metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(Nitrato-κ2O,O′)bis­­(tri­ethanol­amine-κ4N,O,O′,O′′)lanthanum(III) dinitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 8 March 2006; accepted 31 March 2006; online 16 May 2006)

The title compound, [La(NO3)(C6H15NO3)2](NO3)2, contains a network of [La(NO3)(C6H15NO3)2]2+ cations and nitrate counter-ions. The crystal packing is influenced by cation-to-anion O—H⋯O hydrogen bonds, resulting in a structure with one-dimensional character. The ten-coordinate La atom and a nitrate anion have site symmetry 2. The fact that triethanolamine can bind to such diverse cations as Li+ and La3+ militates against possible applications that require selective binding of ligand to metal.

Comment

Tri­ethanol­amine (TEA) is a versatile polyfunctional ligand (Naiini et al., 1995[Naiini, A. A., Young, V. & Verkade, J. G. (1995). Polyhedron, 14, 393-400.]) that may bond to metals in tridentate (Gao et al., 2004[Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S.-W. (2004). Acta Cryst. E60, m462-m464.]) or tetra­dentate mode (Kazak et al., 2003[Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351-356.]) through its N and/or O atoms. TEA can be protonated at its central N atom (Long et al., 2004[Long, D.-L., Abbas, H., Kogerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880-13881.]) or various numbers of protons can be lost from the terminal OH groups (Johnstone & Harrison, 2004[Johnstone, J. A. & Harrison, W. T. A. (2004). Inorg. Chem. 43, 4567-4569.]). In some complexes, TEA can show more than one binding mode simultaneously (Topcu et al., 2002[Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2002). J. Mol. Struct. 610, 99-103.]). A survey of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed that crystal structures have been reported for complexes of TEA with many metal ions, including lithium, zinc, copper, barium, nickel, manganese, mercury, lead, cadmium, yttrium, praseodymium and ytterbium.

We report here the synthesis and structure of the title compound, [La(NO3)(TEA)2](NO3)2, (I)[link] (Fig. 1[link]), the first reported crystal structure of a complex of La3+ and TEA. In (I)[link], the La atom is bonded to two symmetry-related neutral TEA mol­ecules, which act as N,O,O′,O′′-tetra­dentate ligands. In addition, a nitrate group bonds to the La atom in bidentate mode, and a further non-coordinated nitrate group provides charge compensation for the cationic complex.

The [La(NO3)(TEA)2]2+ ion has twofold symmetry, with atom La1 and nitrate atoms N1 and O2 occupying the rotation axis. One of the methyl­ene groups of the TEA species shows positional disorder over two orientations, which is not unusual for this species (Demir et al., 2003[Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907-o909.]). The average La—O distance in (I)[link] of 2.571 (2) Å (Table 1[link]) and the fact that the La—N bonds are notably longer than the La—O vertices are consistent with the situation in other O,N-bonded lanthanum complexes (Thomas et al., 1979[Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459-L460.]; Zhang et al., 2004[Zhang, Q.-Z., Lu, C.-Z., Yang, W.-B. & Yu, Y.-Q. (2004). Inorg. Chem. Commun. 7, 277-279.]). Overall, the LaO8N2 polyhedron in (I)[link] is irregular.

[Scheme 1]

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of three cation-to-anion O—H⋯O links (Table 2[link]). Each TEA OH group makes a strong near linear hydrogen bond (mean H⋯O = 1.87 Å) to a nearby non-coordinated nitrate O atom. This results in [110] chains of [La(NO3)(TEA)2]2+ ions bonded to their neighbours by a pair of bridging nitrate groups (Fig. 2[link]). The hydrogen-bond acceptor behaviour for the nitrate ion is unbalanced, with atom O6 accepting two hydrogen bonds, O7 one and O8 none. This possibly correlates with the fact that the N3—O8 bond [1.214 (3) Å] is noticeably shorter than N3—O6 or N3—O7 [1.267 (3) and 1.256 (3) Å, respectively]. Finally, the [110] chains in (I)[link] inter­act by way of van der Waals forces, resulting in a pseudo-layered unit-cell packing, such that the cations are arranged in (001) sheets and their attached nitrate groups point in alternating directions with respect to the c axis.

The fact that TEA can bind effectively to metal cations ranging in size from Li+ {as a five-coordinate [Li(TEA)(H2O)]+ ion with mean Li—OTEA = 2.003 (9) Å and Li—N = 2.206 (8) Å (Padmanabhan et al., 1987[Padmanabhan, V. M., Jakkal, V. S. & Poonia, N. S. (1987). Acta Cryst. C43, 1061-1064.])}, to Y3+ {as an eight-coordinate [Y(TEA)2]3+ complex cation with mean Y—O = 2.312 (5) Å and mean Y—N = 2.685 (9) Å (Naiini et al., 1995[Naiini, A. A., Young, V. & Verkade, J. G. (1995). Polyhedron, 14, 393-400.])}, Pr3+ {as a nine-coordinate [Pr(TEA)2(C4H8O)]3+ complex cation, with mean Pr—OTEA = 2.465 (5) Å and mean Pr—N = 2.716 (5) Å (Hahn & Mohr, 1990[Hahn, F. E. & Mohr, J. (1990). Chem. Ber. 123, 481-484.])} and the ten-coordinate [La(NO3)(TEA)2]2+ species seen here presumably correlates with the flexible `gripping' nature of TEA, making it a poor candidate for possible applications requiring a multidentate ligand to bind selectively to particular metals.

[Figure 1]
Figure 1
The component species in (I)[link] (30% probability displacement ellipsoids; C-bound H atoms and minor disorder components of the TEA ligands have been omitted for clarity), with O-bound H atoms drawn as small spheres of arbitrary radii and hydrogen bonds shown as dashed lines. [Symmetry code: (i) −x, y, −z + [{1\over 2}].]
[Figure 2]
Figure 2
A detail of a hydrogen-bonded chain in (I)[link]. Atoms are represented by arbitrary spheres; minor disorder components and all C-bound H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) −[{1\over 2}] + x, −y + [{1\over 2}], −[{1\over 2}] + z.]

Experimental

Triethanol­amine (1 ml), 0.1 M lanthanum nitrate (5 ml) and 1 M HCl (2 ml) were mixed at 293 K in a Petri dish. This resulted in a clear solution, and colourless block-like crystals of (I)[link] grew as the water evaporated at 293 K over the course of a few days.

Crystal data
  • [La(NO3)(C6H15NO3)2](NO3)2

  • Mr = 623.32

  • Monoclinic, C 2/c

  • a = 11.6451 (4) Å

  • b = 14.7287 (6) Å

  • c = 14.2679 (6) Å

  • β = 108.090 (1)°

  • V = 2326.22 (16) Å3

  • Z = 4

  • Dx = 1.780 Mg m−3

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.42 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.500, Tmax = 0.689

  • 11819 measured reflections

  • 4186 independent reflections

  • 3722 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 32.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.06

  • 4186 reflections

  • 161 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0997P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

La1—O3 2.5402 (17)
La1—O5 2.5570 (17)
La1—O4 2.5626 (16)
La1—O1 2.6228 (18)
La1—N2 2.8008 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.86 1.84 2.691 (3) 173
O4—H4⋯O6ii 0.82 1.91 2.725 (3) 172
O5—H5⋯O7 0.87 1.86 2.712 (3) 166
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

The site occupancies of the disordered CH2 groups (C51/C52) were constrained to sum to unity, resulting in almost equal occupancies for the two components [0.465 (12) and 0.535 (12)]. Disorder for the other TEA arms cannot be ruled out but could not be resolved with the present data. O-bound H atoms were located in difference maps and refined as riding from their starting locations, while C-­bound H atoms were placed in idealized positions (C—H = 0.97 Å) and refined as riding; the constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Triethanolamine (TEA), C6H15NO3, is a versatile polyfunctional ligand (Naiini et al., 1995) that may bond to metals in tridentate (Gao et al., 2004) or tetradentate mode (Kazak et al., 2003) through its N and/or O atoms. TEA can be protonated at its central N atom (Long et al., 2004) or various numbers of protons can be lost from the terminal –OH groups (Johnstone & Harrison, 2004). In some complexes, TEA can show more than one binding mode simultaneously (Topcu et al., 2002). A survey of the Cambridge Structural Database (Allen, 2002) revealed that crystal structures have been reported for complexes of TEA with many metal ions, including lithium, zinc, copper, barium, nickel, manganese, mercury, lead, cadmium, yttrium, praseodymium and ytterbium.

We report here the synthesis and structure of the title compound, [La(NO3)(C6H15NO3)2](NO3)2, (I) (Fig. 1), the first reported crystal structure of a complex of La3+ and TEA. In (I), the La atom is bonded to two symmetry-related, neutral TEA molecules, which act as tetradentate-N,O,O',O'' ligands. In addition, a nitrate group bonds to La in bidentate mode, and a further non-coordinated nitrate group provides charge compensation for the cationic complex.

The [La(NO3)(C6H15NO3)2]2+ ion has twofold symmetry, with atom La1 and nitrate atom N1 and O2 occupying the rotation axis. One of the methylene groups of the TEA species shows positional disorder over two orientations, which is not ususual for this species (Demir et al., 2003). The average La—O distance in (I) of 2.571 (2) Å and the fact that the La—N bonds are notably longer than the La—O vertices is consistent with the situation in other La-(O,N)-bonded complexes (Thomas et al., 1979; Zhang et al., 2004). Overall, the LaO8N2 polyhedron in (I) is irregular.

As well as electrostatic attractions, the component species in (I) interact by means of three cation-to-anion O—H···O links (Table 2). Each TEA–OH group makes a strong, near linear hydrogen bond [mean H···O = 1.87 Å] to a nearby non-coordinated nitrate O atom. This results in [110] chains of [La(NO3)(C6H15NO3)2]2+ ions bonded to their neighbours by a pair of bridging nitrate groups (Fig. 2). The hydrogen-bond acceptor behaviour for the nitrate ion is unbalanced, with atom O6 accepting two hydrogen bonds, O7 one and O8 none. This possibly correlates with the fact that the N3—O8 bond [1.214 (3) Å] is noticably shorter than N3—O6 or N3—O7 [1.267 (3) and 1.256 (3) Å, respectively]. Finally, the [110] chains in (I) interact by way of van der Waals' forces to result in a pseudo-layered unit-cell packing, such that the cations are arranged in (001) sheets and their atached nitrate groups point in alternating directions with respect to the c direction.

The fact that TEA can bind effectively to metal cations ranging in size from Li+ {as a five-coordinate [Li(C6H15NO3)(H2O)]+ ion with mean Li—OTEA = 2.003 (9) and Li—N = 2.206 (8) Å; Padmanabhan et al., 1987), to Y3+ {as an eight-coordinate [Y(C6H15NO3)2]3+ complex cation with mean Y—O = 2.312 (5) and mean Y—N = 2.685 (9) Å; Naiini et al., 1995}, Pr3+ {as a nine-coordinate [Pr(C6H15NO3)2(C4H8O)]3+ complex cation with mean Pr—OTEA = 2.465 (5) and mean Pr—N = 2.716 (5)Å} (Hahn & Mohr, 1990) and the ten-coordinate [La(NO3)(C6H15NO3)2]2+ species seen here presumably correlates with its flexible `gripping' nature, making it a poor candidate for possible applications requiring a multidentate ligand to bind selectively to particular metals.

Experimental top

Triethanolamine (1 ml), 0.1 M lanthanum nitrate (5 ml) and 1 M HCl (2 ml) were mixed at 293 K in a Petri dish. This resulted in a clear solution, and colourless block-like crystals of (I) grew as the water evaporated at 293 K over the course of a few days.

Refinement top

The site occupancies of the disordered CH2 groups (C51/C52) were constrained to sum to unity to result in almost equal occupancies for the two components [0.465 (12) and 0.535 (12)]. Disorder for the other TEA arms cannot be ruled out but could not be resolved with the present data. O-bound H atoms were located in difference maps and refined as riding from their starting locations. C-bound H atoms were placed in idealized positions (C—H = 0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The component species in (I) (30% probability displacement ellipsoids; C-bound H atoms and minor disorder components of the TEA ligands have been omitted for clarity). The O-bound H atoms are drawn as small spheres of arbitrary radii. [Symmetry code: (i) −x, y, 1/2 − z.] The hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A detail of a hydrogen-bonded chain in (I). [Symmetry codes: (i) −x, y, 1/2 − z; (ii) 1/2 − x, 1/2 − y, 1 − z; (iii) x − 1/2, 1/2 − y, z − 1/2.] Atoms are represented by arbitrary spheres; minor disorder components and all C-bound H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
(Nitrato-κ2O,O')bis(triethanolamine-κ4N,O,O',O'')lanthanum(III) dinitrate top
Crystal data top
[La(NO3)(C6H15NO3)2](NO3)2F(000) = 1256
Mr = 623.32Dx = 1.780 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6459 reflections
a = 11.6451 (4) Åθ = 2.3–32.5°
b = 14.7287 (6) ŵ = 1.92 mm1
c = 14.2679 (6) ÅT = 293 K
β = 108.090 (1)°Block, colourless
V = 2326.22 (16) Å30.42 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4186 independent reflections
Radiation source: fine-focus sealed tube3722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 179
Tmin = 0.500, Tmax = 0.689k = 2220
11819 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difmap and geom
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0997P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[La(NO3)(C6H15NO3)2](NO3)2V = 2326.22 (16) Å3
Mr = 623.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.6451 (4) ŵ = 1.92 mm1
b = 14.7287 (6) ÅT = 293 K
c = 14.2679 (6) Å0.42 × 0.25 × 0.21 mm
β = 108.090 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3722 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.689Rint = 0.019
11819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 1.10 e Å3
4186 reflectionsΔρmin = 0.51 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.00000.146481 (10)0.25000.03259 (6)
N10.00000.06041 (19)0.25000.0519 (7)
O10.0033 (2)0.01566 (13)0.17320 (14)0.0579 (4)
O20.00000.14376 (16)0.25000.0780 (11)
O30.10043 (17)0.15798 (12)0.06491 (13)0.0501 (4)
H30.17540.14760.03600.060*
O40.13240 (16)0.28907 (12)0.28991 (14)0.0542 (4)
H40.13980.32100.33840.065*
O50.21474 (17)0.08268 (13)0.29965 (13)0.0543 (4)
H50.25740.06010.35650.065*
N20.14287 (17)0.19127 (14)0.13093 (14)0.0437 (4)
C10.0445 (3)0.1695 (2)0.00993 (18)0.0559 (6)
H1A0.05510.23160.03390.067*
H1B0.08150.12930.06480.067*
C20.0862 (3)0.1487 (2)0.0319 (2)0.0609 (7)
H2A0.12770.17010.01330.073*
H2B0.09660.08340.03780.073*
C30.1772 (3)0.33752 (19)0.2218 (3)0.0623 (7)
H3A0.26470.34050.24670.075*
H3B0.14600.39910.21420.075*
C40.1384 (3)0.28953 (19)0.1230 (2)0.0633 (7)
H4A0.05660.30780.08700.076*
H4B0.19040.30890.08510.076*
C520.2806 (6)0.0790 (5)0.2305 (5)0.0519 (18)0.535 (12)
H52A0.36580.07280.26650.062*0.535 (12)
H52B0.25590.02520.19000.062*0.535 (12)
C510.3086 (6)0.1268 (8)0.2716 (6)0.062 (2)0.465 (12)
H51A0.37640.08570.28150.075*0.465 (12)
H51B0.33630.17970.31290.075*0.465 (12)
C60.2652 (3)0.1543 (3)0.1690 (3)0.0781 (11)
H6A0.29110.13750.11300.094*0.50
H6B0.31860.20210.20410.094*0.50
H6C0.27140.10360.12980.094*0.50
H6D0.32090.20130.16000.094*0.50
N30.36664 (19)0.03707 (14)0.54134 (16)0.0485 (4)
O60.33082 (19)0.11858 (15)0.53775 (16)0.0662 (6)
O70.3221 (2)0.01204 (13)0.46694 (16)0.0696 (6)
O80.4407 (2)0.00913 (17)0.61581 (18)0.0808 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.03807 (9)0.03493 (9)0.02867 (8)0.0000.01604 (6)0.000
N10.0535 (16)0.0399 (13)0.0703 (19)0.0000.0312 (14)0.000
O10.0818 (13)0.0490 (9)0.0518 (10)0.0003 (9)0.0336 (9)0.0071 (7)
O20.090 (3)0.0355 (13)0.120 (3)0.0000.050 (2)0.000
O30.0469 (9)0.0726 (12)0.0323 (7)0.0080 (7)0.0145 (6)0.0002 (7)
O40.0617 (11)0.0517 (9)0.0555 (10)0.0178 (8)0.0272 (8)0.0149 (7)
O50.0532 (10)0.0673 (11)0.0474 (9)0.0178 (8)0.0227 (7)0.0156 (8)
N20.0438 (10)0.0525 (11)0.0406 (9)0.0061 (8)0.0217 (7)0.0073 (8)
C10.0663 (17)0.0733 (16)0.0330 (11)0.0061 (13)0.0226 (10)0.0033 (10)
C20.0712 (18)0.0751 (19)0.0476 (14)0.0016 (13)0.0346 (13)0.0033 (11)
C30.0638 (17)0.0529 (14)0.0695 (19)0.0174 (12)0.0198 (14)0.0040 (12)
C40.0780 (19)0.0573 (15)0.0635 (17)0.0013 (13)0.0347 (14)0.0134 (12)
C520.053 (3)0.056 (3)0.055 (3)0.022 (2)0.028 (2)0.013 (3)
C510.045 (3)0.080 (5)0.060 (4)0.011 (3)0.015 (3)0.012 (4)
C60.0586 (17)0.108 (3)0.083 (2)0.0326 (17)0.0443 (17)0.0397 (19)
N30.0450 (10)0.0534 (11)0.0485 (11)0.0023 (8)0.0167 (8)0.0060 (8)
O60.0618 (12)0.0608 (10)0.0641 (13)0.0090 (10)0.0020 (9)0.0165 (10)
O70.0967 (17)0.0474 (10)0.0587 (12)0.0059 (10)0.0154 (11)0.0033 (8)
O80.0637 (13)0.0963 (17)0.0678 (14)0.0032 (12)0.0007 (10)0.0264 (13)
Geometric parameters (Å, º) top
La1—O3i2.5402 (17)C1—C21.484 (5)
La1—O32.5402 (17)C1—H1A0.9700
La1—O5i2.5570 (17)C1—H1B0.9700
La1—O52.5570 (17)C2—H2A0.9700
La1—O42.5626 (16)C2—H2B0.9700
La1—O4i2.5626 (16)C3—C41.516 (4)
La1—O12.6228 (18)C3—H3A0.9700
La1—O1i2.6228 (18)C3—H3B0.9700
La1—N2i2.8008 (18)C4—H4A0.9700
La1—N22.8008 (18)C4—H4B0.9700
N1—O21.228 (3)C52—C61.391 (6)
N1—O1i1.269 (2)C52—H52A0.9700
N1—O11.269 (2)C52—H52B0.9700
O3—C11.423 (3)C51—C61.450 (8)
O3—H30.8556C51—H51A0.9700
O4—C31.429 (4)C51—H51B0.9700
O4—H40.8182C6—H6A0.9700
O5—C521.426 (5)C6—H6B0.9700
O5—C511.431 (8)C6—H6C0.9497
O5—H50.8744C6—H6D0.9834
N2—C41.451 (3)N3—O81.214 (3)
N2—C61.463 (4)N3—O71.256 (3)
N2—C21.499 (4)N3—O61.267 (3)
O3i—La1—O3172.36 (8)C3—O4—H4108.9
O3i—La1—O5i114.05 (6)La1—O4—H4123.8
O3—La1—O5i68.99 (6)C52—O5—La1120.8 (2)
O3i—La1—O568.99 (6)C51—O5—La1121.4 (3)
O3—La1—O5114.05 (6)C52—O5—H5110.8
O5i—La1—O5136.88 (9)C51—O5—H599.7
O3i—La1—O470.32 (6)La1—O5—H5128.4
O3—La1—O4103.15 (6)C4—N2—C6114.0 (3)
O5i—La1—O4146.30 (7)C4—N2—C2110.4 (2)
O5—La1—O476.73 (6)C6—N2—C2106.7 (2)
O3i—La1—O4i103.15 (6)C4—N2—La1105.60 (16)
O3—La1—O4i70.32 (6)C6—N2—La1112.36 (16)
O5i—La1—O4i76.73 (6)C2—N2—La1107.61 (15)
O5—La1—O4i146.30 (7)O3—C1—C2108.9 (2)
O4—La1—O4i69.93 (9)O3—C1—H1A109.9
O3i—La1—O1115.94 (6)C2—C1—H1A109.8
O3—La1—O171.58 (6)O3—C1—H1B109.9
O5i—La1—O170.33 (6)C2—C1—H1B110.0
O5—La1—O170.57 (7)H1A—C1—H1B108.3
O4—La1—O1140.25 (6)C1—C2—N2112.9 (2)
O4i—La1—O1136.35 (6)C1—C2—H2A109.0
O3i—La1—O1i71.58 (6)N2—C2—H2A109.0
O3—La1—O1i115.94 (6)C1—C2—H2B109.0
O5i—La1—O1i70.57 (7)N2—C2—H2B109.0
O5—La1—O1i70.33 (6)H2A—C2—H2B107.8
O4—La1—O1i136.35 (6)O4—C3—C4109.5 (2)
O4i—La1—O1i140.25 (6)O4—C3—H3A109.7
O1—La1—O1i48.85 (9)C4—C3—H3A109.7
O3i—La1—N2i61.46 (6)O4—C3—H3B109.9
O3—La1—N2i116.51 (6)C4—C3—H3B109.8
O5i—La1—N2i62.65 (6)H3A—C3—H3B108.2
O5—La1—N2i129.24 (6)N2—C4—C3113.5 (2)
O4—La1—N2i95.85 (6)N2—C4—H4A108.9
O4i—La1—N2i60.79 (6)C3—C4—H4A108.9
O1—La1—N2i122.23 (6)N2—C4—H4B108.9
O1i—La1—N2i84.00 (6)C3—C4—H4B108.9
O3i—La1—N2116.51 (6)H4A—C4—H4B107.7
O3—La1—N261.46 (6)C6—C52—O5114.5 (4)
O5i—La1—N2129.24 (6)C6—C52—H52A108.6
O5—La1—N262.65 (6)O5—C52—H52A108.6
O4—La1—N260.79 (6)C6—C52—H52B108.6
O4i—La1—N295.85 (6)O5—C52—H52B108.6
O1—La1—N284.00 (6)H52A—C52—H52B107.6
O1i—La1—N2122.23 (6)H52A—C52—H6C107.2
N2i—La1—N2152.76 (8)O5—C51—C6110.6 (5)
O3i—La1—N193.82 (4)O5—C51—H51A109.5
O3—La1—N193.82 (4)C6—C51—H51A109.5
O5i—La1—N168.44 (5)O5—C51—H51B109.5
O5—La1—N168.44 (5)C6—C51—H51B109.5
O4—La1—N1145.04 (4)H51A—C51—H51B108.1
O4i—La1—N1145.04 (4)H51A—C51—H6B109.4
O1—La1—N124.42 (4)C52—C6—N2116.8 (3)
O1i—La1—N124.42 (4)C51—C6—N2118.2 (4)
N2i—La1—N1103.62 (4)C52—C6—H6A107.7
N2—La1—N1103.62 (4)N2—C6—H6A107.7
O2—N1—O1i121.29 (14)C52—C6—H6B108.5
O2—N1—O1121.29 (14)N2—C6—H6B108.5
O1i—N1—O1117.4 (3)H6A—C6—H6B107.3
O2—N1—La1180.0C51—C6—H6C107.9
O1i—N1—La158.71 (14)N2—C6—H6C108.5
O1—N1—La158.71 (14)C51—C6—H6D106.9
N1—O1—La196.87 (15)N2—C6—H6D107.2
C1—O3—La1128.14 (15)H6C—C6—H6D107.6
C1—O3—H3107.2O8—N3—O7122.6 (2)
La1—O3—H3124.1O8—N3—O6119.5 (2)
C3—O4—La1125.44 (16)O7—N3—O6117.9 (2)
O3i—La1—N1—O1i24.07 (12)O1i—La1—O5—C51170.5 (6)
O3—La1—N1—O1i155.93 (12)N2i—La1—O5—C51125.3 (6)
O5i—La1—N1—O1i90.30 (12)N2—La1—O5—C5125.2 (6)
O5—La1—N1—O1i89.70 (12)N1—La1—O5—C51144.5 (6)
O4—La1—N1—O1i84.52 (14)O3i—La1—N2—C482.58 (17)
O4i—La1—N1—O1i95.48 (14)O3—La1—N2—C489.11 (18)
N2i—La1—N1—O1i37.47 (12)O5i—La1—N2—C4102.90 (18)
N2—La1—N1—O1i142.53 (12)O5—La1—N2—C4127.42 (19)
O3i—La1—N1—O1155.93 (12)O4—La1—N2—C437.81 (17)
O3—La1—N1—O124.07 (12)O4i—La1—N2—C425.28 (18)
O5i—La1—N1—O189.70 (12)O1—La1—N2—C4161.38 (18)
O5—La1—N1—O190.30 (12)O1i—La1—N2—C4166.68 (17)
O4—La1—N1—O195.48 (14)N2i—La1—N2—C43.97 (16)
O4i—La1—N1—O184.52 (14)N1—La1—N2—C4176.03 (16)
N2i—La1—N1—O1142.53 (12)O3i—La1—N2—C642.3 (2)
N2—La1—N1—O137.47 (12)O3—La1—N2—C6146.0 (2)
O3i—La1—O1—N126.91 (14)O5i—La1—N2—C6132.2 (2)
O3—La1—O1—N1154.60 (13)O5—La1—N2—C62.5 (2)
O5i—La1—O1—N180.99 (11)O4—La1—N2—C687.1 (2)
O5—La1—O1—N180.45 (11)O4i—La1—N2—C6150.2 (2)
O4—La1—O1—N1116.87 (11)O1—La1—N2—C673.7 (2)
O4i—La1—O1—N1124.27 (11)O1i—La1—N2—C641.8 (2)
N2i—La1—O1—N144.34 (14)N2i—La1—N2—C6120.9 (2)
N2—La1—O1—N1143.53 (12)N1—La1—N2—C659.1 (2)
O5i—La1—O3—C1160.9 (2)O3i—La1—N2—C2159.49 (15)
O5—La1—O3—C127.7 (2)O3—La1—N2—C228.82 (15)
O4—La1—O3—C153.5 (2)O5i—La1—N2—C215.03 (18)
O4i—La1—O3—C1116.2 (2)O5—La1—N2—C2114.65 (17)
O1—La1—O3—C185.5 (2)O4—La1—N2—C2155.74 (17)
O1i—La1—O3—C1106.6 (2)O4i—La1—N2—C292.65 (16)
N2i—La1—O3—C1157.0 (2)O1—La1—N2—C243.45 (16)
N2—La1—O3—C17.7 (2)O1i—La1—N2—C275.39 (17)
N1—La1—O3—C195.7 (2)N2i—La1—N2—C2121.90 (16)
O3i—La1—O4—C3160.2 (2)N1—La1—N2—C258.10 (16)
O3—La1—O4—C324.0 (2)La1—O3—C1—C215.7 (3)
O5i—La1—O4—C395.7 (2)O3—C1—C2—N245.3 (3)
O5—La1—O4—C388.0 (2)C4—N2—C2—C163.8 (3)
O4i—La1—O4—C387.0 (2)C6—N2—C2—C1171.7 (2)
O1—La1—O4—C352.9 (2)La1—N2—C2—C150.9 (3)
O1i—La1—O4—C3129.6 (2)La1—O4—C3—C42.2 (4)
N2i—La1—O4—C3143.0 (2)C6—N2—C4—C368.3 (3)
N2—La1—O4—C322.2 (2)C2—N2—C4—C3171.5 (2)
N1—La1—O4—C393.0 (2)La1—N2—C4—C355.5 (3)
O3i—La1—O5—C52155.9 (4)O4—C3—C4—N238.9 (4)
O3—La1—O5—C5216.5 (4)C51—O5—C52—C663.2 (6)
O5i—La1—O5—C52100.8 (4)La1—O5—C52—C639.5 (8)
O4—La1—O5—C5282.2 (4)C52—O5—C51—C656.3 (6)
O4i—La1—O5—C5273.8 (4)La1—O5—C51—C644.4 (9)
O1—La1—O5—C5274.8 (4)O5—C52—C6—C5161.4 (6)
O1i—La1—O5—C52126.9 (4)O5—C52—C6—N240.8 (8)
N2i—La1—O5—C52168.9 (4)O5—C51—C6—C5258.2 (6)
N2—La1—O5—C5218.5 (4)O5—C51—C6—N239.8 (10)
N1—La1—O5—C52100.8 (4)C4—N2—C6—C52143.5 (5)
O3i—La1—O5—C51112.3 (6)C2—N2—C6—C5294.3 (5)
O3—La1—O5—C5160.1 (6)La1—N2—C6—C5223.4 (5)
O5i—La1—O5—C51144.5 (6)C4—N2—C6—C51101.3 (6)
O4—La1—O5—C5138.6 (6)C2—N2—C6—C51136.5 (6)
O4i—La1—O5—C5130.2 (6)La1—N2—C6—C5118.8 (7)
O1—La1—O5—C51118.5 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.861.842.691 (3)173
O4—H4···O6ii0.821.912.725 (3)172
O5—H5···O70.871.862.712 (3)166
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[La(NO3)(C6H15NO3)2](NO3)2
Mr623.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.6451 (4), 14.7287 (6), 14.2679 (6)
β (°) 108.090 (1)
V3)2326.22 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.42 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.500, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
11819, 4186, 3722
Rint0.019
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.06
No. of reflections4186
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.51

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
La1—O32.5402 (17)La1—O12.6228 (18)
La1—O52.5570 (17)La1—N22.8008 (18)
La1—O42.5626 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.861.842.691 (3)173
O4—H4···O6ii0.821.912.725 (3)172
O5—H5···O70.871.862.712 (3)166
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907–o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H. & Ng, S.-W. (2004). Acta Cryst. E60, m462–m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHahn, F. E. & Mohr, J. (1990). Chem. Ber. 123, 481–484.  CrossRef CAS Google Scholar
First citationJohnstone, J. A. & Harrison, W. T. A. (2004). Inorg. Chem. 43, 4567–4569.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, D.-L., Abbas, H., Kogerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880–13881.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNaiini, A. A., Young, V. & Verkade, J. G. (1995). Polyhedron, 14, 393–400.  CSD CrossRef Web of Science Google Scholar
First citationPadmanabhan, V. M., Jakkal, V. S. & Poonia, N. S. (1987). Acta Cryst. C43, 1061–1064.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationThomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459–L460.  CSD CrossRef CAS Web of Science Google Scholar
First citationTopcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2002). J. Mol. Struct. 610, 99–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Q.-Z., Lu, C.-Z., Yang, W.-B. & Yu, Y.-Q. (2004). Inorg. Chem. Commun. 7, 277–279.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds