093 (6)
C20.0149 (6)0.0163 (7)0.0173 (7)0.0015 (5)0.0052 (5)0.0078 (6)
C30.0171 (6)0.0166 (7)0.0205 (7)0.0024 (5)0.0036 (6)0.0094 (6)
C40.0193 (7)0.0223 (8)0.0242 (8)0.0014 (6)0.0058 (6)0.0064 (6)
C50.0277 (8)0.0293 (9)0.0247 (8)0.0025 (7)0.0114 (7)0.0088 (7)
C60.0325 (8)0.0315 (9)0.0191 (8)0.0023 (7)0.0029 (7)0.0077 (7)
C70.0229 (7)0.0351 (9)0.0225 (8)0.0044 (7)0.0019 (6)0.0110 (7)
C80.0180 (7)0.0285 (8)0.0224 (8)0.0003 (6)0.0022 (6)0.0128 (7)
C90.0141 (6)0.0148 (7)0.0155 (7)0.0015 (5)0.0010 (5)0.0056 (5)
C100.0157 (6)0.0191 (7)0.0183 (7)0.0001 (5)0.0032 (6)0.0075 (6)
C110.0195 (7)0.0180 (7)0.0234 (8)0.0029 (6)0.0001 (6)0.0073 (6)
C120.0231 (7)0.0178 (7)0.0256 (8)0.0032 (6)0.0025 (6)0.0124 (6)
C130.0175 (7)0.0262 (8)0.0224 (8)0.0049 (6)0.0023 (6)0.0131 (6)
C140.0152 (6)0.0201 (7)0.0187 (7)0.0011 (5)0.0037 (6)0.0072 (6)
C150.0143 (6)0.0138 (6)0.0189 (7)0.0032 (5)0.0040 (5)0.0088 (6)
C160.0165 (6)0.0194 (7)0.0208 (7)0.0038 (5)0.0073 (6)0.0117 (6)
C170.0225 (7)0.0206 (7)0.0168 (7)0.0048 (6)0.0065 (6)0.0087 (6)
C180.0178 (6)0.0162 (7)0.0187 (7)0.0020 (5)0.0017 (6)0.0067 (6)
C190.0143 (6)0.0194 (7)0.0213 (7)0.0028 (5)0.0051 (6)0.0102 (6)
C200.0162 (6)0.0196 (7)0.0174 (7)0.0032 (5)0.0057 (6)0.0089 (6)
Geometric parameters (Å, º) top
Cl—C181.7453 (16)C9—C141.3937 (18)
O1—C11.2237 (16)C10—C111.3858 (19)
N—C151.3718 (19)C10—H100.9501
N—C21.4423 (18)C11—C121.389 (2)
N—H10.817 (17)C11—H110.9501
C1—C31.487 (2)C12—C131.383 (2)
C1—C21.5375 (19)C12—H120.9499
C2—C91.5389 (18)C13—C141.391 (2)
C2—H21.0000C13—H130.9500
C3—C81.395 (2)C14—H140.9501
C3—C41.4026 (19)C15—C161.4044 (19)
C4—C51.385 (2)C15—C201.4058 (17)
C4—H40.9500C16—C171.382 (2)
C5—C61.381 (2)C16—H160.9499
C5—H50.9500C17—C181.3923 (18)
C6—C71.389 (2)C17—H170.9500
C6—H60.9500C18—C191.384 (2)
C7—C81.379 (2)C19—C201.382 (2)
C7—H70.9500C19—H190.9500
C8—H80.9500C20—H200.9501
C9—C101.393 (2)
C15—N—C2122.94 (11)C11—C10—C9120.81 (12)
C15—N—H1119.2 (14)C11—C10—H10119.6
C2—N—H1117.8 (14)C9—C10—H10119.6
O1—C1—C3120.76 (13)C10—C11—C12120.08 (14)
O1—C1—C2119.27 (13)C10—C11—H11120.0
C3—C1—C2119.95 (11)C12—C11—H11119.9
N—C2—C1108.27 (10)C13—C12—C11119.74 (13)
N—C2—C9112.38 (11)C13—C12—H12120.2
C1—C2—C9107.82 (11)C11—C12—H12120.1
N—C2—H2109.4C12—C13—C14120.11 (13)
C1—C2—H2109.5C12—C13—H13119.9
C9—C2—H2109.5C14—C13—H13119.9
C8—C3—C4118.32 (14)C13—C14—C9120.62 (13)
C8—C3—C1118.38 (12)C13—C14—H14119.7
C4—C3—C1123.26 (13)C9—C14—H14119.7
C5—C4—C3120.36 (14)N—C15—C16120.50 (11)
C5—C4—H4119.9N—C15—C20122.03 (13)
C3—C4—H4119.8C16—C15—C20117.47 (13)
C6—C5—C4120.55 (14)C17—C16—C15121.54 (12)
C6—C5—H5119.7C17—C16—H16119.3
C4—C5—H5119.7C15—C16—H16119.2
C5—C6—C7119.58 (15)C16—C17—C18119.57 (13)
C5—C6—H6120.2C16—C17—H17120.3
C7—C6—H6120.2C18—C17—H17120.2
C8—C7—C6120.20 (14)C19—C18—C17120.06 (14)
C8—C7—H7119.9C19—C18—Cl119.46 (10)
C6—C7—H7119.9C17—C18—Cl120.49 (12)
C7—C8—C3120.96 (14)C20—C19—C18120.23 (12)
C7—C8—H8119.5C20—C19—H19119.9
C3—C8—H8119.5C18—C19—H19119.9
C10—C9—C14118.61 (12)C19—C20—C15121.08 (13)
C10—C9—C2119.51 (11)C19—C20—H20119.5
C14—C9—C2121.88 (12)C15—C20—H20119.4
C8—C3—C1—O11.0 (2)C2—N—C15—C16170.18 (12)
C8—C3—C1—C2179.68 (13)O1—C1—C2—N15.53 (18)
C3—C1—C2—N165.81 (12)C1—C2—C9—C1065.65 (16)
C1—C2—N—C15178.20 (12)N—C2—C9—C1053.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O10.817 (17)2.238 (19)2.6259 (17)109.5 (16)
N—H1···O1i0.817 (17)2.756 (18)3.4791 (15)148.6 (17)
Symmetry code: (i) x+1, y, z+1.
(II) 2-(4-methoxyanilino)-1,2-diphenylethanone top
Crystal data top
C21H19NO2F(000) = 672
Mr = 317.37Dx = 1.317 Mg m3
Monoclinic, P21/nMelting point: 374(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8230 (8) ÅCell parameters from 6872 reflections
b = 10.069 (1) Åθ = 2.5–30.0°
c = 27.316 (3) ŵ = 0.08 mm1
β = 91.75 (1)°T = 120 K
V = 1600.8 (3) Å3Block, light yellow
Z = 40.32 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
3800 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 30.0°, θmin = 2.5°
Detector resolution: 5.6 pixels mm-1h = 88
ω scansk = 1414
21531 measured reflectionsl = 3838
4666 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.5575P]
where P = (Fo2 + 2Fc2)/3
4666 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H19NO2V = 1600.8 (3) Å3
Mr = 317.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8230 (8) ŵ = 0.08 mm1
b = 10.069 (1) ÅT = 120 K
c = 27.316 (3) Å0.32 × 0.22 × 0.18 mm
β = 91.75 (1)°
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
3800 reflections with I > 2σ(I)
21531 measured reflectionsRint = 0.036
4666 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.40 e Å3
4666 reflectionsΔρmin = 0.21 e Å3
223 parameters
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 runs of narrow-frame ω-scans (scan width 0.3° ω), every run at a different ϕ angle. Crystal to detector distance 4.85 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. The methyl group was refined as rigid bodies rotating around O—C bond, with a common refined U for three H atoms. Amino H(1) atom - All H-atom parameters refined, other H atoms: "riding" model (H-atom parameters constrained).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.19628 (17)0.28342 (9)0.11117 (4)0.0222 (2)
H10.067 (3)0.2666 (15)0.0950 (6)0.026 (4)*
O10.11470 (13)0.46729 (8)0.08278 (3)0.02488 (18)
O20.77405 (15)0.15195 (8)0.14065 (3)0.0287 (2)
C10.08626 (18)0.49977 (10)0.08100 (4)0.0181 (2)
C20.26892 (18)0.42084 (10)0.11040 (4)0.0181 (2)
H20.42040.42820.09430.022*
C30.15455 (18)0.61727 (10)0.05166 (4)0.0178 (2)
C40.37032 (18)0.62806 (10)0.03097 (4)0.0194 (2)
H40.48700.56500.03900.023*
C50.41413 (19)0.73133 (11)0.00134 (4)0.0218 (2)
H50.55900.73670.01630.026*
C60.2471 (2)0.82639 (11)0.01184 (4)0.0231 (2)
H60.27710.89630.03410.028*
C70.0354 (2)0.81881 (11)0.01035 (4)0.0230 (2)
H70.07710.88550.00410.028*
C80.01151 (18)0.71431 (11)0.04151 (4)0.0204 (2)
H80.15740.70860.05600.024*
C90.28350 (18)0.48648 (10)0.16094 (4)0.0183 (2)
C100.1163 (2)0.46034 (11)0.19502 (4)0.0245 (2)
H100.00160.39770.18750.029*
C110.1208 (2)0.52515 (13)0.23988 (4)0.0283 (2)
H110.00700.50620.26310.034*
C120.2914 (2)0.61755 (13)0.25093 (4)0.0284 (3)
H120.29340.66280.28150.034*
C130.4585 (2)0.64357 (13)0.21727 (5)0.0300 (3)
H130.57620.70620.22490.036*
C140.4554 (2)0.57833 (12)0.17219 (4)0.0239 (2)
H140.57050.59670.14920.029*
C150.35234 (18)0.17987 (10)0.11737 (4)0.0183 (2)
C160.29076 (19)0.05237 (10)0.10095 (4)0.0204 (2)
H160.14740.03950.08410.024*
C170.4356 (2)0.05490 (11)0.10894 (4)0.0223 (2)
H170.39100.14040.09740.027*
C180.64624 (19)0.03843 (11)0.13369 (4)0.0207 (2)
C190.71295 (19)0.08765 (11)0.14904 (4)0.0213 (2)
H190.85820.10030.16520.026*
C200.56666 (18)0.19610 (10)0.14085 (4)0.0203 (2)
H200.61400.28200.15140.024*
C210.9481 (2)0.14996 (13)0.17847 (5)0.0296 (3)
H21A1.07100.08910.16940.039 (3)*
H21B1.01110.23950.18300.039 (3)*
H21C0.88170.11980.20910.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0200 (4)0.0142 (4)0.0320 (5)0.0002 (3)0.0044 (4)0.0005 (3)
O10.0188 (4)0.0241 (4)0.0316 (4)0.0009 (3)0.0011 (3)0.0050 (3)
O20.0314 (5)0.0198 (4)0.0346 (5)0.0089 (3)0.0030 (4)0.0002 (3)
C10.0198 (5)0.0165 (4)0.0180 (5)0.0013 (4)0.0005 (4)0.0009 (4)
C20.0184 (5)0.0140 (4)0.0219 (5)0.0001 (3)0.0000 (4)0.0014 (4)
C30.0196 (5)0.0161 (4)0.0174 (4)0.0000 (4)0.0013 (4)0.0007 (4)
C40.0203 (5)0.0184 (5)0.0196 (5)0.0022 (4)0.0005 (4)0.0007 (4)
C50.0221 (5)0.0235 (5)0.0198 (5)0.0013 (4)0.0018 (4)0.0013 (4)
C60.0278 (6)0.0196 (5)0.0219 (5)0.0025 (4)0.0024 (4)0.0030 (4)
C70.0246 (5)0.0179 (5)0.0263 (5)0.0023 (4)0.0031 (4)0.0027 (4)
C80.0186 (5)0.0199 (5)0.0225 (5)0.0016 (4)0.0004 (4)0.0005 (4)
C90.0192 (5)0.0158 (4)0.0200 (5)0.0019 (4)0.0013 (4)0.0018 (4)
C100.0243 (5)0.0238 (5)0.0255 (5)0.0028 (4)0.0025 (4)0.0029 (4)
C110.0315 (6)0.0313 (6)0.0222 (5)0.0018 (5)0.0056 (4)0.0028 (5)
C120.0345 (6)0.0292 (6)0.0213 (5)0.0050 (5)0.0023 (5)0.0026 (4)
C130.0302 (6)0.0298 (6)0.0296 (6)0.0056 (5)0.0033 (5)0.0063 (5)
C140.0222 (5)0.0246 (5)0.0250 (5)0.0031 (4)0.0016 (4)0.0014 (4)
C150.0205 (5)0.0158 (4)0.0187 (5)0.0001 (4)0.0018 (4)0.0009 (4)
C160.0225 (5)0.0176 (5)0.0209 (5)0.0002 (4)0.0011 (4)0.0006 (4)
C170.0280 (5)0.0168 (5)0.0221 (5)0.0003 (4)0.0003 (4)0.0018 (4)
C180.0237 (5)0.0175 (5)0.0212 (5)0.0042 (4)0.0034 (4)0.0022 (4)
C190.0192 (5)0.0209 (5)0.0236 (5)0.0008 (4)0.0002 (4)0.0018 (4)
C200.0207 (5)0.0164 (4)0.0238 (5)0.0010 (4)0.0004 (4)0.0001 (4)
C210.0247 (6)0.0268 (6)0.0372 (7)0.0049 (4)0.0007 (5)0.0095 (5)
Geometric parameters (Å, º) top
N—C151.3900 (13)C10—C111.3877 (17)
N—C21.4472 (13)C10—H100.9500
N—H10.878 (15)C11—C121.3875 (18)
O1—C11.2174 (13)C11—H110.9500
O2—C181.3741 (13)C12—C131.3838 (18)
O2—C211.4250 (15)C12—H120.9500
C1—C31.4898 (14)C13—C141.3954 (17)
C1—C21.5348 (14)C13—H130.9500
C2—C91.5306 (15)C14—H140.9500
C2—H21.0000C15—C201.3951 (15)
C3—C81.3965 (14)C15—C161.4030 (14)
C3—C41.3976 (15)C16—C171.3835 (15)
C4—C51.3926 (15)C16—H160.9500
C4—H40.9500C17—C181.3923 (16)
C5—C61.3885 (16)C17—H170.9500
C5—H50.9500C18—C191.3887 (15)
C6—C71.3919 (17)C19—C201.3988 (15)
C6—H60.9500C19—H190.9500
C7—C81.3859 (15)C20—H200.9500
C7—H70.9500C21—H21A0.9800
C8—H80.9500C21—H21B0.9800
C9—C141.3902 (15)C21—H21C0.9800
C9—C101.3926 (15)
C15—N—C2121.91 (9)C12—C11—C10120.11 (11)
C15—N—H1117.7 (10)C12—C11—H11119.9
C2—N—H1115.0 (10)C10—C11—H11119.9
C18—O2—C21117.31 (9)C13—C12—C11119.70 (11)
O1—C1—C3120.49 (9)C13—C12—H12120.2
O1—C1—C2119.45 (9)C11—C12—H12120.1
C3—C1—C2120.04 (9)C12—C13—C14120.46 (11)
N—C2—C9114.07 (9)C12—C13—H13119.8
N—C2—C1107.73 (8)C14—C13—H13119.8
C9—C2—C1105.47 (8)C9—C14—C13119.87 (11)
N—C2—H2109.9C9—C14—H14120.1
C9—C2—H2109.8C13—C14—H14120.1
C1—C2—H2109.8N—C15—C20122.71 (10)
C8—C3—C4119.40 (10)N—C15—C16119.19 (10)
C8—C3—C1117.90 (9)C20—C15—C16118.07 (10)
C4—C3—C1122.49 (9)C17—C16—C15121.01 (10)
C5—C4—C3119.92 (10)C17—C16—H16119.5
C5—C4—H4120.0C15—C16—H16119.5
C3—C4—H4120.0C16—C17—C18120.49 (10)
C6—C5—C4120.32 (10)C16—C17—H17119.8
C6—C5—H5119.8C18—C17—H17119.8
C4—C5—H5119.8O2—C18—C19124.98 (10)
C5—C6—C7119.76 (10)O2—C18—C17115.70 (10)
C5—C6—H6120.1C19—C18—C17119.32 (10)
C7—C6—H6120.1C18—C19—C20120.13 (10)
C8—C7—C6120.19 (10)C18—C19—H19119.9
C8—C7—H7119.9C20—C19—H19119.9
C6—C7—H7119.9C15—C20—C19120.93 (10)
C7—C8—C3120.32 (10)C15—C20—H20119.5
C7—C8—H8119.8C19—C20—H20119.5
C3—C8—H8119.8O2—C21—H21A109.5
C14—C9—C10119.42 (10)O2—C21—H21B109.5
C14—C9—C2120.42 (10)H21A—C21—H21B109.5
C10—C9—C2120.05 (10)O2—C21—H21C109.4
C11—C10—C9120.44 (11)H21A—C21—H21C109.5
C11—C10—H10119.8H21B—C21—H21C109.5
C9—C10—H10119.8
C8—C3—C1—O122.78 (15)O1—C1—C2—N33.86 (13)
C8—C3—C1—C2155.56 (10)C1—C2—C9—C1078.01 (12)
C3—C1—C2—N147.78 (9)N—C2—C9—C1040.01 (14)
C1—C2—N—C15154.74 (10)C19—C18—O2—C2120.68 (16)
C2—N—C15—C16157.45 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O10.878 (15)2.300 (15)2.6875 (12)106.7 (12)
N—H1···C6i0.878 (15)3.021 (16)3.8499 (16)158.1 (13)
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H16ClNOC21H19NO2
Mr321.79317.37
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)120120
a, b, c (Å)5.7748 (8), 11.485 (2), 13.086 (2)5.8230 (8), 10.069 (1), 27.316 (3)
α, β, γ (°)113.47 (1), 100.39 (1), 97.29 (1)90, 91.75 (1), 90
V3)763.8 (2)1600.8 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.250.08
Crystal size (mm)0.52 × 0.12 × 0.040.32 × 0.22 × 0.18
Data collection
DiffractometerProteumM APEX CCD area-detector
diffractometer
Bruker SMART CCD 6K area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8385, 3452, 2860 21531, 4666, 3800
Rint0.0990.036
(sin θ/λ)max1)0.6500.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.06 0.043, 0.119, 1.02
No. of reflections34524666
No. of parameters212223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.200.40, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Version 6.45A; Bruker, 2003), SAINT (Version 6.02A; Bruker, 2001), SAINT (Version 6.45A), SAINT (Version 6.02A), SHELXTL (Bruker, 2003), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
O1—C11.2237 (16)C1—C31.487 (2)
N—C151.3718 (19)C1—C21.5375 (19)
N—C21.4423 (18)
C15—N—C2122.94 (11)C2—N—H1117.8 (14)
C15—N—H1119.2 (14)
C3—C1—C2—N165.81 (12)O1—C1—C2—N15.53 (18)
C1—C2—N—C15178.20 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N—H1···O10.817 (17)2.238 (19)2.6259 (17)109.5 (16)
N—H1···O1i0.817 (17)2.756 (18)3.4791 (15)148.6 (17)
Symmetry code: (i) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
N—C151.3900 (13)C1—C31.4898 (14)
N—C21.4472 (13)C1—C21.5348 (14)
O1—C11.2174 (13)
C15—N—C2121.91 (9)C2—N—H1115.0 (10)
C15—N—H1117.7 (10)
C3—C1—C2—N147.78 (9)O1—C1—C2—N33.86 (13)
C1—C2—N—C15154.74 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N—H1···O10.878 (15)2.300 (15)2.6875 (12)106.7 (12)
N—H1···C6i0.878 (15)3.021 (16)3.8499 (16)158.1 (13)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

OAA thanks the Royal Society for a Visiting Fellowship.

References

First citationAbdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502–3505.  CSD CrossRef CAS Web of Science Google Scholar
First citationAu, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65–74.  CAS Google Scholar
First citationAu, O. & Tafeenko, V. (1987). Rev. Cubana Quim. 3, 79–86.  CAS Google Scholar
First citationAu, O. & Tafeenko, V. A. (1988). Rev. Cubana Quim. 4, 31–36.  CAS Google Scholar
First citationBruker (2001). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT (Version 6.45A) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationRowland, B. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2003). Acta Cryst. E59, o443–o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds