metal-organic compounds
(Nitrato-κ2O,O′)bis(triethanolamine-κ4N,O,O′,O′′)lanthanum(III) dinitrate
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, [La(NO3)(C6H15NO3)2](NO3)2, contains a network of [La(NO3)(C6H15NO3)2]2+ cations and nitrate counter-ions. The crystal packing is influenced by cation-to-anion O—H⋯O hydrogen bonds, resulting in a structure with one-dimensional character. The ten-coordinate La atom and a nitrate anion have 2. The fact that triethanolamine can bind to such diverse cations as Li+ and La3+ militates against possible applications that require selective binding of ligand to metal.
Comment
Triethanolamine (TEA) is a versatile polyfunctional ligand (Naiini et al., 1995) that may bond to metals in tridentate (Gao et al., 2004) or tetradentate mode (Kazak et al., 2003) through its N and/or O atoms. TEA can be protonated at its central N atom (Long et al., 2004) or various numbers of protons can be lost from the terminal OH groups (Johnstone & Harrison, 2004). In some complexes, TEA can show more than one binding mode simultaneously (Topcu et al., 2002). A survey of the Cambridge Structural Database (Allen, 2002) revealed that crystal structures have been reported for complexes of TEA with many metal ions, including lithium, zinc, copper, barium, nickel, manganese, mercury, lead, cadmium, yttrium, praseodymium and ytterbium.
We report here the synthesis and structure of the title compound, [La(NO3)(TEA)2](NO3)2, (I) (Fig. 1), the first reported of a complex of La3+ and TEA. In (I), the La atom is bonded to two symmetry-related neutral TEA molecules, which act as N,O,O′,O′′-tetradentate ligands. In addition, a nitrate group bonds to the La atom in bidentate mode, and a further non-coordinated nitrate group provides charge compensation for the cationic complex.
The [La(NO3)(TEA)2]2+ ion has twofold symmetry, with atom La1 and nitrate atoms N1 and O2 occupying the rotation axis. One of the methylene groups of the TEA species shows positional disorder over two orientations, which is not unusual for this species (Demir et al., 2003). The average La—O distance in (I) of 2.571 (2) Å (Table 1) and the fact that the La—N bonds are notably longer than the La—O vertices are consistent with the situation in other O,N-bonded lanthanum complexes (Thomas et al., 1979; Zhang et al., 2004). Overall, the LaO8N2 polyhedron in (I) is irregular.
As well as electrostatic attractions, the component species in (I) interact by means of three cation-to-anion O—H⋯O links (Table 2). Each TEA OH group makes a strong near linear hydrogen bond (mean H⋯O = 1.87 Å) to a nearby non-coordinated nitrate O atom. This results in [110] chains of [La(NO3)(TEA)2]2+ ions bonded to their neighbours by a pair of bridging nitrate groups (Fig. 2). The hydrogen-bond acceptor behaviour for the nitrate ion is unbalanced, with atom O6 accepting two hydrogen bonds, O7 one and O8 none. This possibly correlates with the fact that the N3—O8 bond [1.214 (3) Å] is noticeably shorter than N3—O6 or N3—O7 [1.267 (3) and 1.256 (3) Å, respectively]. Finally, the [110] chains in (I) interact by way of resulting in a pseudo-layered unit-cell packing, such that the cations are arranged in (001) sheets and their attached nitrate groups point in alternating directions with respect to the c axis.
The fact that TEA can bind effectively to metal cations ranging in size from Li+ {as a five-coordinate [Li(TEA)(H2O)]+ ion with mean Li—OTEA = 2.003 (9) Å and Li—N = 2.206 (8) Å (Padmanabhan et al., 1987)}, to Y3+ {as an eight-coordinate [Y(TEA)2]3+ complex cation with mean Y—O = 2.312 (5) Å and mean Y—N = 2.685 (9) Å (Naiini et al., 1995)}, Pr3+ {as a nine-coordinate [Pr(TEA)2(C4H8O)]3+ complex cation, with mean Pr—OTEA = 2.465 (5) Å and mean Pr—N = 2.716 (5) Å (Hahn & Mohr, 1990)} and the ten-coordinate [La(NO3)(TEA)2]2+ species seen here presumably correlates with the flexible `gripping' nature of TEA, making it a poor candidate for possible applications requiring a multidentate ligand to bind selectively to particular metals.
Experimental
Triethanolamine (1 ml), 0.1 M lanthanum nitrate (5 ml) and 1 M HCl (2 ml) were mixed at 293 K in a Petri dish. This resulted in a clear solution, and colourless block-like crystals of (I) grew as the water evaporated at 293 K over the course of a few days.
Crystal data
|
Refinement
|
|
The site occupancies of the disordered CH2 groups (C51/C52) were constrained to sum to unity, resulting in almost equal occupancies for the two components [0.465 (12) and 0.535 (12)]. Disorder for the other TEA arms cannot be ruled out but could not be resolved with the present data. O-bound H atoms were located in difference maps and refined as riding from their starting locations, while C-bound H atoms were placed in idealized positions (C—H = 0.97 Å) and refined as riding; the constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S0108270106011826/fg3009sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock afc8a. DOI: 10.1107/S0108270106011826/fg3009Isup2.hkl
Triethanolamine (1 ml), 0.1 M lanthanum nitrate (5 ml) and 1 M HCl (2 ml) were mixed at 293 K in a Petri dish. This resulted in a clear solution, and colourless block-like crystals of (I) grew as the water evaporated at 293 K over the course of a few days.
The site occupancies of the disordered CH2 groups (C51/C52) were constrained to sum to unity to result in almost equal occupancies for the two components [0.465 (12) and 0.535 (12)]. Disorder for the other TEA arms cannot be ruled out but could not be resolved with the present data. O-bound H atoms were located in difference maps and refined as riding from their starting locations. C-bound H atoms were placed in idealized positions (C—H = 0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.[La(NO3)(C6H15NO3)2](NO3)2 | F(000) = 1256 |
Mr = 623.32 | Dx = 1.780 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6459 reflections |
a = 11.6451 (4) Å | θ = 2.3–32.5° |
b = 14.7287 (6) Å | µ = 1.92 mm−1 |
c = 14.2679 (6) Å | T = 293 K |
β = 108.090 (1)° | Block, colourless |
V = 2326.22 (16) Å3 | 0.42 × 0.25 × 0.21 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 4186 independent reflections |
Radiation source: fine-focus sealed tube | 3722 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 32.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −17→9 |
Tmin = 0.500, Tmax = 0.689 | k = −22→20 |
11819 measured reflections | l = −17→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: difmap and geom |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0997P] where P = (Fo2 + 2Fc2)/3 |
4186 reflections | (Δ/σ)max = 0.001 |
161 parameters | Δρmax = 1.10 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[La(NO3)(C6H15NO3)2](NO3)2 | V = 2326.22 (16) Å3 |
Mr = 623.32 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.6451 (4) Å | µ = 1.92 mm−1 |
b = 14.7287 (6) Å | T = 293 K |
c = 14.2679 (6) Å | 0.42 × 0.25 × 0.21 mm |
β = 108.090 (1)° |
Bruker SMART 1000 CCD diffractometer | 4186 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3722 reflections with I > 2σ(I) |
Tmin = 0.500, Tmax = 0.689 | Rint = 0.019 |
11819 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.10 e Å−3 |
4186 reflections | Δρmin = −0.51 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.0000 | 0.146481 (10) | 0.2500 | 0.03259 (6) | |
N1 | 0.0000 | −0.06041 (19) | 0.2500 | 0.0519 (7) | |
O1 | −0.0033 (2) | −0.01566 (13) | 0.17320 (14) | 0.0579 (4) | |
O2 | 0.0000 | −0.14376 (16) | 0.2500 | 0.0780 (11) | |
O3 | −0.10043 (17) | 0.15798 (12) | 0.06491 (13) | 0.0501 (4) | |
H3 | −0.1754 | 0.1476 | 0.0360 | 0.060* | |
O4 | 0.13240 (16) | 0.28907 (12) | 0.28991 (14) | 0.0542 (4) | |
H4 | 0.1398 | 0.3210 | 0.3384 | 0.065* | |
O5 | 0.21474 (17) | 0.08268 (13) | 0.29965 (13) | 0.0543 (4) | |
H5 | 0.2574 | 0.0601 | 0.3565 | 0.065* | |
N2 | 0.14287 (17) | 0.19127 (14) | 0.13093 (14) | 0.0437 (4) | |
C1 | −0.0445 (3) | 0.1695 (2) | −0.00993 (18) | 0.0559 (6) | |
H1A | −0.0551 | 0.2316 | −0.0339 | 0.067* | |
H1B | −0.0815 | 0.1293 | −0.0648 | 0.067* | |
C2 | 0.0862 (3) | 0.1487 (2) | 0.0319 (2) | 0.0609 (7) | |
H2A | 0.1277 | 0.1701 | −0.0133 | 0.073* | |
H2B | 0.0966 | 0.0834 | 0.0378 | 0.073* | |
C3 | 0.1772 (3) | 0.33752 (19) | 0.2218 (3) | 0.0623 (7) | |
H3A | 0.2647 | 0.3405 | 0.2467 | 0.075* | |
H3B | 0.1460 | 0.3991 | 0.2142 | 0.075* | |
C4 | 0.1384 (3) | 0.28953 (19) | 0.1230 (2) | 0.0633 (7) | |
H4A | 0.0566 | 0.3078 | 0.0870 | 0.076* | |
H4B | 0.1904 | 0.3089 | 0.0851 | 0.076* | |
C52 | 0.2806 (6) | 0.0790 (5) | 0.2305 (5) | 0.0519 (18) | 0.535 (12) |
H52A | 0.3658 | 0.0728 | 0.2665 | 0.062* | 0.535 (12) |
H52B | 0.2559 | 0.0252 | 0.1900 | 0.062* | 0.535 (12) |
C51 | 0.3086 (6) | 0.1268 (8) | 0.2716 (6) | 0.062 (2) | 0.465 (12) |
H51A | 0.3764 | 0.0857 | 0.2815 | 0.075* | 0.465 (12) |
H51B | 0.3363 | 0.1797 | 0.3129 | 0.075* | 0.465 (12) |
C6 | 0.2652 (3) | 0.1543 (3) | 0.1690 (3) | 0.0781 (11) | |
H6A | 0.2911 | 0.1375 | 0.1130 | 0.094* | 0.50 |
H6B | 0.3186 | 0.2021 | 0.2041 | 0.094* | 0.50 |
H6C | 0.2714 | 0.1036 | 0.1298 | 0.094* | 0.50 |
H6D | 0.3209 | 0.2013 | 0.1600 | 0.094* | 0.50 |
N3 | 0.36664 (19) | 0.03707 (14) | 0.54134 (16) | 0.0485 (4) | |
O6 | 0.33082 (19) | 0.11858 (15) | 0.53775 (16) | 0.0662 (6) | |
O7 | 0.3221 (2) | −0.01204 (13) | 0.46694 (16) | 0.0696 (6) | |
O8 | 0.4407 (2) | 0.00913 (17) | 0.61581 (18) | 0.0808 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.03807 (9) | 0.03493 (9) | 0.02867 (8) | 0.000 | 0.01604 (6) | 0.000 |
N1 | 0.0535 (16) | 0.0399 (13) | 0.0703 (19) | 0.000 | 0.0312 (14) | 0.000 |
O1 | 0.0818 (13) | 0.0490 (9) | 0.0518 (10) | −0.0003 (9) | 0.0336 (9) | −0.0071 (7) |
O2 | 0.090 (3) | 0.0355 (13) | 0.120 (3) | 0.000 | 0.050 (2) | 0.000 |
O3 | 0.0469 (9) | 0.0726 (12) | 0.0323 (7) | −0.0080 (7) | 0.0145 (6) | 0.0002 (7) |
O4 | 0.0617 (11) | 0.0517 (9) | 0.0555 (10) | −0.0178 (8) | 0.0272 (8) | −0.0149 (7) |
O5 | 0.0532 (10) | 0.0673 (11) | 0.0474 (9) | 0.0178 (8) | 0.0227 (7) | 0.0156 (8) |
N2 | 0.0438 (10) | 0.0525 (11) | 0.0406 (9) | 0.0061 (8) | 0.0217 (7) | 0.0073 (8) |
C1 | 0.0663 (17) | 0.0733 (16) | 0.0330 (11) | −0.0061 (13) | 0.0226 (10) | −0.0033 (10) |
C2 | 0.0712 (18) | 0.0751 (19) | 0.0476 (14) | 0.0016 (13) | 0.0346 (13) | −0.0033 (11) |
C3 | 0.0638 (17) | 0.0529 (14) | 0.0695 (19) | −0.0174 (12) | 0.0198 (14) | 0.0040 (12) |
C4 | 0.0780 (19) | 0.0573 (15) | 0.0635 (17) | −0.0013 (13) | 0.0347 (14) | 0.0134 (12) |
C52 | 0.053 (3) | 0.056 (3) | 0.055 (3) | 0.022 (2) | 0.028 (2) | 0.013 (3) |
C51 | 0.045 (3) | 0.080 (5) | 0.060 (4) | 0.011 (3) | 0.015 (3) | 0.012 (4) |
C6 | 0.0586 (17) | 0.108 (3) | 0.083 (2) | 0.0326 (17) | 0.0443 (17) | 0.0397 (19) |
N3 | 0.0450 (10) | 0.0534 (11) | 0.0485 (11) | −0.0023 (8) | 0.0167 (8) | 0.0060 (8) |
O6 | 0.0618 (12) | 0.0608 (10) | 0.0641 (13) | 0.0090 (10) | 0.0020 (9) | −0.0165 (10) |
O7 | 0.0967 (17) | 0.0474 (10) | 0.0587 (12) | 0.0059 (10) | 0.0154 (11) | −0.0033 (8) |
O8 | 0.0637 (13) | 0.0963 (17) | 0.0678 (14) | 0.0032 (12) | −0.0007 (10) | 0.0264 (13) |
La1—O3i | 2.5402 (17) | C1—C2 | 1.484 (5) |
La1—O3 | 2.5402 (17) | C1—H1A | 0.9700 |
La1—O5i | 2.5570 (17) | C1—H1B | 0.9700 |
La1—O5 | 2.5570 (17) | C2—H2A | 0.9700 |
La1—O4 | 2.5626 (16) | C2—H2B | 0.9700 |
La1—O4i | 2.5626 (16) | C3—C4 | 1.516 (4) |
La1—O1 | 2.6228 (18) | C3—H3A | 0.9700 |
La1—O1i | 2.6228 (18) | C3—H3B | 0.9700 |
La1—N2i | 2.8008 (18) | C4—H4A | 0.9700 |
La1—N2 | 2.8008 (18) | C4—H4B | 0.9700 |
N1—O2 | 1.228 (3) | C52—C6 | 1.391 (6) |
N1—O1i | 1.269 (2) | C52—H52A | 0.9700 |
N1—O1 | 1.269 (2) | C52—H52B | 0.9700 |
O3—C1 | 1.423 (3) | C51—C6 | 1.450 (8) |
O3—H3 | 0.8556 | C51—H51A | 0.9700 |
O4—C3 | 1.429 (4) | C51—H51B | 0.9700 |
O4—H4 | 0.8182 | C6—H6A | 0.9700 |
O5—C52 | 1.426 (5) | C6—H6B | 0.9700 |
O5—C51 | 1.431 (8) | C6—H6C | 0.9497 |
O5—H5 | 0.8744 | C6—H6D | 0.9834 |
N2—C4 | 1.451 (3) | N3—O8 | 1.214 (3) |
N2—C6 | 1.463 (4) | N3—O7 | 1.256 (3) |
N2—C2 | 1.499 (4) | N3—O6 | 1.267 (3) |
O3i—La1—O3 | 172.36 (8) | C3—O4—H4 | 108.9 |
O3i—La1—O5i | 114.05 (6) | La1—O4—H4 | 123.8 |
O3—La1—O5i | 68.99 (6) | C52—O5—La1 | 120.8 (2) |
O3i—La1—O5 | 68.99 (6) | C51—O5—La1 | 121.4 (3) |
O3—La1—O5 | 114.05 (6) | C52—O5—H5 | 110.8 |
O5i—La1—O5 | 136.88 (9) | C51—O5—H5 | 99.7 |
O3i—La1—O4 | 70.32 (6) | La1—O5—H5 | 128.4 |
O3—La1—O4 | 103.15 (6) | C4—N2—C6 | 114.0 (3) |
O5i—La1—O4 | 146.30 (7) | C4—N2—C2 | 110.4 (2) |
O5—La1—O4 | 76.73 (6) | C6—N2—C2 | 106.7 (2) |
O3i—La1—O4i | 103.15 (6) | C4—N2—La1 | 105.60 (16) |
O3—La1—O4i | 70.32 (6) | C6—N2—La1 | 112.36 (16) |
O5i—La1—O4i | 76.73 (6) | C2—N2—La1 | 107.61 (15) |
O5—La1—O4i | 146.30 (7) | O3—C1—C2 | 108.9 (2) |
O4—La1—O4i | 69.93 (9) | O3—C1—H1A | 109.9 |
O3i—La1—O1 | 115.94 (6) | C2—C1—H1A | 109.8 |
O3—La1—O1 | 71.58 (6) | O3—C1—H1B | 109.9 |
O5i—La1—O1 | 70.33 (6) | C2—C1—H1B | 110.0 |
O5—La1—O1 | 70.57 (7) | H1A—C1—H1B | 108.3 |
O4—La1—O1 | 140.25 (6) | C1—C2—N2 | 112.9 (2) |
O4i—La1—O1 | 136.35 (6) | C1—C2—H2A | 109.0 |
O3i—La1—O1i | 71.58 (6) | N2—C2—H2A | 109.0 |
O3—La1—O1i | 115.94 (6) | C1—C2—H2B | 109.0 |
O5i—La1—O1i | 70.57 (7) | N2—C2—H2B | 109.0 |
O5—La1—O1i | 70.33 (6) | H2A—C2—H2B | 107.8 |
O4—La1—O1i | 136.35 (6) | O4—C3—C4 | 109.5 (2) |
O4i—La1—O1i | 140.25 (6) | O4—C3—H3A | 109.7 |
O1—La1—O1i | 48.85 (9) | C4—C3—H3A | 109.7 |
O3i—La1—N2i | 61.46 (6) | O4—C3—H3B | 109.9 |
O3—La1—N2i | 116.51 (6) | C4—C3—H3B | 109.8 |
O5i—La1—N2i | 62.65 (6) | H3A—C3—H3B | 108.2 |
O5—La1—N2i | 129.24 (6) | N2—C4—C3 | 113.5 (2) |
O4—La1—N2i | 95.85 (6) | N2—C4—H4A | 108.9 |
O4i—La1—N2i | 60.79 (6) | C3—C4—H4A | 108.9 |
O1—La1—N2i | 122.23 (6) | N2—C4—H4B | 108.9 |
O1i—La1—N2i | 84.00 (6) | C3—C4—H4B | 108.9 |
O3i—La1—N2 | 116.51 (6) | H4A—C4—H4B | 107.7 |
O3—La1—N2 | 61.46 (6) | C6—C52—O5 | 114.5 (4) |
O5i—La1—N2 | 129.24 (6) | C6—C52—H52A | 108.6 |
O5—La1—N2 | 62.65 (6) | O5—C52—H52A | 108.6 |
O4—La1—N2 | 60.79 (6) | C6—C52—H52B | 108.6 |
O4i—La1—N2 | 95.85 (6) | O5—C52—H52B | 108.6 |
O1—La1—N2 | 84.00 (6) | H52A—C52—H52B | 107.6 |
O1i—La1—N2 | 122.23 (6) | H52A—C52—H6C | 107.2 |
N2i—La1—N2 | 152.76 (8) | O5—C51—C6 | 110.6 (5) |
O3i—La1—N1 | 93.82 (4) | O5—C51—H51A | 109.5 |
O3—La1—N1 | 93.82 (4) | C6—C51—H51A | 109.5 |
O5i—La1—N1 | 68.44 (5) | O5—C51—H51B | 109.5 |
O5—La1—N1 | 68.44 (5) | C6—C51—H51B | 109.5 |
O4—La1—N1 | 145.04 (4) | H51A—C51—H51B | 108.1 |
O4i—La1—N1 | 145.04 (4) | H51A—C51—H6B | 109.4 |
O1—La1—N1 | 24.42 (4) | C52—C6—N2 | 116.8 (3) |
O1i—La1—N1 | 24.42 (4) | C51—C6—N2 | 118.2 (4) |
N2i—La1—N1 | 103.62 (4) | C52—C6—H6A | 107.7 |
N2—La1—N1 | 103.62 (4) | N2—C6—H6A | 107.7 |
O2—N1—O1i | 121.29 (14) | C52—C6—H6B | 108.5 |
O2—N1—O1 | 121.29 (14) | N2—C6—H6B | 108.5 |
O1i—N1—O1 | 117.4 (3) | H6A—C6—H6B | 107.3 |
O2—N1—La1 | 180.0 | C51—C6—H6C | 107.9 |
O1i—N1—La1 | 58.71 (14) | N2—C6—H6C | 108.5 |
O1—N1—La1 | 58.71 (14) | C51—C6—H6D | 106.9 |
N1—O1—La1 | 96.87 (15) | N2—C6—H6D | 107.2 |
C1—O3—La1 | 128.14 (15) | H6C—C6—H6D | 107.6 |
C1—O3—H3 | 107.2 | O8—N3—O7 | 122.6 (2) |
La1—O3—H3 | 124.1 | O8—N3—O6 | 119.5 (2) |
C3—O4—La1 | 125.44 (16) | O7—N3—O6 | 117.9 (2) |
O3i—La1—N1—O1i | 24.07 (12) | O1i—La1—O5—C51 | 170.5 (6) |
O3—La1—N1—O1i | −155.93 (12) | N2i—La1—O5—C51 | −125.3 (6) |
O5i—La1—N1—O1i | −90.30 (12) | N2—La1—O5—C51 | 25.2 (6) |
O5—La1—N1—O1i | 89.70 (12) | N1—La1—O5—C51 | 144.5 (6) |
O4—La1—N1—O1i | 84.52 (14) | O3i—La1—N2—C4 | −82.58 (17) |
O4i—La1—N1—O1i | −95.48 (14) | O3—La1—N2—C4 | 89.11 (18) |
N2i—La1—N1—O1i | −37.47 (12) | O5i—La1—N2—C4 | 102.90 (18) |
N2—La1—N1—O1i | 142.53 (12) | O5—La1—N2—C4 | −127.42 (19) |
O3i—La1—N1—O1 | −155.93 (12) | O4—La1—N2—C4 | −37.81 (17) |
O3—La1—N1—O1 | 24.07 (12) | O4i—La1—N2—C4 | 25.28 (18) |
O5i—La1—N1—O1 | 89.70 (12) | O1—La1—N2—C4 | 161.38 (18) |
O5—La1—N1—O1 | −90.30 (12) | O1i—La1—N2—C4 | −166.68 (17) |
O4—La1—N1—O1 | −95.48 (14) | N2i—La1—N2—C4 | −3.97 (16) |
O4i—La1—N1—O1 | 84.52 (14) | N1—La1—N2—C4 | 176.03 (16) |
N2i—La1—N1—O1 | 142.53 (12) | O3i—La1—N2—C6 | 42.3 (2) |
N2—La1—N1—O1 | −37.47 (12) | O3—La1—N2—C6 | −146.0 (2) |
O3i—La1—O1—N1 | 26.91 (14) | O5i—La1—N2—C6 | −132.2 (2) |
O3—La1—O1—N1 | −154.60 (13) | O5—La1—N2—C6 | −2.5 (2) |
O5i—La1—O1—N1 | −80.99 (11) | O4—La1—N2—C6 | 87.1 (2) |
O5—La1—O1—N1 | 80.45 (11) | O4i—La1—N2—C6 | 150.2 (2) |
O4—La1—O1—N1 | 116.87 (11) | O1—La1—N2—C6 | −73.7 (2) |
O4i—La1—O1—N1 | −124.27 (11) | O1i—La1—N2—C6 | −41.8 (2) |
N2i—La1—O1—N1 | −44.34 (14) | N2i—La1—N2—C6 | 120.9 (2) |
N2—La1—O1—N1 | 143.53 (12) | N1—La1—N2—C6 | −59.1 (2) |
O5i—La1—O3—C1 | −160.9 (2) | O3i—La1—N2—C2 | 159.49 (15) |
O5—La1—O3—C1 | −27.7 (2) | O3—La1—N2—C2 | −28.82 (15) |
O4—La1—O3—C1 | 53.5 (2) | O5i—La1—N2—C2 | −15.03 (18) |
O4i—La1—O3—C1 | 116.2 (2) | O5—La1—N2—C2 | 114.65 (17) |
O1—La1—O3—C1 | −85.5 (2) | O4—La1—N2—C2 | −155.74 (17) |
O1i—La1—O3—C1 | −106.6 (2) | O4i—La1—N2—C2 | −92.65 (16) |
N2i—La1—O3—C1 | 157.0 (2) | O1—La1—N2—C2 | 43.45 (16) |
N2—La1—O3—C1 | 7.7 (2) | O1i—La1—N2—C2 | 75.39 (17) |
N1—La1—O3—C1 | −95.7 (2) | N2i—La1—N2—C2 | −121.90 (16) |
O3i—La1—O4—C3 | 160.2 (2) | N1—La1—N2—C2 | 58.10 (16) |
O3—La1—O4—C3 | −24.0 (2) | La1—O3—C1—C2 | 15.7 (3) |
O5i—La1—O4—C3 | −95.7 (2) | O3—C1—C2—N2 | −45.3 (3) |
O5—La1—O4—C3 | 88.0 (2) | C4—N2—C2—C1 | −63.8 (3) |
O4i—La1—O4—C3 | −87.0 (2) | C6—N2—C2—C1 | 171.7 (2) |
O1—La1—O4—C3 | 52.9 (2) | La1—N2—C2—C1 | 50.9 (3) |
O1i—La1—O4—C3 | 129.6 (2) | La1—O4—C3—C4 | −2.2 (4) |
N2i—La1—O4—C3 | −143.0 (2) | C6—N2—C4—C3 | −68.3 (3) |
N2—La1—O4—C3 | 22.2 (2) | C2—N2—C4—C3 | 171.5 (2) |
N1—La1—O4—C3 | 93.0 (2) | La1—N2—C4—C3 | 55.5 (3) |
O3i—La1—O5—C52 | −155.9 (4) | O4—C3—C4—N2 | −38.9 (4) |
O3—La1—O5—C52 | 16.5 (4) | C51—O5—C52—C6 | −63.2 (6) |
O5i—La1—O5—C52 | 100.8 (4) | La1—O5—C52—C6 | 39.5 (8) |
O4—La1—O5—C52 | −82.2 (4) | C52—O5—C51—C6 | 56.3 (6) |
O4i—La1—O5—C52 | −73.8 (4) | La1—O5—C51—C6 | −44.4 (9) |
O1—La1—O5—C52 | 74.8 (4) | O5—C52—C6—C51 | 61.4 (6) |
O1i—La1—O5—C52 | 126.9 (4) | O5—C52—C6—N2 | −40.8 (8) |
N2i—La1—O5—C52 | −168.9 (4) | O5—C51—C6—C52 | −58.2 (6) |
N2—La1—O5—C52 | −18.5 (4) | O5—C51—C6—N2 | 39.8 (10) |
N1—La1—O5—C52 | 100.8 (4) | C4—N2—C6—C52 | 143.5 (5) |
O3i—La1—O5—C51 | −112.3 (6) | C2—N2—C6—C52 | −94.3 (5) |
O3—La1—O5—C51 | 60.1 (6) | La1—N2—C6—C52 | 23.4 (5) |
O5i—La1—O5—C51 | 144.5 (6) | C4—N2—C6—C51 | 101.3 (6) |
O4—La1—O5—C51 | −38.6 (6) | C2—N2—C6—C51 | −136.5 (6) |
O4i—La1—O5—C51 | −30.2 (6) | La1—N2—C6—C51 | −18.8 (7) |
O1—La1—O5—C51 | 118.5 (6) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O6i | 0.86 | 1.84 | 2.691 (3) | 173 |
O4—H4···O6ii | 0.82 | 1.91 | 2.725 (3) | 172 |
O5—H5···O7 | 0.87 | 1.86 | 2.712 (3) | 166 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [La(NO3)(C6H15NO3)2](NO3)2 |
Mr | 623.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.6451 (4), 14.7287 (6), 14.2679 (6) |
β (°) | 108.090 (1) |
V (Å3) | 2326.22 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.92 |
Crystal size (mm) | 0.42 × 0.25 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.500, 0.689 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11819, 4186, 3722 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.074, 1.06 |
No. of reflections | 4186 |
No. of parameters | 161 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.10, −0.51 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.
La1—O3 | 2.5402 (17) | La1—O1 | 2.6228 (18) |
La1—O5 | 2.5570 (17) | La1—N2 | 2.8008 (18) |
La1—O4 | 2.5626 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O6i | 0.86 | 1.84 | 2.691 (3) | 173 |
O4—H4···O6ii | 0.82 | 1.91 | 2.725 (3) | 172 |
O5—H5···O7 | 0.87 | 1.86 | 2.712 (3) | 166 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z+1. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907–o909. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S.-W. (2004). Acta Cryst. E60, m462–m464. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hahn, F. E. & Mohr, J. (1990). Chem. Ber. 123, 481–484. CrossRef CAS Google Scholar
Johnstone, J. A. & Harrison, W. T. A. (2004). Inorg. Chem. 43, 4567–4569. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356. Web of Science CSD CrossRef CAS Google Scholar
Long, D.-L., Abbas, H., Kogerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880–13881. Web of Science CSD CrossRef PubMed CAS Google Scholar
Naiini, A. A., Young, V. & Verkade, J. G. (1995). Polyhedron, 14, 393–400. CSD CrossRef Web of Science Google Scholar
Padmanabhan, V. M., Jakkal, V. S. & Poonia, N. S. (1987). Acta Cryst. C43, 1061–1064. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459–L460. CSD CrossRef CAS Web of Science Google Scholar
Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2002). J. Mol. Struct. 610, 99–103. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Q.-Z., Lu, C.-Z., Yang, W.-B. & Yu, Y.-Q. (2004). Inorg. Chem. Commun. 7, 277–279. Web of Science CSD CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Triethanolamine (TEA), C6H15NO3, is a versatile polyfunctional ligand (Naiini et al., 1995) that may bond to metals in tridentate (Gao et al., 2004) or tetradentate mode (Kazak et al., 2003) through its N and/or O atoms. TEA can be protonated at its central N atom (Long et al., 2004) or various numbers of protons can be lost from the terminal –OH groups (Johnstone & Harrison, 2004). In some complexes, TEA can show more than one binding mode simultaneously (Topcu et al., 2002). A survey of the Cambridge Structural Database (Allen, 2002) revealed that crystal structures have been reported for complexes of TEA with many metal ions, including lithium, zinc, copper, barium, nickel, manganese, mercury, lead, cadmium, yttrium, praseodymium and ytterbium.
We report here the synthesis and structure of the title compound, [La(NO3)(C6H15NO3)2](NO3)2, (I) (Fig. 1), the first reported crystal structure of a complex of La3+ and TEA. In (I), the La atom is bonded to two symmetry-related, neutral TEA molecules, which act as tetradentate-N,O,O',O'' ligands. In addition, a nitrate group bonds to La in bidentate mode, and a further non-coordinated nitrate group provides charge compensation for the cationic complex.
The [La(NO3)(C6H15NO3)2]2+ ion has twofold symmetry, with atom La1 and nitrate atom N1 and O2 occupying the rotation axis. One of the methylene groups of the TEA species shows positional disorder over two orientations, which is not ususual for this species (Demir et al., 2003). The average La—O distance in (I) of 2.571 (2) Å and the fact that the La—N bonds are notably longer than the La—O vertices is consistent with the situation in other La-(O,N)-bonded complexes (Thomas et al., 1979; Zhang et al., 2004). Overall, the LaO8N2 polyhedron in (I) is irregular.
As well as electrostatic attractions, the component species in (I) interact by means of three cation-to-anion O—H···O links (Table 2). Each TEA–OH group makes a strong, near linear hydrogen bond [mean H···O = 1.87 Å] to a nearby non-coordinated nitrate O atom. This results in [110] chains of [La(NO3)(C6H15NO3)2]2+ ions bonded to their neighbours by a pair of bridging nitrate groups (Fig. 2). The hydrogen-bond acceptor behaviour for the nitrate ion is unbalanced, with atom O6 accepting two hydrogen bonds, O7 one and O8 none. This possibly correlates with the fact that the N3—O8 bond [1.214 (3) Å] is noticably shorter than N3—O6 or N3—O7 [1.267 (3) and 1.256 (3) Å, respectively]. Finally, the [110] chains in (I) interact by way of van der Waals' forces to result in a pseudo-layered unit-cell packing, such that the cations are arranged in (001) sheets and their atached nitrate groups point in alternating directions with respect to the c direction.
The fact that TEA can bind effectively to metal cations ranging in size from Li+ {as a five-coordinate [Li(C6H15NO3)(H2O)]+ ion with mean Li—OTEA = 2.003 (9) and Li—N = 2.206 (8) Å; Padmanabhan et al., 1987), to Y3+ {as an eight-coordinate [Y(C6H15NO3)2]3+ complex cation with mean Y—O = 2.312 (5) and mean Y—N = 2.685 (9) Å; Naiini et al., 1995}, Pr3+ {as a nine-coordinate [Pr(C6H15NO3)2(C4H8O)]3+ complex cation with mean Pr—OTEA = 2.465 (5) and mean Pr—N = 2.716 (5)Å} (Hahn & Mohr, 1990) and the ten-coordinate [La(NO3)(C6H15NO3)2]2+ species seen here presumably correlates with its flexible `gripping' nature, making it a poor candidate for possible applications requiring a multidentate ligand to bind selectively to particular metals.