organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Sheets built from C—H⋯O and C—H⋯π(arene) hydrogen bonds in (2RS,6SR)-N-di­phenyl­acetyl-2,6-di­phenylpiperidin-4-one and (2RS,3SR,5RS,6SR)-3,5-di­methyl-N-phenyl­acetyl-2,6-di­phenylpiperidin-4-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 15 March 2006; accepted 17 April 2006; online 16 May 2006)

In (2RS,6SR)-N-diphenyl­acetyl-2,6-diphenylpiperidin-4-one, C31H27NO2, (I)[link], the piperidinone ring adopts an almost ideal twist–boat conformation, and the mol­ecules are linked into sheets by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond. (2RS,3SR,5RS,6SR)-3,5-Dimethyl-2,6-diphenyl-N-phenylacetylpiperidin-4-one, C27H27NO2, (II)[link], crystallizes with Z′ = 2 in the space group P[\overline{1}]; the piperidinone rings adopt an almost ideal boat conformation in one of the mol­ecules and a conformation between boat and twist–boat in the other. The mol­ecules of (II)[link] are linked into sheets by a combination of five C—H⋯O hydrogen bonds and one C—H⋯π(arene) hydrogen bond.

Comment

Nitro­gen heterocycles containing diphenyl­acetyl substituents exhibit anti­hypertensive activity (Wexler et al., 1996[Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625-656.]). In order to study the activity of simple compounds containing phenyl­acetyl and diphenyl­acetyl substituents, the title compounds, (I)[link] and (II)[link], have been synthesized, and the conformations and supra­molecular aggregation of these two compounds (Figs. 1[link] and 2[link]) are reported here.

Within the piperidinone rings of compounds (I)[link] and (II)[link], the geometry at the carbonyl C atoms is planar and that at the N atoms is effectively planar, with a sum of the bond angles at N1 in (I)[link] of 357.7 (2)°, and sums at N11 and N21 in (II)[link] of 358.6 (3) and 359.3 (3)°, respectively. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for this ring in compound (I)[link], θ = 95.6 (2)° and φ = 96.1 (2)° for the atom sequence N1–C2–C3–C4–C5–C6, indicate a twist–boat conformation, for which the ideal parameters are θ = 90° and φ = (60n + 30)°. The phenyl substituents at C2 and C6 occupy equatorial and axial sites, respectively (Table 1[link]), and in the selected reference mol­ecule atoms C2 and C6 have R and S configurations, respectively. Hence, in the centrosymmetric space group P21/n, there are equal numbers of the 2R,6S and 2S,6R enanti­omers.

[Scheme 1]

Compound (II)[link] (Fig. 2[link]) crystallizes with Z′= 2. The mol­ecules contain four stereogenic centres at Cn2, Cn3, Cn5 and Cn6 (n = 1 or 2) and the asymmetric unit was selected so that the two independent mol­ecules have the same disposition of axial and equatorial substituents, namely axial at Cn2 and Cn3, and equatorial at Cn5 and Cn6 (n = 1 or 2) (Table 3[link]). This choice of asymmetric unit, which leads to R configurations at C12, C15, C23 and C25, and S configurations at C13, C16, C22 and C24, provides a compact asymmetric unit in which the two independent mol­ecules are linked by a pair of C—H⋯O hydrogen bonds.

The piperidinone rings in the two independent mol­ecules of (II)[link] adopt somewhat different conformations. For the mol­ecules denoted 1 and 2 (containing atoms N11 and N21, respectively), the ring-puckering parameters for the atom sequence Nn1–Cn2–Cn3–Cn4–Cn5–Cn6 are θ = 97.8 (3)° and φ = 252.7 (3)° for n = 1, and θ = 93.8 (2)° and φ = 53.5 (3)° for n = 2, indicating a boat conformation in mol­ecule 2 (for which the idealized parameters are θ = 90° and φ = 60n°) and a conformation approximately midway between boat and twist–boat for mol­ecule 1. Apart from this conformational difference, the two independent mol­ecules in compound (II)[link] are approximately enanti­omorphous (Table 3[link]).

The mol­ecules of (I)[link] are linked into sheets by two hydrogen bonds, one each of C—H⋯O and C—H⋯π(arene) types (Table 2[link]). The formation of the sheet is readily analysed in terms of the two simple substructural motifs formed by the individual hydrogen bonds. Piperidinone atom C6 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O7 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a cyclic centrosymmetric R22(10) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 3[link]). In the second motif, aryl atom C16 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to aryl ring C41–C46 of the mol­ecule at ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 4}], y, [{3\over 4}]) (Fig. 4[link]). The linking of the R22(10) dimers by the C—H⋯π(arene) hydrogen bond then generates the sheet.

Aryl atoms C16 in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the R22(10) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), act as hydrogen-bond donors to rings C41–C46 in the mol­ecules at ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) and ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z), respectively, which are components of the dimers centred at (0, 0, 1) and (1, 1, 0). Similarly, rings C41–C46 at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from, respectively, aryl atoms C16 in the mol­ecules at ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) and ([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), which are themselves components of the dimers centred at (0, 1, 1) and (1, 0, 0). Propagation by the space group of this C—H⋯π(arene) hydrogen bond then links the R22(10) dimers to form a (101) sheet (Fig. 5[link]).

The mol­ecules of compound (II)[link] are linked into complex sheets by means of five independent C—H⋯O hydrogen bonds and one C—H⋯π(arene) hydrogen bond (Table 4[link]), but the formation of the sheet is readily described in terms of simpler substructural motifs. Within the asymmetric unit, atoms C16 and C132 in mol­ecule 1 both act as hydrogen-bond donors to atom O27 in mol­ecule 2, so forming an R21(9) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring. Similarly, atoms C26 and C28 in the type 2 mol­ecule at (x, y, z) both act as hydrogen-bond donors to atom O17 in the type 1 mol­ecule at (1 + x, y, z), so forming a second ring motif, this time of R21(7) type. Propagation by translation of these hydrogen bonds then generates a chain of rings running parallel to the [100] direction (Fig. 5[link]). Anti­parallel pairs of such chains are linked by the final C—H⋯O hydrogen bond; atom C212 in the type 1 mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O14 in the type 1 mol­ecule at (1 − x, 1 − y, −z). The linking of pairs of chains thus produces a complex [100] ribbon, in which R44(24) rings centred at (n + [{1\over 2}], [{1\over 2}], 0) (n = zero or integer) alternate with R44(28) rings centred at (n, [{1\over 2}], 0) (n = zero or integer) in the central portion, flanked on either side by anti­parallel sets of alternating R21(7) and R21(9) rings (Fig. 6[link]).

In addition to a C—H⋯π(arene) inter­action within the type 2 mol­ecule, a second such inter­action links the mol­ecules into chains; atom C123 in the type 1 mol­ecule at (x, y, z) acts as hydrogen-bond donor to the C211–C216 ring in the type 2 mol­ecule at (−1 + x, 1 + y, z). In combination with the two C—H⋯O hydrogen bonds within the asymmetric unit, this C—H⋯π(arene) hydrogen bond generates by translation a chain running parallel to the [[\overline{1}]10] direction (Fig. 7[link]). The combination of the [100] and [[\overline{1}]10] chains then generates a complex (001) sheet. There are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The 2R,6S enanti­omer of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The two independent mol­ecules in the selected asymmetric unit for compound (II)[link], showing the atom-labelling scheme, viz. (a) the 2R,3S,5R,6S enantiomer of mol­ecule 1 and (b) the 2S,3R,5S,6R enantiomer of mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a centrosymmetric R22(10) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash sign (#) are at the symmetry positions ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) and ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 5]
Figure 5
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded (101) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded ribbon along [100]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded chain along [[\overline{1}]10]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Experimental

Samples of the title compounds were prepared by acyl­ation of piperidinones in the presence of triethyl­amine as proton acceptor, using anhydrous benzene as the solvent. For (I)[link], 2,6-diphenyl­piperidin-4-one was acyl­ated with diphenyl­acetyl chloride, and for (II)[link], 3,5-dimethyl-2,6-diphenyl­piperidin-4-one was acyl­ated with phenyl­acetyl chloride. In each case, the acyl chloride (5 mmol) was added dropwise over a period of 1 h to a solution of the piperidinone (2.5 mmol) in benzene (50 ml) containing triethylamine (1.4 ml) held between 273 and 278 K. These mixtures were heated under reflux for 8–10 h, until the reactions were complete (as shown by thin-layer chromatography); the mixtures were then cooled and washed with 10% aqueous sodium hydrogen carbonate solution. Removal of the solvent then yielded the products. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. For (I)[link], yield 69% and m.p. 456–458 K; for (II)[link], yield 61% and m.p. 431–433 K.

Compound (I)[link]

Crystal data
  • C31H27NO2

  • Mr = 445.54

  • Monoclinic, P 21 /n

  • a = 11.2499 (2) Å

  • b = 11.8622 (3) Å

  • c = 18.2320 (5) Å

  • β = 107.8750 (15)°

  • V = 2315.59 (10) Å3

  • Z = 4

  • Dx = 1.278 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.16 × 0.10 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.998

  • 27266 measured reflections

  • 5309 independent reflections

  • 4069 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.03

  • 5309 reflections

  • 307 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0437P)2 + 0.8526P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected torsion angles (°) for (I)[link]

C6—N1—C2—C11 −136.22 (12)
C2—N1—C6—C21 88.59 (14)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 1.00 2.35 3.120 (2) 133
C16—H16⋯Cgii 0.95 2.71 3.505 (2) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Compound (II)[link]

Crystal data
  • C27H27NO2

  • Mr = 397.50

  • Triclinic, [P \overline 1]

  • a = 9.9503 (4) Å

  • b = 11.8623 (6) Å

  • c = 18.5654 (8) Å

  • α = 77.920 (2)°

  • β = 84.699 (3)°

  • γ = 85.731 (2)°

  • V = 2130.23 (17) Å3

  • Z = 4

  • Dx = 1.239 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.24 × 0.14 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.998

  • 39607 measured reflections

  • 9842 independent reflections

  • 6200 reflections with I > 2σ(I)

  • Rint = 0.094

  • θmax = 27.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.262

  • S = 1.03

  • 9842 reflections

  • 546 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1421P)2 + 1.0691P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 3
Selected torsion angles (°) for (II)[link]

C16—N11—C12—C111 −81.2 (3)
N11—C12—C13—C137 61.7 (4)
C12—N11—C16—C121 123.0 (3)
N11—C16—C15—C157 −165.7 (3)
C26—N21—C22—C211 79.8 (3)
N21—C22—C23—C237 −81.1 (3)
C22—N21—C26—C221 −119.8 (3)
N21—C26—C25—C257 172.3 (3)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C211–C216 ring and Cg2 is the centroid of the C221–C226 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O27 1.00 2.34 3.342 (4) 174
C132—H132⋯O27 0.95 2.59 3.482 (4) 156
C26—H26⋯O17i 1.00 2.35 3.343 (4) 172
C28—H28B⋯O17i 0.99 2.48 3.398 (4) 153
C212—H212⋯O14ii 0.95 2.41 3.339 (5) 164
C222—H222⋯Cg1 0.95 2.97 3.902 (4) 169
C123—H123⋯Cg2iii 0.95 2.92 3.849 (4) 166
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z.

For compound (I)[link], the space group P21/n was uniquely assigned from the systematic absences. Crystals of compound (II)[link] are triclinic; the space group P[\overline{1}] was selected and confirmed by the analysis. All H atoms were located in difference maps and then treated as riding, with C—H distances of 0.95 (aromatic), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C).

For both compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Nitrogen heterocycles containing diphenylacetyl substituents exhibit antihypertensive activity (Wexler et al., 1996). In order to study the activity of simple compounds containing phenylacetyl and diphenylacetyl substituents, the title compounds, (I) and (II), have been synthesized, and the conformations and supramolecular aggregation of these two compounds (Figs. 1 and 2) are reported here.

Within the piperidone rings of compounds (I) and (II), the geometry at the carbonyl C atoms is planar and that at the N atoms is effectively planar, with a sum of bond angles at N1 in (I) of 357.7 (2)°, and sums at N11 and N21 in (II) of 358.6 (3)° and 359.3 (3), respectively. The ring-puckering parameters (Cremer & Pople, 1975) for this ring in compound (I), θ = 95.6 (2)° and ϕ = 96.1 (2)° for the atom sequence N1/C2–C6, indicate a twist–boat conformation, for which the ideal parameters are θ = 90° and ϕ = (60n + 30)°. The phenyl substituents at C2 and C6 occupy equatorial and axial sites, respectively (Table 1), and in the selected reference molecule atoms C2 and C6 have R and S configurations, respectively. Hence, in the centrosymmetric space group P21/n there are equal numbers of the (2R,6S) and (2S,6R) enantiomers.

Compound (II) (Fig. 2) crystallizes with Z'= 2. The molecules contain four stereogenic centres at Cn2, Cn3, Cn5 and Cn6 (n = 1 or 2) and the asymmetric unit was selected so that the two independent molecules have the same disposition of axial and equatorial substituents, namely axial at Cn2 and Cn3, and equatorial at Cn5 and Cn6 (n = 1 or 2) (Table 3). This choice of asymmetric unit, which leads to R configurations at C12, C15, C23 and C25 and S configurations at C13, C16, C22 and C24, provides a compact asymmetric unit in which the two independent molecules are linked by a pair of C—H···O hydrogen bonds.

The piperidone rings in the two independent molecules of (II) adopt somewhat different conformations. For the molecules denoted 1 and 2 (containing atoms N11 and N21, respectively), the ring-puckering parameters for the atom sequence Nn1/Cn2–Cn6 are θ = 97.8 (3)° and ϕ = 252.7 (3)° for n = 1, and θ = 93.8 (2)° and ϕ = 53.5 (3)° for n = 2, indicating a boat conformation in molecule 2 (for which the idealized parameters are θ = 90° and ϕ = 60n°) and a conformation approximately mid-way between boat and twist–boat for molecule 1. Apart from this conformational difference, the two independent molecules in compound (II) are approximately enantiomorphous (Table 3).

The molecules of (I) are linked into sheets by two hydrogen bonds, one each of C—H···O and C—H···π(arene) types (Table 2). The formation of the sheet is readily analysed in terms of the two simple sub-structural motifs formed by the individual hydrogen bonds. Piperidone atom C6 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O7 in the molecule at (1 − x, 1 − y, 1 − z), so forming a cyclic centrosymmetric R22(10) (Bernstein et al., 1995) dimer centred at (1/2, 1/2, 1/2) (Fig. 3). In the second motif, aryl atom C16 in the molecule at (x, y, z) acts as hydrogen-bond donor to the aryl ring C41–C46 of the molecule at (1/2 − x, −1/2 + y, 3/2 − z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (1/4, y, 3/4) (Fig. 4). The linking of the R22(10) dimers by the C—H···π(arene) hydrogen bond then generates the sheet.

Aryl atoms C16 in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the R22(10) dimer centred at (1/2, 1/2, 1/2), act as hydrogen-bond donors to, respectively, the rings C41–C46 in the molecules at (1/2 − x, −1/2 + y, 3/2 − z) and (1/2 + x, 3/2 − y, −1/2 + z), which are components of the dimers centred at (0, 0, 1) and (1, 1, 0), respectively. Similarly, the rings C41–C46 at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from, respectively, aryl atoms C16 in the molecules at (1/2 − x, 1/2 + y, 3/2 − z) and (1/2 + x, 1/2 − y, −1/2 + z), which are themselves components of the dimers centred at (0, 1, 1) and (1, 0, 0), respectively. Propagation by the space group of this C—H···π(arene) hydrogen bond then links the R22(10) dimers to form a (101) sheet (Fig. 5).

The molecules of compound (II) are linked into complex sheets by means of five independent C—H···O hydrogen bonds and one C—H···π(arene) hydrogen bond (Table 4), but the formation of the sheet is readily described in terms of simpler sub-structural motifs. Within the asymmetric unit, atoms C16 and C132 in molecule 1 both act as hydrogen-bond donors to atom O27 in molecule 2, so forming an R12(9) (Bernstein et al., 1995) ring. Similarly, atoms C26 and C28 in the type 2 molecule at (x, y, z) both act as hydrogen-bond donors to atom O17 in the type 1 molecule at (1 + x, y, z), so forming a second ring motif, this time of R12(7) type. Propagation by translation of these hydrogen bonds then generates a chain of rings running parallel to the [100] direction (Fig. 5). Antiparallel pairs of such chains are linked by the final C—H···O hydrogen bond: atom C212 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to atom O14 in the type 1 molecule at (1 − x, 1 − y, −z). The linking of pairs of chains thus produces a complex [100] ribbon, in which R44(24) rings centred at (n + 1/2, 1/2, 0) (n = zero or integer) alternate with R44(28) rings centred at (n, 1/2, 0) (n = zero or integer) in the central portion, flanked on either side by antiparallel sets of alternating R12(7) and R12(9) rings (Fig. 6).

In addition to a C—H···π(arene) interaction within the type 2 molecule, a second such interaction links the molecules into chains: atom C123 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to the C211–C216 ring in the type 2 molecule at (−1 + x, 1 + y, z). In combination with the two C—H···O hydrogen bonds within the asymmetric unit, this C—H···π(arene) hydrogen bond generates by translation a chain running parallel to the [110] direction (Fig. 7). The combination of the [100] and [110] chains then generates a complex (001) sheet. There are no direction-specific interactions between adjacent sheets.

Experimental top

Samples of the title compounds were prepared by acylation of piperidinones in the presence of triethylamine as proton acceptor, using anhydrous benzene as the solvent. For (I), 2,6-diphenylpiperidin-4-one was acylated with diphenylacetyl chloride, and for (II), 3,5-dimethyl-2,6-diphenylpiperidin-4-one was acylated with phenylacetyl chloride. [Please give brief details of quantites, reaction times etc., or an appropriate reference] Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. For (I), yield = 69%, m. p. 456–458 K. For (II), yield = 61%, m.p. 431–433 K.

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences. Crystals of compound (II) are triclinic; the space group P1 was selected and confirmed by the analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The (2R,6S) enantiomer of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The two independent molecules in the selected asymmetric unit for compound (II), showing the atom-labelling scheme. (a) The (2R,3S,5R,6S) enantiomer of molecule 1. (b) The (2S,3R,5S,6R) enantiomer of molecule 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the formation of a centrosymmetric R22(10) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4] Fig. 4. Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash sign (#) are at the symmetry positions (1/2 − x, −1/2 + y, 3/2 − z) and (1/2 − x, 1/2 + y, 3/2 − z), respectively.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded (101) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded ribbon along [100]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain along [110]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) (2RS,6SR)-N-diphenylacetyl-2,6-diphenyl-4-piperidone top
Crystal data top
C31H27NO2F(000) = 944
Mr = 445.54Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5439 reflections
a = 11.2499 (2) Åθ = 2.9–27.5°
b = 11.8622 (3) ŵ = 0.08 mm1
c = 18.2320 (5) ÅT = 120 K
β = 107.8750 (15)°Block, colourless
V = 2315.59 (10) Å30.16 × 0.10 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
5309 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1415
Tmin = 0.975, Tmax = 0.998l = 2323
27266 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.8526P]
where P = (Fo2 + 2Fc2)/3
5309 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C31H27NO2V = 2315.59 (10) Å3
Mr = 445.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2499 (2) ŵ = 0.08 mm1
b = 11.8622 (3) ÅT = 120 K
c = 18.2320 (5) Å0.16 × 0.10 × 0.02 mm
β = 107.8750 (15)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4069 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.998Rint = 0.051
27266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
5309 reflectionsΔρmin = 0.25 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34918 (10)0.41908 (10)0.58621 (7)0.0194 (3)
C20.32132 (13)0.36064 (12)0.65098 (8)0.0198 (3)
C30.34948 (13)0.23401 (12)0.64931 (9)0.0232 (3)
C40.47622 (13)0.20574 (12)0.64165 (8)0.0232 (3)
O40.52792 (10)0.11676 (9)0.66396 (7)0.0319 (3)
C50.52832 (13)0.29441 (12)0.60146 (9)0.0235 (3)
C60.42327 (13)0.35922 (12)0.54366 (8)0.0215 (3)
C70.33943 (12)0.53392 (12)0.57633 (8)0.0191 (3)
O70.35738 (9)0.57918 (8)0.52005 (6)0.0234 (2)
C80.31285 (13)0.60404 (11)0.63988 (8)0.0197 (3)
C110.18642 (13)0.37629 (11)0.64989 (8)0.0190 (3)
C120.08834 (13)0.37124 (12)0.58159 (8)0.0232 (3)
C130.03383 (14)0.38642 (13)0.58186 (9)0.0266 (3)
C140.05890 (14)0.40706 (12)0.65050 (9)0.0263 (3)
C150.03768 (14)0.41124 (12)0.71879 (9)0.0245 (3)
C160.16009 (13)0.39562 (12)0.71856 (8)0.0213 (3)
C210.34367 (13)0.28937 (12)0.47633 (8)0.0211 (3)
C220.37743 (14)0.18174 (12)0.45973 (9)0.0266 (3)
C230.30662 (16)0.12432 (14)0.39441 (10)0.0325 (4)
C240.20107 (16)0.17371 (14)0.34489 (9)0.0334 (4)
C250.16689 (15)0.28132 (14)0.36032 (9)0.0306 (4)
C260.23736 (13)0.33839 (13)0.42541 (8)0.0249 (3)
C310.43149 (13)0.60943 (11)0.70875 (8)0.0199 (3)
C320.42128 (14)0.60855 (12)0.78310 (8)0.0231 (3)
C330.52623 (15)0.61733 (12)0.84693 (9)0.0267 (3)
C340.64295 (15)0.62671 (12)0.83756 (9)0.0290 (4)
C350.65518 (14)0.62538 (13)0.76453 (9)0.0293 (4)
C360.55003 (13)0.61714 (12)0.70026 (9)0.0254 (3)
C410.26109 (13)0.71978 (12)0.61136 (8)0.0201 (3)
C460.13782 (13)0.74515 (12)0.60553 (8)0.0240 (3)
C450.08817 (14)0.85120 (13)0.58077 (9)0.0289 (3)
C440.16154 (15)0.93211 (13)0.56122 (9)0.0295 (4)
C430.28441 (15)0.90752 (13)0.56645 (9)0.0281 (3)
C420.33386 (14)0.80231 (12)0.59163 (8)0.0235 (3)
H20.37700.39260.70030.024*
H3A0.34300.19930.69730.028*
H3B0.28460.19920.60570.028*
H5A0.58220.25840.57420.028*
H5B0.58040.34740.64000.028*
H60.46430.41880.52100.026*
H100.24800.56330.65680.024*
H120.10500.35730.53440.028*
H130.10040.38270.53490.032*
H140.14250.41830.65050.032*
H150.02060.42480.76590.029*
H160.22630.39820.76570.026*
H220.44980.14700.49340.032*
H230.33090.05090.38380.039*
H240.15220.13420.30060.040*
H250.09500.31600.32620.037*
H260.21300.41200.43560.030*
H320.34120.60180.79000.028*
H330.51790.61690.89720.032*
H340.71480.63410.88130.035*
H350.73570.63010.75820.035*
H360.55910.61680.65020.030*
H460.08690.68960.61860.029*
H450.00400.86780.57730.035*
H440.12791.00440.54420.035*
H430.33480.96290.55270.034*
H420.41830.78630.59550.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (6)0.0187 (6)0.0207 (6)0.0003 (5)0.0103 (5)0.0010 (5)
C20.0217 (7)0.0198 (7)0.0187 (7)0.0014 (6)0.0072 (6)0.0024 (5)
C30.0232 (8)0.0203 (7)0.0263 (8)0.0002 (6)0.0080 (6)0.0049 (6)
C40.0220 (7)0.0226 (7)0.0229 (7)0.0002 (6)0.0039 (6)0.0001 (6)
O40.0279 (6)0.0269 (6)0.0408 (7)0.0075 (5)0.0102 (5)0.0103 (5)
C50.0186 (7)0.0229 (7)0.0295 (8)0.0010 (6)0.0080 (6)0.0014 (6)
C60.0223 (7)0.0200 (7)0.0251 (8)0.0014 (6)0.0115 (6)0.0015 (6)
C70.0143 (6)0.0203 (7)0.0220 (7)0.0004 (5)0.0046 (5)0.0025 (5)
O70.0267 (5)0.0221 (5)0.0243 (5)0.0016 (4)0.0119 (4)0.0041 (4)
C80.0193 (7)0.0192 (7)0.0217 (7)0.0015 (5)0.0077 (6)0.0010 (5)
C110.0209 (7)0.0153 (6)0.0210 (7)0.0010 (5)0.0069 (6)0.0019 (5)
C120.0244 (8)0.0250 (7)0.0213 (7)0.0002 (6)0.0086 (6)0.0004 (6)
C130.0222 (8)0.0295 (8)0.0264 (8)0.0011 (6)0.0047 (6)0.0023 (6)
C140.0208 (8)0.0247 (8)0.0352 (9)0.0043 (6)0.0113 (6)0.0041 (6)
C150.0301 (8)0.0214 (7)0.0259 (8)0.0022 (6)0.0144 (6)0.0022 (6)
C160.0238 (7)0.0197 (7)0.0198 (7)0.0008 (6)0.0060 (6)0.0016 (5)
C210.0234 (7)0.0209 (7)0.0232 (7)0.0001 (6)0.0132 (6)0.0026 (6)
C220.0304 (8)0.0224 (7)0.0299 (8)0.0028 (6)0.0136 (7)0.0022 (6)
C230.0427 (10)0.0241 (8)0.0340 (9)0.0024 (7)0.0169 (7)0.0045 (7)
C240.0371 (9)0.0361 (9)0.0280 (9)0.0071 (7)0.0117 (7)0.0068 (7)
C250.0294 (8)0.0393 (9)0.0244 (8)0.0011 (7)0.0101 (7)0.0016 (7)
C260.0272 (8)0.0263 (8)0.0245 (8)0.0026 (6)0.0127 (6)0.0016 (6)
C310.0212 (7)0.0152 (7)0.0228 (7)0.0010 (5)0.0060 (6)0.0024 (5)
C320.0265 (8)0.0186 (7)0.0252 (7)0.0001 (6)0.0097 (6)0.0000 (6)
C330.0348 (9)0.0214 (7)0.0220 (8)0.0017 (6)0.0061 (6)0.0000 (6)
C340.0279 (8)0.0225 (8)0.0286 (8)0.0030 (6)0.0032 (6)0.0027 (6)
C350.0196 (8)0.0314 (8)0.0345 (9)0.0013 (6)0.0051 (6)0.0073 (7)
C360.0240 (8)0.0268 (8)0.0263 (8)0.0007 (6)0.0090 (6)0.0045 (6)
C410.0210 (7)0.0205 (7)0.0181 (7)0.0012 (6)0.0048 (6)0.0017 (5)
C460.0223 (7)0.0234 (7)0.0247 (8)0.0003 (6)0.0050 (6)0.0017 (6)
C450.0243 (8)0.0304 (8)0.0293 (8)0.0071 (6)0.0043 (6)0.0011 (7)
C440.0366 (9)0.0225 (8)0.0253 (8)0.0085 (7)0.0034 (7)0.0018 (6)
C430.0353 (9)0.0214 (7)0.0277 (8)0.0014 (6)0.0100 (7)0.0018 (6)
C420.0234 (7)0.0239 (7)0.0236 (8)0.0002 (6)0.0077 (6)0.0011 (6)
Geometric parameters (Å, º) top
N1—C71.3741 (18)C21—C261.396 (2)
N1—C61.4824 (17)C22—C231.391 (2)
N1—C21.4834 (17)C22—H220.95
C2—C111.5229 (19)C23—C241.382 (2)
C2—C31.5374 (19)C23—H230.95
C2—H21.00C24—C251.387 (2)
C3—C41.512 (2)C24—H240.95
C3—H3A0.99C25—C261.385 (2)
C3—H3B0.99C25—H250.95
C4—O41.2135 (17)C26—H260.95
C4—C51.500 (2)C31—C361.392 (2)
C5—C61.528 (2)C31—C321.395 (2)
C5—H5A0.99C32—C331.384 (2)
C5—H5B0.99C32—H320.95
C6—C211.523 (2)C33—C341.380 (2)
C6—H61.00C33—H330.95
C7—O71.2286 (16)C34—C351.380 (2)
C7—C81.5285 (19)C34—H340.95
C8—C411.5194 (19)C35—C361.390 (2)
C8—C311.5275 (19)C35—H350.95
C8—H101.00C36—H360.95
C11—C121.389 (2)C41—C461.391 (2)
C11—C161.3912 (19)C41—C421.392 (2)
C12—C131.388 (2)C46—C451.394 (2)
C12—H120.95C46—H460.95
C13—C141.386 (2)C45—C441.382 (2)
C13—H130.95C45—H450.95
C14—C151.379 (2)C44—C431.387 (2)
C14—H140.95C44—H440.95
C15—C161.391 (2)C43—C421.386 (2)
C15—H150.95C43—H430.95
C16—H160.95C42—H420.95
C21—C221.392 (2)
C7—N1—C6116.19 (11)C11—C16—H16119.7
C7—N1—C2122.66 (11)C22—C21—C26118.21 (14)
C6—N1—C2118.88 (11)C22—C21—C6122.83 (13)
N1—C2—C11112.70 (11)C26—C21—C6118.76 (13)
N1—C2—C3110.22 (11)C23—C22—C21120.85 (15)
C11—C2—C3109.24 (11)C23—C22—H22119.6
N1—C2—H2108.2C21—C22—H22119.6
C11—C2—H2108.2C24—C23—C22120.21 (15)
C3—C2—H2108.2C24—C23—H23119.9
C4—C3—C2115.11 (12)C22—C23—H23119.9
C4—C3—H3A108.5C23—C24—C25119.59 (15)
C2—C3—H3A108.5C23—C24—H24120.2
C4—C3—H3B108.5C25—C24—H24120.2
C2—C3—H3B108.5C26—C25—C24120.16 (15)
H3A—C3—H3B107.5C26—C25—H25119.9
O4—C4—C5123.69 (13)C24—C25—H25119.9
O4—C4—C3122.03 (13)C25—C26—C21120.97 (14)
C5—C4—C3114.23 (12)C25—C26—H26119.5
C4—C5—C6110.75 (12)C21—C26—H26119.5
C4—C5—H5A109.5C36—C31—C32118.42 (13)
C6—C5—H5A109.5C36—C31—C8122.46 (13)
C4—C5—H5B109.5C32—C31—C8119.12 (12)
C6—C5—H5B109.5C33—C32—C31120.86 (14)
H5A—C5—H5B108.1C33—C32—H32119.6
N1—C6—C21113.35 (11)C31—C32—H32119.6
N1—C6—C5108.68 (11)C34—C33—C32120.05 (14)
C21—C6—C5114.90 (12)C34—C33—H33120.0
N1—C6—H6106.4C32—C33—H33120.0
C21—C6—H6106.4C33—C34—C35119.94 (14)
C5—C6—H6106.4C33—C34—H34120.0
O7—C7—N1121.04 (13)C35—C34—H34120.0
O7—C7—C8121.06 (12)C34—C35—C36120.21 (14)
N1—C7—C8117.81 (12)C34—C35—H35119.9
C41—C8—C31112.94 (11)C36—C35—H35119.9
C41—C8—C7112.08 (11)C35—C36—C31120.51 (14)
C31—C8—C7108.72 (11)C35—C36—H36119.7
C41—C8—H10107.6C31—C36—H36119.7
C31—C8—H10107.6C46—C41—C42118.66 (13)
C7—C8—H10107.6C46—C41—C8119.34 (13)
C12—C11—C16118.95 (13)C42—C41—C8121.99 (12)
C12—C11—C2121.38 (12)C41—C46—C45120.73 (14)
C16—C11—C2119.66 (12)C41—C46—H46119.6
C13—C12—C11120.43 (13)C45—C46—H46119.6
C13—C12—H12119.8C44—C45—C46119.91 (14)
C11—C12—H12119.8C44—C45—H45120.0
C14—C13—C12120.15 (14)C46—C45—H45120.0
C14—C13—H13119.9C45—C44—C43119.84 (14)
C12—C13—H13119.9C45—C44—H44120.1
C15—C14—C13119.93 (14)C43—C44—H44120.1
C15—C14—H14120.0C42—C43—C44120.15 (14)
C13—C14—H14120.0C42—C43—H43119.9
C14—C15—C16119.92 (14)C44—C43—H43119.9
C14—C15—H15120.0C43—C42—C41120.71 (14)
C16—C15—H15120.0C43—C42—H42119.6
C15—C16—C11120.61 (13)C41—C42—H42119.6
C15—C16—H16119.7
C7—N1—C2—C1161.55 (16)N1—C6—C21—C22137.99 (13)
C6—N1—C2—C11136.22 (12)C5—C6—C21—C2212.19 (19)
C7—N1—C2—C3176.13 (12)N1—C6—C21—C2647.22 (17)
C6—N1—C2—C313.90 (16)C5—C6—C21—C26173.02 (12)
N1—C2—C3—C449.46 (16)C26—C21—C22—C230.4 (2)
C11—C2—C3—C4173.80 (12)C6—C21—C22—C23175.24 (13)
C2—C3—C4—O4155.51 (14)C21—C22—C23—C240.1 (2)
C2—C3—C4—C526.99 (18)C22—C23—C24—C250.6 (2)
O4—C4—C5—C6148.33 (14)C23—C24—C25—C260.7 (2)
C3—C4—C5—C629.12 (17)C24—C25—C26—C210.2 (2)
C7—N1—C6—C21108.04 (14)C22—C21—C26—C250.3 (2)
C2—N1—C6—C2188.59 (14)C6—C21—C26—C25175.38 (13)
C7—N1—C6—C5122.90 (13)C41—C8—C31—C3688.01 (16)
C2—N1—C6—C540.46 (16)C7—C8—C31—C3637.06 (17)
C4—C5—C6—N163.16 (15)C41—C8—C31—C3290.89 (15)
C4—C5—C6—C2165.02 (16)C7—C8—C31—C32144.05 (13)
C6—N1—C7—O720.85 (18)C36—C31—C32—C331.2 (2)
C2—N1—C7—O7176.47 (12)C8—C31—C32—C33177.70 (13)
C6—N1—C7—C8155.74 (12)C31—C32—C33—C340.2 (2)
C2—N1—C7—C86.93 (18)C32—C33—C34—C351.1 (2)
O7—C7—C8—C4123.00 (17)C33—C34—C35—C361.4 (2)
N1—C7—C8—C41160.40 (12)C34—C35—C36—C310.4 (2)
O7—C7—C8—C31102.56 (14)C32—C31—C36—C350.9 (2)
N1—C7—C8—C3174.03 (15)C8—C31—C36—C35177.99 (13)
N1—C2—C11—C1241.41 (18)C31—C8—C41—C46125.13 (14)
C3—C2—C11—C1281.47 (16)C7—C8—C41—C46111.65 (14)
N1—C2—C11—C16138.87 (13)C31—C8—C41—C4254.08 (18)
C3—C2—C11—C1698.26 (15)C7—C8—C41—C4269.15 (17)
C16—C11—C12—C130.7 (2)C42—C41—C46—C450.3 (2)
C2—C11—C12—C13179.61 (13)C8—C41—C46—C45178.94 (13)
C11—C12—C13—C140.1 (2)C41—C46—C45—C440.5 (2)
C12—C13—C14—C150.7 (2)C46—C45—C44—C430.1 (2)
C13—C14—C15—C160.5 (2)C45—C44—C43—C420.4 (2)
C14—C15—C16—C110.3 (2)C44—C43—C42—C410.5 (2)
C12—C11—C16—C150.9 (2)C46—C41—C42—C430.2 (2)
C2—C11—C16—C15179.37 (13)C8—C41—C42—C43179.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i1.002.353.120 (2)133
C16—H16···Cgii0.952.713.505 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.
(II) (2RS,3SR,5RS,6SR)-3,5-dimethyl-N-phenylacetyl-2,6-diphenyl-4-piperidinone top
Crystal data top
C27H27NO2Z = 4
Mr = 397.50F(000) = 848
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9503 (4) ÅCell parameters from 9468 reflections
b = 11.8623 (6) Åθ = 2.9–27.5°
c = 18.5654 (8) ŵ = 0.08 mm1
α = 77.920 (2)°T = 120 K
β = 84.699 (3)°Plate, colourless
γ = 85.731 (2)°0.24 × 0.14 × 0.03 mm
V = 2130.23 (17) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
9842 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode6200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 9.091 pixels mm-1θmax = 27.8°, θmin = 2.9°
ϕ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.971, Tmax = 0.998l = 2424
39607 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.262H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1421P)2 + 1.0691P]
where P = (Fo2 + 2Fc2)/3
9842 reflections(Δ/σ)max < 0.001
546 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C27H27NO2γ = 85.731 (2)°
Mr = 397.50V = 2130.23 (17) Å3
Triclinic, P1Z = 4
a = 9.9503 (4) ÅMo Kα radiation
b = 11.8623 (6) ŵ = 0.08 mm1
c = 18.5654 (8) ÅT = 120 K
α = 77.920 (2)°0.24 × 0.14 × 0.03 mm
β = 84.699 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
9842 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6200 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.998Rint = 0.094
39607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.262H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
9842 reflectionsΔρmin = 0.33 e Å3
546 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.0383 (3)0.6564 (2)0.21673 (15)0.0216 (6)
C170.0010 (3)0.5740 (3)0.27651 (19)0.0247 (7)
O170.0961 (2)0.5141 (2)0.27565 (13)0.0310 (6)
C180.0707 (4)0.5619 (3)0.3468 (2)0.0316 (8)
C1310.0722 (4)0.4409 (3)0.39322 (18)0.0266 (7)
C1320.1804 (4)0.3633 (3)0.3826 (2)0.0327 (8)
C1330.1864 (4)0.2521 (3)0.4248 (2)0.0377 (9)
C1340.0859 (4)0.2179 (3)0.4788 (2)0.0338 (8)
C1350.0213 (4)0.2933 (3)0.49087 (19)0.0287 (8)
C1360.0298 (4)0.4043 (3)0.44745 (19)0.0281 (7)
C120.0238 (3)0.6604 (3)0.14664 (17)0.0223 (7)
C1110.1163 (3)0.7689 (3)0.12561 (19)0.0253 (7)
C1120.0966 (4)0.8486 (3)0.0594 (2)0.0329 (8)
C1130.1822 (4)0.9477 (3)0.0451 (3)0.0430 (10)
C1140.2863 (4)0.9689 (4)0.0942 (3)0.0450 (10)
C1150.3096 (4)0.8886 (4)0.1597 (3)0.0412 (10)
C1160.2245 (4)0.7892 (3)0.1752 (2)0.0322 (8)
C130.0861 (3)0.6368 (3)0.08789 (19)0.0255 (7)
C1370.1553 (4)0.5159 (3)0.1103 (2)0.0309 (8)
C140.1939 (3)0.7234 (3)0.0760 (2)0.0277 (8)
O140.2698 (3)0.7391 (2)0.02026 (15)0.0416 (7)
C150.2041 (3)0.7897 (3)0.13706 (18)0.0236 (7)
C1570.3464 (3)0.8313 (3)0.1347 (2)0.0306 (8)
C160.1594 (3)0.7227 (3)0.21610 (18)0.0218 (7)
C1210.1372 (3)0.8071 (3)0.26792 (18)0.0236 (7)
C1220.0189 (4)0.8753 (3)0.2719 (2)0.0283 (8)
C1230.0000 (4)0.9533 (3)0.31841 (19)0.0318 (8)
C1240.1025 (4)0.9657 (3)0.3614 (2)0.0340 (9)
C1250.2220 (4)0.8994 (3)0.3579 (2)0.0327 (8)
C1260.2397 (4)0.8196 (3)0.31175 (19)0.0289 (8)
N210.5709 (3)0.3974 (2)0.22787 (15)0.0224 (6)
C270.5165 (3)0.4656 (3)0.27579 (18)0.0238 (7)
O270.4144 (2)0.5292 (2)0.26297 (13)0.0304 (6)
C280.5839 (3)0.4561 (3)0.34736 (19)0.0267 (7)
C2310.5518 (3)0.5581 (3)0.38355 (18)0.0249 (7)
C2320.4303 (3)0.5712 (3)0.42567 (19)0.0275 (7)
C2330.4084 (4)0.6618 (3)0.4624 (2)0.0313 (8)
C2340.5060 (4)0.7410 (3)0.4584 (2)0.0334 (8)
C2350.6265 (4)0.7287 (3)0.4163 (2)0.0370 (9)
C2360.6485 (4)0.6384 (3)0.3792 (2)0.0303 (8)
C220.5109 (3)0.4110 (3)0.15647 (17)0.0223 (7)
C2110.4319 (3)0.3080 (3)0.15173 (19)0.0239 (7)
C2120.4514 (4)0.2465 (3)0.0953 (2)0.0311 (8)
C2130.3680 (4)0.1589 (4)0.0936 (3)0.0447 (10)
C2140.2652 (4)0.1296 (3)0.1471 (3)0.0429 (10)
C2150.2452 (4)0.1884 (3)0.2049 (2)0.0370 (9)
C2160.3279 (3)0.2770 (3)0.2066 (2)0.0297 (8)
C230.6174 (3)0.4547 (3)0.09328 (19)0.0266 (7)
C2370.6266 (4)0.5851 (3)0.0827 (2)0.0382 (9)
C240.7543 (3)0.3930 (3)0.10719 (19)0.0262 (7)
O240.8571 (2)0.4322 (2)0.07512 (14)0.0353 (6)
C250.7537 (3)0.2856 (3)0.16780 (19)0.0260 (7)
C2570.8936 (4)0.2250 (4)0.1746 (2)0.0365 (9)
C260.6993 (3)0.3247 (3)0.24021 (18)0.0232 (7)
C2210.6852 (3)0.2225 (3)0.30519 (19)0.0235 (7)
C2220.5906 (4)0.1405 (3)0.3089 (2)0.0329 (8)
C2230.5799 (4)0.0493 (3)0.3688 (2)0.0362 (9)
C2240.6634 (4)0.0377 (3)0.4261 (2)0.0330 (8)
C2250.7599 (4)0.1172 (3)0.42185 (19)0.0289 (8)
C2260.7713 (3)0.2093 (3)0.36168 (19)0.0254 (7)
H18C0.16500.58440.33340.038*
H18B0.02530.61590.37660.038*
H1320.25130.38690.34580.039*
H1330.26010.19970.41620.045*
H1340.09040.14180.50790.041*
H1350.08990.26960.52900.034*
H1360.10580.45520.45500.034*
H120.08340.59380.15620.027*
H1120.02500.83550.02410.039*
H1130.16751.00190.00010.052*
H1140.34241.03780.08390.054*
H1150.38340.90150.19390.049*
H1160.24060.73470.22000.039*
H130.04410.64190.04030.031*
H13A0.19720.51030.15680.046*
H13B0.22490.50280.07160.046*
H13C0.08790.45770.11700.046*
H150.14170.86020.12650.028*
H15A0.40970.76480.14920.046*
H15B0.34720.88400.16890.046*
H15C0.37370.87180.08440.046*
H160.23530.66630.23350.026*
H1220.05130.86840.24190.034*
H1230.08280.99820.32090.038*
H1240.09051.01960.39310.041*
H1250.29260.90810.38710.039*
H1260.32180.77350.31020.035*
H28A0.55500.38560.38250.032*
H28B0.68300.44730.33680.032*
H2320.36240.51770.42910.033*
H2330.32520.66990.49090.038*
H2340.49050.80270.48410.040*
H2350.69430.78230.41290.044*
H2360.73130.63120.35020.036*
H220.44140.47660.15580.027*
H2120.52240.26470.05760.037*
H2130.38230.11810.05430.054*
H2140.20830.06980.14480.051*
H2150.17540.16820.24300.044*
H2160.31340.31730.24610.036*
H230.58820.43780.04670.032*
H23C0.65030.60400.12880.057*
H23B0.53930.62400.06950.057*
H23A0.69630.61120.04310.057*
H250.69030.23110.15660.031*
H25A0.93090.21210.12610.055*
H25B0.88690.15070.20940.055*
H25C0.95300.27330.19280.055*
H260.76740.37480.25190.028*
H2220.53290.14730.27010.039*
H2230.51460.00600.37070.043*
H2240.65440.02410.46770.040*
H2250.81900.10910.46020.035*
H2260.83810.26340.35920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0219 (13)0.0208 (14)0.0227 (14)0.0035 (10)0.0040 (11)0.0041 (11)
C170.0233 (16)0.0233 (17)0.0274 (18)0.0032 (13)0.0005 (13)0.0048 (14)
O170.0315 (13)0.0319 (14)0.0300 (13)0.0126 (11)0.0017 (10)0.0039 (11)
C180.041 (2)0.0255 (18)0.0285 (19)0.0113 (15)0.0043 (16)0.0011 (15)
C1310.0359 (19)0.0255 (18)0.0202 (16)0.0086 (14)0.0049 (14)0.0051 (14)
C1320.034 (2)0.032 (2)0.032 (2)0.0073 (15)0.0022 (16)0.0080 (16)
C1330.041 (2)0.030 (2)0.041 (2)0.0001 (16)0.0014 (18)0.0079 (17)
C1340.042 (2)0.0230 (18)0.037 (2)0.0059 (15)0.0099 (17)0.0027 (16)
C1350.0333 (19)0.0307 (19)0.0222 (17)0.0127 (15)0.0003 (14)0.0022 (14)
C1360.0300 (18)0.0284 (18)0.0266 (18)0.0061 (14)0.0002 (14)0.0069 (15)
C120.0228 (16)0.0237 (17)0.0205 (16)0.0017 (13)0.0034 (13)0.0042 (13)
C1110.0212 (16)0.0288 (18)0.0281 (18)0.0024 (13)0.0097 (13)0.0071 (14)
C1120.0305 (19)0.031 (2)0.036 (2)0.0008 (15)0.0074 (16)0.0037 (16)
C1130.047 (2)0.030 (2)0.050 (2)0.0004 (17)0.016 (2)0.0015 (18)
C1140.039 (2)0.034 (2)0.065 (3)0.0079 (17)0.021 (2)0.013 (2)
C1150.0225 (18)0.052 (3)0.055 (3)0.0061 (17)0.0085 (17)0.025 (2)
C1160.0271 (18)0.037 (2)0.036 (2)0.0018 (15)0.0082 (15)0.0139 (16)
C130.0280 (17)0.0250 (17)0.0239 (17)0.0014 (13)0.0040 (14)0.0053 (14)
C1370.0262 (18)0.0291 (19)0.037 (2)0.0018 (14)0.0029 (15)0.0059 (16)
C140.0276 (18)0.0233 (18)0.0296 (19)0.0014 (13)0.0017 (15)0.0024 (14)
O140.0441 (16)0.0460 (17)0.0371 (15)0.0155 (13)0.0144 (13)0.0170 (13)
C150.0233 (16)0.0198 (16)0.0266 (17)0.0020 (12)0.0013 (13)0.0022 (13)
C1570.0261 (18)0.0301 (19)0.036 (2)0.0076 (14)0.0017 (15)0.0066 (16)
C160.0203 (15)0.0196 (16)0.0257 (17)0.0021 (12)0.0031 (13)0.0039 (13)
C1210.0270 (17)0.0180 (16)0.0247 (17)0.0055 (13)0.0036 (13)0.0001 (13)
C1220.0272 (18)0.0273 (18)0.0313 (19)0.0012 (14)0.0065 (14)0.0072 (15)
C1230.042 (2)0.0242 (18)0.0274 (19)0.0049 (15)0.0018 (16)0.0033 (15)
C1240.053 (2)0.0259 (19)0.0234 (18)0.0089 (16)0.0023 (16)0.0054 (15)
C1250.039 (2)0.034 (2)0.0269 (19)0.0134 (16)0.0054 (15)0.0063 (15)
C1260.0323 (19)0.0254 (18)0.0282 (18)0.0063 (14)0.0059 (15)0.0005 (14)
N210.0207 (14)0.0234 (14)0.0231 (14)0.0017 (11)0.0043 (11)0.0050 (11)
C270.0239 (17)0.0196 (16)0.0270 (18)0.0011 (13)0.0020 (13)0.0027 (13)
O270.0278 (13)0.0316 (13)0.0308 (13)0.0089 (10)0.0048 (10)0.0070 (11)
C280.0289 (18)0.0224 (17)0.0290 (18)0.0020 (13)0.0038 (14)0.0066 (14)
C2310.0306 (18)0.0237 (17)0.0200 (16)0.0042 (13)0.0081 (13)0.0031 (13)
C2320.0274 (17)0.0262 (18)0.0289 (18)0.0022 (14)0.0076 (14)0.0043 (15)
C2330.0316 (19)0.035 (2)0.0260 (18)0.0074 (15)0.0048 (15)0.0040 (15)
C2340.042 (2)0.032 (2)0.0280 (19)0.0048 (16)0.0040 (16)0.0127 (16)
C2350.045 (2)0.027 (2)0.042 (2)0.0063 (16)0.0028 (18)0.0134 (17)
C2360.0339 (19)0.0268 (19)0.0298 (19)0.0009 (14)0.0018 (15)0.0068 (15)
C220.0228 (16)0.0214 (16)0.0213 (16)0.0015 (12)0.0044 (13)0.0011 (13)
C2110.0203 (16)0.0239 (17)0.0272 (17)0.0005 (12)0.0057 (13)0.0035 (14)
C2120.0271 (18)0.035 (2)0.033 (2)0.0018 (15)0.0031 (15)0.0100 (16)
C2130.038 (2)0.042 (2)0.063 (3)0.0036 (18)0.007 (2)0.029 (2)
C2140.031 (2)0.027 (2)0.073 (3)0.0049 (16)0.012 (2)0.012 (2)
C2150.0205 (17)0.034 (2)0.050 (2)0.0027 (15)0.0053 (16)0.0074 (18)
C2160.0232 (17)0.036 (2)0.0283 (19)0.0007 (14)0.0013 (14)0.0032 (15)
C230.0265 (17)0.0261 (18)0.0268 (18)0.0048 (13)0.0036 (14)0.0027 (14)
C2370.040 (2)0.0259 (19)0.045 (2)0.0047 (16)0.0042 (18)0.0003 (17)
C240.0251 (17)0.0292 (18)0.0264 (18)0.0046 (14)0.0012 (14)0.0098 (14)
O240.0243 (13)0.0516 (17)0.0292 (13)0.0087 (11)0.0000 (10)0.0048 (12)
C250.0239 (17)0.0285 (18)0.0271 (18)0.0003 (13)0.0028 (14)0.0090 (14)
C2570.0294 (19)0.040 (2)0.036 (2)0.0114 (16)0.0002 (16)0.0065 (17)
C260.0169 (15)0.0242 (17)0.0292 (18)0.0006 (12)0.0031 (13)0.0070 (14)
C2210.0232 (16)0.0200 (16)0.0275 (17)0.0014 (12)0.0038 (13)0.0052 (13)
C2220.0268 (18)0.0279 (19)0.043 (2)0.0017 (14)0.0111 (16)0.0013 (16)
C2230.0261 (18)0.0272 (19)0.052 (2)0.0066 (14)0.0077 (17)0.0042 (17)
C2240.038 (2)0.0246 (18)0.032 (2)0.0054 (15)0.0007 (16)0.0011 (15)
C2250.038 (2)0.0227 (17)0.0263 (18)0.0044 (14)0.0079 (15)0.0058 (14)
C2260.0288 (17)0.0202 (17)0.0283 (18)0.0002 (13)0.0050 (14)0.0073 (14)
Geometric parameters (Å, º) top
N11—C171.365 (4)N21—C271.374 (4)
N11—C121.482 (4)N21—C221.477 (4)
N11—C161.485 (4)N21—C261.495 (4)
C17—O171.228 (4)C27—O271.230 (4)
C17—C181.520 (5)C27—C281.523 (5)
C18—C1311.512 (5)C28—C2311.503 (5)
C18—H18C0.99C28—H28A0.99
C18—H18B0.99C28—H28B0.99
C131—C1361.388 (5)C231—C2361.389 (5)
C131—C1321.391 (5)C231—C2321.395 (5)
C132—C1331.386 (5)C232—C2331.383 (5)
C132—H1320.95C232—H2320.95
C133—C1341.369 (5)C233—C2341.387 (5)
C133—H1330.95C233—H2330.95
C134—C1351.373 (5)C234—C2351.386 (5)
C134—H1340.95C234—H2340.95
C135—C1361.395 (5)C235—C2361.384 (5)
C135—H1350.95C235—H2350.95
C136—H1360.95C236—H2360.95
C12—C131.525 (4)C22—C2111.523 (5)
C12—C1111.528 (5)C22—C231.538 (5)
C12—H121.00C22—H221.00
C111—C1161.391 (5)C211—C2121.389 (5)
C111—C1121.393 (5)C211—C2161.396 (5)
C112—C1131.393 (5)C212—C2131.386 (5)
C112—H1120.95C212—H2120.95
C113—C1141.360 (6)C213—C2141.369 (6)
C113—H1130.95C213—H2130.95
C114—C1151.392 (6)C214—C2151.390 (6)
C114—H1140.95C214—H2140.95
C115—C1161.395 (5)C215—C2161.389 (5)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
C13—C141.510 (5)C23—C241.515 (5)
C13—C1371.536 (5)C23—C2371.527 (5)
C13—H131.00C23—H231.00
C137—H13A0.98C237—H23C0.98
C137—H13B0.98C237—H23B0.98
C137—H13C0.98C237—H23A0.98
C14—O141.213 (4)C24—O241.209 (4)
C14—C151.524 (5)C24—C251.513 (5)
C15—C1571.528 (5)C25—C2571.522 (5)
C15—C161.558 (4)C25—C261.551 (5)
C15—H151.00C25—H251.00
C157—H15A0.98C257—H25A0.98
C157—H15B0.98C257—H25B0.98
C157—H15C0.98C257—H25C0.98
C16—C1211.519 (5)C26—C2211.525 (5)
C16—H161.00C26—H261.00
C121—C1221.384 (5)C221—C2221.390 (5)
C121—C1261.396 (5)C221—C2261.391 (5)
C122—C1231.385 (5)C222—C2231.382 (5)
C122—H1220.95C222—H2220.95
C123—C1241.385 (6)C223—C2241.389 (6)
C123—H1230.95C223—H2230.95
C124—C1251.380 (6)C224—C2251.381 (5)
C124—H1240.95C224—H2240.95
C125—C1261.396 (5)C225—C2261.392 (5)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
C17—N11—C12117.8 (3)C27—N21—C22117.7 (3)
C17—N11—C16121.3 (3)C27—N21—C26122.5 (3)
C12—N11—C16119.5 (2)C22—N21—C26119.1 (2)
O17—C17—N11121.6 (3)O27—C27—N21121.6 (3)
O17—C17—C18119.9 (3)O27—C27—C28120.8 (3)
N11—C17—C18118.4 (3)N21—C27—C28117.5 (3)
C131—C18—C17113.2 (3)C231—C28—C27113.9 (3)
C131—C18—H18C108.9C231—C28—H28A108.8
C17—C18—H18C108.9C27—C28—H28A108.8
C131—C18—H18B108.9C231—C28—H28B108.8
C17—C18—H18B108.9C27—C28—H28B108.8
H18C—C18—H18B107.7H28A—C28—H28B107.7
C136—C131—C132118.3 (3)C236—C231—C232118.4 (3)
C136—C131—C18122.3 (3)C236—C231—C28119.6 (3)
C132—C131—C18119.3 (3)C232—C231—C28121.9 (3)
C133—C132—C131121.1 (3)C233—C232—C231120.2 (3)
C133—C132—H132119.5C233—C232—H232119.9
C131—C132—H132119.5C231—C232—H232119.9
C134—C133—C132120.0 (4)C232—C233—C234121.1 (3)
C134—C133—H133120.0C232—C233—H233119.5
C132—C133—H133120.0C234—C233—H233119.5
C133—C134—C135120.1 (3)C235—C234—C233118.9 (3)
C133—C134—H134120.0C235—C234—H234120.6
C135—C134—H134120.0C233—C234—H234120.6
C134—C135—C136120.3 (3)C236—C235—C234120.2 (4)
C134—C135—H135119.8C236—C235—H235119.9
C136—C135—H135119.8C234—C235—H235119.9
C131—C136—C135120.2 (3)C235—C236—C231121.3 (3)
C131—C136—H136119.9C235—C236—H236119.4
C135—C136—H136119.9C231—C236—H236119.4
N11—C12—C13109.2 (3)N21—C22—C211112.8 (3)
N11—C12—C111112.1 (3)N21—C22—C23109.2 (3)
C13—C12—C111116.4 (3)C211—C22—C23118.6 (3)
N11—C12—H12106.1N21—C22—H22105.0
C13—C12—H12106.1C211—C22—H22105.0
C111—C12—H12106.1C23—C22—H22105.0
C116—C111—C112118.6 (3)C212—C211—C216117.8 (3)
C116—C111—C12118.4 (3)C212—C211—C22124.9 (3)
C112—C111—C12123.0 (3)C216—C211—C22117.1 (3)
C113—C112—C111119.9 (4)C213—C212—C211120.4 (4)
C113—C112—H112120.1C213—C212—H212119.8
C111—C112—H112120.1C211—C212—H212119.8
C114—C113—C112121.6 (4)C214—C213—C212121.5 (4)
C114—C113—H113119.2C214—C213—H213119.3
C112—C113—H113119.2C212—C213—H213119.3
C113—C114—C115119.3 (4)C213—C214—C215119.2 (4)
C113—C114—H114120.4C213—C214—H214120.4
C115—C114—H114120.4C215—C214—H214120.4
C114—C115—C116119.9 (4)C216—C215—C214119.5 (4)
C114—C115—H115120.1C216—C215—H215120.2
C116—C115—H115120.1C214—C215—H215120.2
C111—C116—C115120.8 (4)C215—C216—C211121.5 (4)
C111—C116—H116119.6C215—C216—H216119.2
C115—C116—H116119.6C211—C216—H216119.2
C14—C13—C12111.3 (3)C24—C23—C237110.6 (3)
C14—C13—C137107.7 (3)C24—C23—C22111.2 (3)
C12—C13—C137111.1 (3)C237—C23—C22110.5 (3)
C14—C13—H13108.9C24—C23—H23108.1
C12—C13—H13108.9C237—C23—H23108.1
C137—C13—H13108.9C22—C23—H23108.1
C13—C137—H13A109.5C23—C237—H23C109.5
C13—C137—H13B109.5C23—C237—H23B109.5
H13A—C137—H13B109.5H23C—C237—H23B109.5
C13—C137—H13C109.5C23—C237—H23A109.5
H13A—C137—H13C109.5H23C—C237—H23A109.5
H13B—C137—H13C109.5H23B—C237—H23A109.5
O14—C14—C13121.4 (3)O24—C24—C25122.8 (3)
O14—C14—C15121.3 (3)O24—C24—C23121.5 (3)
C13—C14—C15117.3 (3)C25—C24—C23115.5 (3)
C14—C15—C157110.8 (3)C24—C25—C257111.9 (3)
C14—C15—C16114.4 (3)C24—C25—C26106.6 (3)
C157—C15—C16110.5 (3)C257—C25—C26111.4 (3)
C14—C15—H15106.9C24—C25—H25108.9
C157—C15—H15106.9C257—C25—H25108.9
C16—C15—H15106.9C26—C25—H25108.9
C15—C157—H15A109.5C25—C257—H25A109.5
C15—C157—H15B109.5C25—C257—H25B109.5
H15A—C157—H15B109.5H25A—C257—H25B109.5
C15—C157—H15C109.5C25—C257—H25C109.5
H15A—C157—H15C109.5H25A—C257—H25C109.5
H15B—C157—H15C109.5H25B—C257—H25C109.5
N11—C16—C121112.1 (3)N21—C26—C221113.3 (3)
N11—C16—C15112.0 (3)N21—C26—C25109.6 (3)
C121—C16—C15109.0 (3)C221—C26—C25111.8 (3)
N11—C16—H16107.8N21—C26—H26107.3
C121—C16—H16107.8C221—C26—H26107.3
C15—C16—H16107.8C25—C26—H26107.3
C122—C121—C126118.2 (3)C222—C221—C226118.8 (3)
C122—C121—C16121.9 (3)C222—C221—C26121.9 (3)
C126—C121—C16119.8 (3)C226—C221—C26119.2 (3)
C121—C122—C123121.7 (3)C223—C222—C221120.5 (3)
C121—C122—H122119.2C223—C222—H222119.7
C123—C122—H122119.2C221—C222—H222119.7
C124—C123—C122119.7 (3)C222—C223—C224120.7 (3)
C124—C123—H123120.1C222—C223—H223119.7
C122—C123—H123120.1C224—C223—H223119.7
C125—C124—C123119.7 (3)C225—C224—C223119.1 (3)
C125—C124—H124120.2C225—C224—H224120.4
C123—C124—H124120.2C223—C224—H224120.4
C124—C125—C126120.4 (3)C224—C225—C226120.5 (3)
C124—C125—H125119.8C224—C225—H225119.8
C126—C125—H125119.8C226—C225—H225119.8
C125—C126—C121120.3 (3)C221—C226—C225120.4 (3)
C125—C126—H126119.9C221—C226—H226119.8
C121—C126—H126119.9C225—C226—H226119.8
C12—N11—C17—O178.8 (5)C22—N21—C27—O275.8 (5)
C16—N11—C17—O17175.5 (3)C26—N21—C27—O27176.4 (3)
C12—N11—C17—C18174.7 (3)C22—N21—C27—C28176.6 (3)
C16—N11—C17—C188.0 (4)C26—N21—C27—C286.0 (4)
O17—C17—C18—C13131.7 (5)O27—C27—C28—C23122.4 (5)
N11—C17—C18—C131151.7 (3)N21—C27—C28—C231160.0 (3)
C17—C18—C131—C13689.7 (4)C27—C28—C231—C236104.7 (4)
C17—C18—C131—C13291.5 (4)C27—C28—C231—C23279.4 (4)
C136—C131—C132—C1330.2 (5)C236—C231—C232—C2330.5 (5)
C18—C131—C132—C133179.1 (3)C28—C231—C232—C233175.4 (3)
C131—C132—C133—C1341.2 (6)C231—C232—C233—C2340.1 (5)
C132—C133—C134—C1350.5 (6)C232—C233—C234—C2350.5 (5)
C133—C134—C135—C1361.1 (6)C233—C234—C235—C2360.2 (6)
C132—C131—C136—C1351.4 (5)C234—C235—C236—C2310.4 (6)
C18—C131—C136—C135177.4 (3)C232—C231—C236—C2350.8 (5)
C134—C135—C136—C1312.1 (5)C28—C231—C236—C235175.2 (3)
C17—N11—C12—C13117.6 (3)C27—N21—C22—C211109.3 (3)
C16—N11—C12—C1349.3 (4)C26—N21—C22—C21179.8 (3)
C17—N11—C12—C111111.9 (3)C27—N21—C22—C23116.6 (3)
C16—N11—C12—C11181.2 (3)C26—N21—C22—C2354.3 (4)
N11—C12—C111—C11658.2 (4)N21—C22—C211—C212127.1 (3)
C13—C12—C111—C116175.0 (3)C23—C22—C211—C2122.3 (5)
N11—C12—C111—C112121.3 (3)N21—C22—C211—C21656.1 (4)
C13—C12—C111—C1125.4 (5)C23—C22—C211—C216174.5 (3)
C116—C111—C112—C1131.8 (5)C216—C211—C212—C2131.2 (5)
C12—C111—C112—C113177.7 (3)C22—C211—C212—C213175.7 (3)
C111—C112—C113—C1140.5 (6)C211—C212—C213—C2140.5 (6)
C112—C113—C114—C1151.3 (6)C212—C213—C214—C2150.7 (6)
C113—C114—C115—C1161.6 (6)C213—C214—C215—C2161.1 (6)
C112—C111—C116—C1151.5 (5)C214—C215—C216—C2110.4 (5)
C12—C111—C116—C115178.1 (3)C212—C211—C216—C2150.7 (5)
C114—C115—C116—C1110.2 (6)C22—C211—C216—C215176.4 (3)
N11—C12—C13—C1458.3 (3)N21—C22—C23—C2442.2 (4)
C111—C12—C13—C1469.9 (4)C211—C22—C23—C2488.9 (3)
N11—C12—C13—C13761.7 (4)N21—C22—C23—C23781.1 (3)
C111—C12—C13—C137170.1 (3)C211—C22—C23—C237147.9 (3)
C12—C13—C14—O14160.7 (3)C237—C23—C24—O2438.3 (5)
C137—C13—C14—O1477.3 (4)C22—C23—C24—O24161.5 (3)
C12—C13—C14—C1519.6 (4)C237—C23—C24—C25136.9 (3)
C137—C13—C14—C15102.4 (3)C22—C23—C24—C2513.7 (4)
O14—C14—C15—C15724.3 (5)O24—C24—C25—C2578.6 (5)
C13—C14—C15—C157155.4 (3)C23—C24—C25—C257176.3 (3)
O14—C14—C15—C16150.0 (3)O24—C24—C25—C26113.5 (4)
C13—C14—C15—C1629.7 (4)C23—C24—C25—C2661.6 (4)
C17—N11—C16—C12170.6 (4)C27—N21—C26—C22169.8 (4)
C12—N11—C16—C121123.0 (3)C22—N21—C26—C221119.8 (3)
C17—N11—C16—C15166.5 (3)C27—N21—C26—C25164.6 (3)
C12—N11—C16—C150.1 (4)C22—N21—C26—C255.8 (4)
C14—C15—C16—N1139.9 (4)C24—C25—C26—N2149.9 (3)
N11—C16—C15—C157165.7 (3)N21—C26—C25—C257172.3 (3)
C14—C15—C16—C121164.6 (3)C24—C25—C26—C221176.4 (3)
C157—C15—C16—C12169.6 (3)C257—C25—C26—C22161.2 (4)
N11—C16—C121—C12243.6 (4)N21—C26—C221—C22256.9 (4)
C15—C16—C121—C12281.1 (4)C25—C26—C221—C22267.5 (4)
N11—C16—C121—C126138.3 (3)N21—C26—C221—C226124.4 (3)
C15—C16—C121—C12697.1 (3)C25—C26—C221—C226111.2 (3)
C126—C121—C122—C1230.8 (5)C226—C221—C222—C2231.8 (5)
C16—C121—C122—C123179.0 (3)C26—C221—C222—C223179.6 (3)
C121—C122—C123—C1241.2 (5)C221—C222—C223—C2240.2 (6)
C122—C123—C124—C1250.6 (5)C222—C223—C224—C2251.4 (6)
C123—C124—C125—C1260.4 (5)C223—C224—C225—C2261.4 (5)
C124—C125—C126—C1210.8 (5)C222—C221—C226—C2251.8 (5)
C122—C121—C126—C1250.2 (5)C26—C221—C226—C225179.6 (3)
C16—C121—C126—C125178.0 (3)C224—C225—C226—C2210.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O271.002.343.342 (4)174
C132—H132···O270.952.593.482 (4)156
C26—H26···O17i1.002.353.343 (4)172
C28—H28B···O17i0.992.483.398 (4)153
C212—H212···O14ii0.952.413.339 (5)164
C222—H222···Cg10.952.973.902 (4)169
C123—H123···Cg2iii0.952.923.849 (4)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC31H27NO2C27H27NO2
Mr445.54397.50
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)120120
a, b, c (Å)11.2499 (2), 11.8622 (3), 18.2320 (5)9.9503 (4), 11.8623 (6), 18.5654 (8)
α, β, γ (°)90, 107.8750 (15), 9077.920 (2), 84.699 (3), 85.731 (2)
V3)2315.59 (10)2130.23 (17)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.16 × 0.10 × 0.020.24 × 0.14 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.9980.971, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
27266, 5309, 4069 39607, 9842, 6200
Rint0.0510.094
(sin θ/λ)max1)0.6520.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.03 0.088, 0.262, 1.03
No. of reflections53099842
No. of parameters307546
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.250.37, 0.33

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) for (I) top
C6—N1—C2—C11136.22 (12)C2—N1—C6—C2188.59 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i1.002.353.120 (2)133
C16—H16···Cgii0.952.713.505 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.
Selected torsion angles (º) for (II) top
C16—N11—C12—C11181.2 (3)C26—N21—C22—C21179.8 (3)
N11—C12—C13—C13761.7 (4)N21—C22—C23—C23781.1 (3)
C12—N11—C16—C121123.0 (3)C22—N21—C26—C221119.8 (3)
N11—C16—C15—C157165.7 (3)N21—C26—C25—C257172.3 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O271.002.343.342 (4)174
C132—H132···O270.952.593.482 (4)156
C26—H26···O17i1.002.353.343 (4)172
C28—H28B···O17i0.992.483.398 (4)153
C212—H212···O14ii0.952.413.339 (5)164
C222—H222···Cg10.952.973.902 (4)169
C123—H123···Cg2iii0.952.923.849 (4)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y+1, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625–656.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds