organic compounds
A three-dimensional framework of π-stacked hydrogen-bonded chains in benzyl 4-chloro-3-nitrobenzoate, and chains of hydrogen-bonded rings in benzyl 4-nitrobenzoate, redetermined at 120 K
aComplexo Tecnológico de Medicamentos Farmanguinhos, Avenida Comandante Guaranys 447, Jacarepaguá, Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
Benzyl 4-chloro-3-nitrobenzoate, C14H10ClNO4, crystallizes with Z′ = 2 in the P. The molecules are linked by three independent C—H⋯O hydrogen bonds into chains of edge-fused R44(26) and R44(34) rings, and these chains are linked into a three-dimensional framework structure by aromatic π–π stacking interactions. In benzyl 4-nitrobenzoate, C14H11NO4, the molecules are linked by two independent C—H⋯O hydrogen bonds into chains containing two types of R22(10) ring.
Comment
We report here the structures of benzyl 4-chloro-3-nitrobenzoate, (I) (Fig. 1), and benzyl 4-nitrobenzoate, (II) (Fig. 2), and compare their supramolecular structures with that in benzyl 3,5-dinitrobenzoate, (III) (Vasconcelos et al., 2006). The structure of (II) was reported some years ago (Jones et al., 1989) using diffraction data collected at ambient temperature, but there was no mention in that report of any direction-specific intermolecular interactions. Hence, we have redetermined this structure using diffraction data collected at 120 K and find in it significant hydrogen bonding which forms a chain of rings motif (Bernstein et al., 1995). The unit-cell dimensions, and atomic coordinates for (II) indicate that no phase change occurs between ambient temperature and 120 K.
The conformations of the independent molecules are all different, as shown by the leading torsion angles (Table 1). While the ester moieties are essentially planar in each of (I) and (II), there are significant differences between the molecules, particularly as shown by the torsion angles about the
bonds On11—Cn12 and Cn12—Cn21 (n = 1 or 2) in (I) and the corresponding angles about the bonds O11—C12 and C12—C21 in both (II) and (III). In addition, while the nitro groups in (II) and (III) are almost coplanar with the adjacent aryl rings, in compound (I) the C—NO2 planes make dihedral angles with the adjacent aryl rings of 45.2 (2)° in molecule 1 (defined by n = 1) and 34.4 (2)° in molecule 2 (defined by n = 2). The conformational differences between the two independent molecules in (I) are sufficient to preclude the occurrence of any additional symmetry. The bond lengths and angles in (I) show no unexpected features; those in (II) closely resemble the values reported at ambient temperature (Jones et al., 1989).The molecules of (I) are linked by three C—H⋯O hydrogen bonds (Table 2) to form a chain of edge-fused rings. Atom C15 acts as hydrogen-bond donor to atom O21 within the selected (Fig. 1). Similarly, atom C25 at (x, y, z) acts as donor to atom O11 at (1 + x, 1 + y, z), so generating by translation a C22(12) chain (Bernstein et al., 1995) running parallel to the [110] direction (Fig. 3). Antiparallel pairs of such chains, related to one another by inversion, are then linked by the final hydrogen bond, in which a nitro O atom is the acceptor (Table 2), and this then generates a chain of edge-fused rings, in which centrosymmetric R44(26) rings are centred at (n, n − , ) (n = zero or integer) and centrosymmetric R44(34) rings are centred at (n + , n, ) (n = zero or integer) (Fig. 3).
The hydrogen-bonded chains (Fig. 3) are linked into (001) sheets by means of several π–π stacking interactions. The rings C11–C16 in the type 1 molecules at (x, y, z) and (−x, −y, 1 − z) are parallel, with an interplanar spacing of 3.457 (2) Å and a ring-centroid separation of 3.763 (2) Å, corresponding to a ring offset of 1.485 (2) Å. These two molecules lie in adjacent chains offset along the [100] direction. Similarly, the rings C21–C26 in the type 2 molecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an interplanar spacing of 3.397 (2) Å, a ring-centroid separation of 3.782 (2) Å and a ring offset of 1.662 (2) Å, and this interaction links the hydrogen-bonded chains along [010]. Finally, the rings C121–C126 in the molecules at (x, y, z) and (−x, −y, 2 − z) have an interplanar spacing of 3.530 (2) Å, with a ring-centroid separation of 3.845 (2) Å and a ring offset of 1.523 (2) Å. This stacking interaction links the hydrogen-bonded chains along the [011] direction, and the combination of interactions linking these chains along [100], [010] and [011] suffices to generate a three-dimensional structure.
The supramolecular structure of compound (II) is much simpler than that of (I) and is based on the action of just two C—H⋯O hydrogen bonds (Table 3). Atom C3 in the nitrated ring of the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 of the molecule at (1 − x, 1 − y, 1 − z), so forming by inversion an R22(10) ring centred at (, , ). At the same time, atom C6 at (x, y, z) acts as donor to ester atom O1 of the molecule at (3 − x, −y, 1 − z), so forming a second R22(10) motif, this time centred at (, 0, ). Propagation of these two hydrogen bonds then generates a C22(12)[R22(10)][R22(10)] chain of rings running parallel to the [20] direction (Fig. 4).
The supramolecular structures of compounds (I) and (II) contrast strongly with that of closely related compound (III), where four independent C—H⋯O hydrogen bonds link the molecules into a three-dimensional hydrogen-bonded framework in which it is possible to identify substructures in the form of double and sextuple helices (Vasconcelos et al., 2006).
Experimental
Samples of the and (II) were prepared from benzyl alcohol and the appropriate substituted benzoic acid following a general procedure (Vogel, 1977). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Analysis for compound (I) (m.p. 341–342 K), 1H NMR (CDCl3): δ 5.39 (s, 2H, CH2), 7.37–7.46 (m, 5H, Ph), 7.64 (d, 1H, J = 8.4 Hz, H6), 8.18 (1H, dd, J = 2.0 and 8.4 Hz, H2), 8.52 (1H, d, J = 2.0 Hz, H5); 13C NMR (CDCl3): δ 67.8, 126.6, 128.4, 128.6, 128.8, 130.1, 131.8, 132.2, 133.7, 135.1, 148.0, 163.6. Analysis for compound (II) (m.p. 239–340 K), 1H NMR (CDCl3): δ 5.41 (s, 2H, CH2), 7.35–7.48 (m, 5H, Ph), 8.23 (2H, d, J = 9.0 Hz, H2 and H6), 8.28 (2H, d, J = 9.0 Hz, H3 and H5); 13C NMR (CDCl3): δ 67.7, 123.6, 128.5, 128.7, 128.8, 130.8, 135.3, 135.5, 150.6, 164.5.
(I)Compound (I)
Crystal data
|
Refinement
|
Compound (II)
Crystal data
|
Refinement
|
Crystals of compound (I) are triclinic; P was selected and confirmed by the structure analysis. For compound (II), the P21/n was uniquely assigned from the All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C).
For both compounds, data collection: COLLECT (Nonius, 1999); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S0108270106008535/sk3011sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270106008535/sk3011Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270106008535/sk3011IIsup3.hkl
Samples of the δ, p.p.m.): 5.39 (s, 2H, CH2), 7.37–7.46 (m, 5H, Ph), 7.64 (d, 1H, J = 8.4 Hz, H6), 8.18 (1H, dd, J = 2.0 and 8.4 Hz, H2), 8.52 (1H, d, J = 2.0 Hz, H5); 13C NMR (CDCl3, δ, p.p.m.): 67.8, 126.6, 128.4, 128.6, 128.8, 130.1, 131.8, 132.2, 133.7, 135.1, 148.0, 163.6. Analysis for compound (II): m.p. 239–340 K; 1H NMR (CDCl3, δ, p.p.m.): 5.41 (s, 2H, CH2), 7.35–7.48 (m, 5H, Ph), 8.23 (2H, d, J = 9.0 Hz, H2 and H6), 8.28 (2H, d, J = 9.? Hz, H3 and H5); 13C NMR (CDCl3, δ, p.p.m.): 67.7, 123.6, 128.5, 128.7, 128.8, 130.8, 135.3, 135.5, 150.6, 164.5.
(I) and (II) were prepared from benzyl alcohol and the appropriate substituted benzoic acid following a general procedure (Vogel, 1977). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Analysis for compound (I): m.p. 341–342 K; 1H NMR (CDCl3,Crystals of compound (I) are triclinic; 1 was selected and confirmed by the structure analysis. For compound (II), the P21/n was uniquely assigned from the All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C).
PFor both compounds, data collection: COLLECT (Nonius, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).Fig. 1. The two independent molecules in compound (I), showing the atom-labelling scheme and the C—H···O hydrogen bond (dashed line) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 3. A stereoview of part of the crystal structure of compound (I), showing a hydrogen-bonded chain of edge-fused rings along [110]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. | |
Fig. 4. Part of the crystal structure of compound (II), showing the formation of a chain of rings along [210]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (3 − x, −y, 1 − z) and (−2 + x, 1 + y, z), respectively. |
C14H10ClNO4 | Z = 4 |
Mr = 291.68 | F(000) = 600 |
Triclinic, P1 | Dx = 1.509 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3497 (2) Å | Cell parameters from 5729 reflections |
b = 12.8535 (3) Å | θ = 2.9–27.5° |
c = 14.5334 (4) Å | µ = 0.31 mm−1 |
α = 109.976 (1)° | T = 120 K |
β = 94.028 (1)° | Plate, colourless |
γ = 92.551 (1)° | 0.40 × 0.20 × 0.04 mm |
V = 1283.73 (6) Å3 |
Nonius KappaCCD area-detector diffractometer | 5890 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 4941 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −16→16 |
Tmin = 0.867, Tmax = 0.988 | l = −18→18 |
25854 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.6918P] where P = (Fo2 + 2Fc2)/3 |
5890 reflections | (Δ/σ)max = 0.001 |
361 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C14H10ClNO4 | γ = 92.551 (1)° |
Mr = 291.68 | V = 1283.73 (6) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.3497 (2) Å | Mo Kα radiation |
b = 12.8535 (3) Å | µ = 0.31 mm−1 |
c = 14.5334 (4) Å | T = 120 K |
α = 109.976 (1)° | 0.40 × 0.20 × 0.04 mm |
β = 94.028 (1)° |
Nonius KappaCCD area-detector diffractometer | 5890 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 4941 reflections with I > 2σ(I) |
Tmin = 0.867, Tmax = 0.988 | Rint = 0.040 |
25854 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.35 e Å−3 |
5890 reflections | Δρmin = −0.34 e Å−3 |
361 parameters |
x | y | z | Uiso*/Ueq | ||
C11 | 0.20850 (18) | −0.02977 (12) | 0.57315 (10) | 0.0162 (3) | |
C12 | 0.18768 (18) | −0.10177 (12) | 0.47587 (10) | 0.0164 (3) | |
C13 | 0.23793 (19) | −0.06369 (12) | 0.40231 (10) | 0.0163 (3) | |
N13 | 0.22188 (17) | −0.14479 (10) | 0.30173 (9) | 0.0200 (3) | |
O131 | 0.08141 (16) | −0.20654 (9) | 0.27475 (8) | 0.0281 (3) | |
O132 | 0.35007 (16) | −0.14814 (10) | 0.25163 (8) | 0.0277 (3) | |
C14 | 0.30567 (19) | 0.04618 (12) | 0.42329 (11) | 0.0172 (3) | |
Cl14 | 0.36433 (5) | 0.09830 (3) | 0.33396 (3) | 0.02208 (10) | |
C15 | 0.32132 (19) | 0.11771 (12) | 0.52020 (11) | 0.0187 (3) | |
C16 | 0.27419 (19) | 0.08017 (12) | 0.59466 (11) | 0.0180 (3) | |
O11 | 0.12839 (15) | −0.17244 (9) | 0.63697 (8) | 0.0223 (2) | |
C111 | 0.17174 (19) | −0.07574 (12) | 0.65225 (10) | 0.0171 (3) | |
O111 | 0.19908 (14) | 0.00275 (8) | 0.74127 (7) | 0.0204 (2) | |
C112 | 0.1990 (2) | −0.03537 (14) | 0.82551 (11) | 0.0219 (3) | |
C121 | 0.0105 (2) | −0.05133 (12) | 0.85412 (10) | 0.0185 (3) | |
C122 | −0.0931 (2) | 0.03917 (13) | 0.89158 (11) | 0.0230 (3) | |
C123 | −0.2667 (2) | 0.02392 (14) | 0.91910 (12) | 0.0266 (3) | |
C124 | −0.3377 (2) | −0.08070 (14) | 0.91071 (11) | 0.0251 (3) | |
C125 | −0.2332 (2) | −0.17128 (14) | 0.87527 (12) | 0.0253 (3) | |
C126 | −0.0605 (2) | −0.15640 (13) | 0.84648 (11) | 0.0224 (3) | |
C21 | 0.70667 (19) | 0.47155 (12) | 0.56947 (11) | 0.0175 (3) | |
C22 | 0.68892 (19) | 0.40492 (12) | 0.47103 (11) | 0.0179 (3) | |
C23 | 0.73954 (19) | 0.44869 (12) | 0.40101 (11) | 0.0180 (3) | |
N23 | 0.71952 (18) | 0.37312 (11) | 0.29804 (9) | 0.0226 (3) | |
O231 | 0.59118 (16) | 0.30233 (9) | 0.27348 (8) | 0.0301 (3) | |
O232 | 0.83375 (18) | 0.38417 (10) | 0.24384 (9) | 0.0339 (3) | |
C24 | 0.80848 (19) | 0.55909 (13) | 0.42780 (11) | 0.0194 (3) | |
Cl24 | 0.87071 (5) | 0.62020 (3) | 0.34451 (3) | 0.02569 (11) | |
C25 | 0.8237 (2) | 0.62549 (13) | 0.52649 (11) | 0.0212 (3) | |
C26 | 0.77352 (19) | 0.58262 (12) | 0.59712 (11) | 0.0193 (3) | |
O211 | 0.66065 (16) | 0.49559 (9) | 0.73335 (8) | 0.0242 (2) | |
C211 | 0.65568 (19) | 0.42055 (12) | 0.64309 (11) | 0.0181 (3) | |
O21 | 0.61447 (15) | 0.32259 (9) | 0.62264 (8) | 0.0238 (2) | |
C212 | 0.6180 (3) | 0.45075 (13) | 0.81019 (11) | 0.0275 (4) | |
C221 | 0.6432 (2) | 0.54489 (13) | 0.90611 (11) | 0.0253 (3) | |
C222 | 0.8148 (3) | 0.57419 (15) | 0.95776 (14) | 0.0375 (4) | |
C223 | 0.8381 (4) | 0.65914 (18) | 1.04780 (15) | 0.0559 (7) | |
C224 | 0.6928 (5) | 0.71619 (17) | 1.08681 (15) | 0.0645 (8) | |
C225 | 0.5219 (4) | 0.68898 (16) | 1.03605 (17) | 0.0573 (7) | |
C226 | 0.4956 (3) | 0.60289 (15) | 0.94502 (14) | 0.0363 (4) | |
H12 | 0.1395 | −0.1762 | 0.4602 | 0.020* | |
H15 | 0.3647 | 0.1930 | 0.5356 | 0.022* | |
H16 | 0.2867 | 0.1297 | 0.6608 | 0.022* | |
H11A | 0.2729 | 0.0196 | 0.8823 | 0.026* | |
H11B | 0.2577 | −0.1065 | 0.8092 | 0.026* | |
H122 | −0.0451 | 0.1115 | 0.8984 | 0.028* | |
H123 | −0.3373 | 0.0860 | 0.9439 | 0.032* | |
H124 | −0.4570 | −0.0907 | 0.9290 | 0.030* | |
H125 | −0.2799 | −0.2431 | 0.8708 | 0.030* | |
H126 | 0.0097 | −0.2186 | 0.8213 | 0.027* | |
H22 | 0.6423 | 0.3297 | 0.4518 | 0.021* | |
H25 | 0.8690 | 0.7009 | 0.5456 | 0.025* | |
H26 | 0.7844 | 0.6286 | 0.6644 | 0.023* | |
H21A | 0.7007 | 0.3923 | 0.8111 | 0.033* | |
H21B | 0.4903 | 0.4179 | 0.7978 | 0.033* | |
H222 | 0.9168 | 0.5356 | 0.9310 | 0.045* | |
H223 | 0.9558 | 0.6780 | 1.0828 | 0.067* | |
H224 | 0.7097 | 0.7745 | 1.1488 | 0.077* | |
H225 | 0.4212 | 0.7290 | 1.0631 | 0.069* | |
H226 | 0.3777 | 0.5843 | 0.9102 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0129 (6) | 0.0204 (7) | 0.0151 (7) | 0.0034 (5) | 0.0019 (5) | 0.0056 (6) |
C12 | 0.0139 (6) | 0.0168 (7) | 0.0174 (7) | 0.0009 (5) | 0.0007 (5) | 0.0049 (6) |
C13 | 0.0151 (7) | 0.0178 (7) | 0.0137 (7) | 0.0022 (5) | −0.0004 (5) | 0.0028 (5) |
N13 | 0.0254 (7) | 0.0188 (6) | 0.0155 (6) | 0.0024 (5) | 0.0005 (5) | 0.0058 (5) |
O131 | 0.0329 (6) | 0.0258 (6) | 0.0197 (6) | −0.0071 (5) | −0.0042 (5) | 0.0027 (5) |
O132 | 0.0340 (6) | 0.0290 (6) | 0.0205 (6) | 0.0062 (5) | 0.0111 (5) | 0.0070 (5) |
C14 | 0.0139 (6) | 0.0203 (7) | 0.0188 (7) | 0.0017 (5) | 0.0009 (5) | 0.0088 (6) |
Cl14 | 0.02502 (19) | 0.02480 (19) | 0.01950 (19) | 0.00041 (14) | 0.00309 (14) | 0.01159 (15) |
C15 | 0.0166 (7) | 0.0171 (7) | 0.0208 (7) | −0.0006 (5) | 0.0002 (6) | 0.0050 (6) |
C16 | 0.0167 (7) | 0.0182 (7) | 0.0163 (7) | 0.0003 (5) | −0.0001 (5) | 0.0026 (6) |
O11 | 0.0261 (6) | 0.0204 (6) | 0.0205 (5) | −0.0018 (4) | 0.0023 (4) | 0.0078 (4) |
C111 | 0.0132 (6) | 0.0212 (7) | 0.0162 (7) | 0.0021 (5) | 0.0011 (5) | 0.0053 (6) |
O111 | 0.0250 (5) | 0.0213 (5) | 0.0138 (5) | −0.0023 (4) | 0.0031 (4) | 0.0050 (4) |
C112 | 0.0231 (7) | 0.0302 (8) | 0.0129 (7) | −0.0001 (6) | 0.0002 (6) | 0.0086 (6) |
C121 | 0.0203 (7) | 0.0239 (7) | 0.0109 (7) | 0.0008 (6) | 0.0001 (5) | 0.0058 (6) |
C122 | 0.0298 (8) | 0.0210 (8) | 0.0186 (7) | 0.0017 (6) | 0.0027 (6) | 0.0072 (6) |
C123 | 0.0299 (8) | 0.0314 (9) | 0.0213 (8) | 0.0111 (7) | 0.0086 (6) | 0.0103 (7) |
C124 | 0.0207 (7) | 0.0388 (9) | 0.0172 (7) | 0.0011 (7) | 0.0027 (6) | 0.0115 (7) |
C125 | 0.0283 (8) | 0.0257 (8) | 0.0230 (8) | −0.0045 (6) | −0.0004 (6) | 0.0111 (7) |
C126 | 0.0252 (8) | 0.0213 (7) | 0.0205 (8) | 0.0040 (6) | 0.0022 (6) | 0.0067 (6) |
C21 | 0.0139 (6) | 0.0176 (7) | 0.0205 (7) | 0.0032 (5) | 0.0010 (5) | 0.0059 (6) |
C22 | 0.0151 (7) | 0.0162 (7) | 0.0208 (7) | 0.0020 (5) | −0.0008 (5) | 0.0048 (6) |
C23 | 0.0157 (7) | 0.0180 (7) | 0.0179 (7) | 0.0038 (5) | 0.0002 (5) | 0.0029 (6) |
N23 | 0.0282 (7) | 0.0210 (7) | 0.0181 (6) | 0.0079 (5) | 0.0012 (5) | 0.0054 (5) |
O231 | 0.0351 (7) | 0.0241 (6) | 0.0247 (6) | −0.0015 (5) | −0.0059 (5) | 0.0021 (5) |
O232 | 0.0461 (7) | 0.0318 (7) | 0.0249 (6) | 0.0102 (6) | 0.0154 (5) | 0.0080 (5) |
C24 | 0.0140 (7) | 0.0228 (7) | 0.0235 (8) | 0.0029 (6) | 0.0031 (6) | 0.0102 (6) |
Cl24 | 0.0279 (2) | 0.0266 (2) | 0.0264 (2) | 0.00173 (15) | 0.00612 (15) | 0.01345 (16) |
C25 | 0.0175 (7) | 0.0177 (7) | 0.0259 (8) | −0.0013 (6) | −0.0010 (6) | 0.0051 (6) |
C26 | 0.0178 (7) | 0.0170 (7) | 0.0196 (7) | 0.0007 (5) | 0.0004 (6) | 0.0020 (6) |
O211 | 0.0387 (6) | 0.0171 (5) | 0.0161 (5) | 0.0005 (5) | 0.0037 (5) | 0.0048 (4) |
C211 | 0.0161 (7) | 0.0173 (7) | 0.0192 (7) | 0.0014 (5) | −0.0015 (5) | 0.0047 (6) |
O21 | 0.0294 (6) | 0.0175 (5) | 0.0226 (6) | −0.0030 (4) | 0.0004 (4) | 0.0055 (4) |
C212 | 0.0446 (10) | 0.0204 (8) | 0.0188 (8) | −0.0029 (7) | 0.0022 (7) | 0.0093 (6) |
C221 | 0.0421 (9) | 0.0177 (7) | 0.0175 (7) | −0.0005 (7) | 0.0025 (7) | 0.0083 (6) |
C222 | 0.0503 (11) | 0.0281 (9) | 0.0329 (10) | −0.0028 (8) | −0.0084 (8) | 0.0120 (8) |
C223 | 0.0965 (19) | 0.0336 (11) | 0.0306 (11) | −0.0211 (12) | −0.0235 (12) | 0.0110 (9) |
C224 | 0.146 (3) | 0.0231 (10) | 0.0200 (10) | −0.0124 (13) | 0.0067 (14) | 0.0039 (8) |
C225 | 0.116 (2) | 0.0255 (10) | 0.0433 (13) | 0.0223 (12) | 0.0482 (14) | 0.0184 (9) |
C226 | 0.0523 (12) | 0.0299 (9) | 0.0352 (10) | 0.0075 (8) | 0.0157 (9) | 0.0193 (8) |
C11—C12 | 1.394 (2) | C21—C22 | 1.387 (2) |
C11—C16 | 1.394 (2) | C21—C26 | 1.400 (2) |
C11—C111 | 1.4957 (19) | C21—C211 | 1.493 (2) |
C12—C13 | 1.384 (2) | C22—C23 | 1.384 (2) |
C12—H12 | 0.95 | C22—H22 | 0.95 |
C13—C14 | 1.399 (2) | C23—C24 | 1.397 (2) |
C13—N13 | 1.4701 (18) | C23—N23 | 1.4723 (19) |
N13—O131 | 1.2277 (16) | N23—O231 | 1.2245 (17) |
N13—O132 | 1.2240 (16) | N23—O232 | 1.2264 (18) |
C14—C15 | 1.387 (2) | C24—C25 | 1.390 (2) |
C14—Cl14 | 1.7226 (14) | C24—Cl24 | 1.7283 (15) |
C15—C16 | 1.385 (2) | C25—C26 | 1.384 (2) |
C15—H15 | 0.95 | C25—H25 | 0.95 |
C16—H16 | 0.95 | C26—H26 | 0.95 |
O11—C111 | 1.2091 (18) | O211—C211 | 1.3334 (18) |
C111—O111 | 1.3362 (17) | O211—C212 | 1.4665 (18) |
O111—C112 | 1.4660 (17) | C211—O21 | 1.2096 (18) |
C112—C121 | 1.499 (2) | C212—C221 | 1.494 (2) |
C112—H11A | 0.99 | C212—H21A | 0.99 |
C112—H11B | 0.99 | C212—H21B | 0.99 |
C121—C122 | 1.390 (2) | C221—C226 | 1.386 (3) |
C121—C126 | 1.391 (2) | C221—C222 | 1.388 (3) |
C122—C123 | 1.389 (2) | C222—C223 | 1.382 (3) |
C122—H122 | 0.95 | C222—H222 | 0.95 |
C123—C124 | 1.383 (2) | C223—C224 | 1.367 (4) |
C123—H123 | 0.95 | C223—H223 | 0.95 |
C124—C125 | 1.391 (2) | C224—C225 | 1.378 (4) |
C124—H124 | 0.95 | C224—H224 | 0.95 |
C125—C126 | 1.389 (2) | C225—C226 | 1.399 (3) |
C125—H125 | 0.95 | C225—H225 | 0.95 |
C126—H126 | 0.95 | C226—H226 | 0.95 |
C12—C11—C16 | 119.65 (13) | C22—C21—C26 | 119.85 (14) |
C12—C11—C111 | 118.32 (13) | C22—C21—C211 | 118.05 (13) |
C16—C11—C111 | 121.88 (13) | C26—C21—C211 | 122.09 (13) |
C13—C12—C11 | 119.31 (13) | C23—C22—C21 | 119.59 (13) |
C13—C12—H12 | 120.3 | C23—C22—H22 | 120.2 |
C11—C12—H12 | 120.3 | C21—C22—H22 | 120.2 |
C12—C13—C14 | 121.42 (13) | C22—C23—C24 | 121.10 (13) |
C12—C13—N13 | 116.93 (12) | C22—C23—N23 | 116.83 (13) |
C14—C13—N13 | 121.63 (13) | C24—C23—N23 | 122.07 (13) |
O131—N13—O132 | 124.53 (13) | O231—N23—O232 | 124.87 (13) |
O131—N13—C13 | 117.20 (12) | O231—N23—C23 | 117.18 (12) |
O132—N13—C13 | 118.25 (12) | O232—N23—C23 | 117.94 (13) |
C15—C14—C13 | 118.64 (13) | C25—C24—C23 | 118.85 (13) |
C15—C14—Cl14 | 118.24 (11) | C25—C24—Cl24 | 117.38 (11) |
C13—C14—Cl14 | 123.09 (11) | C23—C24—Cl24 | 123.74 (12) |
C16—C15—C14 | 120.49 (13) | C26—C25—C24 | 120.55 (14) |
C16—C15—H15 | 119.8 | C26—C25—H25 | 119.7 |
C14—C15—H15 | 119.8 | C24—C25—H25 | 119.7 |
C15—C16—C11 | 120.45 (13) | C25—C26—C21 | 120.06 (14) |
C15—C16—H16 | 119.8 | C25—C26—H26 | 120.0 |
C11—C16—H16 | 119.8 | C21—C26—H26 | 120.0 |
O11—C111—O111 | 124.79 (13) | C211—O211—C212 | 115.06 (11) |
O11—C111—C11 | 123.82 (13) | O21—C211—O211 | 124.32 (14) |
O111—C111—C11 | 111.35 (12) | O21—C211—C21 | 123.61 (13) |
C111—O111—C112 | 116.41 (11) | O211—C211—C21 | 112.07 (12) |
O111—C112—C121 | 112.89 (12) | O211—C212—C221 | 107.30 (12) |
O111—C112—H11A | 109.0 | O211—C212—H21A | 110.3 |
C121—C112—H11A | 109.0 | C221—C212—H21A | 110.3 |
O111—C112—H11B | 109.0 | O211—C212—H21B | 110.3 |
C121—C112—H11B | 109.0 | C221—C212—H21B | 110.3 |
H11A—C112—H11B | 107.8 | H21A—C212—H21B | 108.5 |
C122—C121—C126 | 119.19 (14) | C226—C221—C222 | 119.33 (17) |
C122—C121—C112 | 120.41 (14) | C226—C221—C212 | 120.51 (16) |
C126—C121—C112 | 120.37 (14) | C222—C221—C212 | 120.15 (16) |
C123—C122—C121 | 120.09 (15) | C223—C222—C221 | 120.4 (2) |
C123—C122—H122 | 120.0 | C223—C222—H222 | 119.8 |
C121—C122—H122 | 120.0 | C221—C222—H222 | 119.8 |
C124—C123—C122 | 120.65 (15) | C224—C223—C222 | 120.5 (2) |
C124—C123—H123 | 119.7 | C224—C223—H223 | 119.8 |
C122—C123—H123 | 119.7 | C222—C223—H223 | 119.8 |
C123—C124—C125 | 119.56 (15) | C223—C224—C225 | 119.85 (19) |
C123—C124—H124 | 120.2 | C223—C224—H224 | 120.1 |
C125—C124—H124 | 120.2 | C225—C224—H224 | 120.1 |
C126—C125—C124 | 119.86 (15) | C224—C225—C226 | 120.5 (2) |
C126—C125—H125 | 120.1 | C224—C225—H225 | 119.8 |
C124—C125—H125 | 120.1 | C226—C225—H225 | 119.8 |
C125—C126—C121 | 120.63 (15) | C221—C226—C225 | 119.4 (2) |
C125—C126—H126 | 119.7 | C221—C226—H226 | 120.3 |
C121—C126—H126 | 119.7 | C225—C226—H226 | 120.3 |
C16—C11—C12—C13 | 1.9 (2) | C26—C21—C22—C23 | 0.7 (2) |
C111—C11—C12—C13 | −173.75 (12) | C211—C21—C22—C23 | −178.29 (12) |
C11—C12—C13—C14 | −1.3 (2) | C21—C22—C23—C24 | 0.0 (2) |
C11—C12—C13—N13 | 176.93 (12) | C21—C22—C23—N23 | 179.21 (12) |
C12—C13—N13—O131 | 44.65 (18) | C22—C23—N23—O231 | 33.95 (19) |
C14—C13—N13—O131 | −137.09 (14) | C24—C23—N23—O231 | −146.88 (14) |
C12—C13—N13—O132 | −133.62 (14) | C22—C23—N23—O232 | −144.74 (14) |
C14—C13—N13—O132 | 44.63 (19) | C24—C23—N23—O232 | 34.4 (2) |
C12—C13—C14—C15 | −0.3 (2) | C22—C23—C24—C25 | −0.8 (2) |
N13—C13—C14—C15 | −178.46 (13) | N23—C23—C24—C25 | −179.91 (13) |
C12—C13—C14—Cl14 | −178.26 (11) | C22—C23—C24—Cl24 | −178.83 (11) |
N13—C13—C14—Cl14 | 3.6 (2) | N23—C23—C24—Cl24 | 2.0 (2) |
C13—C14—C15—C16 | 1.3 (2) | C23—C24—C25—C26 | 0.8 (2) |
Cl14—C14—C15—C16 | 179.37 (11) | Cl24—C24—C25—C26 | 178.94 (11) |
C14—C15—C16—C11 | −0.7 (2) | C24—C25—C26—C21 | 0.0 (2) |
C12—C11—C16—C15 | −1.0 (2) | C22—C21—C26—C25 | −0.7 (2) |
C111—C11—C16—C15 | 174.58 (13) | C211—C21—C26—C25 | 178.24 (13) |
C12—C11—C111—O11 | 1.5 (2) | C212—O211—C211—O21 | 2.1 (2) |
C16—C11—C111—O11 | −174.06 (14) | C212—O211—C211—C21 | −178.05 (12) |
C12—C11—C111—O111 | 179.41 (12) | C22—C21—C211—O21 | 6.4 (2) |
C16—C11—C111—O111 | 3.81 (19) | C26—C21—C211—O21 | −172.60 (14) |
O11—C111—O111—C112 | 8.2 (2) | C22—C21—C211—O211 | −173.46 (12) |
C11—C111—O111—C112 | −169.62 (11) | C26—C21—C211—O211 | 7.6 (2) |
C111—O111—C112—C121 | −84.35 (16) | C211—O211—C212—C221 | 176.07 (13) |
O111—C112—C121—C122 | −66.31 (18) | O211—C212—C221—C226 | 94.89 (17) |
O111—C112—C121—C126 | 115.78 (15) | O211—C212—C221—C222 | −85.93 (18) |
C126—C121—C122—C123 | −1.2 (2) | C226—C221—C222—C223 | 1.0 (3) |
C112—C121—C122—C123 | −179.17 (13) | C212—C221—C222—C223 | −178.18 (16) |
C121—C122—C123—C124 | 0.7 (2) | C221—C222—C223—C224 | −0.6 (3) |
C122—C123—C124—C125 | 0.7 (2) | C222—C223—C224—C225 | −0.1 (3) |
C123—C124—C125—C126 | −1.5 (2) | C223—C224—C225—C226 | 0.4 (3) |
C124—C125—C126—C121 | 1.0 (2) | C222—C221—C226—C225 | −0.7 (2) |
C122—C121—C126—C125 | 0.4 (2) | C212—C221—C226—C225 | 178.48 (15) |
C112—C121—C126—C125 | 178.32 (13) | C224—C225—C226—C221 | 0.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O21 | 0.95 | 2.39 | 3.187 (2) | 141 |
C25—H25···O11i | 0.95 | 2.44 | 3.235 (2) | 142 |
C126—H126···O232ii | 0.95 | 2.40 | 3.345 (2) | 176 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y, −z+1. |
C14H11NO4 | F(000) = 536 |
Mr = 257.24 | Dx = 1.417 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2487 reflections |
a = 6.1574 (6) Å | θ = 2.9–27.5° |
b = 7.4487 (6) Å | µ = 0.11 mm−1 |
c = 26.341 (3) Å | T = 120 K |
β = 93.362 (3)° | Plate, colourless |
V = 1206.0 (2) Å3 | 0.28 × 0.20 × 0.03 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2672 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1957 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.1° |
ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −8→9 |
Tmin = 0.979, Tmax = 0.997 | l = −34→34 |
10597 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.8562P] where P = (Fo2 + 2Fc2)/3 |
2672 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C14H11NO4 | V = 1206.0 (2) Å3 |
Mr = 257.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.1574 (6) Å | µ = 0.11 mm−1 |
b = 7.4487 (6) Å | T = 120 K |
c = 26.341 (3) Å | 0.28 × 0.20 × 0.03 mm |
β = 93.362 (3)° |
Nonius KappaCCD area-detector diffractometer | 2672 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1957 reflections with I > 2σ(I) |
Tmin = 0.979, Tmax = 0.997 | Rint = 0.054 |
10597 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.45 e Å−3 |
2672 reflections | Δρmin = −0.22 e Å−3 |
172 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1386 (3) | 0.1688 (3) | 0.44838 (7) | 0.0242 (4) | |
C2 | 0.9277 (3) | 0.2336 (3) | 0.43893 (7) | 0.0250 (5) | |
C3 | 0.8139 (3) | 0.3011 (3) | 0.47862 (7) | 0.0251 (4) | |
C4 | 0.9128 (3) | 0.2994 (3) | 0.52699 (7) | 0.0244 (4) | |
N4 | 0.7922 (3) | 0.3687 (2) | 0.56955 (6) | 0.0275 (4) | |
O41 | 0.6106 (2) | 0.4329 (2) | 0.55980 (6) | 0.0354 (4) | |
O42 | 0.8790 (3) | 0.3594 (2) | 0.61266 (5) | 0.0407 (4) | |
C5 | 1.1214 (3) | 0.2354 (3) | 0.53756 (7) | 0.0263 (5) | |
C6 | 1.2341 (3) | 0.1701 (3) | 0.49756 (7) | 0.0257 (5) | |
C11 | 1.2672 (3) | 0.0901 (3) | 0.40727 (7) | 0.0261 (5) | |
O1 | 1.4438 (2) | 0.0215 (2) | 0.41525 (6) | 0.0376 (4) | |
O11 | 1.1642 (2) | 0.1022 (2) | 0.36149 (5) | 0.0306 (4) | |
C12 | 1.2718 (4) | 0.0186 (3) | 0.31951 (8) | 0.0311 (5) | |
C21 | 1.1031 (3) | −0.0140 (3) | 0.27737 (8) | 0.0269 (5) | |
C22 | 1.1441 (4) | 0.0230 (3) | 0.22716 (8) | 0.0324 (5) | |
C23 | 0.9863 (4) | −0.0105 (3) | 0.18803 (8) | 0.0382 (6) | |
C24 | 0.7881 (4) | −0.0802 (3) | 0.19883 (9) | 0.0375 (6) | |
C25 | 0.7466 (4) | −0.1201 (3) | 0.24858 (9) | 0.0334 (5) | |
C26 | 0.9023 (4) | −0.0893 (3) | 0.28737 (8) | 0.0311 (5) | |
H2 | 0.8620 | 0.2315 | 0.4054 | 0.030* | |
H3 | 0.6710 | 0.3476 | 0.4726 | 0.030* | |
H5 | 1.1853 | 0.2364 | 0.5713 | 0.032* | |
H6 | 1.3779 | 0.1258 | 0.5037 | 0.031* | |
H12A | 1.3396 | −0.0963 | 0.3307 | 0.037* | |
H12B | 1.3869 | 0.0986 | 0.3078 | 0.037* | |
H22 | 1.2808 | 0.0716 | 0.2193 | 0.039* | |
H23 | 1.0164 | 0.0151 | 0.1538 | 0.046* | |
H24 | 0.6799 | −0.1009 | 0.1723 | 0.045* | |
H25 | 0.6097 | −0.1692 | 0.2561 | 0.040* | |
H26 | 0.8726 | −0.1196 | 0.3213 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0248 (11) | 0.0196 (10) | 0.0276 (10) | −0.0044 (8) | −0.0020 (8) | 0.0021 (8) |
C2 | 0.0258 (11) | 0.0235 (10) | 0.0248 (10) | −0.0011 (9) | −0.0050 (8) | 0.0031 (8) |
C3 | 0.0230 (11) | 0.0220 (10) | 0.0297 (10) | −0.0002 (9) | −0.0037 (8) | 0.0043 (8) |
C4 | 0.0265 (11) | 0.0190 (10) | 0.0275 (10) | −0.0024 (9) | 0.0003 (8) | 0.0027 (8) |
N4 | 0.0275 (10) | 0.0266 (9) | 0.0280 (9) | −0.0006 (8) | −0.0013 (7) | 0.0036 (7) |
O41 | 0.0287 (9) | 0.0420 (10) | 0.0354 (8) | 0.0103 (7) | 0.0000 (7) | 0.0016 (7) |
O42 | 0.0378 (10) | 0.0580 (11) | 0.0256 (8) | 0.0084 (8) | −0.0035 (7) | 0.0006 (7) |
C5 | 0.0263 (11) | 0.0270 (11) | 0.0250 (10) | −0.0019 (9) | −0.0044 (8) | 0.0037 (8) |
C6 | 0.0226 (11) | 0.0232 (10) | 0.0308 (10) | −0.0014 (9) | −0.0036 (8) | 0.0040 (8) |
C11 | 0.0248 (11) | 0.0246 (11) | 0.0284 (10) | −0.0010 (9) | −0.0023 (8) | 0.0024 (8) |
O1 | 0.0276 (9) | 0.0507 (10) | 0.0338 (8) | 0.0114 (8) | −0.0039 (7) | −0.0030 (7) |
O11 | 0.0309 (8) | 0.0359 (9) | 0.0245 (7) | 0.0079 (7) | −0.0034 (6) | −0.0042 (6) |
C12 | 0.0286 (12) | 0.0349 (12) | 0.0298 (10) | 0.0055 (10) | 0.0007 (9) | −0.0033 (9) |
C21 | 0.0271 (11) | 0.0265 (11) | 0.0269 (10) | 0.0066 (9) | −0.0011 (8) | 0.0001 (8) |
C22 | 0.0331 (13) | 0.0322 (12) | 0.0324 (11) | 0.0010 (10) | 0.0061 (9) | 0.0001 (9) |
C23 | 0.0461 (15) | 0.0430 (14) | 0.0261 (11) | 0.0074 (12) | 0.0084 (10) | 0.0020 (10) |
C24 | 0.0394 (14) | 0.0362 (13) | 0.0357 (12) | 0.0029 (11) | −0.0093 (10) | −0.0071 (10) |
C25 | 0.0265 (12) | 0.0328 (12) | 0.0408 (12) | −0.0006 (10) | 0.0012 (9) | −0.0042 (10) |
C26 | 0.0335 (12) | 0.0315 (12) | 0.0282 (10) | −0.0013 (10) | 0.0012 (9) | 0.0033 (9) |
C1—C6 | 1.391 (3) | O11—C12 | 1.461 (2) |
C1—C2 | 1.394 (3) | C12—C21 | 1.495 (3) |
C1—C11 | 1.498 (3) | C12—H12A | 0.99 |
C2—C3 | 1.387 (3) | C12—H12B | 0.99 |
C2—H2 | 0.95 | C21—C22 | 1.389 (3) |
C3—C4 | 1.380 (3) | C21—C26 | 1.397 (3) |
C3—H3 | 0.95 | C22—C23 | 1.397 (3) |
C4—C5 | 1.382 (3) | C22—H22 | 0.95 |
C4—N4 | 1.474 (3) | C23—C24 | 1.371 (3) |
N4—O42 | 1.228 (2) | C23—H23 | 0.95 |
N4—O41 | 1.229 (2) | C24—C25 | 1.382 (3) |
C5—C6 | 1.384 (3) | C24—H24 | 0.95 |
C5—H5 | 0.95 | C25—C26 | 1.379 (3) |
C6—H6 | 0.95 | C25—H25 | 0.95 |
C11—O1 | 1.209 (2) | C26—H26 | 0.95 |
C11—O11 | 1.332 (2) | ||
C6—C1—C2 | 120.15 (19) | O11—C12—C21 | 107.78 (17) |
C6—C1—C11 | 117.62 (18) | O11—C12—H12A | 110.2 |
C2—C1—C11 | 122.20 (17) | C21—C12—H12A | 110.1 |
C3—C2—C1 | 119.85 (18) | O11—C12—H12B | 110.1 |
C3—C2—H2 | 120.1 | C21—C12—H12B | 110.2 |
C1—C2—H2 | 120.1 | H12A—C12—H12B | 108.5 |
C4—C3—C2 | 118.51 (19) | C22—C21—C26 | 118.1 (2) |
C4—C3—H3 | 120.7 | C22—C21—C12 | 121.2 (2) |
C2—C3—H3 | 120.7 | C26—C21—C12 | 120.61 (18) |
C3—C4—C5 | 122.95 (19) | C21—C22—C23 | 120.7 (2) |
C3—C4—N4 | 118.95 (18) | C21—C22—H22 | 119.7 |
C5—C4—N4 | 118.09 (17) | C23—C22—H22 | 119.7 |
O42—N4—O41 | 123.81 (18) | C24—C23—C22 | 120.2 (2) |
O42—N4—C4 | 118.16 (17) | C24—C23—H23 | 119.9 |
O41—N4—C4 | 118.03 (16) | C22—C23—H23 | 119.9 |
C4—C5—C6 | 117.99 (18) | C23—C24—C25 | 119.6 (2) |
C4—C5—H5 | 121.0 | C23—C24—H24 | 120.2 |
C6—C5—H5 | 121.0 | C25—C24—H24 | 120.2 |
C5—C6—C1 | 120.54 (19) | C26—C25—C24 | 120.5 (2) |
C5—C6—H6 | 119.7 | C26—C25—H25 | 119.7 |
C1—C6—H6 | 119.7 | C24—C25—H25 | 119.7 |
O1—C11—O11 | 124.17 (19) | C25—C26—C21 | 120.8 (2) |
O1—C11—C1 | 123.23 (18) | C25—C26—H26 | 119.6 |
O11—C11—C1 | 112.60 (17) | C21—C26—H26 | 119.6 |
C11—O11—C12 | 116.33 (16) | ||
C6—C1—C2—C3 | 0.6 (3) | C6—C1—C11—O11 | −177.47 (18) |
C11—C1—C2—C3 | 178.45 (19) | C2—C1—C11—O11 | 4.7 (3) |
C1—C2—C3—C4 | −1.1 (3) | O1—C11—O11—C12 | 2.9 (3) |
C2—C3—C4—C5 | 0.9 (3) | C1—C11—O11—C12 | −176.24 (17) |
C2—C3—C4—N4 | −179.23 (18) | C11—O11—C12—C21 | 159.40 (18) |
C3—C4—N4—O42 | 177.05 (19) | O11—C12—C21—C22 | 136.8 (2) |
C5—C4—N4—O42 | −3.1 (3) | O11—C12—C21—C26 | −45.7 (3) |
C3—C4—N4—O41 | −3.1 (3) | C26—C21—C22—C23 | 1.5 (3) |
C5—C4—N4—O41 | 176.81 (18) | C12—C21—C22—C23 | 179.0 (2) |
C3—C4—C5—C6 | −0.2 (3) | C21—C22—C23—C24 | 0.2 (3) |
N4—C4—C5—C6 | 179.89 (18) | C22—C23—C24—C25 | −1.1 (4) |
C4—C5—C6—C1 | −0.2 (3) | C23—C24—C25—C26 | 0.4 (4) |
C2—C1—C6—C5 | 0.0 (3) | C24—C25—C26—C21 | 1.3 (3) |
C11—C1—C6—C5 | −177.88 (19) | C22—C21—C26—C25 | −2.2 (3) |
C6—C1—C11—O1 | 3.4 (3) | C12—C21—C26—C25 | −179.8 (2) |
C2—C1—C11—O1 | −174.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O41i | 0.95 | 2.50 | 3.387 (2) | 156 |
C6—H6···O1ii | 0.95 | 2.59 | 3.273 (2) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3, −y, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C14H10ClNO4 | C14H11NO4 |
Mr | 291.68 | 257.24 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/n |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 7.3497 (2), 12.8535 (3), 14.5334 (4) | 6.1574 (6), 7.4487 (6), 26.341 (3) |
α, β, γ (°) | 109.976 (1), 94.028 (1), 92.551 (1) | 90, 93.362 (3), 90 |
V (Å3) | 1283.73 (6) | 1206.0 (2) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.31 | 0.11 |
Crystal size (mm) | 0.40 × 0.20 × 0.04 | 0.28 × 0.20 × 0.03 |
Data collection | ||
Diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.867, 0.988 | 0.979, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25854, 5890, 4941 | 10597, 2672, 1957 |
Rint | 0.040 | 0.054 |
(sin θ/λ)max (Å−1) | 0.650 | 0.652 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.100, 1.02 | 0.055, 0.138, 1.08 |
No. of reflections | 5890 | 2672 |
No. of parameters | 361 | 172 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.34 | 0.45, −0.22 |
Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O21 | 0.95 | 2.39 | 3.187 (2) | 141 |
C25—H25···O11i | 0.95 | 2.44 | 3.235 (2) | 142 |
C126—H126···O232ii | 0.95 | 2.40 | 3.345 (2) | 176 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O41i | 0.95 | 2.50 | 3.387 (2) | 156 |
C6—H6···O1ii | 0.95 | 2.59 | 3.273 (2) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3, −y, −z+1. |
Parameter | (I) | (I) | (II) | (III) |
n | 1 | 2 | nil | nil |
Cn1-Cn11-On11-Cn12 | -169.62 (11) | -178.05 (12) | -176.24 (17) | 177.03 (12) |
Cn11-On11-Cn12-Cn21 | -84.35 (16) | 176.07 (13) | 159.40 (18) | 93.65 (16) |
On11-Cn12-Cn21-Cn22 | -66.31 (18) | -85.93 (18) | 136.8 (2) | 89.93 (7) |
Data for compound (III) are taken from Vasconcelos et al. (2006). |
Acknowledgements
The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Jones, P. G., Dólle, A., Kirby, A. J. & Parker, J. K. (1989). Acta Cryst. C45, 234–237. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o26–o29. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vogel, A. I. (1977). Elementary Practical Organic Chemistry, Part 2, Qualitative Organic Analysis, 2nd ed., p. 75. London: Longmans. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
We report here the structures of benzyl 4-chloro-3-nitrobenzoate, (I) (Fig. 1), and benzyl 4-nitrobenzoate, (II) (Fig. 2), and we compare their supramolecular structures with that in benzyl 3,5-dinitrobenzoate, (III) (Vasconcelos et al., 2006). The structure of (II) was reported some years ago (Jones et al., 1989) using diffraction data collected at ambient temperature, but there was no mention in that report of any direction-specific intermolecular interactions. Hence, we have redetermined this structure using diffraction data collected at 120 K and find in it significant hydrogen bonding which forms a chain of rings motif (Bernstein et al., 1995). The unit-cell dimensions, space group and atomic coordinates for (II) indicate that no phase change occurs between ambient temperature and 120 K.
The conformations of the independent molecules are all different, as shown by the leading torsion angles (Table 1). While the ester moieties are essentially planar in each of (I) and (II), there are significant differences between the molecules, particularly as shown by the torsion angles about the bonds On11—Cn12 and Cn12—Cn21 (n = 1 or 2) in (I) and the corresponding angles about the bonds O11—C12 and C12—C21 in both (II) and (III). In addition, while the nitro groups in (II) and (III) are almost coplanar with the adjacent aryl rings, in compound (I) the C—NO2 planes make dihedral angles with the adjacent aryl rings of 45.2 (2)° in molecule 1 (defined by n = 1) and 34.4 (2)° in molecule 2 (defined by n = 2). The conformational differences between the two independent molecules in (I) are sufficient to preclude the occurrence of any additional symmetry. The bond lengths and angles in (I) show no unexpected features; those in (II) closely resemble the values reported at ambient temperature (Jones et al., 1989).
The molecules of (I) are linked by three C—H···O hydrogen bonds (Table 2) to form a chain of edge-fused rings. Atom C15 acts as hydrogen-bond donor to atom O21 within the selected asymmetric unit (Fig. 1). Similarly, atom C25 at (x, y, z) acts as donor to atom O11 at (1 + x, 1 + y, z), so generating by translation a C22(12) chain (Bernstein et al., 1995) running parallel to the [110] direction (Fig. 3). Anti-parallel pairs of such chains, related to one another by inversion, and then linked by the final hydrogen bond, in which a nitro O atom is the acceptor (Table 2), and this then generates a chain of edge-fused rings, in which centrosymmetric R44(26) rings are centred at (n, n − 1/2, 1/2) (n = zero or integer) and centrosymmetric R44(34) rings are centred at (n + 1/2, n, 1/2) (n = zero or integer) (Fig. 3).
The hydrogen-bonded chains (Fig. 3) are linked into (001) sheets by means of several π–π stacking interactions. The rings C11–C16 in the type 1 molecules at (x, y, z) and (−x, −y, 1 − z) are parallel, with an interplanar spacing of 3.457 (2) Å and a ring-centroid separation of 3.763 (2) Å, corresponding to a ring offset of 1.485 (2) Å. These two molecules lie in adjacent chains offset along the [100] direction. Similarly, the rings C21–C26 in the type 2 molecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an interplanar spacing of 3.397 (2) Å, a ring-centroid separation of 3.782 (2) Å and a ring offset of 1.662 (2) Å, and this interaction links the hydrogen-bonded chains along [010]. Finally the rings C121–C126 in the molecules at (x, y, z) and (−x, −y, 2 − z) have an interplanar spacing of 3.530 (2) Å, with a ring-centroid separation of 3.845 (2) Å and a ring offset of 1.523 (2) Å. This stacking interaction links the hydrogen-bonded chains along the [011] direction, and the combination of interactions linking these chains along [100], [010] and [011] suffices to generate a three-dimensional structure.
The supramolecular structure of compound (II) is much simpler than that of (I) and is based on the action of just two C—H···O hydrogen bonds (Table 3). Atom C3 in the nitrated ring of the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 of the molecule at (1 − x, 1 − y, 1 − z), so forming by inversion an R22(10) ring centred at (1/2, 1/2, 1/2). At the same time, atom C6 at (x, y, z) acts as donor to ester atom O1 of the molecule at (3 − x, −y, 1 − z), so forming a second R22(10) motif, this time centred at (3/2, 0, 1/2). Propagation of these two hydrogen bonds then generates a C22(12)[R22(10)][R22(10)] chain of rings running parallel to the [210] direction (Fig. 4).
The supramolecular structures of compounds (I) and (II) contrast strongly with that of the closely related compound, (III), where four independent C—H···O hydrogen bonds link the molecules into a three-dimensional hydrogen-bonded framework in which it is possible to identify sub-structures in the form of double and sextuple helices (Vasconcelos et al., 2006).