organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A three-dimensional framework of π-stacked hydrogen-bonded chains in benzyl 4-chloro-3-nitro­benzoate, and chains of hydrogen-bonded rings in benzyl 4-nitro­benzoate, redetermined at 120 K

CROSSMARK_Color_square_no_text.svg

aComplexo Tecnológico de Medicamentos Farmanguinhos, Avenida Comandante Guaranys 447, Jacarepaguá, Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 7 March 2006; accepted 8 March 2006; online 22 April 2006)

Benzyl 4-chloro-3-nitro­benzoate, C14H10ClNO4, crystallizes with Z′ = 2 in the space group P[\overline{1}]. The mol­ecules are linked by three independent C—H⋯O hydrogen bonds into chains of edge-fused R44(26) and R44(34) rings, and these chains are linked into a three-dimensional framework structure by aromatic ππ stacking inter­actions. In benzyl 4-nitro­benzoate, C14H11NO4, the mol­ecules are linked by two independent C—H⋯O hydrogen bonds into chains containing two types of R22(10) ring.

Comment

We report here the structures of benzyl 4-chloro-3-nitro­benzoate, (I)[link] (Fig. 1[link]), and benzyl 4-nitro­benzoate, (II)[link] (Fig. 2[link]), and compare their supramolecular structures with that in benzyl 3,5-dinitro­benzoate, (III) (Vasconcelos et al., 2006[Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o26-o29.]). The structure of (II)[link] was reported some years ago (Jones et al., 1989[Jones, P. G., Dólle, A., Kirby, A. J. & Parker, J. K. (1989). Acta Cryst. C45, 234-237.]) using diffraction data collected at ambient temperature, but there was no mention in that report of any direction-specific inter­molecular inter­actions. Hence, we have redetermined this structure using diffraction data collected at 120 K and find in it significant hydrogen bonding which forms a chain of rings motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The unit-cell dimensions, space group and atomic coordinates for (II)[link] indicate that no phase change occurs between ambient temperature and 120 K.

The conformations of the independent mol­ecules are all different, as shown by the leading torsion angles (Table 1[link]). While the ester moieties are essentially planar in each of (I)[link] and (II)[link], there are significant differences between the mol­ecules, particularly as shown by the torsion angles about the

[Scheme 1]
bonds On11—Cn12 and Cn12—Cn21 (n = 1 or 2) in (I)[link] and the corresponding angles about the bonds O11—C12 and C12—C21 in both (II)[link] and (III). In addition, while the nitro groups in (II)[link] and (III) are almost coplanar with the adjacent aryl rings, in compound (I)[link] the C—NO2 planes make dihedral angles with the adjacent aryl rings of 45.2 (2)° in mol­ecule 1 (defined by n = 1) and 34.4 (2)° in mol­ecule 2 (defined by n = 2). The conformational differences between the two independent mol­ecules in (I)[link] are sufficient to preclude the occurrence of any additional symmetry. The bond lengths and angles in (I)[link] show no unexpected features; those in (II)[link] closely resemble the values reported at ambient temperature (Jones et al., 1989[Jones, P. G., Dólle, A., Kirby, A. J. & Parker, J. K. (1989). Acta Cryst. C45, 234-237.]).

The mol­ecules of (I)[link] are linked by three C—H⋯O hydrogen bonds (Table 2[link]) to form a chain of edge-fused rings. Atom C15 acts as hydrogen-bond donor to atom O21 within the selected asymmetric unit (Fig. 1[link]). Similarly, atom C25 at (x, y, z) acts as donor to atom O11 at (1 + x, 1 + y, z), so generating by translation a C22(12) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [110] direction (Fig. 3[link]). Antiparallel pairs of such chains, related to one another by inversion, are then linked by the final hydrogen bond, in which a nitro O atom is the acceptor (Table 2[link]), and this then generates a chain of edge-fused rings, in which centrosymmetric R44(26) rings are centred at (n, n − [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) and centrosymmetric R44(34) rings are centred at (n + [{1 \over 2}], n, [{1 \over 2}]) (n = zero or integer) (Fig. 3[link]).

The hydrogen-bonded chains (Fig. 3[link]) are linked into (001) sheets by means of several ππ stacking inter­actions. The rings C11–C16 in the type 1 mol­ecules at (x, y, z) and (−x, −y, 1 − z) are parallel, with an inter­planar spacing of 3.457 (2) Å and a ring-centroid separation of 3.763 (2) Å, corresponding to a ring offset of 1.485 (2) Å. These two mol­ecules lie in adjacent chains offset along the [100] direction. Similarly, the rings C21–C26 in the type 2 mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an inter­planar spacing of 3.397 (2) Å, a ring-centroid separation of 3.782 (2) Å and a ring offset of 1.662 (2) Å, and this inter­action links the hydrogen-bonded chains along [010]. Finally, the rings C121–C126 in the mol­ecules at (x, y, z) and (−x, −y, 2 − z) have an inter­planar spacing of 3.530 (2) Å, with a ring-centroid separation of 3.845 (2) Å and a ring offset of 1.523 (2) Å. This stacking inter­action links the hydrogen-bonded chains along the [011] direction, and the combination of inter­actions linking these chains along [100], [010] and [011] suffices to generate a three-dimensional structure.

The supramolecular structure of compound (II)[link] is much simpler than that of (I)[link] and is based on the action of just two C—H⋯O hydrogen bonds (Table 3[link]). Atom C3 in the nitrated ring of the mol­ecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 of the mol­ecule at (1 − x, 1 − y, 1 − z), so forming by inversion an R22(10) ring centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]). At the same time, atom C6 at (x, y, z) acts as donor to ester atom O1 of the mol­ecule at (3 − x, −y, 1 − z), so forming a second R22(10) motif, this time centred at ([{3 \over 2}], 0, [{1 \over 2}]). Propagation of these two hydrogen bonds then generates a C22(12)[R22(10)][R22(10)] chain of rings running parallel to the [2[\overline{1}]0] direction (Fig. 4[link]).

The supramolecular structures of compounds (I)[link] and (II)[link] contrast strongly with that of closely related compound (III), where four independent C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional hydrogen-bonded framework in which it is possible to identify substructures in the form of double and sextuple helices (Vasconcelos et al., 2006[Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o26-o29.]).

[Figure 1]
Figure 1
The two independent mol­ecules in compound (I)[link], showing the atom-labelling scheme and the C—H⋯O hydrogen bond (dashed line) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link], showing a hydrogen-bonded chain of edge-fused rings along [110]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (II)[link], showing the formation of a chain of rings along [2[\overline{1}]0]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (3 − x, −y, 1 − z) and (−2 + x, 1 + y, z), respectively.

Experimental

Samples of the esters (I)[link] and (II)[link] were prepared from benzyl alcohol and the appropriate substituted benzoic acid following a general procedure (Vogel, 1977[Vogel, A. I. (1977). Elementary Practical Organic Chemistry, Part 2, Qualitative Organic Analysis, 2nd ed., p. 75. London: Longmans.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Analysis for compound (I)[link] (m.p. 341–342 K), 1H NMR (CDCl3): δ 5.39 (s, 2H, CH2), 7.37–7.46 (m, 5H, Ph), 7.64 (d, 1H, J = 8.4 Hz, H6), 8.18 (1H, dd, J = 2.0 and 8.4 Hz, H2), 8.52 (1H, d, J = 2.0 Hz, H5); 13C NMR (CDCl3): δ 67.8, 126.6, 128.4, 128.6, 128.8, 130.1, 131.8, 132.2, 133.7, 135.1, 148.0, 163.6. Analysis for compound (II)[link] (m.p. 239–340 K), 1H NMR (CDCl3): δ 5.41 (s, 2H, CH2), 7.35–7.48 (m, 5H, Ph), 8.23 (2H, d, J = 9.0 Hz, H2 and H6), 8.28 (2H, d, J = 9.0 Hz, H3 and H5); 13C NMR (CDCl3): δ 67.7, 123.6, 128.5, 128.7, 128.8, 130.8, 135.3, 135.5, 150.6, 164.5.

Compound (I)[link]

Crystal data
  • C14H10ClNO4

  • Mr = 291.68

  • Triclinic, [P \overline 1]

  • a = 7.3497 (2) Å

  • b = 12.8535 (3) Å

  • c = 14.5334 (4) Å

  • α = 109.976 (1)°

  • β = 94.028 (1)°

  • γ = 92.551 (1)°

  • V = 1283.73 (6) Å3

  • Z = 4

  • Dx = 1.509 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5729 reflections

  • θ = 2.9–27.5°

  • μ = 0.31 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.40 × 0.20 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.867, Tmax = 0.988

  • 25854 measured reflections

  • 5890 independent reflections

  • 4941 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.5°

  • h = −9 → 9

  • k = −16 → 16

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.02

  • 5890 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0407P)2 + 0.6918P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected torsion angles (°) for compounds (I)–(III)

  (I)[link] (I)[link] (II)[link] (III)
  n = 1 n = 2 n = nil n = nil
Cn1—Cn11—On11—Cn12 −169.62 (11) −178.05 (12) −176.24 (17) 177.03 (12)
Cn11—On11—Cn12—Cn21 −84.35 (16) 176.07 (13) 159.40 (18) 93.65 (16)
On11—Cn12—Cn21—Cn22 −66.31 (18) −85.93 (18) 136.8 (2) 89.93 (7)
Note: data for compound (III) are taken from Vasconcelos et al. (2006[Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o26-o29.]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O21 0.95 2.39 3.187 (2) 141
C25—H25⋯O11i 0.95 2.44 3.235 (2) 142
C126—H126⋯O232ii 0.95 2.40 3.345 (2) 176
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y, -z+1.

Compound (II)[link]

Crystal data
  • C14H11NO4

  • Mr = 257.24

  • Monoclinic, P 21 /n

  • a = 6.1574 (6) Å

  • b = 7.4487 (6) Å

  • c = 26.341 (3) Å

  • β = 93.362 (3)°

  • V = 1206.0 (2) Å3

  • Z = 4

  • Dx = 1.417 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2487 reflections

  • θ = 2.9–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.28 × 0.20 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.979, Tmax = 0.997

  • 10597 measured reflections

  • 2672 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.054

  • θmax = 27.6°

  • h = −7 → 7

  • k = −8 → 9

  • l = −34 → 34

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.138

  • S = 1.08

  • 2672 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0435P)2 + 0.8562P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O41i 0.95 2.50 3.387 (2) 156
C6—H6⋯O1ii 0.95 2.59 3.273 (2) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3, -y, -z+1.

Crystals of compound (I)[link] are triclinic; space group P[\overline{1}] was selected and confirmed by the structure analysis. For compound (II)[link], the space group P21/n was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C).

For both compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of benzyl 4-chloro-3-nitrobenzoate, (I) (Fig. 1), and benzyl 4-nitrobenzoate, (II) (Fig. 2), and we compare their supramolecular structures with that in benzyl 3,5-dinitrobenzoate, (III) (Vasconcelos et al., 2006). The structure of (II) was reported some years ago (Jones et al., 1989) using diffraction data collected at ambient temperature, but there was no mention in that report of any direction-specific intermolecular interactions. Hence, we have redetermined this structure using diffraction data collected at 120 K and find in it significant hydrogen bonding which forms a chain of rings motif (Bernstein et al., 1995). The unit-cell dimensions, space group and atomic coordinates for (II) indicate that no phase change occurs between ambient temperature and 120 K.

The conformations of the independent molecules are all different, as shown by the leading torsion angles (Table 1). While the ester moieties are essentially planar in each of (I) and (II), there are significant differences between the molecules, particularly as shown by the torsion angles about the bonds On11—Cn12 and Cn12—Cn21 (n = 1 or 2) in (I) and the corresponding angles about the bonds O11—C12 and C12—C21 in both (II) and (III). In addition, while the nitro groups in (II) and (III) are almost coplanar with the adjacent aryl rings, in compound (I) the C—NO2 planes make dihedral angles with the adjacent aryl rings of 45.2 (2)° in molecule 1 (defined by n = 1) and 34.4 (2)° in molecule 2 (defined by n = 2). The conformational differences between the two independent molecules in (I) are sufficient to preclude the occurrence of any additional symmetry. The bond lengths and angles in (I) show no unexpected features; those in (II) closely resemble the values reported at ambient temperature (Jones et al., 1989).

The molecules of (I) are linked by three C—H···O hydrogen bonds (Table 2) to form a chain of edge-fused rings. Atom C15 acts as hydrogen-bond donor to atom O21 within the selected asymmetric unit (Fig. 1). Similarly, atom C25 at (x, y, z) acts as donor to atom O11 at (1 + x, 1 + y, z), so generating by translation a C22(12) chain (Bernstein et al., 1995) running parallel to the [110] direction (Fig. 3). Anti-parallel pairs of such chains, related to one another by inversion, and then linked by the final hydrogen bond, in which a nitro O atom is the acceptor (Table 2), and this then generates a chain of edge-fused rings, in which centrosymmetric R44(26) rings are centred at (n, n − 1/2, 1/2) (n = zero or integer) and centrosymmetric R44(34) rings are centred at (n + 1/2, n, 1/2) (n = zero or integer) (Fig. 3).

The hydrogen-bonded chains (Fig. 3) are linked into (001) sheets by means of several ππ stacking interactions. The rings C11–C16 in the type 1 molecules at (x, y, z) and (−x, −y, 1 − z) are parallel, with an interplanar spacing of 3.457 (2) Å and a ring-centroid separation of 3.763 (2) Å, corresponding to a ring offset of 1.485 (2) Å. These two molecules lie in adjacent chains offset along the [100] direction. Similarly, the rings C21–C26 in the type 2 molecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an interplanar spacing of 3.397 (2) Å, a ring-centroid separation of 3.782 (2) Å and a ring offset of 1.662 (2) Å, and this interaction links the hydrogen-bonded chains along [010]. Finally the rings C121–C126 in the molecules at (x, y, z) and (−x, −y, 2 − z) have an interplanar spacing of 3.530 (2) Å, with a ring-centroid separation of 3.845 (2) Å and a ring offset of 1.523 (2) Å. This stacking interaction links the hydrogen-bonded chains along the [011] direction, and the combination of interactions linking these chains along [100], [010] and [011] suffices to generate a three-dimensional structure.

The supramolecular structure of compound (II) is much simpler than that of (I) and is based on the action of just two C—H···O hydrogen bonds (Table 3). Atom C3 in the nitrated ring of the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 of the molecule at (1 − x, 1 − y, 1 − z), so forming by inversion an R22(10) ring centred at (1/2, 1/2, 1/2). At the same time, atom C6 at (x, y, z) acts as donor to ester atom O1 of the molecule at (3 − x, −y, 1 − z), so forming a second R22(10) motif, this time centred at (3/2, 0, 1/2). Propagation of these two hydrogen bonds then generates a C22(12)[R22(10)][R22(10)] chain of rings running parallel to the [210] direction (Fig. 4).

The supramolecular structures of compounds (I) and (II) contrast strongly with that of the closely related compound, (III), where four independent C—H···O hydrogen bonds link the molecules into a three-dimensional hydrogen-bonded framework in which it is possible to identify sub-structures in the form of double and sextuple helices (Vasconcelos et al., 2006).

Experimental top

Samples of the esters (I) and (II) were prepared from benzyl alcohol and the appropriate substituted benzoic acid following a general procedure (Vogel, 1977). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Analysis for compound (I): m.p. 341–342 K; 1H NMR (CDCl3, δ, p.p.m.): 5.39 (s, 2H, CH2), 7.37–7.46 (m, 5H, Ph), 7.64 (d, 1H, J = 8.4 Hz, H6), 8.18 (1H, dd, J = 2.0 and 8.4 Hz, H2), 8.52 (1H, d, J = 2.0 Hz, H5); 13C NMR (CDCl3, δ, p.p.m.): 67.8, 126.6, 128.4, 128.6, 128.8, 130.1, 131.8, 132.2, 133.7, 135.1, 148.0, 163.6. Analysis for compound (II): m.p. 239–340 K; 1H NMR (CDCl3, δ, p.p.m.): 5.41 (s, 2H, CH2), 7.35–7.48 (m, 5H, Ph), 8.23 (2H, d, J = 9.0 Hz, H2 and H6), 8.28 (2H, d, J = 9.? Hz, H3 and H5); 13C NMR (CDCl3, δ, p.p.m.): 67.7, 123.6, 128.5, 128.7, 128.8, 130.8, 135.3, 135.5, 150.6, 164.5.

Refinement top

Crystals of compound (I) are triclinic; space group P1 was selected and confirmed by the structure analysis. For compound (II), the space group P21/n was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in compound (I), showing the atom-labelling scheme and the C—H···O hydrogen bond (dashed line) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing a hydrogen-bonded chain of edge-fused rings along [110]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of compound (II), showing the formation of a chain of rings along [210]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (3 − x, −y, 1 − z) and (−2 + x, 1 + y, z), respectively.
(I) Benzyl 4-chloro-3-nitrobenzoate top
Crystal data top
C14H10ClNO4Z = 4
Mr = 291.68F(000) = 600
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3497 (2) ÅCell parameters from 5729 reflections
b = 12.8535 (3) Åθ = 2.9–27.5°
c = 14.5334 (4) ŵ = 0.31 mm1
α = 109.976 (1)°T = 120 K
β = 94.028 (1)°Plate, colourless
γ = 92.551 (1)°0.40 × 0.20 × 0.04 mm
V = 1283.73 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5890 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.867, Tmax = 0.988l = 1818
25854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.6918P]
where P = (Fo2 + 2Fc2)/3
5890 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H10ClNO4γ = 92.551 (1)°
Mr = 291.68V = 1283.73 (6) Å3
Triclinic, P1Z = 4
a = 7.3497 (2) ÅMo Kα radiation
b = 12.8535 (3) ŵ = 0.31 mm1
c = 14.5334 (4) ÅT = 120 K
α = 109.976 (1)°0.40 × 0.20 × 0.04 mm
β = 94.028 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4941 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.988Rint = 0.040
25854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
5890 reflectionsΔρmin = 0.34 e Å3
361 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.20850 (18)0.02977 (12)0.57315 (10)0.0162 (3)
C120.18768 (18)0.10177 (12)0.47587 (10)0.0164 (3)
C130.23793 (19)0.06369 (12)0.40231 (10)0.0163 (3)
N130.22188 (17)0.14479 (10)0.30173 (9)0.0200 (3)
O1310.08141 (16)0.20654 (9)0.27475 (8)0.0281 (3)
O1320.35007 (16)0.14814 (10)0.25163 (8)0.0277 (3)
C140.30567 (19)0.04618 (12)0.42329 (11)0.0172 (3)
Cl140.36433 (5)0.09830 (3)0.33396 (3)0.02208 (10)
C150.32132 (19)0.11771 (12)0.52020 (11)0.0187 (3)
C160.27419 (19)0.08017 (12)0.59466 (11)0.0180 (3)
O110.12839 (15)0.17244 (9)0.63697 (8)0.0223 (2)
C1110.17174 (19)0.07574 (12)0.65225 (10)0.0171 (3)
O1110.19908 (14)0.00275 (8)0.74127 (7)0.0204 (2)
C1120.1990 (2)0.03537 (14)0.82551 (11)0.0219 (3)
C1210.0105 (2)0.05133 (12)0.85412 (10)0.0185 (3)
C1220.0931 (2)0.03917 (13)0.89158 (11)0.0230 (3)
C1230.2667 (2)0.02392 (14)0.91910 (12)0.0266 (3)
C1240.3377 (2)0.08070 (14)0.91071 (11)0.0251 (3)
C1250.2332 (2)0.17128 (14)0.87527 (12)0.0253 (3)
C1260.0605 (2)0.15640 (13)0.84648 (11)0.0224 (3)
C210.70667 (19)0.47155 (12)0.56947 (11)0.0175 (3)
C220.68892 (19)0.40492 (12)0.47103 (11)0.0179 (3)
C230.73954 (19)0.44869 (12)0.40101 (11)0.0180 (3)
N230.71952 (18)0.37312 (11)0.29804 (9)0.0226 (3)
O2310.59118 (16)0.30233 (9)0.27348 (8)0.0301 (3)
O2320.83375 (18)0.38417 (10)0.24384 (9)0.0339 (3)
C240.80848 (19)0.55909 (13)0.42780 (11)0.0194 (3)
Cl240.87071 (5)0.62020 (3)0.34451 (3)0.02569 (11)
C250.8237 (2)0.62549 (13)0.52649 (11)0.0212 (3)
C260.77352 (19)0.58262 (12)0.59712 (11)0.0193 (3)
O2110.66065 (16)0.49559 (9)0.73335 (8)0.0242 (2)
C2110.65568 (19)0.42055 (12)0.64309 (11)0.0181 (3)
O210.61447 (15)0.32259 (9)0.62264 (8)0.0238 (2)
C2120.6180 (3)0.45075 (13)0.81019 (11)0.0275 (4)
C2210.6432 (2)0.54489 (13)0.90611 (11)0.0253 (3)
C2220.8148 (3)0.57419 (15)0.95776 (14)0.0375 (4)
C2230.8381 (4)0.65914 (18)1.04780 (15)0.0559 (7)
C2240.6928 (5)0.71619 (17)1.08681 (15)0.0645 (8)
C2250.5219 (4)0.68898 (16)1.03605 (17)0.0573 (7)
C2260.4956 (3)0.60289 (15)0.94502 (14)0.0363 (4)
H120.13950.17620.46020.020*
H150.36470.19300.53560.022*
H160.28670.12970.66080.022*
H11A0.27290.01960.88230.026*
H11B0.25770.10650.80920.026*
H1220.04510.11150.89840.028*
H1230.33730.08600.94390.032*
H1240.45700.09070.92900.030*
H1250.27990.24310.87080.030*
H1260.00970.21860.82130.027*
H220.64230.32970.45180.021*
H250.86900.70090.54560.025*
H260.78440.62860.66440.023*
H21A0.70070.39230.81110.033*
H21B0.49030.41790.79780.033*
H2220.91680.53560.93100.045*
H2230.95580.67801.08280.067*
H2240.70970.77451.14880.077*
H2250.42120.72901.06310.069*
H2260.37770.58430.91020.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0129 (6)0.0204 (7)0.0151 (7)0.0034 (5)0.0019 (5)0.0056 (6)
C120.0139 (6)0.0168 (7)0.0174 (7)0.0009 (5)0.0007 (5)0.0049 (6)
C130.0151 (7)0.0178 (7)0.0137 (7)0.0022 (5)0.0004 (5)0.0028 (5)
N130.0254 (7)0.0188 (6)0.0155 (6)0.0024 (5)0.0005 (5)0.0058 (5)
O1310.0329 (6)0.0258 (6)0.0197 (6)0.0071 (5)0.0042 (5)0.0027 (5)
O1320.0340 (6)0.0290 (6)0.0205 (6)0.0062 (5)0.0111 (5)0.0070 (5)
C140.0139 (6)0.0203 (7)0.0188 (7)0.0017 (5)0.0009 (5)0.0088 (6)
Cl140.02502 (19)0.02480 (19)0.01950 (19)0.00041 (14)0.00309 (14)0.01159 (15)
C150.0166 (7)0.0171 (7)0.0208 (7)0.0006 (5)0.0002 (6)0.0050 (6)
C160.0167 (7)0.0182 (7)0.0163 (7)0.0003 (5)0.0001 (5)0.0026 (6)
O110.0261 (6)0.0204 (6)0.0205 (5)0.0018 (4)0.0023 (4)0.0078 (4)
C1110.0132 (6)0.0212 (7)0.0162 (7)0.0021 (5)0.0011 (5)0.0053 (6)
O1110.0250 (5)0.0213 (5)0.0138 (5)0.0023 (4)0.0031 (4)0.0050 (4)
C1120.0231 (7)0.0302 (8)0.0129 (7)0.0001 (6)0.0002 (6)0.0086 (6)
C1210.0203 (7)0.0239 (7)0.0109 (7)0.0008 (6)0.0001 (5)0.0058 (6)
C1220.0298 (8)0.0210 (8)0.0186 (7)0.0017 (6)0.0027 (6)0.0072 (6)
C1230.0299 (8)0.0314 (9)0.0213 (8)0.0111 (7)0.0086 (6)0.0103 (7)
C1240.0207 (7)0.0388 (9)0.0172 (7)0.0011 (7)0.0027 (6)0.0115 (7)
C1250.0283 (8)0.0257 (8)0.0230 (8)0.0045 (6)0.0004 (6)0.0111 (7)
C1260.0252 (8)0.0213 (7)0.0205 (8)0.0040 (6)0.0022 (6)0.0067 (6)
C210.0139 (6)0.0176 (7)0.0205 (7)0.0032 (5)0.0010 (5)0.0059 (6)
C220.0151 (7)0.0162 (7)0.0208 (7)0.0020 (5)0.0008 (5)0.0048 (6)
C230.0157 (7)0.0180 (7)0.0179 (7)0.0038 (5)0.0002 (5)0.0029 (6)
N230.0282 (7)0.0210 (7)0.0181 (6)0.0079 (5)0.0012 (5)0.0054 (5)
O2310.0351 (7)0.0241 (6)0.0247 (6)0.0015 (5)0.0059 (5)0.0021 (5)
O2320.0461 (7)0.0318 (7)0.0249 (6)0.0102 (6)0.0154 (5)0.0080 (5)
C240.0140 (7)0.0228 (7)0.0235 (8)0.0029 (6)0.0031 (6)0.0102 (6)
Cl240.0279 (2)0.0266 (2)0.0264 (2)0.00173 (15)0.00612 (15)0.01345 (16)
C250.0175 (7)0.0177 (7)0.0259 (8)0.0013 (6)0.0010 (6)0.0051 (6)
C260.0178 (7)0.0170 (7)0.0196 (7)0.0007 (5)0.0004 (6)0.0020 (6)
O2110.0387 (6)0.0171 (5)0.0161 (5)0.0005 (5)0.0037 (5)0.0048 (4)
C2110.0161 (7)0.0173 (7)0.0192 (7)0.0014 (5)0.0015 (5)0.0047 (6)
O210.0294 (6)0.0175 (5)0.0226 (6)0.0030 (4)0.0004 (4)0.0055 (4)
C2120.0446 (10)0.0204 (8)0.0188 (8)0.0029 (7)0.0022 (7)0.0093 (6)
C2210.0421 (9)0.0177 (7)0.0175 (7)0.0005 (7)0.0025 (7)0.0083 (6)
C2220.0503 (11)0.0281 (9)0.0329 (10)0.0028 (8)0.0084 (8)0.0120 (8)
C2230.0965 (19)0.0336 (11)0.0306 (11)0.0211 (12)0.0235 (12)0.0110 (9)
C2240.146 (3)0.0231 (10)0.0200 (10)0.0124 (13)0.0067 (14)0.0039 (8)
C2250.116 (2)0.0255 (10)0.0433 (13)0.0223 (12)0.0482 (14)0.0184 (9)
C2260.0523 (12)0.0299 (9)0.0352 (10)0.0075 (8)0.0157 (9)0.0193 (8)
Geometric parameters (Å, º) top
C11—C121.394 (2)C21—C221.387 (2)
C11—C161.394 (2)C21—C261.400 (2)
C11—C1111.4957 (19)C21—C2111.493 (2)
C12—C131.384 (2)C22—C231.384 (2)
C12—H120.95C22—H220.95
C13—C141.399 (2)C23—C241.397 (2)
C13—N131.4701 (18)C23—N231.4723 (19)
N13—O1311.2277 (16)N23—O2311.2245 (17)
N13—O1321.2240 (16)N23—O2321.2264 (18)
C14—C151.387 (2)C24—C251.390 (2)
C14—Cl141.7226 (14)C24—Cl241.7283 (15)
C15—C161.385 (2)C25—C261.384 (2)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
O11—C1111.2091 (18)O211—C2111.3334 (18)
C111—O1111.3362 (17)O211—C2121.4665 (18)
O111—C1121.4660 (17)C211—O211.2096 (18)
C112—C1211.499 (2)C212—C2211.494 (2)
C112—H11A0.99C212—H21A0.99
C112—H11B0.99C212—H21B0.99
C121—C1221.390 (2)C221—C2261.386 (3)
C121—C1261.391 (2)C221—C2221.388 (3)
C122—C1231.389 (2)C222—C2231.382 (3)
C122—H1220.95C222—H2220.95
C123—C1241.383 (2)C223—C2241.367 (4)
C123—H1230.95C223—H2230.95
C124—C1251.391 (2)C224—C2251.378 (4)
C124—H1240.95C224—H2240.95
C125—C1261.389 (2)C225—C2261.399 (3)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
C12—C11—C16119.65 (13)C22—C21—C26119.85 (14)
C12—C11—C111118.32 (13)C22—C21—C211118.05 (13)
C16—C11—C111121.88 (13)C26—C21—C211122.09 (13)
C13—C12—C11119.31 (13)C23—C22—C21119.59 (13)
C13—C12—H12120.3C23—C22—H22120.2
C11—C12—H12120.3C21—C22—H22120.2
C12—C13—C14121.42 (13)C22—C23—C24121.10 (13)
C12—C13—N13116.93 (12)C22—C23—N23116.83 (13)
C14—C13—N13121.63 (13)C24—C23—N23122.07 (13)
O131—N13—O132124.53 (13)O231—N23—O232124.87 (13)
O131—N13—C13117.20 (12)O231—N23—C23117.18 (12)
O132—N13—C13118.25 (12)O232—N23—C23117.94 (13)
C15—C14—C13118.64 (13)C25—C24—C23118.85 (13)
C15—C14—Cl14118.24 (11)C25—C24—Cl24117.38 (11)
C13—C14—Cl14123.09 (11)C23—C24—Cl24123.74 (12)
C16—C15—C14120.49 (13)C26—C25—C24120.55 (14)
C16—C15—H15119.8C26—C25—H25119.7
C14—C15—H15119.8C24—C25—H25119.7
C15—C16—C11120.45 (13)C25—C26—C21120.06 (14)
C15—C16—H16119.8C25—C26—H26120.0
C11—C16—H16119.8C21—C26—H26120.0
O11—C111—O111124.79 (13)C211—O211—C212115.06 (11)
O11—C111—C11123.82 (13)O21—C211—O211124.32 (14)
O111—C111—C11111.35 (12)O21—C211—C21123.61 (13)
C111—O111—C112116.41 (11)O211—C211—C21112.07 (12)
O111—C112—C121112.89 (12)O211—C212—C221107.30 (12)
O111—C112—H11A109.0O211—C212—H21A110.3
C121—C112—H11A109.0C221—C212—H21A110.3
O111—C112—H11B109.0O211—C212—H21B110.3
C121—C112—H11B109.0C221—C212—H21B110.3
H11A—C112—H11B107.8H21A—C212—H21B108.5
C122—C121—C126119.19 (14)C226—C221—C222119.33 (17)
C122—C121—C112120.41 (14)C226—C221—C212120.51 (16)
C126—C121—C112120.37 (14)C222—C221—C212120.15 (16)
C123—C122—C121120.09 (15)C223—C222—C221120.4 (2)
C123—C122—H122120.0C223—C222—H222119.8
C121—C122—H122120.0C221—C222—H222119.8
C124—C123—C122120.65 (15)C224—C223—C222120.5 (2)
C124—C123—H123119.7C224—C223—H223119.8
C122—C123—H123119.7C222—C223—H223119.8
C123—C124—C125119.56 (15)C223—C224—C225119.85 (19)
C123—C124—H124120.2C223—C224—H224120.1
C125—C124—H124120.2C225—C224—H224120.1
C126—C125—C124119.86 (15)C224—C225—C226120.5 (2)
C126—C125—H125120.1C224—C225—H225119.8
C124—C125—H125120.1C226—C225—H225119.8
C125—C126—C121120.63 (15)C221—C226—C225119.4 (2)
C125—C126—H126119.7C221—C226—H226120.3
C121—C126—H126119.7C225—C226—H226120.3
C16—C11—C12—C131.9 (2)C26—C21—C22—C230.7 (2)
C111—C11—C12—C13173.75 (12)C211—C21—C22—C23178.29 (12)
C11—C12—C13—C141.3 (2)C21—C22—C23—C240.0 (2)
C11—C12—C13—N13176.93 (12)C21—C22—C23—N23179.21 (12)
C12—C13—N13—O13144.65 (18)C22—C23—N23—O23133.95 (19)
C14—C13—N13—O131137.09 (14)C24—C23—N23—O231146.88 (14)
C12—C13—N13—O132133.62 (14)C22—C23—N23—O232144.74 (14)
C14—C13—N13—O13244.63 (19)C24—C23—N23—O23234.4 (2)
C12—C13—C14—C150.3 (2)C22—C23—C24—C250.8 (2)
N13—C13—C14—C15178.46 (13)N23—C23—C24—C25179.91 (13)
C12—C13—C14—Cl14178.26 (11)C22—C23—C24—Cl24178.83 (11)
N13—C13—C14—Cl143.6 (2)N23—C23—C24—Cl242.0 (2)
C13—C14—C15—C161.3 (2)C23—C24—C25—C260.8 (2)
Cl14—C14—C15—C16179.37 (11)Cl24—C24—C25—C26178.94 (11)
C14—C15—C16—C110.7 (2)C24—C25—C26—C210.0 (2)
C12—C11—C16—C151.0 (2)C22—C21—C26—C250.7 (2)
C111—C11—C16—C15174.58 (13)C211—C21—C26—C25178.24 (13)
C12—C11—C111—O111.5 (2)C212—O211—C211—O212.1 (2)
C16—C11—C111—O11174.06 (14)C212—O211—C211—C21178.05 (12)
C12—C11—C111—O111179.41 (12)C22—C21—C211—O216.4 (2)
C16—C11—C111—O1113.81 (19)C26—C21—C211—O21172.60 (14)
O11—C111—O111—C1128.2 (2)C22—C21—C211—O211173.46 (12)
C11—C111—O111—C112169.62 (11)C26—C21—C211—O2117.6 (2)
C111—O111—C112—C12184.35 (16)C211—O211—C212—C221176.07 (13)
O111—C112—C121—C12266.31 (18)O211—C212—C221—C22694.89 (17)
O111—C112—C121—C126115.78 (15)O211—C212—C221—C22285.93 (18)
C126—C121—C122—C1231.2 (2)C226—C221—C222—C2231.0 (3)
C112—C121—C122—C123179.17 (13)C212—C221—C222—C223178.18 (16)
C121—C122—C123—C1240.7 (2)C221—C222—C223—C2240.6 (3)
C122—C123—C124—C1250.7 (2)C222—C223—C224—C2250.1 (3)
C123—C124—C125—C1261.5 (2)C223—C224—C225—C2260.4 (3)
C124—C125—C126—C1211.0 (2)C222—C221—C226—C2250.7 (2)
C122—C121—C126—C1250.4 (2)C212—C221—C226—C225178.48 (15)
C112—C121—C126—C125178.32 (13)C224—C225—C226—C2210.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O210.952.393.187 (2)141
C25—H25···O11i0.952.443.235 (2)142
C126—H126···O232ii0.952.403.345 (2)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
(II) Benzyl 4-nitrobenzoate top
Crystal data top
C14H11NO4F(000) = 536
Mr = 257.24Dx = 1.417 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2487 reflections
a = 6.1574 (6) Åθ = 2.9–27.5°
b = 7.4487 (6) ŵ = 0.11 mm1
c = 26.341 (3) ÅT = 120 K
β = 93.362 (3)°Plate, colourless
V = 1206.0 (2) Å30.28 × 0.20 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2672 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 89
Tmin = 0.979, Tmax = 0.997l = 3434
10597 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.8562P]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H11NO4V = 1206.0 (2) Å3
Mr = 257.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1574 (6) ŵ = 0.11 mm1
b = 7.4487 (6) ÅT = 120 K
c = 26.341 (3) Å0.28 × 0.20 × 0.03 mm
β = 93.362 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2672 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1957 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.997Rint = 0.054
10597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.08Δρmax = 0.45 e Å3
2672 reflectionsΔρmin = 0.22 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1386 (3)0.1688 (3)0.44838 (7)0.0242 (4)
C20.9277 (3)0.2336 (3)0.43893 (7)0.0250 (5)
C30.8139 (3)0.3011 (3)0.47862 (7)0.0251 (4)
C40.9128 (3)0.2994 (3)0.52699 (7)0.0244 (4)
N40.7922 (3)0.3687 (2)0.56955 (6)0.0275 (4)
O410.6106 (2)0.4329 (2)0.55980 (6)0.0354 (4)
O420.8790 (3)0.3594 (2)0.61266 (5)0.0407 (4)
C51.1214 (3)0.2354 (3)0.53756 (7)0.0263 (5)
C61.2341 (3)0.1701 (3)0.49756 (7)0.0257 (5)
C111.2672 (3)0.0901 (3)0.40727 (7)0.0261 (5)
O11.4438 (2)0.0215 (2)0.41525 (6)0.0376 (4)
O111.1642 (2)0.1022 (2)0.36149 (5)0.0306 (4)
C121.2718 (4)0.0186 (3)0.31951 (8)0.0311 (5)
C211.1031 (3)0.0140 (3)0.27737 (8)0.0269 (5)
C221.1441 (4)0.0230 (3)0.22716 (8)0.0324 (5)
C230.9863 (4)0.0105 (3)0.18803 (8)0.0382 (6)
C240.7881 (4)0.0802 (3)0.19883 (9)0.0375 (6)
C250.7466 (4)0.1201 (3)0.24858 (9)0.0334 (5)
C260.9023 (4)0.0893 (3)0.28737 (8)0.0311 (5)
H20.86200.23150.40540.030*
H30.67100.34760.47260.030*
H51.18530.23640.57130.032*
H61.37790.12580.50370.031*
H12A1.33960.09630.33070.037*
H12B1.38690.09860.30780.037*
H221.28080.07160.21930.039*
H231.01640.01510.15380.046*
H240.67990.10090.17230.045*
H250.60970.16920.25610.040*
H260.87260.11960.32130.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (11)0.0196 (10)0.0276 (10)0.0044 (8)0.0020 (8)0.0021 (8)
C20.0258 (11)0.0235 (10)0.0248 (10)0.0011 (9)0.0050 (8)0.0031 (8)
C30.0230 (11)0.0220 (10)0.0297 (10)0.0002 (9)0.0037 (8)0.0043 (8)
C40.0265 (11)0.0190 (10)0.0275 (10)0.0024 (9)0.0003 (8)0.0027 (8)
N40.0275 (10)0.0266 (9)0.0280 (9)0.0006 (8)0.0013 (7)0.0036 (7)
O410.0287 (9)0.0420 (10)0.0354 (8)0.0103 (7)0.0000 (7)0.0016 (7)
O420.0378 (10)0.0580 (11)0.0256 (8)0.0084 (8)0.0035 (7)0.0006 (7)
C50.0263 (11)0.0270 (11)0.0250 (10)0.0019 (9)0.0044 (8)0.0037 (8)
C60.0226 (11)0.0232 (10)0.0308 (10)0.0014 (9)0.0036 (8)0.0040 (8)
C110.0248 (11)0.0246 (11)0.0284 (10)0.0010 (9)0.0023 (8)0.0024 (8)
O10.0276 (9)0.0507 (10)0.0338 (8)0.0114 (8)0.0039 (7)0.0030 (7)
O110.0309 (8)0.0359 (9)0.0245 (7)0.0079 (7)0.0034 (6)0.0042 (6)
C120.0286 (12)0.0349 (12)0.0298 (10)0.0055 (10)0.0007 (9)0.0033 (9)
C210.0271 (11)0.0265 (11)0.0269 (10)0.0066 (9)0.0011 (8)0.0001 (8)
C220.0331 (13)0.0322 (12)0.0324 (11)0.0010 (10)0.0061 (9)0.0001 (9)
C230.0461 (15)0.0430 (14)0.0261 (11)0.0074 (12)0.0084 (10)0.0020 (10)
C240.0394 (14)0.0362 (13)0.0357 (12)0.0029 (11)0.0093 (10)0.0071 (10)
C250.0265 (12)0.0328 (12)0.0408 (12)0.0006 (10)0.0012 (9)0.0042 (10)
C260.0335 (12)0.0315 (12)0.0282 (10)0.0013 (10)0.0012 (9)0.0033 (9)
Geometric parameters (Å, º) top
C1—C61.391 (3)O11—C121.461 (2)
C1—C21.394 (3)C12—C211.495 (3)
C1—C111.498 (3)C12—H12A0.99
C2—C31.387 (3)C12—H12B0.99
C2—H20.95C21—C221.389 (3)
C3—C41.380 (3)C21—C261.397 (3)
C3—H30.95C22—C231.397 (3)
C4—C51.382 (3)C22—H220.95
C4—N41.474 (3)C23—C241.371 (3)
N4—O421.228 (2)C23—H230.95
N4—O411.229 (2)C24—C251.382 (3)
C5—C61.384 (3)C24—H240.95
C5—H50.95C25—C261.379 (3)
C6—H60.95C25—H250.95
C11—O11.209 (2)C26—H260.95
C11—O111.332 (2)
C6—C1—C2120.15 (19)O11—C12—C21107.78 (17)
C6—C1—C11117.62 (18)O11—C12—H12A110.2
C2—C1—C11122.20 (17)C21—C12—H12A110.1
C3—C2—C1119.85 (18)O11—C12—H12B110.1
C3—C2—H2120.1C21—C12—H12B110.2
C1—C2—H2120.1H12A—C12—H12B108.5
C4—C3—C2118.51 (19)C22—C21—C26118.1 (2)
C4—C3—H3120.7C22—C21—C12121.2 (2)
C2—C3—H3120.7C26—C21—C12120.61 (18)
C3—C4—C5122.95 (19)C21—C22—C23120.7 (2)
C3—C4—N4118.95 (18)C21—C22—H22119.7
C5—C4—N4118.09 (17)C23—C22—H22119.7
O42—N4—O41123.81 (18)C24—C23—C22120.2 (2)
O42—N4—C4118.16 (17)C24—C23—H23119.9
O41—N4—C4118.03 (16)C22—C23—H23119.9
C4—C5—C6117.99 (18)C23—C24—C25119.6 (2)
C4—C5—H5121.0C23—C24—H24120.2
C6—C5—H5121.0C25—C24—H24120.2
C5—C6—C1120.54 (19)C26—C25—C24120.5 (2)
C5—C6—H6119.7C26—C25—H25119.7
C1—C6—H6119.7C24—C25—H25119.7
O1—C11—O11124.17 (19)C25—C26—C21120.8 (2)
O1—C11—C1123.23 (18)C25—C26—H26119.6
O11—C11—C1112.60 (17)C21—C26—H26119.6
C11—O11—C12116.33 (16)
C6—C1—C2—C30.6 (3)C6—C1—C11—O11177.47 (18)
C11—C1—C2—C3178.45 (19)C2—C1—C11—O114.7 (3)
C1—C2—C3—C41.1 (3)O1—C11—O11—C122.9 (3)
C2—C3—C4—C50.9 (3)C1—C11—O11—C12176.24 (17)
C2—C3—C4—N4179.23 (18)C11—O11—C12—C21159.40 (18)
C3—C4—N4—O42177.05 (19)O11—C12—C21—C22136.8 (2)
C5—C4—N4—O423.1 (3)O11—C12—C21—C2645.7 (3)
C3—C4—N4—O413.1 (3)C26—C21—C22—C231.5 (3)
C5—C4—N4—O41176.81 (18)C12—C21—C22—C23179.0 (2)
C3—C4—C5—C60.2 (3)C21—C22—C23—C240.2 (3)
N4—C4—C5—C6179.89 (18)C22—C23—C24—C251.1 (4)
C4—C5—C6—C10.2 (3)C23—C24—C25—C260.4 (4)
C2—C1—C6—C50.0 (3)C24—C25—C26—C211.3 (3)
C11—C1—C6—C5177.88 (19)C22—C21—C26—C252.2 (3)
C6—C1—C11—O13.4 (3)C12—C21—C26—C25179.8 (2)
C2—C1—C11—O1174.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O41i0.952.503.387 (2)156
C6—H6···O1ii0.952.593.273 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H10ClNO4C14H11NO4
Mr291.68257.24
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)120120
a, b, c (Å)7.3497 (2), 12.8535 (3), 14.5334 (4)6.1574 (6), 7.4487 (6), 26.341 (3)
α, β, γ (°)109.976 (1), 94.028 (1), 92.551 (1)90, 93.362 (3), 90
V3)1283.73 (6)1206.0 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.310.11
Crystal size (mm)0.40 × 0.20 × 0.040.28 × 0.20 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.867, 0.9880.979, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
25854, 5890, 4941 10597, 2672, 1957
Rint0.0400.054
(sin θ/λ)max1)0.6500.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.02 0.055, 0.138, 1.08
No. of reflections58902672
No. of parameters361172
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.340.45, 0.22

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O210.952.393.187 (2)141
C25—H25···O11i0.952.443.235 (2)142
C126—H126···O232ii0.952.403.345 (2)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O41i0.952.503.387 (2)156
C6—H6···O1ii0.952.593.273 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1.
Selected torsion angles (°) for compounds (I)–(III) top
Parameter(I)(I)(II)(III)
n12nilnil
Cn1-Cn11-On11-Cn12-169.62 (11)-178.05 (12)-176.24 (17)177.03 (12)
Cn11-On11-Cn12-Cn21-84.35 (16)176.07 (13)159.40 (18)93.65 (16)
On11-Cn12-Cn21-Cn22-66.31 (18)-85.93 (18)136.8 (2)89.93 (7)
Data for compound (III) are taken from Vasconcelos et al. (2006).
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJones, P. G., Dólle, A., Kirby, A. J. & Parker, J. K. (1989). Acta Cryst. C45, 234–237.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o26–o29.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVogel, A. I. (1977). Elementary Practical Organic Chemistry, Part 2, Qualitative Organic Analysis, 2nd ed., p. 75. London: Longmans.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds