organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(1Z,2Z)-1,2-Bis(3-methyl-2,3-di­hydro-1,3-benzo­thiazol-2-yl­idene)hydrazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan, and bRigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
*Correspondence e-mail: tnakano@pha.u-toyama.ac.jp

(Received 14 March 2006; accepted 19 April 2006; online 24 May 2006)

The title compound, C16H14N4S2, crystallizes in symmetry group C2. The mol­ecule is planar with C2h symmetry, with the inversion centre at the mid-point of the hydrazine N—N bond, and it has an N—N s-trans conformation and a Z,Z configuration. The particular crystal examined was a racemic twin, as suggested by the Flack parameter of 0.41 (2) [Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). Acta Cryst. A39, 876–881].

Comment

The mol­ecular structure of the title compound, (I)[link], examined at 93 K is shown in Fig. 1[link]. Selected bond distances and angles and the torsion angles relating to the >C=N—N=C< chain are listed in Table 1[link]. The packing of the mol­ecules is indicated in Fig. 2[link]. The particular crystal studied here proved to be a racemic twin, as suggested by the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) of 0.41 (2). During the refinement, the structure was treated as a racemic twin.

[Scheme 1]

Compound (I)[link] was oxidized by air to a cation radical in acetonitrile or on silica gel. The cation radical is blue and stable for weeks. Its visible spectrum shows a broad band with three peaks at 659, 733 and 818 nm (Nakano & Mori, 2005[Nakano, T. & Mori, Y. (2005). Unpublished results.]; Sawicki et al., 1963[Sawicki, E., Stanley, T. W., Praff, J. & Johnson, H. (1963). Anal. Chem. 35, 2183-2191.]). The spectrum is very similar to that of the cation radical of 2,2′-azinobis(3-ethyl­benzothia­zoline-6-sulfonic acid) [ABTS; systematic name: 2,2′-(hydrazine-1,2-diylidene)bis­(3-ethyl-2,3-dihydro­benzo[d]thia­zole-6-sulfonate)] which is a water-soluble analogue of the present compound (Henriquez & Lissi, 2002[Henriquez, C. & Lissi, E. (2002). Bol. Soc. Chil. Quim. 47, 563-566.]). Compound (I)[link] was previously described in reaction with oxidants such as nitrite (Sawicki et al., 1963[Sawicki, E., Stanley, T. W., Praff, J. & Johnson, H. (1963). Anal. Chem. 35, 2183-2191.]) and potassium ferricyanide (Bartsch et al., 1970[Bartsch, R. A., Hünig, S. & Quast, H. (1970). J. Am. Chem. Soc. 92, 6007-6011.]). This electron-donating character to form the stable cation radical suggests that compound (I)[link] would be useful for forming charge-transfer complexes with electron acceptors such as TCNQ (Guerin et al., 2002[Guerin, D., Lorcy, D., Carlier, R., Los, S. & Piekara-Sady, L. (2002). J. Solid State Chem. 168, 590-596.]).

A recent point of concern regarding compounds with azine groups has appeared in the term `conjugate stopper' for heteroatoms in 1,3-diene systems including N atoms (Glaser et al., 1993[Glaser, R., Chen, G. S. & Barnes, C. L. (1993). J. Org. Chem. 58, 7446-7455.]; Zuman & Ludvik, 2000[Zuman, P. & Ludvik, J. (2000). Tetrahedron Lett. 41, 7851-7853.]; Choytun et al., 2004[Choytun, D. D., Langlois, L. D., Johnansson, T. P., Macdonald, C. L. B., Leach, G. W., Weinberg, N. & Clyburne, J. A. C. (2004). Chem. Commun. pp. 1842-1843.]). It was thought that the conjugation effect through the azine group was determined by the bond distances of =N1—N2= and —C1=N1— (—C9=N2—) and the torsion angle about the N—N bond of the >C=N—N=C< chain; the single-bond character of N—N and the double-bond character of C=N indicate a lack of delocalization of π electrons, while the planar structure of C=N—N=C indicates π conjugation.

The mol­ecular geometry of compound (I)[link] including >C=N—N=C< is completely planar (torsion angle of less than 1°; Table 1[link]). It has a Z,Z configuration, with angles of 111.0 and 110.2° for C1—N1—N2 and N1—N2—C9, respectively (Fig. 1[link]). On the other hand, the bond distances of N1—N2 and C1=N1 (C9=N2) are 1.409 and 1.287 Å (1.294 Å), respectively (Table 1[link]). The former indicates almost a single bond if compared with the value of 1.45 Å in NH2NH2 (Liminga & Olovsson, 1964[Liminga, R. & Olovsson, I. (1964). Acta Cryst. 17, 1523-1528.]), and the latter almost a double bond if compared with the value of 1.28 Å in imines (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Additionally, these data are very similar to those of formaldehyde azine, where the distances for N—N and C=N are 1.418 and 1.277 Å, respectively, and the angles for C—N—N and H—C—N are 111.4 and 120.7°, respectively (Lide, 1993[Lide, D. R. (1993). Editor. CRC Handbook of Chemistry and Physics, 74th ed., pp. P9-P32. Boca Raton: CRC Press.]). These bond distances suggests less delocalization of π electrons, while the mol­ecule is completely flat, permitting inter­action between π bonds of the C=N groups.

The packing of the mol­ecules of (I)[link] in the solid state indicates the lack of intra- and inter­molecular hydrogen bonds, suggesting no hydrogen-bonding effect on the lone-pair electrons of the azine group.

The concept of the `conjugation stopper' of the azine group relating to distances and geometry has not been convincing to date and the present structural results add to the knowledge in the field. The fact that the cation radical of compound (I)[link] is stable gives additional information about the electronic structure of azine groups.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
NOT USED A view of the packing in the crystal of (I)[link].

Experimental

Compound (I)[link] was prepared by the oxidation of 3-methyl-2-benzo­thiazolinone hydrazone (MBTH; alternative name: 2-hydrazino-3-methyl-2,3-dihydro­benzo[d]thia­zole), (II), in air, catalyzed by a water-soluble iron porphyrin, FeTMPyPCl5 {[5,10,15,20-tetra­kis(1-methyl-4-pyridyl)-21H,23H-porphine]iron(III) penta­chloride}, in a phosphate buffer solution (0.1 M; pH 7.0) (Nakano et al., 2005[Nakano, T., Ohto, K., Okafuji, F., Mori, Y., Kakuda, H., Hatanaka, Y. & Masuoka, N. (2005). Bull. Chem. Soc. Jpn, 78, 703-709.]). Through the redox reaction of the iron porphyrin, the superoxide anion radical is released and the porphyrin peripheral eventually decomposes after 30 min. Reagent (II) acts not only as a reducing one-electron donor, but is also oxidized to form compound (I)[link], and dinitro­gen is released from the system. In the present study, the reaction was performed under conditions of 7.0 × 10−4M MBTH hydro­chloride and a catalytic concentration of hemin (1 × 10−5M). The product, (I)[link], was extracted from the reaction mixture into dichloro­methane, purified by column chromatography (silica gel, dichloromethane) and then crystallized from a solution in dichloro­methane–petroleum ether (1:1) by free evaporation of the solvents overnight. Crystals were collected on filter paper, washed with petroleum ether and dried. A single crystal was selected and used for the data collection. Analysis: m/z = 326.0661; 1H NMR (300 MHz, acetonitrile-d3): δ 7.44 (2H), 7.27 (2H), 7.20 (4H), 3.48 (6H); sublimation at 500–503 K (literature m.p. 534–535 K; Hünig & Quast, 1968[Hünig, S. & Quast, H. (1968). Liebigs Ann. Chem. 711, 139-156.]).

Crystal data
  • C16H14N4S2

  • Mr = 326.43

  • Monoclinic, C 2

  • a = 16.0038 (17) Å

  • b = 5.8679 (7) Å

  • c = 15.9529 (18) Å

  • β = 104.235 (8)°

  • V = 1452.1 (3) Å3

  • Z = 4

  • Dx = 1.493 Mg m−3

  • Cu Kα radiation

  • μ = 3.33 mm−1

  • T = 93 (1) K

  • Block, pale yellow

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • ω scans

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.597, Tmax = 0.717

  • 7214 measured reflections

  • 2506 independent reflections

  • 2352 reflections with F2 > 2σ(F2)

  • Rint = 0.039

  • θmax = 68.2°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.10

  • 2506 reflections

  • 203 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0356P)2 + 2.2491P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1044 Friedel pairs

  • Flack parameter: 0.41 (2)

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.765 (3)
S2—C9 1.762 (3)
N1—N2 1.409 (3)
N1—C1 1.287 (3)
N2—C9 1.294 (3)
N3—C1 1.384 (4)
N4—C9 1.375 (4)
N2—N1—C1 111.0 (2)
N1—N2—C9 110.2 (2)
C1—N3—C8 119.8 (2)
C9—N4—C16 120.2 (2)
S1—C1—N1 127.7 (2)
S1—C1—N3 110.7 (2)
N1—C1—N3 121.6 (3)
S2—C9—N2 127.3 (2)
C1—N1—N2—C9 −178.9 (3)
N1—N2—C9—N4 −179.5 (3)
N1—N2—C9—S2 0.6 (4)
N2—N1—C1—N3 −179.2 (3)
N2—N1—C1—S1 0.3 (4)

H atoms were refined using a riding model, with C—H distances in the range 0.95–0.98 Å and with Uiso(H) = 1.2Ueq(C).

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalStructure. Version 3.7. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The molecular structure of the title compound, (I), examined at 93 K is shown in Fig. 1. Selected bond distances and angles and the torsion angles relating to the >CN—NC< chain are listed in Table 1. The packing of the molecules is indicated in Fig. 2. The particular crystal studied here proved to be a racemic twin, as suggested by the Flack parameter (Flack, 1983) of 0.41 (2). During the refinement, the structure was treated as a racemic twin.

Compound (I) was oxidized by air to a cation radical in acetonitrile or on silica gel. The cation radical is blue and stable for weeks. Its visible spectrum shows a broad band with three peaks at 659, 733 and 818 nm (Nakano & Mori, 2005; Sawicki et al., 1963). The spectrum is very similar to that of the cation radical of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS; systematic name: 2,2'-(hydrazine-1,2-diyledene)bis(3-ethyl-2,3-dihydrobenzo[d]thiazole-6- sulfonate)] which is a water-soluble analogue of the present compound (Henriquez & Lissi, 2002). Compound (I) was previously described in reaction with oxidants such as nitrite (Sawicki et al., 1963) and potassium ferricyanide (Bartsch et al., 1970). This electron-donating character to form the stable cation radical suggests that compound (I) would be useful for forming charge-transfer complexes with electron acceptors such as TCNQ (Guerin et al., 2002).

A recent point of concern regarding compounds with azine groups has appeared in the term `conjugate stopper', for heteroatoms in 1,3-diene systems including N atoms (Glaser et al., 1993; Zuman & Ludvik, 2000; Choytun et al., 2004). It was thought that the conjugation effect through the azine group was determined by the bond distances of N1—N2and —C1 N1— (—C9N2—) and the torsion angle about the N—N bond of the >CN—NC< chain; the single-bond character of N—N and the double-bond character of CN indicate a lack of delocalization of π electrons, while the planar structure of CN—NC indicates π conjugation.

The molecular geometry of compound (I) including >CN—NC< is completely planar (torsion angle of less than 1°; Table 1). It has a Z,Z-configuration, with angles of 111.0 and 110.2° for C1—N1—N2 and N1—N2—C9, respectively (Fig. 1). On the other hand, the bond distances of N1—N2 and C1N1 (C9N2) are 1.409 and 1.287 (1.294) Å, respectively (Table 1). The former indicates almost a single bond if compared with the value of 1.45 Å in NH2NH2 (Liminga & Olovsson, 1964), and the latter almost a double bond if compared with the value of 1.28 Å in imines (Allen et al., 1987). Additionally, these data are very similar to those of formaldehyde azine: the distances for N—N and CN are 1.418 and 1.277 Å, respectively, and the angles for C—N—N and H—C—N are 111.4 and 120.7°, respectively (Lide, 1993). These bond distances suggests less delocalization of π electrons, while the molecule is completely flat, permitting interaction between π bonds of the CN groups.

The packing of the molecules of (I) in the solid state (Fig. 2) indicates the lack of intra- and intermolecular hydrogen bonds, suggesting no hydrogen-bonding effect on the lone-pair electrons of the azine group.

The concept of the `conjugation stopper' of the azine group relating to distances and geometry has not been convincing to date and the present structural results contribute to the further detail of the study. The fact that the cation radical of compound (I) is stable gives additional information about the electronic structure of azine groups.

Experimental top

Compound (I) was prepared through the oxidation of 3-methyl-2-benzothiazolinone hydrazone (MBTH; systematic name: 2-hydrazino-3-methyl-2,3-dihydrobenzo[d]thiazole) (II) in air, catalyzed by a water-soluble iron porphyrin, FeTMPyPCl5, [5,10,15,20-tetrakis(1-methyl-4-pyridino)-21H,23H-porphineiron(III) pentachloride] in a phosphate buffer solution (0.1 M; pH 7.0) (Nakano et al., 2005). Through the redox reaction of iron porphyrin, the superoxide anion radical was released and the porphyrin peripheral eventually decomposed after 30 min. Reagent (II) [Please define (II)] acted not only as a reducing one-electron donor, but was also oxidized to form compound (I), and dinitrogen was released from the system. In the present study, the reaction was performed under conditions of 7.0 × 10−4 M MBTH hydrochloride and a catalytic concentration of hemin (1 × 10−5 M). The product, (I), was extracted from the reaction mixture into dichloromethane, purified by column chromatography (silica gel, Eluent?) and then crystallized from a solution in dichloromethane–petroleum ether (Ratio?) by freely evaporating the solvents overnight. Crystals were collected on filter paper, washed with petroleum ether and dried. A single-crystal was selected and used for the data collection. Analysis: m/z = 326.0661; 1H NMR (300 MHz, acetonitrile-d3, δ, p.p.m.): 7.44 (2H), 7.27 (2H), 7.20 (4H), 3.48 (6H); sublimes at 500–503 K. (literature m.p. 534–535 K; Hünig & Quast, 1968).

Refinement top

H atoms were refined using a riding model, with C—H distances in the range 0.95–0.98 Å [Please check added text] and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the packing in the crystal of (I).
(1Z,2Z)-1,2-Bis(3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene)hydrazine top
Crystal data top
C16H14N4S2F(000) = 680.00
Mr = 326.43Dx = 1.493 Mg m3
Monoclinic, C2Melting point: 500-503 (sublimes) K
Hall symbol: C 2yCu Kα radiation, λ = 1.54187 Å
a = 16.0038 (17) ÅCell parameters from 6970 reflections
b = 5.8679 (7) Åθ = 5.7–68.2°
c = 15.9529 (18) ŵ = 3.33 mm1
β = 104.235 (8)°T = 93 K
V = 1452.1 (3) Å3Block, pale yellow
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2352 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.039
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1819
Tmin = 0.597, Tmax = 0.717k = 67
7214 measured reflectionsl = 1919
2506 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0356P)2 + 2.2491P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.094Δρmax = 0.35 e Å3
S = 1.10Δρmin = 0.24 e Å3
2506 reflectionsAbsolute structure: Flack (1983), with 1044 Friedel pairs
203 parametersAbsolute structure parameter: 0.41 (2)
H-atom parameters constrained
Crystal data top
C16H14N4S2V = 1452.1 (3) Å3
Mr = 326.43Z = 4
Monoclinic, C2Cu Kα radiation
a = 16.0038 (17) ŵ = 3.33 mm1
b = 5.8679 (7) ÅT = 93 K
c = 15.9529 (18) Å0.15 × 0.15 × 0.10 mm
β = 104.235 (8)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2506 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2352 reflections with F2 > 2σ(F2)
Tmin = 0.597, Tmax = 0.717Rint = 0.039
7214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.35 e Å3
S = 1.10Δρmin = 0.24 e Å3
2506 reflectionsAbsolute structure: Flack (1983), with 1044 Friedel pairs
203 parametersAbsolute structure parameter: 0.41 (2)
Special details top

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34069 (5)0.46961 (12)0.71348 (5)0.01882 (18)
S20.68729 (4)0.34559 (14)0.78870 (5)0.01911 (17)
N10.50491 (14)0.3088 (4)0.72824 (17)0.0200 (6)
N20.52410 (14)0.5063 (5)0.77951 (16)0.0200 (6)
N30.38844 (14)0.1034 (4)0.64617 (17)0.0186 (6)
N40.64249 (16)0.7063 (5)0.86095 (17)0.0200 (6)
C10.4231 (2)0.2867 (5)0.6977 (2)0.0173 (7)
C20.26147 (19)0.2869 (5)0.65293 (19)0.0172 (7)
C30.17275 (19)0.3108 (6)0.63575 (19)0.0190 (7)
C40.1213 (2)0.1435 (6)0.5863 (2)0.0212 (7)
C50.15866 (19)0.0415 (7)0.55430 (19)0.0202 (6)
C60.24774 (19)0.0655 (6)0.57083 (18)0.0195 (7)
C70.29865 (19)0.0985 (5)0.62110 (19)0.0171 (6)
C80.4453 (2)0.0613 (6)0.6202 (2)0.0240 (7)
C90.60667 (19)0.5277 (5)0.80843 (19)0.0178 (7)
C100.76810 (19)0.5261 (6)0.84878 (18)0.0181 (7)
C110.85612 (19)0.5034 (6)0.86261 (18)0.0202 (7)
C120.90876 (19)0.6730 (6)0.9102 (2)0.0209 (7)
C130.87321 (18)0.8554 (7)0.94510 (18)0.0199 (6)
C140.78423 (18)0.8770 (7)0.93171 (18)0.0193 (7)
C150.73159 (19)0.7119 (5)0.8827 (2)0.0190 (7)
C160.58713 (19)0.8721 (6)0.8894 (2)0.0212 (7)
H10.14760.43790.65710.023*
H20.06030.15560.57430.025*
H30.12260.15340.52050.024*
H40.27280.19080.54830.023*
H50.48290.01740.58950.029*
H60.41080.17540.58200.029*
H70.48070.13660.67170.029*
H80.88050.37610.84050.024*
H90.96950.66330.91870.025*
H100.91010.96650.97850.024*
H110.76001.00180.95550.023*
H120.56650.98420.84350.025*
H130.62000.94990.94150.025*
H140.53780.79330.90240.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0136 (3)0.0186 (4)0.0222 (3)0.0013 (3)0.0005 (2)0.0035 (3)
S20.0139 (3)0.0194 (4)0.0220 (3)0.0003 (3)0.0006 (2)0.0019 (3)
N10.0146 (12)0.0205 (17)0.0227 (12)0.0004 (11)0.0006 (9)0.0018 (12)
N20.0166 (13)0.0187 (17)0.0228 (13)0.0035 (11)0.0012 (9)0.0019 (12)
N30.0113 (12)0.0194 (16)0.0234 (12)0.0044 (11)0.0009 (9)0.0021 (12)
N40.0162 (13)0.0199 (17)0.0216 (13)0.0001 (11)0.0004 (10)0.0020 (12)
C10.0172 (15)0.014 (2)0.0200 (14)0.0002 (12)0.0029 (11)0.0032 (13)
C20.0193 (15)0.015 (2)0.0158 (14)0.0028 (12)0.0008 (11)0.0011 (12)
C30.0173 (15)0.017 (2)0.0219 (15)0.0023 (13)0.0033 (11)0.0009 (14)
C40.0153 (15)0.023 (2)0.0229 (15)0.0009 (13)0.0013 (11)0.0040 (15)
C50.0203 (15)0.0179 (18)0.0201 (14)0.0075 (14)0.0008 (11)0.0010 (16)
C60.0184 (15)0.021 (2)0.0174 (14)0.0002 (13)0.0006 (11)0.0027 (14)
C70.0193 (16)0.0152 (18)0.0164 (14)0.0029 (13)0.0032 (11)0.0031 (13)
C80.0180 (15)0.027 (2)0.0254 (15)0.0018 (14)0.0029 (12)0.0002 (16)
C90.0167 (15)0.019 (2)0.0181 (14)0.0021 (12)0.0055 (11)0.0017 (13)
C100.0180 (15)0.019 (2)0.0147 (14)0.0020 (13)0.0006 (11)0.0011 (13)
C110.0155 (14)0.024 (2)0.0189 (14)0.0010 (13)0.0001 (11)0.0040 (15)
C120.0130 (15)0.026 (2)0.0224 (15)0.0010 (13)0.0012 (11)0.0009 (15)
C130.0164 (15)0.0224 (18)0.0184 (13)0.0010 (16)0.0005 (10)0.0024 (16)
C140.0214 (15)0.021 (2)0.0156 (14)0.0004 (14)0.0049 (11)0.0014 (15)
C150.0128 (15)0.024 (2)0.0179 (14)0.0014 (13)0.0001 (11)0.0044 (14)
C160.0177 (14)0.0191 (19)0.0265 (15)0.0015 (14)0.0051 (11)0.0040 (15)
Geometric parameters (Å, º) top
S1—C11.765 (3)C10—C151.407 (4)
S1—C21.757 (2)C11—C121.400 (4)
S2—C91.762 (3)C12—C131.391 (5)
S2—C101.762 (3)C13—C141.393 (4)
N1—N21.409 (3)C14—C151.391 (4)
N1—C11.287 (3)C3—H10.950
N2—C91.294 (3)C4—H20.950
N3—C11.384 (4)C5—H30.950
N3—C71.394 (3)C6—H40.950
N3—C81.456 (4)C8—H50.980
N4—C91.375 (4)C8—H60.980
N4—C151.383 (3)C8—H70.980
N4—C161.462 (4)C11—H80.950
C2—C31.385 (4)C12—H90.950
C2—C71.408 (4)C13—H100.950
C3—C41.394 (4)C14—H110.950
C4—C51.396 (5)C16—H120.980
C5—C61.392 (4)C16—H130.980
C6—C71.383 (4)C16—H140.980
C10—C111.378 (4)
S1···C11i3.594 (3)C10···H11viii3.534
S1···C12i3.519 (3)C10···H11x3.265
S2···C4ii3.594 (3)C10···H13x3.413
N2···C8iii3.593 (4)C11···H12vii3.455
C1···C11i3.496 (4)C11···H13x3.069
C1···C12i3.517 (4)C11···H14vii3.077
C2···C10i3.457 (4)C12···H9vi2.939
C3···C9i3.591 (4)C12···H10vi3.463
C4···C8iv3.460 (4)C12···H12vii3.170
C6···C7v3.563 (4)C12···H13vii3.545
C12···C12vi3.553 (3)C12···H13x2.839
C12···C16vii3.441 (4)C12···H14vii3.061
S1···H4iii3.269C13···H8iii3.497
S1···H6iii3.339C13···H9vi3.104
S1···H7iii3.397C13···H10vi3.444
S1···H8iv3.093C13···H13x2.975
S2···H1vii3.143C13···H14xii3.584
S2···H11viii3.314C14···H11x3.035
S2···H12viii3.136C14···H13x3.346
N1···H1vii3.537C15···H11x2.834
N1···H2ii3.468C15···H13x3.549
N1···H7iii3.374C16···H7iii3.474
N1···H9i3.336C16···H8iv3.206
N1···H12viii2.662C16···H9iv2.667
N2···H2ii3.571C16···H10x3.171
N2···H7iii2.692H1···H3iii3.199
N2···H8iv3.469H1···H5iv2.633
N2···H9i3.271H1···H7iv2.773
N2···H12viii3.248H1···H12i3.536
N3···H3ix2.985H2···H2xi2.664
N3···H8i3.405H2···H3xi3.459
N4···H1ii3.544H2···H5iv2.499
N4···H7iii3.582H2···H5ix3.305
N4···H10x3.211H2···H6iv2.621
N4···H11x3.194H2···H6ix2.826
C1···H3ix3.394H2···H7iv2.549
C1···H7iii3.558H3···H4ix3.504
C1···H8i3.496H3···H5i3.338
C1···H9i3.496H3···H5v2.864
C1···H12viii3.347H3···H6v3.452
C2···H4iii3.516H3···H6ix3.224
C2···H4ix3.123H4···H4v3.311
C3···H4ix3.261H4···H4ix3.311
C3···H5iv3.185H5···H5xiii3.036
C3···H6ix3.403H7···H8i3.457
C3···H7iv3.277H7···H12viii2.838
C4···H2xi3.369H7···H14viii3.592
C4···H4ix3.196H8···H10viii3.215
C4···H5iv3.127H8···H12vii3.032
C4···H6iv3.517H8···H13x3.507
C4···H6ix2.815H8···H14vii2.516
C4···H7iv3.177H9···H9vi2.537
C5···H1viii3.492H9···H10vi2.831
C5···H4ix2.999H9···H12vii2.422
C5···H6ix3.064H9···H13vii2.659
C6···H4ix2.871H9···H13x3.189
C7···H3ix3.196H9···H14vii2.473
C7···H4ix2.935H10···H10vi2.790
C8···H1vii3.144H10···H13x3.369
C8···H2vii2.710H10···H13xii3.195
C8···H2v3.502H10···H14ii3.248
C8···H3ix3.279H10···H14xii2.684
C9···H1ii3.581H11···H11x3.309
C9···H7iii3.247H11···H11xii3.309
C9···H10x3.493H11···H13xii3.427
C9···H12viii3.328
C1—S1—C290.79 (14)C13—C14—C15118.5 (3)
C9—S2—C1090.57 (15)N4—C15—C10112.6 (2)
N2—N1—C1111.0 (2)N4—C15—C14127.0 (3)
N1—N2—C9110.2 (2)C10—C15—C14120.3 (2)
C1—N3—C7114.8 (2)C2—C3—H1120.8
C1—N3—C8119.8 (2)C4—C3—H1120.8
C7—N3—C8125.3 (2)C3—C4—H2119.7
C9—N4—C15114.9 (2)C5—C4—H2119.7
C9—N4—C16120.2 (2)C4—C5—H3119.3
C15—N4—C16124.9 (2)C6—C5—H3119.3
S1—C1—N1127.7 (2)C5—C6—H4121.0
S1—C1—N3110.7 (2)C7—C6—H4121.0
N1—C1—N3121.6 (3)N3—C8—H5109.5
S1—C2—C3127.8 (2)N3—C8—H6109.5
S1—C2—C7111.4 (2)N3—C8—H7109.5
C3—C2—C7120.8 (2)H5—C8—H6109.5
C2—C3—C4118.4 (3)H5—C8—H7109.5
C3—C4—C5120.5 (2)H6—C8—H7109.5
C4—C5—C6121.4 (3)C10—C11—H8120.9
C5—C6—C7118.0 (3)C12—C11—H8120.9
N3—C7—C2112.2 (2)C11—C12—H9119.6
N3—C7—C6126.8 (3)C13—C12—H9119.6
C2—C7—C6121.0 (2)C12—C13—H10119.6
S2—C9—N2127.3 (2)C14—C13—H10119.6
S2—C9—N4110.9 (2)C13—C14—H11120.7
N2—C9—N4121.8 (3)C15—C14—H11120.7
S2—C10—C11127.9 (2)N4—C16—H12109.5
S2—C10—C15110.9 (2)N4—C16—H13109.5
C11—C10—C15121.2 (2)N4—C16—H14109.5
C10—C11—C12118.3 (3)H12—C16—H13109.5
C11—C12—C13120.9 (2)H12—C16—H14109.5
C12—C13—C14120.8 (3)H13—C16—H14109.5
C1—N1—N2—C9178.9 (3)N2—N1—C1—N3179.2 (3)
N1—N2—C9—N4179.5 (3)N2—N1—C1—S10.3 (4)
N1—N2—C9—S20.6 (4)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z+1; (vi) x+2, y, z+2; (vii) x+1/2, y1/2, z; (viii) x, y1, z; (ix) x+1/2, y+1/2, z+1; (x) x+3/2, y1/2, z+2; (xi) x, y, z+1; (xii) x+3/2, y+1/2, z+2; (xiii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H14N4S2
Mr326.43
Crystal system, space groupMonoclinic, C2
Temperature (K)93
a, b, c (Å)16.0038 (17), 5.8679 (7), 15.9529 (18)
β (°) 104.235 (8)
V3)1452.1 (3)
Z4
Radiation typeCu Kα
µ (mm1)3.33
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.597, 0.717
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7214, 2506, 2352
Rint0.039
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.10
No. of reflections2506
No. of parameters203
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24
Absolute structureFlack (1983), with 1044 Friedel pairs
Absolute structure parameter0.41 (2)

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CrystalStructure.

Selected geometric parameters (Å, º) top
S1—C11.765 (3)N2—C91.294 (3)
S2—C91.762 (3)N3—C11.384 (4)
N1—N21.409 (3)N4—C91.375 (4)
N1—C11.287 (3)
N2—N1—C1111.0 (2)S1—C1—N1127.7 (2)
N1—N2—C9110.2 (2)S1—C1—N3110.7 (2)
C1—N3—C8119.8 (2)N1—C1—N3121.6 (3)
C9—N4—C16120.2 (2)S2—C9—N2127.3 (2)
C1—N1—N2—C9178.9 (3)N2—N1—C1—N3179.2 (3)
N1—N2—C9—N4179.5 (3)N2—N1—C1—S10.3 (4)
N1—N2—C9—S20.6 (4)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBartsch, R. A., Hünig, S. & Quast, H. (1970). J. Am. Chem. Soc. 92, 6007–6011.  CrossRef CAS Web of Science Google Scholar
First citationChoytun, D. D., Langlois, L. D., Johnansson, T. P., Macdonald, C. L. B., Leach, G. W., Weinberg, N. & Clyburne, J. A. C. (2004). Chem. Commun. pp. 1842–1843.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlaser, R., Chen, G. S. & Barnes, C. L. (1993). J. Org. Chem. 58, 7446–7455.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuerin, D., Lorcy, D., Carlier, R., Los, S. & Piekara-Sady, L. (2002). J. Solid State Chem. 168, 590–596.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenriquez, C. & Lissi, E. (2002). Bol. Soc. Chil. Quim. 47, 563–566.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHünig, S. & Quast, H. (1968). Liebigs Ann. Chem. 711, 139–156.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLide, D. R. (1993). Editor. CRC Handbook of Chemistry and Physics, 74th ed., pp. P9–P32. Boca Raton: CRC Press.  Google Scholar
First citationLiminga, R. & Olovsson, I. (1964). Acta Cryst. 17, 1523–1528.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNakano, T. & Mori, Y. (2005). Unpublished results.  Google Scholar
First citationNakano, T., Ohto, K., Okafuji, F., Mori, Y., Kakuda, H., Hatanaka, Y. & Masuoka, N. (2005). Bull. Chem. Soc. Jpn, 78, 703–709.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalStructure. Version 3.7. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationSawicki, E., Stanley, T. W., Praff, J. & Johnson, H. (1963). Anal. Chem. 35, 2183–2191.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZuman, P. & Ludvik, J. (2000). Tetrahedron Lett. 41, 7851–7853.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds