organic compounds
Conformations of three heterocyclic perhydropyrrolobenzofurans and polymeric assembly via co-operative intermolecular C—H⋯O hydrogen bonds
aDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, bFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England, cD210, Indian Institute of Science, Bangalore 560 012, India, and dOriental Organization of Molecular and Structural Biology, 203 Agarwal Bhavan, Malleshwaram, Bangalore 560 055, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com
In 1-cyclohexyl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetrahydrobenzo–dihydrofuro–pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydrofuran and pyrrolidine rings in (I) are puckered and adopt an The cyclohexene rings adopt a half-chair conformation in all the molecules, while the substituent N-cyclohexyl ring in (I) assumes a chair form. Short intramolecular C—H⋯O contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via intermolecular C—H⋯O hydrogen bonds.
Comment
Co-operativity is an important property of intermolecular interactions and, thereby, molecules assemble into polymers with distinct patterns of interactions. By the process of mutual polarization within a polymeric assembly, weaker interactions acquire greater strength than they otherwise possess. A dimer of two molecules intermolecularly connected by symmetrical hydrogen bonds is more stable than if they are connected by an isolated hydrogen bond, the stability of a tetramer is greater than that of a pair of dimers, and so on (Desiraju & Steiner, 1999; Sharma & Desiraju, 1994). Polymeric assemblies formed by co-operative weak interactions are the subject of the present discussion. In this report, we present examples of a new class of tricyclic benzofuran derivatives with a benzofuropyrrolidine ring skeleton. The structural and conformational analyses of three compounds have been undertaken, namely 1-cyclohexyl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (I), 1-phenyl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (II), and 1-pyridin-3-yl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (III). These chiral molecules are formally derived from a perhydrofuro(or -pyrrolo)benzofuran system, and they have previously been shown to exhibit hypoglycaemic activity (Nagarajan et al., 1988).
The stereogenic centres C3a and C8a in compounds (I)–(III) (Figs. 1–3) adopt RS and SR configurations, respectively (Cahn et al., 1966). The core of each molecule consists of fused tetrahydrobenzo (A), dihydrofuro (B) and pyrrolidine (C) rings. The C3b=C7a double bond at the AB ring junction is in the range 1.341 (2)–1.344 (2) Å. In each compound, the B and C rings are folded at the BC ring junction, which is cis-fused (Bucourt, 1974). The angles between the best planes through ring B (atoms O8/C8a/C3a/C3b/C7a) and ring C (atoms N1/C2/C3/C3a/C8a) are 66.4 (1), 63.8 (1) and 63.2 (1)°, respectively, while the crossed torsion angles at the junction, i.e. N1—C8a—C3a—C3b and O8—C8a—C3a—C3, are 103.2 (1) and −130.2 (1), 114.3 (1) and −121.2 (1), and 113.4 (1) and −122.3 (1)°, respectively, in the molecules of (I)–(III).
The folding at the BC ring junction gives rise to the non-planarity of the tricyclic ring system. The structures of two analogous molecules based on a chiral tricyclic tetrahydrobenzo–dihydrofuro–tetrahydrofuran (or pyrrolidine) core, namely 1-isopropyl-6,6,8a-trimethyl-1,3a,5,6,7,8a-hexahydro-3H-1-benzofuro[2,3-b]pyrrole-2,4-dione (Narasegowda et al., 2006), (IV), and 6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-benzo[b]furo[3,2-d]furan-2,4(3H,5H)-dione (Nagaraj et al., 2005), (V), also possess a similar non-planar shape of the tricyclic core, and the equivalent crossed torsion angles at the junctions of the five-membered rings are 99.7 (1) and −132.8 (1) (values correspond to an inverted image of the reported structure), and 104.0 (1) and −127.2 (1)°, respectively.
The superposition of all five available structures of perhydrofuro(or -pyrrolo)benzofuran derivatives is shown in supplementary Fig. 5. The conformations of the substituent rings, i.e. N-cyclohexyl in (I), N-phenyl in (II) and N-pyridyl in (III), are described by torsion angles C8a—N1—C12—C13 of −112.4 (1), −117.2 (2) and −120.2 (1)°, respectively.
The isomorphous compounds (II) and (III), with a difference of one atom [C14 in (II) and N14 in (III)] are isostructural. The degree of isostructurality has been quantitatively described by two descriptors, i.e. the unit-cell similarity index, Π, which is the difference between orthogonalized lattice parameters, and the isostructurality index, Ii(n), where n is the number of distance differences between identical non-H atoms (Kálmán et al., 1993). The calculated values of Π = 0.019 and Ii(24) = 99.7% indicate the structures are close to the ideal case of isostructrality.
The internal torsion angles of the heterocyclic rings are listed in Figs. 1–3. Ring A (cyclohexene) adopts a half-chair (C2) conformation in all three molecules. However, its conformation, i.e. a half-chair (C2) versus a sofa (Cs), is hardly distinguishable in the present structures (Bucourt, 1974). The N-cyclohexyl ring in (I) assumes a chair form, with the larger tricyclic system in the equatorial position. The puckering (Cremer & Pople, 1975) and asymmetric (Duax et al., 1976) parameters of individual rings are provided in supplementary Table 4. The five-membered B and C rings in (I) are puckered and adopt envelope (Cs) conformations (Fuchs, 1978), with atoms C8a and C3a at the flaps of the envelopes. Atoms C8a and C3a are 0.18 (1) and 0.27 (1) Å, respectively, out of the best planes formed by the other four atoms of the ring. Rings B and C are planar in (II) and (III). The least-squares planes formed by atoms of rings A and B (C3a/C3b/C4/C5/C7/C7a/O8/C8a) and ring C (N1/C2/O2/C3/C3a/C8a) intercept at an angle of 65.8 (1)° in (II) and 64.2 (1)° in (III).
The parameters for intramolecular short contacts and intermolecular hydrogen bonds are given in Tables 1–3. The conserved intramolecular C—H⋯O short contacts in (I)–(III) were observed between the donors of the N-substituents and atom O8 of ring B (Figs. 1–3). The short contact C12—H12⋯O8 forms an S(5) motif (Bernstein et al., 1995) in (I), while S(6) motifs are formed by C17—H17⋯O8 in (II) and (III). Additionally, an intramolecular C17—H171⋯O2 contact forms an S(6) motif in (I). The crystal packing in (I) is entirely due to van der Waals interactions. The crystal structures of isostructural compounds (II) and (III) are held together primarily by intermolecular C—H⋯O hydrogen bonds (Tables 2 and 3), forming chains of rings along [100] (Fig. 4). The significance of the co-operativity of weak intermolecular interactions for molecular self-assembly is elucidated in the present examples.
Experimental
The synthetic procedures used for the preparation of compounds (I)–(III) are as described in the literature (Nagarajan et al., 1988). Single crystals suitable for X-ray diffraction were grown by slow evaporation of solutions containing the following solvents (in a 1:1 ratio): for (I), ethanol and water; for (II), dichloromethane and hexane; for (III), benzene and hexane.
Compound (I)
Crystal data
|
Refinement
|
|
Compound (II)
Crystal data
|
Refinement
|
Compound (III)
Crystal data
|
Refinement
|
Larger-than-expected values of residual electron density were observed in (I) and (III) [the values of Δρmax and Δρmin were 0.75 and −0.88 e Å−3, respectively, in (I), and 0.82 and −0.87 e Å−3, respectively, in (III)]. This was attributed to the presence of a few poorly fitting low-angle reflections [(011), (1), (020), (111) and (2) in (I), and (12), (100), (11), (022), (013), (122) and (012) in (III)], which appeared to have been truncated by the beam stop. These reflections were omitted during the final cycles of The residual electron density was then featureless and the residual factor R dropped from 0.053 to 0.039 in (I), and from 0.056 to 0.039 in (III) for observed data.
H atoms were located in difference maps and were refined freely. Refined methine, methylene and methyl C—H distances are as follows: for (I), 0.99 (2), 0.97 (2)–1.01 (2) and 0.96 (2)–1.02 (2) Å; for (II), 0.97 (2), 0.96 (2)–1.01 (2) and 0.97 (2)–1.03 (2) Å, with aromatic C—H = 0.96 (2)–1.00 (2) Å; for (III), 0.99 (2), 0.97 (2)–1.02 (2) and 0.98 (2)–1.02 (2) Å, with aromatic C—H = 0.97 (2)–1.01 (2) Å.
For all compounds, data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003) and INSIGHTII (Accelrys, 2002); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S010827010601119X/gd3014sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: 10.1107/S010827010601119X/gd3014Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S010827010601119X/gd3014IIsup3.hkl
Structure factors: contains datablock III. DOI: 10.1107/S010827010601119X/gd3014IIIsup4.hkl
Supporting information file. DOI: 10.1107/S010827010601119X/gd3014sup5.pdf
Supporting information file. DOI: 10.1107/S010827010601119X/gd3014sup6.pdf
The synthetic procedures for compounds (I)–(III) are as described in the literature (Nagarajan et al., 1988). Suitable single crystals for X-ray diffraction were grown by slow evaporation of solutions containing the following solvents (in 1:1 ratio): for (I), ethyl alcohol and water; for (II), dichloromethane and hexane; for (III), benzene and hexane.
Larger than expected values of residual electron density were observed in (I) and (III) [the values of Δρmax and Δρmin were 0.75 and −0.88 e Å−3, respectively, in (I), and 0.82 and −0.87 e Å−3, respectively, in (III)]. This was attributed to the presence of a few poorly fitting low-angle reflections [(011), (111), (020), (111) and (212) in (I), and (112), (100), (111), (022), (013), (122) and (012) in (III)], which appeared to have been truncated by the beam stop. These reflections were omitted during the final cycles of The residual electron density was then featureless and the residual factor R dropped from 0.053 to 0.039 in (I), and from 0.056 to 0.039 in (III) for observed data.
H atoms were located in difference maps and were refined freely. Refined C—H distances are in the following ranges. For (I): Cmethine—H = 0.99 (2), Cmethylene—H = 0.97 (2)–1.01 (2) and Cmethyl—H = 0.96 (2)–1.02 (2) Å. For (II): Cmethine—H = 0.97 (2), Cmethylene—H = 0.96 (2)–1.01 (2), Cmethyl—H = 0.97 (2)–1.03 (2) and Car—H = 0.96 (2)–1.00 (2) Å. For (III): Cmethine—H = 0.99 (2), Cmethylene—H = 0.97 (2)–1.02 (2), Cmethyl—H = 0.98 (2)–1.02 (2) and Car—H = 0.97 (2)–1.01 (2) Å.
For all compounds, data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997), PLATON (Spek, 2003) and INSIGHTII (Accelrys, 2002); software used to prepare material for publication: SHELXL97 and PLATON).C19H27NO3 | Z = 2 |
Mr = 317.42 | F(000) = 344 |
Triclinic, P1 | Dx = 1.242 Mg m−3 |
Hall symbol: -P 1 | Melting point: 164(1) K |
a = 9.4708 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2139 (2) Å | Cell parameters from 3830 reflections |
c = 10.7512 (2) Å | θ = 2.9–27.5° |
α = 105.804 (1)° | µ = 0.08 mm−1 |
β = 99.141 (1)° | T = 120 K |
γ = 116.320 (1)° | Plate, colourless |
V = 848.50 (3) Å3 | 0.24 × 0.16 × 0.03 mm |
Nonius KappaCCD area-detector diffractometer | 3327 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 2990 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.039 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.0°, θmin = 3.1° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −12→12 |
Tmin = 0.891, Tmax = 0.998 | l = −13→13 |
18064 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.107 | All H-atom parameters refined |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.3127P] where P = (Fo2 + 2Fc2)/3 |
3327 reflections | (Δ/σ)max = 0.001 |
316 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C19H27NO3 | γ = 116.320 (1)° |
Mr = 317.42 | V = 848.50 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.4708 (2) Å | Mo Kα radiation |
b = 10.2139 (2) Å | µ = 0.08 mm−1 |
c = 10.7512 (2) Å | T = 120 K |
α = 105.804 (1)° | 0.24 × 0.16 × 0.03 mm |
β = 99.141 (1)° |
Nonius KappaCCD area-detector diffractometer | 3327 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2990 reflections with I > 2σ(I) |
Tmin = 0.891, Tmax = 0.998 | Rint = 0.039 |
18064 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.107 | All H-atom parameters refined |
S = 1.12 | Δρmax = 0.30 e Å−3 |
3327 reflections | Δρmin = −0.32 e Å−3 |
316 parameters |
Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.872591. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.66945 (13) | 0.83321 (13) | 0.06540 (11) | 0.0167 (2) | |
C2 | 0.54206 (16) | 0.76998 (16) | 0.11506 (14) | 0.0195 (3) | |
O2 | 0.39388 (12) | 0.69213 (12) | 0.04877 (10) | 0.0268 (2) | |
C3 | 0.61545 (17) | 0.81694 (17) | 0.26714 (14) | 0.0205 (3) | |
H31 | 0.566 (2) | 0.723 (2) | 0.2919 (17) | 0.028 (4)* | |
H32 | 0.586 (2) | 0.892 (2) | 0.3135 (16) | 0.025 (4)* | |
C3a | 0.80351 (16) | 0.89310 (15) | 0.29567 (13) | 0.0177 (3) | |
H3A | 0.8681 (19) | 0.9908 (18) | 0.3799 (16) | 0.019 (4)* | |
C3b | 0.86820 (15) | 0.78212 (15) | 0.29228 (13) | 0.0175 (3) | |
C4 | 0.86882 (15) | 0.69968 (16) | 0.38229 (13) | 0.0195 (3) | |
O4 | 0.82106 (12) | 0.71866 (12) | 0.48206 (10) | 0.0260 (2) | |
C5 | 0.93232 (17) | 0.58661 (17) | 0.34377 (15) | 0.0232 (3) | |
H51 | 0.836 (2) | 0.483 (2) | 0.2755 (19) | 0.035 (5)* | |
H52 | 0.965 (2) | 0.564 (2) | 0.4265 (18) | 0.029 (4)* | |
C6 | 1.07746 (16) | 0.64508 (16) | 0.28581 (14) | 0.0202 (3) | |
C7 | 1.02171 (17) | 0.67990 (16) | 0.16153 (14) | 0.0198 (3) | |
H71 | 1.119 (2) | 0.7370 (19) | 0.1328 (16) | 0.024 (4)* | |
H72 | 0.939 (2) | 0.580 (2) | 0.0830 (18) | 0.030 (4)* | |
C7a | 0.94005 (15) | 0.77378 (15) | 0.19475 (13) | 0.0167 (3) | |
O8 | 0.93695 (11) | 0.86367 (11) | 0.12332 (9) | 0.0180 (2) | |
C8a | 0.83307 (15) | 0.92847 (15) | 0.16778 (13) | 0.0167 (3) | |
C9 | 1.1212 (2) | 0.51662 (18) | 0.23972 (17) | 0.0287 (3) | |
H91 | 1.212 (2) | 0.550 (2) | 0.1979 (18) | 0.034 (5)* | |
H92 | 1.022 (2) | 0.418 (2) | 0.1693 (18) | 0.033 (4)* | |
H93 | 1.161 (2) | 0.492 (2) | 0.320 (2) | 0.040 (5)* | |
C10 | 1.22956 (17) | 0.79503 (18) | 0.39645 (15) | 0.0244 (3) | |
H101 | 1.261 (2) | 0.776 (2) | 0.4802 (19) | 0.038 (5)* | |
H102 | 1.211 (2) | 0.889 (2) | 0.4228 (18) | 0.033 (4)* | |
H103 | 1.328 (2) | 0.828 (2) | 0.3632 (18) | 0.037 (5)* | |
C11 | 0.92108 (18) | 1.10020 (16) | 0.18603 (15) | 0.0219 (3) | |
H111 | 0.939 (2) | 1.112 (2) | 0.1012 (19) | 0.032 (4)* | |
H112 | 1.028 (2) | 1.158 (2) | 0.2568 (18) | 0.030 (4)* | |
H113 | 0.851 (2) | 1.142 (2) | 0.2104 (18) | 0.034 (5)* | |
C12 | 0.65163 (16) | 0.81188 (15) | −0.07822 (13) | 0.0170 (3) | |
H12 | 0.7669 (19) | 0.8633 (17) | −0.0830 (15) | 0.016 (3)* | |
C13 | 0.56535 (18) | 0.89201 (17) | −0.12881 (14) | 0.0216 (3) | |
H131 | 0.449 (2) | 0.8404 (19) | −0.1287 (16) | 0.024 (4)* | |
H132 | 0.622 (2) | 1.005 (2) | −0.0663 (17) | 0.027 (4)* | |
C14 | 0.56686 (18) | 0.87682 (16) | −0.27380 (14) | 0.0231 (3) | |
H141 | 0.685 (2) | 0.935 (2) | −0.2711 (17) | 0.027 (4)* | |
H142 | 0.512 (2) | 0.931 (2) | −0.3057 (17) | 0.029 (4)* | |
C15 | 0.48386 (18) | 0.70394 (16) | −0.37073 (14) | 0.0217 (3) | |
H151 | 0.362 (2) | 0.648 (2) | −0.3810 (17) | 0.027 (4)* | |
H152 | 0.491 (2) | 0.6975 (19) | −0.4646 (17) | 0.024 (4)* | |
C16 | 0.56366 (18) | 0.62014 (16) | −0.31776 (13) | 0.0209 (3) | |
H161 | 0.679 (2) | 0.6661 (19) | −0.3198 (16) | 0.025 (4)* | |
H162 | 0.503 (2) | 0.507 (2) | −0.3774 (18) | 0.029 (4)* | |
C17 | 0.56744 (17) | 0.63732 (15) | −0.17124 (13) | 0.0192 (3) | |
H171 | 0.451 (2) | 0.5785 (19) | −0.1672 (16) | 0.024 (4)* | |
H172 | 0.629 (2) | 0.5888 (19) | −0.1361 (17) | 0.025 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0141 (5) | 0.0185 (5) | 0.0162 (5) | 0.0077 (4) | 0.0039 (4) | 0.0066 (4) |
C2 | 0.0184 (7) | 0.0206 (6) | 0.0231 (7) | 0.0117 (6) | 0.0083 (5) | 0.0093 (5) |
O2 | 0.0157 (5) | 0.0338 (6) | 0.0274 (5) | 0.0099 (4) | 0.0063 (4) | 0.0124 (4) |
C3 | 0.0202 (7) | 0.0259 (7) | 0.0212 (7) | 0.0148 (6) | 0.0098 (5) | 0.0105 (6) |
C3a | 0.0181 (6) | 0.0190 (6) | 0.0161 (6) | 0.0099 (5) | 0.0057 (5) | 0.0061 (5) |
C3b | 0.0151 (6) | 0.0201 (6) | 0.0162 (6) | 0.0090 (5) | 0.0037 (5) | 0.0063 (5) |
C4 | 0.0125 (6) | 0.0234 (7) | 0.0185 (6) | 0.0059 (5) | 0.0031 (5) | 0.0092 (5) |
O4 | 0.0245 (5) | 0.0353 (6) | 0.0200 (5) | 0.0138 (5) | 0.0100 (4) | 0.0143 (4) |
C5 | 0.0201 (7) | 0.0259 (7) | 0.0287 (7) | 0.0118 (6) | 0.0087 (6) | 0.0170 (6) |
C6 | 0.0182 (7) | 0.0225 (7) | 0.0243 (7) | 0.0118 (6) | 0.0073 (5) | 0.0124 (6) |
C7 | 0.0195 (7) | 0.0230 (7) | 0.0210 (7) | 0.0129 (6) | 0.0084 (5) | 0.0097 (6) |
C7a | 0.0142 (6) | 0.0176 (6) | 0.0160 (6) | 0.0069 (5) | 0.0024 (5) | 0.0071 (5) |
O8 | 0.0182 (5) | 0.0236 (5) | 0.0189 (4) | 0.0137 (4) | 0.0082 (4) | 0.0111 (4) |
C8a | 0.0148 (6) | 0.0188 (6) | 0.0171 (6) | 0.0097 (5) | 0.0051 (5) | 0.0060 (5) |
C9 | 0.0310 (8) | 0.0279 (8) | 0.0387 (9) | 0.0204 (7) | 0.0147 (7) | 0.0177 (7) |
C10 | 0.0176 (7) | 0.0286 (8) | 0.0275 (7) | 0.0121 (6) | 0.0045 (6) | 0.0128 (6) |
C11 | 0.0199 (7) | 0.0186 (7) | 0.0235 (7) | 0.0081 (6) | 0.0045 (6) | 0.0076 (6) |
C12 | 0.0158 (6) | 0.0189 (6) | 0.0163 (6) | 0.0088 (5) | 0.0049 (5) | 0.0069 (5) |
C13 | 0.0256 (7) | 0.0210 (7) | 0.0216 (7) | 0.0150 (6) | 0.0068 (6) | 0.0079 (6) |
C14 | 0.0269 (8) | 0.0226 (7) | 0.0229 (7) | 0.0145 (6) | 0.0061 (6) | 0.0111 (6) |
C15 | 0.0218 (7) | 0.0238 (7) | 0.0184 (7) | 0.0110 (6) | 0.0050 (5) | 0.0084 (5) |
C16 | 0.0227 (7) | 0.0197 (7) | 0.0188 (6) | 0.0113 (6) | 0.0060 (5) | 0.0052 (5) |
C17 | 0.0208 (7) | 0.0182 (6) | 0.0191 (6) | 0.0109 (6) | 0.0050 (5) | 0.0072 (5) |
N1—C2 | 1.3635 (17) | C9—H91 | 1.006 (19) |
N1—C8a | 1.4482 (16) | C9—H92 | 0.994 (19) |
N1—C12 | 1.4702 (16) | C9—H93 | 1.02 (2) |
C2—O2 | 1.2222 (17) | C10—H101 | 0.999 (19) |
C2—C3 | 1.5175 (19) | C10—H102 | 1.022 (18) |
C3—C3a | 1.5295 (18) | C10—H103 | 1.003 (19) |
C3—H31 | 0.994 (18) | C11—H111 | 0.982 (18) |
C3—H32 | 0.971 (17) | C11—H112 | 0.965 (18) |
C3a—C3b | 1.5040 (17) | C11—H113 | 0.968 (19) |
C3a—C8a | 1.5500 (17) | C12—C13 | 1.5256 (18) |
C3a—H3A | 0.990 (16) | C12—C17 | 1.5263 (18) |
C3b—C7a | 1.3414 (18) | C12—H12 | 0.998 (15) |
C3b—C4 | 1.4463 (18) | C13—C14 | 1.5270 (19) |
C4—O4 | 1.2294 (16) | C13—H131 | 0.990 (17) |
C4—C5 | 1.5171 (19) | C13—H132 | 0.991 (17) |
C5—C6 | 1.5432 (18) | C14—C15 | 1.5260 (19) |
C5—H51 | 0.997 (19) | C14—H141 | 0.998 (18) |
C5—H52 | 1.013 (17) | C14—H142 | 0.998 (18) |
C6—C9 | 1.5267 (19) | C15—C16 | 1.5266 (19) |
C6—C10 | 1.5305 (19) | C15—H151 | 1.002 (17) |
C6—C7 | 1.5465 (18) | C15—H152 | 1.009 (17) |
C7—C7a | 1.4845 (18) | C16—C17 | 1.5296 (18) |
C7—H71 | 0.995 (17) | C16—H161 | 0.983 (17) |
C7—H72 | 0.991 (18) | C16—H162 | 0.982 (18) |
C7a—O8 | 1.3544 (15) | C17—H171 | 1.011 (17) |
O8—C8a | 1.4795 (15) | C17—H172 | 1.010 (17) |
C8a—C11 | 1.5080 (18) | ||
C2—N1—C8a | 114.36 (10) | C6—C9—H92 | 109.9 (10) |
C2—N1—C12 | 125.58 (11) | H91—C9—H92 | 107.6 (14) |
C8a—N1—C12 | 120.06 (10) | C6—C9—H93 | 111.2 (10) |
O2—C2—N1 | 125.67 (12) | H91—C9—H93 | 107.9 (15) |
O2—C2—C3 | 125.93 (12) | H92—C9—H93 | 109.1 (15) |
N1—C2—C3 | 108.38 (11) | C6—C10—H101 | 111.0 (11) |
C2—C3—C3a | 105.27 (10) | C6—C10—H102 | 112.4 (10) |
C2—C3—H31 | 110.5 (10) | H101—C10—H102 | 108.9 (14) |
C3a—C3—H31 | 113.6 (10) | C6—C10—H103 | 110.3 (10) |
C2—C3—H32 | 106.7 (10) | H101—C10—H103 | 107.0 (15) |
C3a—C3—H32 | 112.0 (10) | H102—C10—H103 | 107.1 (14) |
H31—C3—H32 | 108.6 (14) | C8a—C11—H111 | 111.6 (10) |
C3b—C3a—C3 | 114.80 (11) | C8a—C11—H112 | 109.7 (10) |
C3b—C3a—C8a | 100.65 (10) | H111—C11—H112 | 108.8 (14) |
C3—C3a—C8a | 104.98 (10) | C8a—C11—H113 | 107.6 (11) |
C3b—C3a—H3A | 111.6 (9) | H111—C11—H113 | 108.2 (15) |
C3—C3a—H3A | 112.6 (9) | H112—C11—H113 | 110.8 (15) |
C8a—C3a—H3A | 111.3 (9) | N1—C12—C13 | 113.06 (10) |
C7a—C3b—C4 | 121.24 (12) | N1—C12—C17 | 111.57 (10) |
C7a—C3b—C3a | 110.25 (11) | C13—C12—C17 | 111.68 (11) |
C4—C3b—C3a | 128.39 (11) | N1—C12—H12 | 106.2 (8) |
O4—C4—C3b | 122.91 (12) | C13—C12—H12 | 107.8 (8) |
O4—C4—C5 | 122.29 (12) | C17—C12—H12 | 106.0 (8) |
C3b—C4—C5 | 114.80 (11) | C12—C13—C14 | 109.33 (11) |
C4—C5—C6 | 114.23 (11) | C12—C13—H131 | 109.5 (10) |
C4—C5—H51 | 107.3 (11) | C14—C13—H131 | 109.5 (9) |
C6—C5—H51 | 110.1 (10) | C12—C13—H132 | 110.1 (10) |
C4—C5—H52 | 108.7 (10) | C14—C13—H132 | 110.9 (10) |
C6—C5—H52 | 110.6 (9) | H131—C13—H132 | 107.4 (13) |
H51—C5—H52 | 105.4 (14) | C15—C14—C13 | 111.61 (11) |
C9—C6—C10 | 109.47 (11) | C15—C14—H141 | 109.3 (10) |
C9—C6—C5 | 109.62 (11) | C13—C14—H141 | 108.5 (10) |
C10—C6—C5 | 109.49 (11) | C15—C14—H142 | 111.6 (10) |
C9—C6—C7 | 109.26 (11) | C13—C14—H142 | 108.9 (10) |
C10—C6—C7 | 110.43 (11) | H141—C14—H142 | 106.9 (14) |
C5—C6—C7 | 108.56 (11) | C14—C15—C16 | 111.25 (11) |
C7a—C7—C6 | 110.36 (11) | C14—C15—H151 | 109.5 (9) |
C7a—C7—H71 | 110.5 (9) | C16—C15—H151 | 109.4 (10) |
C6—C7—H71 | 110.5 (9) | C14—C15—H152 | 110.0 (9) |
C7a—C7—H72 | 107.3 (10) | C16—C15—H152 | 110.1 (9) |
C6—C7—H72 | 110.3 (10) | H151—C15—H152 | 106.6 (13) |
H71—C7—H72 | 107.9 (13) | C15—C16—C17 | 112.04 (11) |
C3b—C7a—O8 | 114.43 (11) | C15—C16—H161 | 109.1 (10) |
C3b—C7a—C7 | 126.56 (12) | C17—C16—H161 | 108.6 (10) |
O8—C7a—C7 | 119.00 (11) | C15—C16—H162 | 110.2 (10) |
C7a—O8—C8a | 106.82 (9) | C17—C16—H162 | 109.3 (10) |
N1—C8a—O8 | 107.81 (9) | H161—C16—H162 | 107.5 (14) |
N1—C8a—C11 | 113.69 (11) | C12—C17—C16 | 110.26 (11) |
O8—C8a—C11 | 107.18 (10) | C12—C17—H171 | 109.3 (9) |
N1—C8a—C3a | 104.22 (10) | C16—C17—H171 | 110.9 (9) |
O8—C8a—C3a | 106.56 (10) | C12—C17—H172 | 109.5 (9) |
C11—C8a—C3a | 116.88 (11) | C16—C17—H172 | 110.3 (9) |
C6—C9—H91 | 111.0 (10) | H171—C17—H172 | 106.4 (13) |
C8a—N1—C2—O2 | 176.43 (13) | C3b—C7a—O8—C8a | −6.95 (14) |
C12—N1—C2—O2 | −3.5 (2) | C7—C7a—O8—C8a | 173.97 (11) |
C8a—N1—C2—C3 | −1.88 (14) | C2—N1—C8a—O8 | 124.67 (11) |
C12—N1—C2—C3 | 178.23 (11) | C12—N1—C8a—O8 | −55.44 (14) |
O2—C2—C3—C3a | 172.73 (13) | C2—N1—C8a—C11 | −116.66 (12) |
N1—C2—C3—C3a | −8.97 (14) | C12—N1—C8a—C11 | 63.23 (15) |
C2—C3—C3a—C3b | −94.13 (13) | C2—N1—C8a—C3a | 11.71 (14) |
C2—C3—C3a—C8a | 15.40 (13) | C12—N1—C8a—C3a | −168.40 (10) |
C3—C3a—C3b—C7a | 119.17 (12) | C7a—O8—C8a—N1 | −100.30 (11) |
C8a—C3a—C3b—C7a | 7.05 (13) | C7a—O8—C8a—C11 | 136.94 (11) |
C3—C3a—C3b—C4 | −64.82 (17) | C7a—O8—C8a—C3a | 11.09 (12) |
C8a—C3a—C3b—C4 | −176.94 (12) | C3b—C3a—C8a—N1 | 103.18 (11) |
C7a—C3b—C4—O4 | 171.61 (13) | C3—C3a—C8a—N1 | −16.30 (13) |
C3a—C3b—C4—O4 | −4.0 (2) | C3b—C3a—C8a—O8 | −10.68 (12) |
C7a—C3b—C4—C5 | −8.72 (18) | C3—C3a—C8a—O8 | −130.16 (10) |
C3a—C3b—C4—C5 | 175.66 (12) | C3b—C3a—C8a—C11 | −130.43 (11) |
O4—C4—C5—C6 | −143.62 (13) | C3—C3a—C8a—C11 | 110.10 (13) |
C3b—C4—C5—C6 | 36.71 (16) | C2—N1—C12—C13 | 67.52 (16) |
C4—C5—C6—C9 | −175.28 (12) | C8a—N1—C12—C13 | −112.36 (13) |
C4—C5—C6—C10 | 64.61 (15) | C2—N1—C12—C17 | −59.36 (16) |
C4—C5—C6—C7 | −56.01 (15) | C8a—N1—C12—C17 | 120.76 (12) |
C9—C6—C7—C7a | 166.22 (11) | N1—C12—C13—C14 | 174.79 (11) |
C10—C6—C7—C7a | −73.33 (14) | C17—C12—C13—C14 | −58.39 (15) |
C5—C6—C7—C7a | 46.71 (15) | C12—C13—C14—C15 | 57.18 (15) |
C4—C3b—C7a—O8 | −176.75 (11) | C13—C14—C15—C16 | −55.25 (16) |
C3a—C3b—C7a—O8 | −0.41 (16) | C14—C15—C16—C17 | 53.56 (16) |
C4—C3b—C7a—C7 | 2.3 (2) | N1—C12—C17—C16 | −175.37 (10) |
C3a—C3b—C7a—C7 | 178.59 (12) | C13—C12—C17—C16 | 57.00 (14) |
C6—C7—C7a—C3b | −22.69 (18) | C15—C16—C17—C12 | −54.13 (15) |
C6—C7—C7a—O8 | 156.26 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O8 | 1.00 (2) | 2.52 (2) | 2.920 (2) | 103 (1) |
C17—H171···O2 | 1.01 (2) | 2.55 (2) | 3.153 (2) | 118 (1) |
C19H21NO3 | Z = 2 |
Mr = 311.37 | F(000) = 332 |
Triclinic, P1 | Dx = 1.293 Mg m−3 |
Hall symbol: -P 1 | Melting point: 140(2) K |
a = 7.2348 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1212 (5) Å | Cell parameters from 3590 reflections |
c = 11.6287 (6) Å | θ = 2.9–27.5° |
α = 77.031 (2)° | µ = 0.09 mm−1 |
β = 79.285 (3)° | T = 120 K |
γ = 76.872 (3)° | Plate, colourless |
V = 799.89 (6) Å3 | 0.20 × 0.14 × 0.03 mm |
Nonius KappaCCD area-detector diffractometer | 3132 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 2562 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.047 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.0°, θmin = 2.9° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −12→12 |
Tmin = 0.903, Tmax = 0.997 | l = −14→14 |
14845 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.117 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0532P)2 + 0.358P] where P = (Fo2 + 2Fc2)/3 |
3132 reflections | (Δ/σ)max = 0.001 |
292 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C19H21NO3 | γ = 76.872 (3)° |
Mr = 311.37 | V = 799.89 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2348 (2) Å | Mo Kα radiation |
b = 10.1212 (5) Å | µ = 0.09 mm−1 |
c = 11.6287 (6) Å | T = 120 K |
α = 77.031 (2)° | 0.20 × 0.14 × 0.03 mm |
β = 79.285 (3)° |
Nonius KappaCCD area-detector diffractometer | 3132 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2562 reflections with I > 2σ(I) |
Tmin = 0.903, Tmax = 0.997 | Rint = 0.047 |
14845 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.117 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.19 e Å−3 |
3132 reflections | Δρmin = −0.27 e Å−3 |
292 parameters |
Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.772463. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.53606 (19) | 0.30937 (14) | 0.42290 (12) | 0.0209 (3) | |
C2 | 0.3437 (2) | 0.36441 (17) | 0.43875 (15) | 0.0223 (4) | |
O2 | 0.24353 (17) | 0.36463 (13) | 0.53525 (11) | 0.0296 (3) | |
C3 | 0.2786 (2) | 0.41965 (19) | 0.31800 (15) | 0.0248 (4) | |
H31 | 0.206 (3) | 0.518 (2) | 0.3145 (18) | 0.033 (5)* | |
H32 | 0.186 (3) | 0.363 (2) | 0.3108 (18) | 0.035 (5)* | |
C3a | 0.4618 (2) | 0.40507 (17) | 0.22711 (15) | 0.0213 (4) | |
H3A | 0.450 (2) | 0.3570 (18) | 0.1666 (16) | 0.019 (4)* | |
C3b | 0.5317 (2) | 0.53744 (17) | 0.17369 (14) | 0.0202 (4) | |
C4 | 0.4436 (2) | 0.65604 (17) | 0.09400 (14) | 0.0214 (4) | |
O4 | 0.29576 (16) | 0.65975 (13) | 0.05405 (11) | 0.0287 (3) | |
C5 | 0.5429 (2) | 0.77911 (17) | 0.06436 (16) | 0.0231 (4) | |
H51 | 0.480 (3) | 0.836 (2) | 0.1238 (19) | 0.033 (5)* | |
H52 | 0.510 (3) | 0.837 (2) | −0.0145 (19) | 0.031 (5)* | |
C6 | 0.7623 (2) | 0.74438 (16) | 0.06188 (14) | 0.0202 (4) | |
C7 | 0.8135 (2) | 0.64350 (17) | 0.17734 (15) | 0.0213 (4) | |
H71 | 0.953 (3) | 0.6045 (19) | 0.1685 (17) | 0.027 (5)* | |
H72 | 0.790 (3) | 0.690 (2) | 0.2432 (19) | 0.030 (5)* | |
C7a | 0.7005 (2) | 0.53281 (16) | 0.20819 (13) | 0.0194 (3) | |
O8 | 0.76859 (15) | 0.41247 (11) | 0.27893 (10) | 0.0212 (3) | |
C8a | 0.6254 (2) | 0.32326 (17) | 0.29942 (14) | 0.0207 (4) | |
C9 | 0.8360 (3) | 0.87696 (18) | 0.05386 (17) | 0.0268 (4) | |
H91 | 0.978 (3) | 0.858 (2) | 0.0516 (17) | 0.030 (5)* | |
H92 | 0.780 (3) | 0.924 (2) | 0.125 (2) | 0.041 (6)* | |
H93 | 0.807 (3) | 0.946 (2) | −0.023 (2) | 0.041 (6)* | |
C10 | 0.8578 (2) | 0.67838 (18) | −0.04603 (15) | 0.0223 (4) | |
H101 | 0.829 (3) | 0.746 (2) | −0.1224 (18) | 0.028 (5)* | |
H102 | 0.811 (3) | 0.590 (2) | −0.0433 (17) | 0.030 (5)* | |
H103 | 0.996 (3) | 0.6566 (19) | −0.0463 (16) | 0.024 (5)* | |
C11 | 0.7320 (3) | 0.18778 (19) | 0.26597 (17) | 0.0274 (4) | |
H111 | 0.843 (3) | 0.149 (2) | 0.3114 (19) | 0.035 (5)* | |
H112 | 0.784 (3) | 0.201 (2) | 0.179 (2) | 0.036 (5)* | |
H113 | 0.644 (3) | 0.122 (2) | 0.2840 (19) | 0.037 (6)* | |
C12 | 0.6379 (2) | 0.23257 (17) | 0.51912 (14) | 0.0215 (4) | |
C13 | 0.5764 (3) | 0.11657 (18) | 0.59018 (16) | 0.0273 (4) | |
H13 | 0.461 (3) | 0.090 (2) | 0.5753 (18) | 0.031 (5)* | |
C14 | 0.6768 (3) | 0.03986 (19) | 0.68169 (16) | 0.0301 (4) | |
H14 | 0.636 (3) | −0.041 (2) | 0.7312 (19) | 0.034 (5)* | |
C15 | 0.8373 (3) | 0.07839 (19) | 0.70262 (16) | 0.0282 (4) | |
H15 | 0.909 (3) | 0.026 (2) | 0.766 (2) | 0.038 (6)* | |
C16 | 0.8983 (3) | 0.1942 (2) | 0.63108 (16) | 0.0288 (4) | |
H16 | 1.009 (3) | 0.224 (2) | 0.6464 (18) | 0.036 (5)* | |
C17 | 0.7987 (2) | 0.27232 (19) | 0.53922 (15) | 0.0256 (4) | |
H17 | 0.842 (3) | 0.356 (2) | 0.4875 (18) | 0.032 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0215 (7) | 0.0238 (7) | 0.0163 (7) | −0.0059 (5) | −0.0020 (5) | −0.0002 (6) |
C2 | 0.0230 (9) | 0.0234 (8) | 0.0204 (9) | −0.0085 (7) | −0.0013 (7) | −0.0014 (7) |
O2 | 0.0272 (7) | 0.0374 (7) | 0.0205 (6) | −0.0062 (5) | 0.0012 (5) | −0.0015 (5) |
C3 | 0.0217 (9) | 0.0323 (10) | 0.0203 (9) | −0.0093 (7) | −0.0039 (7) | 0.0001 (7) |
C3a | 0.0236 (9) | 0.0258 (8) | 0.0165 (8) | −0.0096 (7) | −0.0038 (6) | −0.0027 (7) |
C3b | 0.0207 (8) | 0.0246 (8) | 0.0161 (8) | −0.0078 (6) | −0.0009 (6) | −0.0033 (7) |
C4 | 0.0197 (8) | 0.0269 (9) | 0.0159 (8) | −0.0037 (7) | −0.0002 (6) | −0.0034 (7) |
O4 | 0.0221 (6) | 0.0369 (7) | 0.0263 (7) | −0.0066 (5) | −0.0076 (5) | 0.0000 (5) |
C5 | 0.0223 (9) | 0.0213 (8) | 0.0229 (9) | −0.0018 (7) | −0.0023 (7) | −0.0015 (7) |
C6 | 0.0195 (8) | 0.0213 (8) | 0.0188 (8) | −0.0046 (6) | −0.0029 (6) | −0.0009 (7) |
C7 | 0.0224 (9) | 0.0244 (8) | 0.0181 (8) | −0.0071 (7) | −0.0042 (6) | −0.0023 (7) |
C7a | 0.0224 (8) | 0.0215 (8) | 0.0125 (7) | −0.0044 (6) | −0.0006 (6) | −0.0009 (6) |
O8 | 0.0209 (6) | 0.0225 (6) | 0.0195 (6) | −0.0077 (5) | −0.0047 (4) | 0.0022 (5) |
C8a | 0.0217 (8) | 0.0236 (8) | 0.0169 (8) | −0.0100 (6) | 0.0001 (6) | −0.0011 (7) |
C9 | 0.0294 (10) | 0.0227 (9) | 0.0290 (10) | −0.0087 (7) | −0.0055 (8) | −0.0012 (8) |
C10 | 0.0216 (9) | 0.0263 (9) | 0.0178 (9) | −0.0060 (7) | −0.0027 (6) | −0.0002 (7) |
C11 | 0.0299 (10) | 0.0257 (9) | 0.0257 (10) | −0.0065 (8) | 0.0003 (8) | −0.0051 (7) |
C12 | 0.0236 (9) | 0.0230 (8) | 0.0164 (8) | −0.0031 (6) | −0.0021 (6) | −0.0026 (7) |
C13 | 0.0318 (10) | 0.0264 (9) | 0.0253 (9) | −0.0107 (7) | −0.0056 (7) | −0.0015 (7) |
C14 | 0.0369 (10) | 0.0249 (9) | 0.0251 (9) | −0.0072 (8) | −0.0038 (8) | 0.0032 (8) |
C15 | 0.0276 (9) | 0.0320 (10) | 0.0198 (9) | 0.0024 (7) | −0.0042 (7) | −0.0020 (7) |
C16 | 0.0256 (9) | 0.0370 (10) | 0.0243 (9) | −0.0090 (8) | −0.0050 (7) | −0.0026 (8) |
C17 | 0.0271 (9) | 0.0279 (9) | 0.0217 (9) | −0.0088 (7) | −0.0031 (7) | −0.0008 (7) |
N1—C2 | 1.371 (2) | C7a—O8 | 1.3531 (19) |
N1—C12 | 1.434 (2) | O8—C8a | 1.4768 (19) |
N1—C8a | 1.451 (2) | C8a—C11 | 1.508 (2) |
C2—O2 | 1.217 (2) | C9—H91 | 1.00 (2) |
C2—C3 | 1.510 (2) | C9—H92 | 1.02 (2) |
C3—C3a | 1.535 (2) | C9—H93 | 1.03 (2) |
C3—H31 | 1.01 (2) | C10—H101 | 1.02 (2) |
C3—H32 | 1.00 (2) | C10—H102 | 1.02 (2) |
C3a—C3b | 1.501 (2) | C10—H103 | 0.970 (19) |
C3a—C8a | 1.552 (2) | C11—H111 | 1.00 (2) |
C3a—H3A | 0.966 (18) | C11—H112 | 1.00 (2) |
C3b—C7a | 1.343 (2) | C11—H113 | 0.99 (2) |
C3b—C4 | 1.442 (2) | C12—C13 | 1.387 (2) |
C4—O4 | 1.233 (2) | C12—C17 | 1.387 (2) |
C4—C5 | 1.519 (2) | C13—C14 | 1.387 (3) |
C5—C6 | 1.542 (2) | C13—H13 | 0.99 (2) |
C5—H51 | 0.98 (2) | C14—C15 | 1.383 (3) |
C5—H52 | 1.01 (2) | C14—H14 | 0.96 (2) |
C6—C10 | 1.531 (2) | C15—C16 | 1.387 (3) |
C6—C9 | 1.531 (2) | C15—H15 | 0.97 (2) |
C6—C7 | 1.543 (2) | C16—C17 | 1.390 (3) |
C7—C7a | 1.476 (2) | C16—H16 | 0.97 (2) |
C7—H71 | 0.99 (2) | C17—H17 | 1.00 (2) |
C7—H72 | 0.96 (2) | ||
C2—N1—C12 | 122.99 (13) | O8—C7a—C7 | 118.76 (14) |
C2—N1—C8a | 114.62 (13) | C7a—O8—C8a | 107.56 (12) |
C12—N1—C8a | 122.13 (13) | N1—C8a—O8 | 109.09 (12) |
O2—C2—N1 | 124.65 (15) | N1—C8a—C11 | 113.28 (14) |
O2—C2—C3 | 126.54 (15) | O8—C8a—C11 | 106.32 (13) |
N1—C2—C3 | 108.79 (14) | N1—C8a—C3a | 104.50 (12) |
C2—C3—C3a | 105.57 (13) | O8—C8a—C3a | 106.50 (12) |
C2—C3—H31 | 109.6 (12) | C11—C8a—C3a | 116.83 (14) |
C3a—C3—H31 | 113.8 (12) | C6—C9—H91 | 111.3 (11) |
C2—C3—H32 | 106.9 (12) | C6—C9—H92 | 112.9 (12) |
C3a—C3—H32 | 113.5 (12) | H91—C9—H92 | 106.1 (16) |
H31—C3—H32 | 107.3 (16) | C6—C9—H93 | 111.2 (12) |
C3b—C3a—C3 | 114.78 (14) | H91—C9—H93 | 106.2 (16) |
C3b—C3a—C8a | 101.31 (12) | H92—C9—H93 | 108.7 (17) |
C3—C3a—C8a | 106.02 (13) | C6—C10—H101 | 109.8 (11) |
C3b—C3a—H3A | 111.8 (10) | C6—C10—H102 | 111.3 (11) |
C3—C3a—H3A | 111.4 (10) | H101—C10—H102 | 109.3 (15) |
C8a—C3a—H3A | 110.9 (10) | C6—C10—H103 | 109.0 (11) |
C7a—C3b—C4 | 121.34 (15) | H101—C10—H103 | 108.5 (15) |
C7a—C3b—C3a | 110.20 (14) | H102—C10—H103 | 108.9 (15) |
C4—C3b—C3a | 128.45 (14) | C8a—C11—H111 | 110.4 (12) |
O4—C4—C3b | 122.94 (15) | C8a—C11—H112 | 110.8 (12) |
O4—C4—C5 | 121.70 (15) | H111—C11—H112 | 107.6 (16) |
C3b—C4—C5 | 115.34 (14) | C8a—C11—H113 | 109.5 (12) |
C4—C5—C6 | 115.74 (13) | H111—C11—H113 | 109.5 (17) |
C4—C5—H51 | 105.0 (12) | H112—C11—H113 | 109.1 (17) |
C6—C5—H51 | 111.6 (12) | C13—C12—C17 | 120.45 (16) |
C4—C5—H52 | 108.9 (11) | C13—C12—N1 | 119.28 (15) |
C6—C5—H52 | 109.9 (11) | C17—C12—N1 | 120.26 (15) |
H51—C5—H52 | 105.1 (16) | C14—C13—C12 | 119.66 (17) |
C10—C6—C9 | 109.47 (14) | C14—C13—H13 | 120.7 (12) |
C10—C6—C5 | 109.85 (14) | C12—C13—H13 | 119.7 (11) |
C9—C6—C5 | 109.47 (13) | C15—C14—C13 | 120.45 (17) |
C10—C6—C7 | 109.56 (13) | C15—C14—H14 | 119.1 (12) |
C9—C6—C7 | 108.66 (13) | C13—C14—H14 | 120.5 (12) |
C5—C6—C7 | 109.81 (13) | C14—C15—C16 | 119.60 (16) |
C7a—C7—C6 | 111.06 (13) | C14—C15—H15 | 121.7 (13) |
C7a—C7—H71 | 111.0 (11) | C16—C15—H15 | 118.7 (13) |
C6—C7—H71 | 109.9 (11) | C15—C16—C17 | 120.55 (17) |
C7a—C7—H72 | 108.0 (12) | C15—C16—H16 | 120.4 (12) |
C6—C7—H72 | 111.5 (12) | C17—C16—H16 | 119.0 (12) |
H71—C7—H72 | 105.2 (16) | C12—C17—C16 | 119.29 (16) |
C3b—C7a—O8 | 114.40 (14) | C12—C17—H17 | 119.8 (11) |
C3b—C7a—C7 | 126.84 (15) | C16—C17—H17 | 120.9 (11) |
C12—N1—C2—O2 | 6.6 (3) | C3b—C7a—O8—C8a | −1.99 (18) |
C8a—N1—C2—O2 | −179.12 (15) | C7—C7a—O8—C8a | 177.73 (13) |
C12—N1—C2—C3 | −171.82 (14) | C2—N1—C8a—O8 | 115.76 (14) |
C8a—N1—C2—C3 | 2.48 (19) | C12—N1—C8a—O8 | −69.88 (18) |
O2—C2—C3—C3a | 175.55 (16) | C2—N1—C8a—C11 | −126.03 (16) |
N1—C2—C3—C3a | −6.09 (18) | C12—N1—C8a—C11 | 48.3 (2) |
C2—C3—C3a—C3b | −103.74 (16) | C2—N1—C8a—C3a | 2.19 (17) |
C2—C3—C3a—C8a | 7.19 (17) | C12—N1—C8a—C3a | 176.54 (14) |
C3—C3a—C3b—C7a | 113.68 (16) | C7a—O8—C8a—N1 | −110.43 (14) |
C8a—C3a—C3b—C7a | −0.04 (17) | C7a—O8—C8a—C11 | 127.08 (14) |
C3—C3a—C3b—C4 | −67.8 (2) | C7a—O8—C8a—C3a | 1.83 (16) |
C8a—C3a—C3b—C4 | 178.44 (16) | C3b—C3a—C8a—N1 | 114.34 (13) |
C7a—C3b—C4—O4 | 174.77 (15) | C3—C3a—C8a—N1 | −5.80 (16) |
C3a—C3b—C4—O4 | −3.6 (3) | C3b—C3a—C8a—O8 | −1.06 (15) |
C7a—C3b—C4—C5 | −6.7 (2) | C3—C3a—C8a—O8 | −121.20 (13) |
C3a—C3b—C4—C5 | 174.97 (15) | C3b—C3a—C8a—C11 | −119.63 (15) |
O4—C4—C5—C6 | −149.83 (15) | C3—C3a—C8a—C11 | 120.23 (16) |
C3b—C4—C5—C6 | 31.6 (2) | C2—N1—C12—C13 | 56.7 (2) |
C4—C5—C6—C10 | 70.11 (18) | C8a—N1—C12—C13 | −117.21 (17) |
C4—C5—C6—C9 | −169.66 (14) | C2—N1—C12—C17 | −124.69 (18) |
C4—C5—C6—C7 | −50.45 (19) | C8a—N1—C12—C17 | 61.4 (2) |
C10—C6—C7—C7a | −76.86 (17) | C17—C12—C13—C14 | −0.1 (3) |
C9—C6—C7—C7a | 163.57 (14) | N1—C12—C13—C14 | 178.51 (16) |
C5—C6—C7—C7a | 43.87 (18) | C12—C13—C14—C15 | 0.1 (3) |
C4—C3b—C7a—O8 | −177.32 (14) | C13—C14—C15—C16 | −0.3 (3) |
C3a—C3b—C7a—O8 | 1.29 (19) | C14—C15—C16—C17 | 0.5 (3) |
C4—C3b—C7a—C7 | 3.0 (3) | C13—C12—C17—C16 | 0.3 (3) |
C3a—C3b—C7a—C7 | −178.41 (15) | N1—C12—C17—C16 | −178.33 (15) |
C6—C7—C7a—C3b | −22.9 (2) | C15—C16—C17—C12 | −0.5 (3) |
C6—C7—C7a—O8 | 157.41 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O8 | 1.00 (2) | 2.49 (2) | 3.066 (2) | 116 (2) |
C7—H72···O2i | 0.96 (2) | 2.49 (2) | 3.275 (2) | 140 (2) |
C16—H16···O2ii | 0.98 (2) | 2.46 (2) | 3.243 (3) | 138 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
C18H20N2O3 | Z = 2 |
Mr = 312.36 | F(000) = 332 |
Triclinic, P1 | Dx = 1.333 Mg m−3 |
Hall symbol: -P 1 | Melting point: 198(1) K |
a = 7.2330 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8165 (3) Å | Cell parameters from 3489 reflections |
c = 11.6008 (3) Å | θ = 2.9–27.5° |
α = 78.541 (2)° | µ = 0.09 mm−1 |
β = 78.992 (2)° | T = 120 K |
γ = 77.302 (1)° | Prism, colourless |
V = 778.13 (4) Å3 | 0.19 × 0.14 × 0.09 mm |
Nonius KappaCCD area-detector diffractometer | 3040 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 2769 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.035 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −12→12 |
Tmin = 0.913, Tmax = 0.992 | l = −14→13 |
13914 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3717P] where P = (Fo2 + 2Fc2)/3 |
3040 reflections | (Δ/σ)max = 0.006 |
288 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C18H20N2O3 | γ = 77.302 (1)° |
Mr = 312.36 | V = 778.13 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2330 (2) Å | Mo Kα radiation |
b = 9.8165 (3) Å | µ = 0.09 mm−1 |
c = 11.6008 (3) Å | T = 120 K |
α = 78.541 (2)° | 0.19 × 0.14 × 0.09 mm |
β = 78.992 (2)° |
Nonius KappaCCD area-detector diffractometer | 3040 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2769 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 0.992 | Rint = 0.035 |
13914 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.29 e Å−3 |
3040 reflections | Δρmin = −0.20 e Å−3 |
288 parameters |
Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.897023. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.52665 (16) | 0.30837 (12) | 0.41917 (10) | 0.0176 (3) | |
C2 | 0.33267 (19) | 0.36189 (14) | 0.43603 (12) | 0.0192 (3) | |
O2 | 0.23076 (14) | 0.35965 (11) | 0.53250 (9) | 0.0266 (3) | |
C3 | 0.2698 (2) | 0.41948 (16) | 0.31608 (12) | 0.0212 (3) | |
H31 | 0.199 (3) | 0.522 (2) | 0.3150 (16) | 0.031 (4)* | |
H32 | 0.180 (3) | 0.3629 (19) | 0.3075 (16) | 0.031 (4)* | |
C3a | 0.45417 (18) | 0.40606 (14) | 0.22483 (12) | 0.0175 (3) | |
H3A | 0.445 (2) | 0.3544 (17) | 0.1614 (14) | 0.020 (4)* | |
C3b | 0.52623 (18) | 0.54125 (14) | 0.17524 (11) | 0.0169 (3) | |
C4 | 0.44123 (18) | 0.66200 (14) | 0.09692 (11) | 0.0179 (3) | |
O4 | 0.29262 (14) | 0.66625 (11) | 0.05789 (9) | 0.0253 (3) | |
C5 | 0.54395 (19) | 0.78688 (14) | 0.06719 (13) | 0.0197 (3) | |
H51 | 0.484 (2) | 0.8465 (19) | 0.1277 (16) | 0.029 (4)* | |
H52 | 0.512 (2) | 0.8426 (19) | −0.0123 (16) | 0.031 (4)* | |
C6 | 0.76353 (18) | 0.74878 (13) | 0.06428 (11) | 0.0163 (3) | |
C7 | 0.81269 (19) | 0.64704 (14) | 0.17855 (12) | 0.0172 (3) | |
H71 | 0.951 (3) | 0.6059 (18) | 0.1696 (15) | 0.026 (4)* | |
H72 | 0.790 (2) | 0.6981 (17) | 0.2473 (15) | 0.024 (4)* | |
C7a | 0.69611 (18) | 0.53467 (14) | 0.20903 (11) | 0.0156 (3) | |
O8 | 0.76186 (13) | 0.41105 (10) | 0.27684 (8) | 0.0178 (2) | |
C8a | 0.61651 (19) | 0.32125 (14) | 0.29524 (11) | 0.0176 (3) | |
C9 | 0.8411 (2) | 0.88351 (15) | 0.05682 (14) | 0.0231 (3) | |
H91 | 0.981 (3) | 0.8597 (18) | 0.0549 (15) | 0.027 (4)* | |
H92 | 0.785 (3) | 0.931 (2) | 0.1271 (17) | 0.033 (5)* | |
H93 | 0.812 (3) | 0.9530 (19) | −0.0187 (17) | 0.030 (4)* | |
C10 | 0.8581 (2) | 0.67893 (15) | −0.04465 (12) | 0.0187 (3) | |
H101 | 0.827 (2) | 0.7468 (18) | −0.1199 (15) | 0.024 (4)* | |
H102 | 0.813 (2) | 0.5911 (18) | −0.0417 (14) | 0.021 (4)* | |
H103 | 1.000 (2) | 0.6569 (18) | −0.0462 (15) | 0.025 (4)* | |
C11 | 0.7167 (2) | 0.18111 (15) | 0.25856 (13) | 0.0230 (3) | |
H111 | 0.822 (3) | 0.1352 (19) | 0.3050 (17) | 0.033 (5)* | |
H112 | 0.770 (3) | 0.1982 (19) | 0.1741 (17) | 0.031 (4)* | |
H113 | 0.622 (3) | 0.1204 (19) | 0.2701 (16) | 0.030 (4)* | |
C12 | 0.62667 (19) | 0.23041 (14) | 0.51338 (12) | 0.0194 (3) | |
C13 | 0.5574 (2) | 0.11635 (16) | 0.58656 (13) | 0.0246 (3) | |
H13 | 0.434 (3) | 0.0919 (18) | 0.5760 (15) | 0.028 (4)* | |
N14 | 0.64495 (19) | 0.03434 (14) | 0.67481 (12) | 0.0292 (3) | |
C15 | 0.8073 (2) | 0.06686 (17) | 0.69164 (13) | 0.0282 (3) | |
H15 | 0.871 (3) | 0.0038 (19) | 0.7574 (17) | 0.033 (5)* | |
C16 | 0.8863 (2) | 0.17848 (17) | 0.62335 (13) | 0.0278 (3) | |
H16 | 1.002 (3) | 0.197 (2) | 0.6422 (18) | 0.041 (5)* | |
C17 | 0.7942 (2) | 0.26320 (16) | 0.53253 (13) | 0.0239 (3) | |
H17 | 0.843 (3) | 0.346 (2) | 0.4835 (16) | 0.032 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0170 (6) | 0.0212 (6) | 0.0135 (5) | −0.0048 (4) | −0.0015 (4) | 0.0000 (4) |
C2 | 0.0192 (7) | 0.0203 (7) | 0.0186 (7) | −0.0073 (5) | −0.0019 (5) | −0.0013 (5) |
O2 | 0.0218 (5) | 0.0363 (6) | 0.0179 (5) | −0.0046 (4) | 0.0027 (4) | −0.0022 (4) |
C3 | 0.0159 (7) | 0.0304 (8) | 0.0176 (7) | −0.0084 (6) | −0.0024 (5) | −0.0005 (6) |
C3a | 0.0172 (7) | 0.0217 (7) | 0.0147 (6) | −0.0079 (5) | −0.0026 (5) | −0.0011 (5) |
C3b | 0.0163 (6) | 0.0202 (7) | 0.0145 (6) | −0.0062 (5) | −0.0003 (5) | −0.0023 (5) |
C4 | 0.0134 (6) | 0.0230 (7) | 0.0159 (6) | −0.0020 (5) | 0.0006 (5) | −0.0037 (5) |
O4 | 0.0169 (5) | 0.0323 (6) | 0.0262 (5) | −0.0060 (4) | −0.0074 (4) | 0.0018 (4) |
C5 | 0.0161 (7) | 0.0182 (7) | 0.0228 (7) | −0.0013 (5) | −0.0017 (5) | −0.0017 (6) |
C6 | 0.0149 (6) | 0.0163 (6) | 0.0175 (6) | −0.0032 (5) | −0.0025 (5) | −0.0018 (5) |
C7 | 0.0158 (7) | 0.0210 (7) | 0.0158 (6) | −0.0058 (5) | −0.0028 (5) | −0.0027 (5) |
C7a | 0.0165 (6) | 0.0180 (6) | 0.0110 (6) | −0.0025 (5) | −0.0003 (5) | −0.0019 (5) |
O8 | 0.0159 (5) | 0.0190 (5) | 0.0183 (5) | −0.0063 (4) | −0.0038 (4) | 0.0021 (4) |
C8a | 0.0171 (6) | 0.0209 (7) | 0.0153 (6) | −0.0088 (5) | −0.0001 (5) | −0.0009 (5) |
C9 | 0.0230 (7) | 0.0175 (7) | 0.0294 (8) | −0.0065 (6) | −0.0047 (6) | −0.0019 (6) |
C10 | 0.0174 (7) | 0.0215 (7) | 0.0168 (7) | −0.0054 (5) | −0.0014 (5) | −0.0016 (5) |
C11 | 0.0242 (7) | 0.0213 (7) | 0.0219 (7) | −0.0057 (6) | 0.0023 (6) | −0.0037 (6) |
C12 | 0.0200 (7) | 0.0212 (7) | 0.0157 (6) | −0.0023 (5) | −0.0015 (5) | −0.0028 (5) |
C13 | 0.0241 (7) | 0.0250 (7) | 0.0235 (7) | −0.0060 (6) | −0.0030 (6) | −0.0002 (6) |
N14 | 0.0289 (7) | 0.0285 (7) | 0.0257 (7) | −0.0057 (5) | −0.0028 (5) | 0.0053 (5) |
C15 | 0.0227 (7) | 0.0333 (8) | 0.0218 (7) | 0.0012 (6) | −0.0017 (6) | 0.0027 (6) |
C16 | 0.0212 (7) | 0.0364 (9) | 0.0241 (7) | −0.0046 (6) | −0.0047 (6) | −0.0011 (6) |
C17 | 0.0232 (7) | 0.0273 (8) | 0.0206 (7) | −0.0077 (6) | −0.0024 (6) | −0.0006 (6) |
N1—C2 | 1.3765 (18) | C7—H72 | 0.993 (17) |
N1—C12 | 1.4247 (17) | C7a—O8 | 1.3518 (16) |
N1—C8a | 1.4535 (16) | O8—C8a | 1.4748 (15) |
C2—O2 | 1.2159 (17) | C8a—C11 | 1.5084 (19) |
C2—C3 | 1.5096 (19) | C9—H91 | 0.987 (18) |
C3—C3a | 1.5348 (18) | C9—H92 | 0.996 (19) |
C3—H31 | 1.024 (19) | C9—H93 | 1.023 (19) |
C3—H32 | 0.972 (18) | C10—H101 | 1.017 (17) |
C3a—C3b | 1.5001 (18) | C10—H102 | 0.980 (17) |
C3a—C8a | 1.5508 (18) | C10—H103 | 1.001 (17) |
C3a—H3A | 0.991 (16) | C11—H111 | 0.990 (19) |
C3b—C7a | 1.3440 (18) | C11—H112 | 0.977 (19) |
C3b—C4 | 1.4400 (19) | C11—H113 | 0.978 (18) |
C4—O4 | 1.2332 (16) | C12—C17 | 1.387 (2) |
C4—C5 | 1.5193 (19) | C12—C13 | 1.390 (2) |
C5—C6 | 1.5450 (18) | C13—N14 | 1.339 (2) |
C5—H51 | 0.979 (19) | C13—H13 | 1.011 (18) |
C5—H52 | 1.014 (18) | N14—C15 | 1.340 (2) |
C6—C9 | 1.5276 (18) | C15—C16 | 1.383 (2) |
C6—C10 | 1.5307 (18) | C15—H15 | 0.999 (19) |
C6—C7 | 1.5424 (18) | C16—C17 | 1.386 (2) |
C7—C7a | 1.4809 (18) | C16—H16 | 0.97 (2) |
C7—H71 | 0.988 (18) | C17—H17 | 0.987 (19) |
C2—N1—C12 | 122.90 (11) | C3b—C7a—C7 | 126.46 (12) |
C2—N1—C8a | 114.39 (11) | O8—C7a—C7 | 119.08 (11) |
C12—N1—C8a | 122.22 (11) | C7a—O8—C8a | 107.46 (10) |
O2—C2—N1 | 124.65 (13) | N1—C8a—O8 | 108.62 (10) |
O2—C2—C3 | 126.56 (13) | N1—C8a—C11 | 113.18 (11) |
N1—C2—C3 | 108.78 (11) | O8—C8a—C11 | 107.49 (11) |
C2—C3—C3a | 105.67 (11) | N1—C8a—C3a | 104.53 (10) |
C2—C3—H31 | 109.5 (10) | O8—C8a—C3a | 106.66 (10) |
C3a—C3—H31 | 112.7 (10) | C11—C8a—C3a | 116.01 (11) |
C2—C3—H32 | 106.5 (11) | C6—C9—H91 | 109.6 (10) |
C3a—C3—H32 | 114.0 (10) | C6—C9—H92 | 111.7 (10) |
H31—C3—H32 | 108.2 (14) | H91—C9—H92 | 107.4 (14) |
C3b—C3a—C3 | 115.39 (11) | C6—C9—H93 | 110.7 (10) |
C3b—C3a—C8a | 101.22 (10) | H91—C9—H93 | 108.4 (14) |
C3—C3a—C8a | 106.03 (10) | H92—C9—H93 | 108.8 (14) |
C3b—C3a—H3A | 112.2 (9) | C6—C10—H101 | 109.4 (9) |
C3—C3a—H3A | 111.8 (9) | C6—C10—H102 | 111.0 (10) |
C8a—C3a—H3A | 109.3 (9) | H101—C10—H102 | 109.2 (13) |
C7a—C3b—C4 | 121.61 (12) | C6—C10—H103 | 108.8 (10) |
C7a—C3b—C3a | 110.16 (12) | H101—C10—H103 | 109.3 (13) |
C4—C3b—C3a | 128.14 (12) | H102—C10—H103 | 109.2 (13) |
O4—C4—C3b | 122.78 (12) | C8a—C11—H111 | 111.4 (11) |
O4—C4—C5 | 121.56 (12) | C8a—C11—H112 | 108.2 (10) |
C3b—C4—C5 | 115.64 (11) | H111—C11—H112 | 109.2 (15) |
C4—C5—C6 | 115.43 (11) | C8a—C11—H113 | 108.4 (10) |
C4—C5—H51 | 105.2 (10) | H111—C11—H113 | 110.5 (15) |
C6—C5—H51 | 110.6 (10) | H112—C11—H113 | 109.0 (14) |
C4—C5—H52 | 107.6 (10) | C17—C12—C13 | 118.92 (13) |
C6—C5—H52 | 110.3 (10) | C17—C12—N1 | 121.76 (12) |
H51—C5—H52 | 107.2 (14) | C13—C12—N1 | 119.30 (12) |
C9—C6—C10 | 109.13 (11) | N14—C13—C12 | 123.51 (14) |
C9—C6—C7 | 108.67 (11) | N14—C13—H13 | 116.0 (10) |
C10—C6—C7 | 109.63 (11) | C12—C13—H13 | 120.5 (10) |
C9—C6—C5 | 109.37 (11) | C13—N14—C15 | 116.82 (13) |
C10—C6—C5 | 109.79 (11) | N14—C15—C16 | 123.55 (14) |
C7—C6—C5 | 110.22 (11) | N14—C15—H15 | 115.5 (10) |
C7a—C7—C6 | 111.02 (10) | C16—C15—H15 | 120.9 (10) |
C7a—C7—H71 | 111.0 (10) | C15—C16—C17 | 119.23 (14) |
C6—C7—H71 | 110.4 (10) | C15—C16—H16 | 118.9 (12) |
C7a—C7—H72 | 108.4 (10) | C17—C16—H16 | 121.8 (12) |
C6—C7—H72 | 111.4 (10) | C16—C17—C12 | 117.96 (14) |
H71—C7—H72 | 104.5 (14) | C16—C17—H17 | 121.7 (10) |
C3b—C7a—O8 | 114.46 (12) | C12—C17—H17 | 120.3 (10) |
C12—N1—C2—O2 | 6.8 (2) | C3b—C7a—O8—C8a | −1.64 (14) |
C8a—N1—C2—O2 | 178.94 (13) | C7—C7a—O8—C8a | 178.71 (11) |
C12—N1—C2—C3 | −171.98 (12) | C2—N1—C8a—O8 | 118.20 (12) |
C8a—N1—C2—C3 | 0.17 (16) | C12—N1—C8a—O8 | −69.59 (15) |
O2—C2—C3—C3a | 176.29 (14) | C2—N1—C8a—C11 | −122.50 (13) |
N1—C2—C3—C3a | −4.97 (15) | C12—N1—C8a—C11 | 49.71 (17) |
C2—C3—C3a—C3b | −103.61 (13) | C2—N1—C8a—C3a | 4.63 (14) |
C2—C3—C3a—C8a | 7.53 (14) | C12—N1—C8a—C3a | 176.84 (11) |
C3—C3a—C3b—C7a | 114.58 (13) | C7a—O8—C8a—N1 | −110.22 (11) |
C8a—C3a—C3b—C7a | 0.63 (14) | C7a—O8—C8a—C11 | 126.99 (11) |
C3—C3a—C3b—C4 | −68.84 (17) | C7a—O8—C8a—C3a | 1.94 (13) |
C8a—C3a—C3b—C4 | 177.22 (13) | C3b—C3a—C8a—N1 | 113.43 (11) |
C7a—C3b—C4—O4 | 174.65 (12) | C3—C3a—C8a—N1 | −7.36 (13) |
C3a—C3b—C4—O4 | −1.6 (2) | C3b—C3a—C8a—O8 | −1.52 (12) |
C7a—C3b—C4—C5 | −6.80 (18) | C3—C3a—C8a—O8 | −122.31 (11) |
C3a—C3b—C4—C5 | 176.96 (12) | C3b—C3a—C8a—C11 | −121.20 (12) |
O4—C4—C5—C6 | −150.29 (12) | C3—C3a—C8a—C11 | 118.01 (13) |
C3b—C4—C5—C6 | 31.15 (16) | C2—N1—C12—C17 | −130.19 (15) |
C4—C5—C6—C9 | −169.41 (11) | C8a—N1—C12—C17 | 58.26 (18) |
C4—C5—C6—C10 | 70.87 (14) | C2—N1—C12—C13 | 51.31 (18) |
C4—C5—C6—C7 | −50.00 (15) | C8a—N1—C12—C13 | −120.23 (14) |
C9—C6—C7—C7a | 163.72 (11) | C17—C12—C13—N14 | −0.7 (2) |
C10—C6—C7—C7a | −77.08 (13) | N1—C12—C13—N14 | 177.84 (13) |
C5—C6—C7—C7a | 43.89 (14) | C12—C13—N14—C15 | 0.3 (2) |
C4—C3b—C7a—O8 | −176.24 (11) | C13—N14—C15—C16 | −0.1 (2) |
C3a—C3b—C7a—O8 | 0.61 (16) | N14—C15—C16—C17 | 0.4 (2) |
C4—C3b—C7a—C7 | 3.4 (2) | C15—C16—C17—C12 | −0.8 (2) |
C3a—C3b—C7a—C7 | −179.78 (12) | C13—C12—C17—C16 | 0.9 (2) |
C6—C7—C7a—C3b | −23.15 (18) | N1—C12—C17—C16 | −177.56 (13) |
C6—C7—C7a—O8 | 156.45 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O8 | 0.99 (2) | 2.50 (2) | 3.060 (2) | 116 (2) |
C7—H72···O2i | 0.99 (2) | 2.49 (2) | 3.295 (2) | 138 (1) |
C16—H16···O2ii | 0.97 (2) | 2.54 (2) | 3.268 (2) | 132 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C19H27NO3 | C19H21NO3 | C18H20N2O3 |
Mr | 317.42 | 311.37 | 312.36 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 120 | 120 | 120 |
a, b, c (Å) | 9.4708 (2), 10.2139 (2), 10.7512 (2) | 7.2348 (2), 10.1212 (5), 11.6287 (6) | 7.2330 (2), 9.8165 (3), 11.6008 (3) |
α, β, γ (°) | 105.804 (1), 99.141 (1), 116.320 (1) | 77.031 (2), 79.285 (3), 76.872 (3) | 78.541 (2), 78.992 (2), 77.302 (1) |
V (Å3) | 848.50 (3) | 799.89 (6) | 778.13 (4) |
Z | 2 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.08 | 0.09 | 0.09 |
Crystal size (mm) | 0.24 × 0.16 × 0.03 | 0.20 × 0.14 × 0.03 | 0.19 × 0.14 × 0.09 |
Data collection | |||
Diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.891, 0.998 | 0.903, 0.997 | 0.913, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18064, 3327, 2990 | 14845, 3132, 2562 | 13914, 3040, 2769 |
Rint | 0.039 | 0.047 | 0.035 |
(sin θ/λ)max (Å−1) | 0.617 | 0.617 | 0.617 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.107, 1.12 | 0.044, 0.117, 1.07 | 0.039, 0.104, 1.07 |
No. of reflections | 3327 | 3132 | 3040 |
No. of parameters | 316 | 292 | 288 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.30, −0.32 | 0.19, −0.27 | 0.29, −0.20 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), PLATON (Spek, 2003) and INSIGHTII (Accelrys, 2002), SHELXL97 and PLATON).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O8 | 1.00 (2) | 2.52 (2) | 2.920 (2) | 103 (1) |
C17—H171···O2 | 1.01 (2) | 2.55 (2) | 3.153 (2) | 118 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O8 | 1.00 (2) | 2.49 (2) | 3.066 (2) | 116 (2) |
C7—H72···O2i | 0.96 (2) | 2.49 (2) | 3.275 (2) | 140 (2) |
C16—H16···O2ii | 0.98 (2) | 2.46 (2) | 3.243 (3) | 138 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O8 | 0.99 (2) | 2.50 (2) | 3.060 (2) | 116 (2) |
C7—H72···O2i | 0.99 (2) | 2.49 (2) | 3.295 (2) | 138 (1) |
C16—H16···O2ii | 0.97 (2) | 2.54 (2) | 3.268 (2) | 132 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Acknowledgements
The authors thank the EPSRC National Crystallography Service, Southampton, England.
References
Accelrys (2002). INSIGHTII. Version 2000.2. Accelrys Inc., 9685 Scranton Road, San Diego, CA 92121-3752, USA. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bucourt, R. (1974). Topics in Stereochemistry, Vol. 8, edited by E. L. Eliel & N. Allinger, pp. 159–224. New York: John Wiley. Google Scholar
Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385–415. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: John Wiley. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fuchs, B. (1978). Topics in Stereochemistry, Vol. 10, edited by E. L. Eliel & N. Allinger, pp. 1–94. New York: John Wiley. Google Scholar
Kálmán, A., Párkányi, L. & Argay, G. (1993). Acta Cryst. B49, 1039–1049. CrossRef Web of Science IUCr Journals Google Scholar
Nagaraj, B., Yathirajan, H. S., Nagaraja, P. & Lynch, D. E. (2005). Acta Cryst. E61, o1041–o1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nagarajan, K., Talwalker, P. K., Nagana Goud, A., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113–1123. Google Scholar
Narasegowda, R. S., Yathirajan, H. S., Lynch, D. E., Narasimhamurthy, T. & Rathore, R. S. (2006). Acta Cryst. E62, o1328–o1329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345–2352. CSD CrossRef Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Co-operativity is an important property of intermolecular interactions, and thereby molecules assemble into polymers with distinct patterns of interactions. By the process of mutual polarization within a polymeric assembly, weaker interactions acquire greater strength than they otherwise possess. A dimer of two molecules intermolecularly connected by symmetrical hydrogen bonds is more stable than if they are connected by an isolated hydrogen bond, the stability of a tetramer is greater than that of a pair of dimers, and so on (Desiraju & Steiner, 1999; Sharma & Desiraju, 1994). Polymeric assemblies formed by cooperative weak interactions are the subject of the present discussion. In this report, we present examples of a new class of tricyclic benzofuran derivatives with a benzofuropyrrolidine ring skeleton. The structural and conformational analyses of three compounds have been undertaken: 1-cyclohexyl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-[1]benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (I), 1-phenyl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-[1]benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (II), and 1-pyridin-3-yl-6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-1H-[1]benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, (III). These chiral molecules are formally derived from a perhydrofuro(or -pyrrolo)benzofuran system, and they have previously been shown to exhibit hypoglycaemic activity (Nagarajan et al., 1988).
The stereogenic centres C3a and C8a in compounds (I)–(III) (Figs. 1–3) adopt RS and SR configurations, respectively (Cahn et al., 1966). The core of each molecule consists of fused tetrahydrobenzo (A), dihydrofuro (B) and pyrrolidine (C) rings. The C3b═C7a double bond at the AB ring junction is in the range 1.341 (2)–1.344 (2) Å. In each compound, the B and C rings are folded at the BC ring junction, which is cis-fused (Bucourt, 1974). The angles between the best planes through ring B (atoms O8/C8a/C3a/C3b/C7a) and ring C (atoms N1/C2/C3/C3a/C8a) are 66.4 (1), 63.8 (1) and 63.2 (1)°, respectively, while the crossed torsion angles at the junction, i.e. N1—C8a—C3a—C3b and O8—C8a—C3a—C3, are 103.2 (1) and −130.2 (1)°, 114.3 (1) and −121.2 (1)°, and 113.4 (1) and −122.3 (1)°, respectively, in the molecules of (I)–(III).
The folding at the BC ring junction gives rise to the non-planarity of the tricyclic ring system. The structures of two analogous molecules based on a chiral tricyclic tetrahydrobenzo–dihydrofuro–tetrahydrofuran(or pyrrolidine) core, namely 1-isopropyl-6,6,8a-trimethyl-1,3a,5,6,7,8a-hexahydro-3H-1-benzofuro[2,3-b]pyrrole-2,4-dione (Narasegowda et al., 2006), (IV), and 6,6,8a-trimethyl-3a,6,7,8a-tetrahydro-benzo[b]furo[3,2-d]furan-2,4(3H,5H)-dione (Nagaraj et al., 2005), (V), also possess a similar non-planar shape of the tricyclic core, and the equivalent crossed torsion angles at the junctions of the five-membered rings are 99.7 (1) and −132.8 (1)° (values correspond to an inverted image of the reported structure) and 104.0 (1) and −127.2 (1)°, respectively.
The superposition of all five available structures of perhydrofuro- (or -pyrrolo)benzofuran derivatives is shown in supplementary Fig. 5. The conformations of the substituent rings, i.e. N-cyclohexyl in (I), N-phenyl in (II) and N-pyridyl in (III), are described by torsion angles C8a—N1—C12—C13 = −112.4 (1), −117.2 (2) and −120.2 (1)°, respectively.
The isomorphous compounds (II) and (III), with a difference of one atom [C14 in (II)/N14 in (III)] are isostructural. The degree of isostructurality has been quantitatively described by two descriptors, i.e. the unit-cell similarity index, Π, which is the difference between orthogonalized lattice parameters, and the isostructurality index, Ii(n), where n is the number of distance differences between identical non-H atoms (Kálmán et al., 1993). The calculated values of Π = 0.019 and Ii(24) = 99.7% indicate the structures are close to the ideal case of isostructrality.
The internal torsion angles of the heterocyclic rings are listed in Figs. 1–3. Ring A (cyclohexene) adopts a half-chair (C2) conformation in all three molecules. However, its conformation, i.e. a half-chair (C2) versus a sofa (Cs), is hardly distinguishable in the present structures (Bucourt, 1974). The N-cyclohexyl ring in (I) assumes a chair form, with the larger tricyclic system in the equatorial position. The puckering (Cremer & Pople, 1975) and asymmetric (Duax et al., 1976) parameters of individual rings are provided in supplementary Table 4. The five-membered B and C rings in (I) are puckered and adopt envelope (Cs) conformations (Fuchs, 1978), with atoms C8a and C3a at the flaps of the envelopes. Atoms C8a and C3a are 0.18 (1) and 0.27 (1) Å, respectively, out of the best planes formed by the other four atoms of the ring. Rings B and C are planar in (II) and (III). The least square planes formed by atoms of rings A and B (C3a/C3b/C4/C5/C7/C7a/O8/C8a) and ring C (N1/C2/O2/C3/C3a/C8a) intercept at an angle of 65.8 (1)° in (II) and 64.2 (1)° in (III).
The parameters for intramolecular short contacts and intermolecular hydrogen bonds are given in Tables 1–3. The conserved intramolecular C—H···O short contacts in (I)–(III) were observed between the donors of the N-substituents and atom O8 of ring B (Figs. 1–3). The short contact C12—H12···O8 forms an S(5) motif (Bernstein et al., 1995) in (I), while S(6) motifs are formed by C17—H17···O8 in (II) and (III). Additionally, an intramolecular C17—H171···O2 contact forms an S(6) motif in (I). The crystal packing in (I) is entirely due to van der Waals interactions. The crystal structures of isostructural compounds (II) and (III) are held together primarily by intermolecular C—H···O hydrogen bonds (Tables 2 and 3), forming chains of rings along [100] (Fig. 4). The significance of the cooperativity of weak intermolecular interactions for molecular self-assembly is elucidated in the present examples.