organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Four 2-aryl-8,8-di­methyl-6,7,8,9-tetra­hydro­pyrazolo[2,3-a]quinazolin-6-ones: isolated mol­ecules, hydrogen-bonded dimers, and π-stacked chains of hydrogen-bonded dimers

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria, Torobajo, AA 1175, Pasto, Colombia, bGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 11 May 2006; accepted 12 May 2006; online 31 May 2006)

In each of the three compounds 2-(4-chloro­phenyl)-5,8,8-trimethyl-6,7,8,9-tetra­hydro­pyrazolo[2,3-a]quinazolin-6-one, C19H18ClN3O, (I)[link], 2-(4-methoxy­phenyl)-5,8,8-trimethyl-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one, C20H21N3O2, (II)[link], and 8,8-dimethyl-2-(4-methyl­phenyl)-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one monohydrate, C19H19N3O·H2O, (IV)[link], the non-aromatic carbocyclic ring adopts a half-chair conformation, while in 2-(4-chloro­phenyl)-8,8-dimethyl-5-phenyl-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one, C24H20ClN3O, (III)[link], the corresponding ring adopts a conformation inter­mediate between the envelope and screw–boat forms. The structure of (I)[link] consists of isolated mol­ecules, while that of (II)[link] contains dimers formed by C—H⋯O hydrogen bonds. In (III)[link], dimers formed by C—H⋯O hydrogen bonds are linked into chains by means of an aromatic ππ stacking inter­action, while in the monohydrate, (IV)[link], the heterocyclic mol­ecules and the water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds to form centrosymmetric four-component aggregates.

Comment

As part of our synthetic study of fused pyrazole systems, we are now focusing on pyrazoloquinazoline derivatives, which are important pharmacophores (Fry et al., 1994[Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093-1095.]). We have previously reported different methods for the preparation of this class of compound via solvent-free procedures under microwave irradiation, via both three-component cyclo­condensation using a 5-amino-1H-pyrazole, 5,5-dimethyl­cyclo­hexane-1,3-dione (dimedone) and formaldehyde (Low et al., 2004a[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004a). Acta Cryst. C60, o265-o269.]), and a two-component cyclo­condensation with the corresponding 5-amino-1H-pyrazole and 2-acetyl-1-tetra­lone (Low, Cobo, Quiroga et al., 2004[Low, J. N., Cobo, J., Quiroga, J., Portilla, J. & Glidewell, C. (2004). Acta Cryst. C60, o604-o607.]; Portilla et al., 2005[Portilla, J., Quiroga, J., Cobo, J., Nogueras, M., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o398-o403.]). Here, we

[Scheme 1]
report the mol­ecular and supra­molecular structures of four new substituted 6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-ones, namely 2-(4-chloro­phenyl)-5,8,8-trimethyl-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one, (I)[link], 2-(4-meth­oxy­phenyl)-5,8,8-trimethyl-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one, (II)[link], 2-(4-chloro­phenyl)-8,8-dimethyl-5-phenyl-6,7,8,9-tetra­hydropyrazolo[2,3-a]quinazolin-6-one, (III)[link], and 8,8-dimethyl-2-(4-methyl­phenyl)-6,7,8,9-tetra­hydro­pyrazolo­[2,3-a]­quinazolin-6-one monohydrate, (IV)[link] (Figs. 1[link]–4[link][link][link]). Compounds (I)[link], (III)[link] and (IV)[link] were prepared using microwave irradiation of three-component reaction mixtures containing a 5-amino-3-aryl-1H-pyrazole, dimedone and an orthoester, but in the absence of any solvent, while compound (II)[link] was prepared similarly using a solvent-free two-component cyclo­condensation of a 5-amino-3-aryl-1H-pyrazole with 2-acetyl­dimedone. Each of compounds (I)–(IV) has an aryl substituent at position C2, and we briefly compare the structures of (I)[link]–(IV)[link] with those of (V)[link] and (VI)[link] (Low et al., 2004a[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004a). Acta Cryst. C60, o265-o269.],b[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004b). Acta Cryst. C60, o479-o482.]), each of which has a methyl substituent at C2.

In each of compounds (I)[link]–(IV)[link], there is considerable bond fixation in the heterocyclic rings, with rather little variation in the bond distances from one compound to another (Table 1[link]), indicating that the classical representation shown in the scheme is appropriate. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the non-aromatic carbocylic rings, calculated for the atom sequence C5a/C6–C9/C9a in each case (Table 1[link]), indicate that, in compounds (I)[link], (II)[link] and (IV)[link], this ring adopts a half-chair conformation, for which the idealized parameters are θ = 50.8° and φ = (60n + 30)/5. By contrast, in compound (III)[link], the conformation of the non-aromatic carbocyclic ring is best described as inter­mediate between screw–boat and envelope forms; for these conformations, the idealized parameters are θ = 67.5 and 54.7°, and φ = (60n + 30) and 60n°, respectively. The corresponding rings in compounds (V) and (VI) both adopt envelope conformations (Low et al., 2004a[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004a). Acta Cryst. C60, o265-o269.],b[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004b). Acta Cryst. C60, o479-o482.]). The aryl rings at the C2 positions deviate only modestly from being coplanar with the adjacent pyrazole rings, as shown by the dihedral angles between these rings (Table 1[link]), but the 5-phenyl ring in compound (III)[link] is significantly rotated about C5—C51 out of the plane of the adjacent pyrimidine ring, possibly because of a repulsive intra­molecular inter­action between atoms H52 and O6 (Fig. 3[link]).

There are no direction-specific inter­actions of any kind between the mol­ecules in compound (I)[link], but the mol­ecules in compound (II)[link] are linked into centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers (Fig. 5[link]) by paired C—H⋯O hydrogen bonds, in which both the donor and the acceptor are parts of the 4-methoxy­phenyl substituent (Table 2[link]). There are no direction-specific inter­actions between these dimers.

In compound (III)[link], the mol­ecules are again linked into centrosymmetric R22(16) dimers by means of paired C—H⋯O hydrogen bonds, where now the donor lies in the unsubstituted 5-phenyl ring and the acceptor is carbonyl atom O6 (Table 3[link] and Fig. 6[link]). These hydrogen-bonded dimers are linked by a single aromatic ππ stacking inter­action. The substituted phenyl rings (C21–C26) in the mol­ecules at (x, y, z) and (3 − x, −y, 2 − z), which lie in the hydrogen-bonded dimers centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]) and ([{5 \over 2}], −[{1 \over 2}], [{3 \over 2}]), respectively, are strictly parallel, with an inter­planar spacing of 3.619 (2) Å and a ring centroid separation of 3.765 (2) Å. Propagation by inversion of this stacking inter­action then links the hydrogen-bonded dimers into chains running parallel to the [2[\overline{1}]1] direction (Fig. 7[link]). There are no direction-specific inter­actions between adjacent chains.

Unlike compounds (I)[link]–(III)[link], which all crystallize in solvent-free forms, compound (IV)[link] crystallizes as a stoichiometric monohydrate (Fig. 4[link]), and the mol­ecules are linked by a combination of O—H⋯O and O—H⋯N hydrogen bonds (Table 4[link]) to form a centrosymmetric four-mol­ecule aggregate characterized by an R44(16) motif (Fig. 8[link]). As in compound (II)[link], there are no direction-specific inter­actions between the hydrogen-bonded units in (IV)[link].

The different supra­molecular structures of compounds (I)[link]–(IV)[link] may be contrasted with those of the analogues (V)[link] and (VI)[link]. The mol­ecules of (V)[link] are linked by paired C—H⋯N hydrogen bonds into R22(6) dimers, which are further linked into chains by means of a ππ stacking inter­action (Low et al., 2004a[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004a). Acta Cryst. C60, o265-o269.]), while the mol­ecules of (VI)[link] are linked by a single C—H⋯N hydrogen bond into simple C(10) chains (Low et al., 2004b[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004b). Acta Cryst. C60, o479-o482.]). There are no C—H⋯O hydrogen bonds in the structures of (V)[link] and (VI)[link], and no C—H⋯N hydrogen bonds in any of (I)[link]–(IV)[link].

[Figure 1]
Figure 1
A view of the mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A view of the mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
A view of the mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]
Figure 4
The independent mol­ecular components of compound (IV)[link], showing the atom-labelling scheme and the O—H⋯O hydrogen bond (dashed line) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of a centrosymmetric R22(8) dimer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).
[Figure 6]
Figure 6
Part of the crystal structure of compound (III)[link], showing the formation of a centrosymmetric R22(16) dimer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a π-stacked [2[\overline{1}]1] chain of hydrogen-bonded dimers. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of compound (IV)[link], showing the formation of a centrosymmetric R44(16) aggregate. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (3 − x, 1 − y, 1 − z).

Experimental

For the syntheses of compounds (I)[link], (III)[link] and (IV)[link], equimolar mixtures (1 mmol of each component), comprising a 5-amino-3-aryl-1H-pyrazole, where the aryl group is 4-chloro­phenyl for (I)[link] and (III)[link] and 4-methyl­phenyl for (IV)[link], 5,5-dimethyl­cyclo­hexane-1,3-dione (dimedone) and a triethyl orthoester, viz. acetate for (I)[link], benzoate for (III)[link] and formate for (IV)[link], were placed in open Pyrex glass vessels in the absence of solvent and then irradiated in a domestic microwave oven at 600 W for 4 min for (I)[link], 5 min for (III)[link] or 2 min for (IV)[link]. The resulting solid products were washed with ethanol, dried and then recrystallized from ethanol to provide crystals suitable for single-crystal X-ray diffraction. For (I)[link], m.p. 492 K, yield 60%; for (III)[link], m.p. 498–499 K, yield 62%; for (IV)[link], m.p. 466 K, yield 60%. For the synthesis of compound (II)[link], an equimolar mixture (1 mmol of each component) of 5-amino-3-(4-methoxy­phenyl)-1H-pyrazole and 2-acetyl­dimedone was placed in an open Pyrex glass vessel in the absence of solvent and irradiated in a domestic microwave oven at 600 W for 1.5 min. The reaction mixture was extracted with ethanol and, after removing the solvent, the solid product was recrystallized from dimethyl­formamide to give crystals suitable for single-crystal X-ray diffraction; m.p. 477–478 K, yield 80%.

Compound (I)[link]

Crystal data
  • C19H18ClN3O

  • Mr = 339.81

  • Triclinic, [P \overline 1]

  • a = 8.5280 (12) Å

  • b = 8.8610 (14) Å

  • c = 11.7340 (16) Å

  • α = 100.992 (10)°

  • β = 93.118 (15)°

  • γ = 110.524 (9)°

  • V = 808.1 (2) Å3

  • Z = 2

  • Dx = 1.397 Mg m−3

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan, EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) and SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.952

  • 17119 measured reflections

  • 3562 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.152

  • S = 1.08

  • 3562 reflections

  • 220 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0677P)2 + 0.7985P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.42 e Å−3

Compound (II)[link]

Crystal data
  • C20H21N3O2

  • Mr = 335.40

  • Monoclinic, P 21 /c

  • a = 17.7659 (6) Å

  • b = 8.5730 (2) Å

  • c = 11.3982 (3) Å

  • β = 101.094 (2)°

  • V = 1703.56 (8) Å3

  • Z = 4

  • Dx = 1.308 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.40 × 0.22 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.993

  • 14346 measured reflections

  • 3886 independent reflections

  • 2825 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.07

  • 3886 reflections

  • 231 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0712P)2 + 0.3779P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.025 (7)

Table 1
Selected geometric parameters (Å, °) for compounds (I)[link]–(IV)[link]

θ and φ are ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

Parameter (I)[link] (II)[link] (III)[link] (IV)[link]
N1—C2 1.342 (3) 1.348 (2) 1.339 (2) 1.348 (4)
C2—C3 1.405 (3) 1.399 (2) 1.397 (2) 1.396 (4)
C3—C3a 1.381 (3) 1.373 (2) 1.370 (2) 1.376 (4)
C3a—N4 1.362 (3) 1.358 (2) 1.358 (2) 1.350 (4)
N4—C5 1.320 (3) 1.315 (2) 1.316 (2) 1.312 (4)
C5—C5a 1.447 (3) 1.442 (2) 1.445 (2) 1.422 (4)
C5a—C9a 1.376 (3) 1.379 (2) 1.380 (2) 1.371 (4)
C9a—N9b 1.357 (3) 1.359 (2) 1.362 (2) 1.360 (4)
N9b—N1 1.357 (2) 1.3651 (18) 1.3613 (18) 1.358 (4)
C3a—N9b 1.394 (3) 1.390 (2) 1.392 (2) 1.415 (4)
(Pyrazole)–(C21–C26)  5.6 (2)  6.3 (2)  14.2 (2)  3.6 (2)
(Pyrimidine)–(C51–C56)      44.7 (2)  
θ  51.8 (3)  52.7 (2)  65.0 (2)  52.4 (4)
φ 150.0 (4) 156.8 (3) 169.7 (2) 160.1 (5)

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O24i 0.93 2.46 3.385 (2) 173
Symmetry code: (i) -x+1, -y+1, -z+2.

Compound (III)[link]

Crystal data
  • C24H20ClN3O

  • Mr = 401.88

  • Triclinic, [P \overline 1]

  • a = 7.6778 (2) Å

  • b = 8.1298 (3) Å

  • c = 16.6417 (5) Å

  • α = 89.080 (2)°

  • β = 85.123 (2)°

  • γ = 72.490 (2)°

  • V = 987.06 (5) Å3

  • Z = 2

  • Dx = 1.352 Mg m−3

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 (2) K

  • Plate, colourless

  • 0.45 × 0.40 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.979

  • 17614 measured reflections

  • 4513 independent reflections

  • 2799 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.03

  • 4513 reflections

  • 262 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1379P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C53—H53⋯O6i 0.93 2.48 3.358 (2) 158
Symmetry code: (i) -x+1, -y+1, -z+1.

Compound (IV)[link]

Crystal data
  • C19H19N3O·H2O

  • Mr = 323.39

  • Triclinic, [P \overline 1]

  • a = 5.8190 (7) Å

  • b = 10.4640 (13) Å

  • c = 13.847 (2) Å

  • α = 78.447 (12)°

  • β = 79.647 (9)°

  • γ = 84.882 (12)°

  • V = 811.37 (19) Å3

  • Z = 2

  • Dx = 1.324 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan, EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) and (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.956, Tmax = 0.986

  • 16071 measured reflections

  • 3593 independent reflections

  • 1683 reflections with I > 2σ(I)

  • Rint = 0.105

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.223

  • S = 1.04

  • 3593 reflections

  • 220 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1104P)2 + 0.257P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N4i 0.96 2.00 2.944 (4) 167
O1W—H2W⋯O6 0.96 1.95 2.879 (3) 163
C5—H5⋯O6i 0.95 2.58 3.465 (4) 154
Symmetry code: (i) -x+3, -y+1, -z+1.

For compound (II)[link], the space group P21/c was uniquely assigned from the systematic absences. Crystals of each of (I)[link], (II)[link] and (IV)[link] are triclinic, and in each case the space group P[\overline{1}] was selected and then confirmed by the structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups. The H atoms of the water mol­ecule in (IV)[link] were permitted to ride at the positions identified from a difference map, giving O—H distances of 0.96 Å, with Uiso(H) = 1.5Ueq(O).

For all compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]). Cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]) for (I)[link] and (IV)[link]; DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT for (II)[link] and (III)[link]. Data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) for (I)[link] and (IV)[link]; DENZO and COLLECT for (II)[link] and (III)[link]. Program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) for (I)[link] and (IV)[link]; SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]) and WinGX for (II)[link] and (III)[link]. For all compounds, program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of our synthetic study of fused pyrazole systems, we are now focusing on pyrazoloquinazoline derivatives, which are important pharmacophores (Fry et al., 1994). We have previously reported different methods for the preparation of this class of compound using solvent-free procedures under microwave irradiation, using both three-component cyclocondensation using a 5-amino-1H-pyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and formaldehyde (Low et al., 2004a), and a two-component cyclocondensation with the corresponding 5-amino-1H-pyrazole and 2-acetyl-1-tetralone (Low, Cobo, Quiroga et al., 2004; Portilla et al., 2005). Here, we report the molecular and supramolecular structures of four new substituted 6,7,8,9-tetrahydropyrazolo[2,3-a]quinazolin-6-ones, namely 2-(4-chlorophenyl)-5,8,8-trimethyl-6,7,8,9-tetrahydropyrazolo[2,3-a]quinazolin-6-one, (I), 2-(4-methoxyphenyl)-5,8,8-trimethyl-6,7,8,9-tetrahydropyrazolo[2,3-a]quinazolin-6-one, (II), 2-(4-chlorophenyl)-8,8-dimethyl-5-phenyl-6,7,8,9-tetrahydropyrazolo[2,3-a]quinazolin-6-one, (III), and 2-(4-methylphenyl)-8,8-dimethyl-6,7,8,9-tetrahydropyrazolo[2,3-a]quinazolin-6-one, which crystallizes as a stoichiometric monohydrate, (IV) (Figs. 1–4). Compounds (I), (III) and (IV) were prepared using microwave irradiation of three-component reaction mixtures containing a 5-amino-3-aryl-1H-pyrazole, dimedone and an orthoester, but in the absence of any solvent, while compound (II) was prepared similarly using a solvent-free two-component cyclocondensation of a 5-amino-3-aryl-1H-pyrazole with 2-acetyldimedone. Each of compounds (I)–(IV) has an aryl substituent at position C2, and we briefly compare the structures of (I)–(IV) with those of (V) and (VI) (Low et al., 2004a,b), each of which has a methyl substituent at C2.

In each of compounds (I)–(IV), there is considerable bond fixation in the heterocyclic rings, with rather little variation in the bond distances from one compound to another (Table 1), indicating that the classical representation shown in the scheme is appropriate. The ring-puckering parameters (Cremer & Pople, 1975) for the non-aromatic carbocylic rings, calculated for the atom sequence C5a/C6–C9/C9a in each case (Table 1), indicate that, in compounds (I), (II) and (IV), this ring adopts a half-chair conformation, for which the idealized parameters are θ = 50.8° and ϕ = (60n + 30)/5. By contrast, in compound (III), the conformation of the non-aromatic carbocyclic ring is best described as intermediate between screw–boat and envelope forms; for these conformations, the idealized parameters are θ = 67.5° and 54.7°, and ϕ = (60n + 30)° and 60n°, respectively. The corresponding rings in compounds (V) and (VI) both adopt envelope conformations (Low et al., 2004a,b). The aryl rings at the C2 positions deviate only modestly from being coplanar with the adjacent pyrazole rings, as shown by the dihedral angles between these rings (Table 1), but the 5-phenyl ring in compound (III) is significantly rotated about C5—C51 out of the plane of the adjacent pyrimidine ring, possibly because of a repulsive intramolecular interaction between atoms H52 and O6 (Fig. 3).

There are no direction-specific interactions of any kind between the molecules in compound (I), but the molecules in compound (II) are linked into centrosymmetric R22(8) (Bernstein et al., 1995) dimers (Fig. 5) by paired C—H···O hydrogen bonds, in which both the donor and the acceptor are parts of the 2-(4-methoxyphenyl) substituent (Table 2). There are no direction-specific interactions between these dimers.

In compound (III), the molecules are again linked into centrosymmetric R22(16) dimers by means of paired C—H···O hydrogen bonds, where now the donor lies in the unsubstituted 5-phenyl ring and the acceptor is the carbonyl atom O6 (Table 3, Fig. 6). These hydrogen-bonded dimers are linked by a single aromatic ππ stacking interaction. The substituted phenyl rings (C21–C26) in the molecules at (x, y, z) and (3 − x, −y, 2 − z), which lie in the hydrogen-bonded dimers centred at (1/2, 1/2, 1/2) and (5/2, −1/2, 3/2), respectively, are strictly parallel, with an interplanar spacing of 3.619 (2) Å and a ring centroid separation of 3.765 (2) Å. Propagation by inversion of this stacking interaction then links the hydrogen-bonded dimers into chains running parallel to the [211] direction (Fig. 7). There are no direction-specific interactions between adjacent chains.

Unlike compounds (I)–(III), which all crystallize in solvent-free forms, compound (IV) crystallizes as a stoichiometric monohydrate (Fig. 4), and the molecules are linked by a combination of O—H···O and O—H···N hydrogen bonds (Table 4) to form a centrosymmetric four-molecule aggregate characterized by an R44(16) motif (Fig. 8). As in compound (II), there are no direction-specific interactions between the hydrogen-bonded units in (IV).

The different supramolecular structures of compounds (I)–(IV) may be contrasted with those of the analogues (V) and (VI). The molecules of (V) are linked by paired C—H.·N hydrogen bonds into R22(6) dimers, which are further linked into chains by means of a ππ stacking interaction (Low et al., 2004a), while the molecules of (VI) are linked by a single C—H···N hydrogen bond into simple C(10) chains (Low et al., 2004b). There are no C—H···O hydrogen bonds in the structures of (V) and (VI), and no C—H···N hydrogen bonds in any of (I)–(IV).

Experimental top

For the syntheses of compounds (I), (III) and (IV), equimolar mixtures (1 mmol of each component), comprising a 5-amino-3-aryl-1H-pyrazole, where the aryl group is 4-chlorophenyl for (I) and (III) and 4-methylphenyl for (IV), 5,5-dimethylcyclohexane-1,3-dione (dimedone) and a triethyl orthoester, acetate for (I), benzoate for (III) and formate for (IV), were placed in open Pyrex glass vessels in the absence of solvent and then irradiated in a domestic microwave oven at 600 W for 4 min for (I), 5 min for (III) or 2 min for (IV). The resulting solid products were washed with ethanol, dried and then recrystallized from ethanol to provide crystals suitable for single-crystal X-ray diffraction. For (I), m.p. 492 K, yield 60%; for (III), m.p. 498–499 K, yield 62%; for (IV), m.p. 466 K, yield 60%. For the synthesis of compound (II), an equimolar mixture (1 mmol of each component) of 5-amino-3-(4-methoxyphenyl)-1H-pyrazole and 2-acetyldimedone was placed in an open Pyrex glass vessel in the absence of solvent and irradiated in a domestic microwave oven at 600 W for 1.5 min. The reaction mixture was extracted with ethanol and, after removing the solvent, the solid product was recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction; m.p. 477–478 K, yield 80%.

Refinement top

For compound (II), the space group P21/c was uniquely assigned from the systematic absences. Crystals of each of (I), (II) and (IV) are triclinic, and in each case the space group P1 was selected and then confirmed by the structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups. The H atoms of the water molecule in (IV) were permitted to ride at the positions identified from the difference map, giving O—H distances of 0.96 Å, with Uiso(H) = 1.5Ueq(O).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999). Cell refinement: DIRAX/LSQ (Duisenberg et al., 2000) for (I), (IV); DENZO (Otwinowski & Minor, 1997) and COLLECT for (II), (III). Data reduction: EVALCCD (Duisenberg et al., 2003) for (I), (IV); DENZO and COLLECT for (II), (III). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) and WinGX (Farrugia, 1999) for (I), (IV); SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999) for (II), (III). For all compounds, program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The independent molecular components of compound (IV), showing the atom-labelling scheme and the O—H···O hydrogen bond (dashed line) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. Part of the crystal structure of compound (II), showing the formation of a centrosymmetric R22(8) dimer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).
[Figure 6] Fig. 6. Part of the crystal structure of compound (III), showing the formation of a centrosymmetric R22(16) dimer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III), showing the formation of a π-stacked [211] chain of hydrogen-bonded dimers. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of compound (IV), showing the formation of a centrosymmetric R44(16) aggregate. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (3 − x, 1 − y, 1 − z).
(I) 2-(4-Chlorophenyl)-5,8,8-trimethyl-6,7,8,9- tetrahydropyrazolo[2,3-a]quinazolin-6-one top
Crystal data top
C19H18ClN3OZ = 2
Mr = 339.81F(000) = 356
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5280 (12) ÅCell parameters from 3562 reflections
b = 8.8610 (14) Åθ = 5.0–27.5°
c = 11.7340 (16) ŵ = 0.25 mm1
α = 100.992 (10)°T = 120 K
β = 93.118 (15)°Plate, colourless
γ = 110.524 (9)°0.4 × 0.3 × 0.2 mm
V = 808.1 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3562 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 5.0°
CCD rotation images, thick slices scansh = 1011
Absorption correction: multi-scan
EVALCCD (Duisenberg et al., 2003)
k = 1111
Tmin = 0.861, Tmax = 0.952l = 1515
17119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.7985P]
where P = (Fo2 + 2Fc2)/3
3562 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C19H18ClN3Oγ = 110.524 (9)°
Mr = 339.81V = 808.1 (2) Å3
Triclinic, P1Z = 2
a = 8.5280 (12) ÅMo Kα radiation
b = 8.8610 (14) ŵ = 0.25 mm1
c = 11.7340 (16) ÅT = 120 K
α = 100.992 (10)°0.4 × 0.3 × 0.2 mm
β = 93.118 (15)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3562 independent reflections
Absorption correction: multi-scan
EVALCCD (Duisenberg et al., 2003)
2542 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.952Rint = 0.038
17119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
3562 reflectionsΔρmin = 0.42 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7079 (2)0.2307 (2)0.47732 (16)0.0219 (4)
C20.6625 (3)0.1881 (3)0.57782 (18)0.0209 (4)
C210.7807 (3)0.1439 (3)0.64952 (19)0.0207 (4)
C220.7481 (3)0.1124 (3)0.7595 (2)0.0276 (5)
C230.8640 (3)0.0764 (3)0.8273 (2)0.0294 (5)
C241.0101 (3)0.0718 (3)0.7847 (2)0.0253 (5)
Cl241.15953 (8)0.03448 (8)0.86995 (5)0.0368 (2)
C251.0433 (3)0.0995 (3)0.6748 (2)0.0252 (5)
C260.9279 (3)0.1359 (3)0.60815 (19)0.0236 (5)
C30.5058 (3)0.1968 (3)0.60118 (19)0.0234 (5)
C3a0.4519 (3)0.2496 (3)0.50840 (19)0.0224 (5)
N40.3116 (2)0.2824 (2)0.48111 (16)0.0239 (4)
C50.2997 (3)0.3351 (3)0.38429 (19)0.0223 (5)
C510.1427 (3)0.3668 (3)0.3565 (2)0.0285 (5)
C5a0.4330 (3)0.3650 (3)0.31065 (19)0.0227 (5)
C60.4313 (3)0.4404 (3)0.2078 (2)0.0254 (5)
O60.3046 (2)0.4490 (2)0.16160 (16)0.0376 (4)
C70.6002 (3)0.5085 (3)0.1647 (2)0.0267 (5)
C80.6909 (3)0.3856 (3)0.15171 (19)0.0232 (5)
C810.8598 (3)0.4579 (3)0.1064 (2)0.0305 (5)
C820.5806 (3)0.2238 (3)0.0660 (2)0.0295 (5)
C90.7223 (3)0.3542 (3)0.27295 (19)0.0231 (5)
C9a0.5731 (3)0.3296 (3)0.33840 (18)0.0215 (5)
N9b0.5781 (2)0.2686 (2)0.43563 (16)0.0204 (4)
H220.64690.11540.78830.033*
H230.84240.05520.90240.035*
H251.14330.09360.64570.030*
H260.94980.15580.53280.028*
H30.44910.17180.66660.028*
H51A0.07500.35320.42130.043*
H51B0.07700.28810.28470.043*
H51C0.17290.47980.34510.043*
H7A0.67220.61210.22050.032*
H7B0.58310.53540.08800.032*
H81A0.93140.56020.16180.046*
H81B0.84020.48190.02990.046*
H81C0.91620.37800.09850.046*
H82A0.55720.24670.01030.044*
H82B0.47390.17490.09650.044*
H82C0.64010.14650.05720.044*
H9A0.75250.25480.26420.028*
H9B0.81960.44920.31930.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (9)0.0243 (9)0.0233 (9)0.0103 (8)0.0026 (7)0.0076 (8)
C20.0228 (11)0.0197 (10)0.0206 (10)0.0081 (9)0.0035 (8)0.0047 (8)
C210.0217 (11)0.0189 (10)0.0218 (10)0.0075 (8)0.0030 (8)0.0048 (8)
C220.0263 (12)0.0335 (12)0.0267 (12)0.0120 (10)0.0068 (9)0.0123 (10)
C230.0331 (13)0.0375 (13)0.0225 (11)0.0143 (11)0.0075 (10)0.0148 (10)
C240.0257 (12)0.0234 (11)0.0263 (11)0.0077 (9)0.0006 (9)0.0079 (9)
Cl240.0357 (4)0.0467 (4)0.0346 (3)0.0204 (3)0.0010 (3)0.0160 (3)
C250.0222 (11)0.0264 (11)0.0273 (11)0.0090 (9)0.0038 (9)0.0066 (9)
C260.0251 (11)0.0265 (11)0.0205 (10)0.0099 (9)0.0057 (9)0.0071 (9)
C30.0243 (11)0.0248 (11)0.0220 (11)0.0095 (9)0.0053 (9)0.0056 (9)
C3a0.0203 (11)0.0200 (10)0.0246 (11)0.0057 (8)0.0030 (9)0.0030 (9)
N40.0202 (9)0.0239 (9)0.0282 (10)0.0092 (8)0.0041 (8)0.0052 (8)
C50.0190 (11)0.0197 (10)0.0263 (11)0.0056 (8)0.0020 (9)0.0038 (9)
C510.0226 (12)0.0300 (12)0.0360 (13)0.0116 (10)0.0052 (10)0.0101 (10)
C5a0.0221 (11)0.0217 (11)0.0237 (11)0.0080 (9)0.0003 (9)0.0045 (9)
C60.0274 (12)0.0266 (11)0.0234 (11)0.0122 (9)0.0020 (9)0.0045 (9)
O60.0318 (10)0.0575 (12)0.0339 (10)0.0247 (9)0.0026 (8)0.0186 (9)
C70.0265 (12)0.0293 (12)0.0271 (11)0.0117 (10)0.0029 (9)0.0105 (10)
C80.0224 (11)0.0274 (11)0.0216 (11)0.0093 (9)0.0031 (9)0.0095 (9)
C810.0292 (13)0.0373 (13)0.0296 (12)0.0136 (11)0.0066 (10)0.0148 (11)
C820.0305 (13)0.0328 (13)0.0263 (12)0.0151 (10)0.0022 (10)0.0031 (10)
C90.0226 (11)0.0288 (11)0.0208 (11)0.0116 (9)0.0035 (9)0.0080 (9)
C9a0.0226 (11)0.0203 (10)0.0207 (10)0.0068 (8)0.0009 (8)0.0051 (8)
N9b0.0174 (9)0.0231 (9)0.0229 (9)0.0093 (7)0.0036 (7)0.0064 (7)
Geometric parameters (Å, º) top
N1—C21.342 (3)C51—H51B0.98
N1—N9b1.357 (2)C51—H51C0.98
C2—C31.405 (3)C5a—C9a1.376 (3)
C2—C211.479 (3)C5a—C61.489 (3)
C21—C261.390 (3)C6—O61.215 (3)
C21—C221.395 (3)C6—C71.511 (3)
C22—C231.394 (3)C7—C81.532 (3)
C22—H220.95C7—H7A0.99
C23—C241.379 (3)C7—H7B0.99
C23—H230.95C8—C91.528 (3)
C24—C251.384 (3)C8—C811.528 (3)
C24—Cl241.737 (2)C8—C821.534 (3)
C25—C261.386 (3)C81—H81A0.98
C25—H250.95C81—H81B0.98
C26—H260.95C81—H81C0.98
C3—C3a1.381 (3)C82—H82A0.98
C3—H30.95C82—H82B0.98
C3a—N41.362 (3)C82—H82C0.98
C3a—N9b1.394 (3)C9—C9a1.493 (3)
N4—C51.320 (3)C9—H9A0.99
C5—C5a1.447 (3)C9—H9B0.99
C5—C511.493 (3)C9a—N9b1.357 (3)
C51—H51A0.98
C2—N1—N9b103.54 (17)C5—C5a—C6123.3 (2)
N1—C2—C3113.06 (19)O6—C6—C5a123.2 (2)
N1—C2—C21118.02 (19)O6—C6—C7121.7 (2)
C3—C2—C21128.9 (2)C5a—C6—C7115.13 (19)
C26—C21—C22119.2 (2)C6—C7—C8111.96 (19)
C26—C21—C2119.95 (19)C6—C7—H7A109.2
C22—C21—C2120.9 (2)C8—C7—H7A109.2
C23—C22—C21119.9 (2)C6—C7—H7B109.2
C23—C22—H22120.0C8—C7—H7B109.2
C21—C22—H22120.0H7A—C7—H7B107.9
C24—C23—C22119.6 (2)C9—C8—C81109.36 (18)
C24—C23—H23120.2C9—C8—C7107.43 (18)
C22—C23—H23120.2C81—C8—C7110.38 (18)
C23—C24—C25121.4 (2)C9—C8—C82110.42 (18)
C23—C24—Cl24120.30 (18)C81—C8—C82109.31 (19)
C25—C24—Cl24118.33 (18)C7—C8—C82109.93 (18)
C24—C25—C26118.7 (2)C8—C81—H81A109.5
C24—C25—H25120.6C8—C81—H81B109.5
C26—C25—H25120.6H81A—C81—H81B109.5
C25—C26—C21121.2 (2)C8—C81—H81C109.5
C25—C26—H26119.4H81A—C81—H81C109.5
C21—C26—H26119.4H81B—C81—H81C109.5
C3a—C3—C2105.04 (19)C8—C82—H82A109.5
C3a—C3—H3127.5C8—C82—H82B109.5
C2—C3—H3127.5H82A—C82—H82B109.5
N4—C3a—C3133.2 (2)C8—C82—H82C109.5
N4—C3a—N9b121.2 (2)H82A—C82—H82C109.5
C3—C3a—N9b105.61 (19)H82B—C82—H82C109.5
C5—N4—C3a117.97 (19)C9a—C9—C8113.12 (18)
N4—C5—C5a122.0 (2)C9a—C9—H9A109.0
N4—C5—C51116.3 (2)C8—C9—H9A109.0
C5a—C5—C51121.7 (2)C9a—C9—H9B109.0
C5—C51—H51A109.5C8—C9—H9B109.0
C5—C51—H51B109.5H9A—C9—H9B107.8
H51A—C51—H51B109.5N9b—C9a—C5a117.1 (2)
C5—C51—H51C109.5N9b—C9a—C9116.58 (19)
H51A—C51—H51C109.5C5a—C9a—C9126.3 (2)
H51B—C51—H51C109.5C9a—N9b—N1124.91 (18)
C9a—C5a—C5119.4 (2)C9a—N9b—C3a122.20 (18)
C9a—C5a—C6117.3 (2)N1—N9b—C3a112.74 (17)
N9b—N1—C2—C30.4 (2)C9a—C5a—C6—O6165.9 (2)
N9b—N1—C2—C21177.98 (17)C5—C5a—C6—O617.0 (4)
N1—C2—C21—C264.6 (3)C9a—C5a—C6—C714.8 (3)
C3—C2—C21—C26177.3 (2)C5—C5a—C6—C7162.3 (2)
N1—C2—C21—C22174.4 (2)O6—C6—C7—C8132.9 (2)
C3—C2—C21—C223.6 (4)C5a—C6—C7—C847.8 (3)
C26—C21—C22—C231.2 (3)C6—C7—C8—C961.6 (2)
C2—C21—C22—C23177.9 (2)C6—C7—C8—C81179.22 (19)
C21—C22—C23—C240.2 (4)C6—C7—C8—C8258.6 (2)
C22—C23—C24—C251.1 (4)C81—C8—C9—C9a163.67 (19)
C22—C23—C24—Cl24177.69 (18)C7—C8—C9—C9a43.9 (2)
C23—C24—C25—C261.4 (3)C82—C8—C9—C9a76.0 (2)
Cl24—C24—C25—C26177.43 (17)C5—C5a—C9a—N9b0.5 (3)
C24—C25—C26—C210.4 (3)C6—C5a—C9a—N9b176.77 (18)
C22—C21—C26—C250.9 (3)C5—C5a—C9a—C9179.4 (2)
C2—C21—C26—C25178.2 (2)C6—C5a—C9a—C92.2 (3)
N1—C2—C3—C3a0.4 (3)C8—C9—C9a—N9b167.13 (19)
C21—C2—C3—C3a177.8 (2)C8—C9—C9a—C5a13.9 (3)
C2—C3—C3a—N4179.5 (2)C5a—C9a—N9b—N1178.35 (19)
C2—C3—C3a—N9b0.2 (2)C9—C9a—N9b—N10.7 (3)
C3—C3a—N4—C5178.8 (2)C5a—C9a—N9b—C3a3.1 (3)
N9b—C3a—N4—C51.0 (3)C9—C9a—N9b—C3a175.92 (19)
C3a—N4—C5—C5a2.7 (3)C2—N1—N9b—C9a175.40 (19)
C3a—N4—C5—C51178.95 (19)C2—N1—N9b—C3a0.2 (2)
N4—C5—C5a—C9a3.5 (3)N4—C3a—N9b—C9a4.0 (3)
C51—C5—C5a—C9a178.2 (2)C3—C3a—N9b—C9a175.75 (19)
N4—C5—C5a—C6173.6 (2)N4—C3a—N9b—N1179.79 (18)
C51—C5—C5a—C64.7 (3)C3—C3a—N9b—N10.0 (2)
(II) 2-(4-Methoxyphenyl)-5,8,8-trimethyl-6,7,8,9- tetrahydropyrazolo[2,3-a]quinazolin-6-one top
Crystal data top
C20H21N3O2F(000) = 712
Mr = 335.40Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3886 reflections
a = 17.7659 (6) Åθ = 3.0–27.5°
b = 8.5730 (2) ŵ = 0.09 mm1
c = 11.3982 (3) ÅT = 120 K
β = 101.094 (2)°Plate, colourless
V = 1703.56 (8) Å30.40 × 0.22 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3886 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1011
Tmin = 0.956, Tmax = 0.993l = 1414
14346 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.3779P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3886 reflectionsΔρmax = 0.18 e Å3
231 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (7)
Crystal data top
C20H21N3O2V = 1703.56 (8) Å3
Mr = 335.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7659 (6) ŵ = 0.09 mm1
b = 8.5730 (2) ÅT = 120 K
c = 11.3982 (3) Å0.40 × 0.22 × 0.08 mm
β = 101.094 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3886 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2825 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.993Rint = 0.042
14346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
3886 reflectionsΔρmin = 0.22 e Å3
231 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27295 (8)0.74379 (16)0.46039 (12)0.0384 (3)
C20.32124 (9)0.7866 (2)0.56139 (14)0.0378 (4)
C210.35681 (9)0.6659 (2)0.64542 (14)0.0384 (4)
C220.40008 (10)0.7052 (2)0.75723 (15)0.0450 (4)
C230.43195 (11)0.5926 (2)0.83706 (15)0.0486 (5)
C240.42125 (10)0.4359 (2)0.80842 (15)0.0441 (4)
O240.45432 (8)0.33320 (16)0.89469 (11)0.0607 (4)
C2410.43711 (13)0.1725 (2)0.87846 (19)0.0603 (6)
C250.37883 (11)0.3935 (2)0.69827 (16)0.0480 (5)
C260.34706 (11)0.5087 (2)0.61834 (15)0.0449 (4)
C30.32841 (11)0.9488 (2)0.57218 (16)0.0457 (4)
C3a0.28185 (10)1.0102 (2)0.47274 (15)0.0404 (4)
N40.26494 (8)1.15829 (17)0.43432 (14)0.0461 (4)
C50.21659 (10)1.1772 (2)0.33241 (16)0.0435 (4)
C510.20069 (12)1.3433 (2)0.2937 (2)0.0608 (6)
C5a0.18210 (9)1.04768 (19)0.26096 (15)0.0393 (4)
C60.12962 (10)1.0653 (2)0.14273 (15)0.0442 (4)
O60.10257 (10)1.19044 (18)0.10606 (13)0.0744 (5)
C70.11189 (11)0.9193 (2)0.06978 (15)0.0449 (4)
C80.09643 (9)0.7776 (2)0.14305 (14)0.0413 (4)
C810.08223 (12)0.6339 (2)0.06311 (17)0.0562 (5)
C820.02617 (11)0.8075 (3)0.19966 (18)0.0573 (5)
C90.16788 (10)0.75141 (19)0.24023 (15)0.0398 (4)
C9a0.19927 (9)0.89774 (19)0.30110 (14)0.0360 (4)
N9b0.24954 (8)0.88240 (15)0.40653 (12)0.0361 (3)
H220.40740.80980.77800.054*
H230.46090.62150.91080.058*
H24A0.46060.11600.94870.090*
H24B0.45650.13450.81080.090*
H24C0.38250.15790.86480.090*
H250.37170.28880.67790.058*
H260.31840.47960.54450.054*
H30.35861.00380.63420.055*
H51A0.23001.41200.35160.091*
H51B0.14701.36500.28740.091*
H51C0.21481.35920.21740.091*
H7A0.15470.89610.03120.054*
H7B0.06730.93790.00750.054*
H81A0.03760.65040.00190.084*
H81B0.07420.54480.11030.084*
H81C0.12590.61590.02680.084*
H82A0.03490.89860.24950.086*
H82B0.01770.71910.24720.086*
H82C0.01810.82360.13780.086*
H9A0.15510.68000.29950.048*
H9B0.20730.70260.20450.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0413 (8)0.0322 (7)0.0382 (7)0.0008 (6)0.0007 (6)0.0049 (6)
C20.0375 (8)0.0394 (9)0.0346 (8)0.0016 (7)0.0019 (7)0.0005 (7)
C210.0384 (9)0.0400 (9)0.0349 (8)0.0013 (7)0.0020 (7)0.0022 (7)
C220.0509 (10)0.0393 (10)0.0398 (9)0.0016 (8)0.0039 (8)0.0014 (7)
C230.0536 (11)0.0511 (11)0.0352 (9)0.0004 (9)0.0062 (7)0.0019 (8)
C240.0460 (10)0.0470 (10)0.0362 (8)0.0077 (8)0.0000 (7)0.0064 (8)
O240.0771 (10)0.0492 (8)0.0466 (7)0.0109 (7)0.0117 (7)0.0093 (6)
C2410.0682 (13)0.0490 (12)0.0608 (12)0.0110 (10)0.0054 (10)0.0149 (10)
C250.0588 (11)0.0371 (9)0.0432 (10)0.0040 (8)0.0025 (8)0.0004 (8)
C260.0511 (10)0.0427 (10)0.0360 (9)0.0013 (8)0.0039 (7)0.0016 (8)
C30.0507 (10)0.0389 (10)0.0420 (9)0.0011 (8)0.0050 (8)0.0028 (8)
C3a0.0426 (9)0.0335 (9)0.0428 (9)0.0023 (7)0.0030 (7)0.0017 (7)
N40.0498 (9)0.0327 (8)0.0517 (9)0.0013 (6)0.0004 (7)0.0011 (7)
C50.0433 (9)0.0342 (9)0.0516 (10)0.0029 (7)0.0054 (8)0.0037 (8)
C510.0649 (13)0.0348 (10)0.0746 (14)0.0029 (9)0.0073 (11)0.0061 (9)
C5a0.0380 (9)0.0361 (9)0.0427 (9)0.0033 (7)0.0052 (7)0.0061 (7)
C60.0442 (10)0.0427 (10)0.0443 (9)0.0051 (8)0.0049 (8)0.0098 (8)
O60.0930 (12)0.0460 (8)0.0698 (10)0.0180 (8)0.0206 (8)0.0109 (7)
C70.0460 (10)0.0492 (11)0.0369 (9)0.0049 (8)0.0014 (7)0.0070 (8)
C80.0410 (9)0.0431 (10)0.0358 (8)0.0007 (7)0.0028 (7)0.0039 (7)
C810.0644 (12)0.0515 (12)0.0447 (10)0.0067 (9)0.0094 (9)0.0011 (9)
C820.0437 (10)0.0711 (14)0.0557 (11)0.0021 (10)0.0060 (9)0.0086 (10)
C90.0427 (9)0.0348 (9)0.0391 (9)0.0000 (7)0.0006 (7)0.0035 (7)
C9a0.0347 (8)0.0369 (9)0.0351 (8)0.0012 (7)0.0031 (6)0.0030 (7)
N9b0.0382 (7)0.0305 (7)0.0370 (7)0.0005 (6)0.0003 (6)0.0025 (6)
Geometric parameters (Å, º) top
N1—C21.348 (2)C5—C511.501 (2)
N1—N9b1.3651 (18)C51—H51A0.96
C2—C31.399 (2)C51—H51B0.96
C2—C211.468 (2)C51—H51C0.96
C21—C261.386 (2)C5a—C9a1.379 (2)
C21—C221.397 (2)C5a—C61.492 (2)
C22—C231.372 (2)C6—O61.217 (2)
C22—H220.93C6—C71.502 (3)
C23—C241.387 (3)C7—C81.529 (2)
C23—H230.93C7—H7A0.97
C24—O241.366 (2)C7—H7B0.97
C24—C251.383 (2)C8—C811.524 (3)
O24—C2411.416 (3)C8—C91.532 (2)
C241—H24A0.96C8—C821.533 (2)
C241—H24B0.96C81—H81A0.96
C241—H24C0.96C81—H81B0.96
C25—C261.387 (2)C81—H81C0.96
C25—H250.93C82—H82A0.96
C26—H260.93C82—H82B0.96
C3—C3a1.373 (2)C82—H82C0.96
C3—H30.93C9—C9a1.489 (2)
C3a—N41.358 (2)C9—H9A0.97
C3a—N9b1.390 (2)C9—H9B0.97
N4—C51.315 (2)C9a—N9b1.359 (2)
C5—C5a1.442 (2)
C2—N1—N9b103.64 (13)H51B—C51—H51C109.5
N1—C2—C3112.20 (15)C9a—C5a—C5119.20 (15)
N1—C2—C21119.26 (15)C9a—C5a—C6116.99 (15)
C3—C2—C21128.51 (15)C5—C5a—C6123.79 (15)
C26—C21—C22117.46 (16)O6—C6—C5a122.45 (17)
C26—C21—C2121.37 (15)O6—C6—C7121.19 (16)
C22—C21—C2121.15 (16)C5a—C6—C7116.37 (14)
C23—C22—C21121.30 (17)C6—C7—C8113.61 (14)
C23—C22—H22119.3C6—C7—H7A108.8
C21—C22—H22119.3C8—C7—H7A108.8
C22—C23—C24120.34 (16)C6—C7—H7B108.8
C22—C23—H23119.8C8—C7—H7B108.8
C24—C23—H23119.8H7A—C7—H7B107.7
O24—C24—C25124.61 (17)C81—C8—C7110.02 (14)
O24—C24—C23115.76 (16)C81—C8—C9109.45 (14)
C25—C24—C23119.63 (16)C7—C8—C9107.47 (14)
C24—O24—C241118.77 (15)C81—C8—C82109.42 (16)
O24—C241—H24A109.5C7—C8—C82110.06 (15)
O24—C241—H24B109.5C9—C8—C82110.41 (14)
H24A—C241—H24B109.5C8—C81—H81A109.5
O24—C241—H24C109.5C8—C81—H81B109.5
H24A—C241—H24C109.5H81A—C81—H81B109.5
H24B—C241—H24C109.5C8—C81—H81C109.5
C24—C25—C26119.40 (17)H81A—C81—H81C109.5
C24—C25—H25120.3H81B—C81—H81C109.5
C26—C25—H25120.3C8—C82—H82A109.5
C21—C26—C25121.87 (16)C8—C82—H82B109.5
C21—C26—H26119.1H82A—C82—H82B109.5
C25—C26—H26119.1C8—C82—H82C109.5
C3a—C3—C2106.17 (15)H82A—C82—H82C109.5
C3a—C3—H3126.9H82B—C82—H82C109.5
C2—C3—H3126.9C9a—C9—C8113.42 (14)
N4—C3a—C3133.30 (16)C9a—C9—H9A108.9
N4—C3a—N9b121.29 (15)C8—C9—H9A108.9
C3—C3a—N9b105.42 (15)C9a—C9—H9B108.9
C5—N4—C3a117.83 (15)C8—C9—H9B108.9
N4—C5—C5a122.54 (15)H9A—C9—H9B107.7
N4—C5—C51115.51 (16)N9b—C9a—C5a116.71 (15)
C5a—C5—C51121.94 (16)N9b—C9a—C9117.01 (14)
C5—C51—H51A109.5C5a—C9a—C9126.28 (14)
C5—C51—H51B109.5C9a—N9b—N1124.99 (13)
H51A—C51—H51B109.5C9a—N9b—C3a122.43 (14)
C5—C51—H51C109.5N1—N9b—C3a112.57 (13)
H51A—C51—H51C109.5
N9b—N1—C2—C30.19 (18)C51—C5—C5a—C61.4 (3)
N9b—N1—C2—C21178.38 (14)C9a—C5a—C6—O6169.95 (18)
N1—C2—C21—C265.7 (2)C5—C5a—C6—O611.7 (3)
C3—C2—C21—C26176.49 (17)C9a—C5a—C6—C710.4 (2)
N1—C2—C21—C22172.54 (15)C5—C5a—C6—C7167.97 (16)
C3—C2—C21—C225.3 (3)O6—C6—C7—C8137.80 (19)
C26—C21—C22—C230.2 (3)C5a—C6—C7—C842.5 (2)
C2—C21—C22—C23178.49 (17)C6—C7—C8—C81177.72 (15)
C21—C22—C23—C240.5 (3)C6—C7—C8—C958.63 (19)
C22—C23—C24—O24179.01 (16)C6—C7—C8—C8261.64 (19)
C22—C23—C24—C250.6 (3)C81—C8—C9—C9a163.89 (15)
C25—C24—O24—C2418.2 (3)C7—C8—C9—C9a44.43 (19)
C23—C24—O24—C241171.42 (17)C82—C8—C9—C9a75.62 (19)
O24—C24—C25—C26179.10 (17)C5—C5a—C9a—N9b1.1 (2)
C23—C24—C25—C260.5 (3)C6—C5a—C9a—N9b177.40 (14)
C22—C21—C26—C250.1 (3)C5—C5a—C9a—C9178.77 (15)
C2—C21—C26—C25178.37 (16)C6—C5a—C9a—C92.8 (2)
C24—C25—C26—C210.3 (3)C8—C9—C9a—N9b163.85 (14)
N1—C2—C3—C3a0.2 (2)C8—C9—C9a—C5a16.0 (2)
C21—C2—C3—C3a177.75 (16)C5a—C9a—N9b—N1179.61 (14)
C2—C3—C3a—N4179.57 (19)C9—C9a—N9b—N10.2 (2)
C2—C3—C3a—N9b0.54 (19)C5a—C9a—N9b—C3a0.9 (2)
C3—C3a—N4—C5179.82 (19)C9—C9a—N9b—C3a178.97 (14)
N9b—C3a—N4—C50.3 (3)C2—N1—N9b—C9a179.41 (14)
C3a—N4—C5—C5a0.5 (3)C2—N1—N9b—C3a0.56 (18)
C3a—N4—C5—C51179.36 (17)N4—C3a—N9b—C9a0.5 (2)
N4—C5—C5a—C9a0.9 (3)C3—C3a—N9b—C9a179.59 (15)
C51—C5—C5a—C9a179.69 (17)N4—C3a—N9b—N1179.39 (15)
N4—C5—C5a—C6177.40 (16)C3—C3a—N9b—N10.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O24i0.932.463.385 (2)173
Symmetry code: (i) x+1, y+1, z+2.
(III) 2-(4-Chlorophenyl)-8,8-dimethyl-5-phenyl-6,7,8,9- tetrahydropyrazolo[2,3-a]quinazolin-6-one top
Crystal data top
C24H20ClN3OZ = 2
Mr = 401.88F(000) = 420
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6778 (2) ÅCell parameters from 4513 reflections
b = 8.1298 (3) Åθ = 2.9–27.5°
c = 16.6417 (5) ŵ = 0.21 mm1
α = 89.080 (2)°T = 298 K
β = 85.123 (2)°Plate, colourless
γ = 72.490 (2)°0.45 × 0.40 × 0.10 mm
V = 987.06 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4513 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.927, Tmax = 0.979l = 2121
17614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1379P]
where P = (Fo2 + 2Fc2)/3
4513 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H20ClN3Oγ = 72.490 (2)°
Mr = 401.88V = 987.06 (5) Å3
Triclinic, P1Z = 2
a = 7.6778 (2) ÅMo Kα radiation
b = 8.1298 (3) ŵ = 0.21 mm1
c = 16.6417 (5) ÅT = 298 K
α = 89.080 (2)°0.45 × 0.40 × 0.10 mm
β = 85.123 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2799 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.979Rint = 0.038
17614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
4513 reflectionsΔρmin = 0.26 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.09454 (18)0.44821 (19)0.86967 (8)0.0465 (4)
C21.0899 (2)0.3243 (2)0.92297 (10)0.0455 (4)
C211.2278 (2)0.2748 (2)0.98237 (10)0.0454 (4)
C221.2093 (3)0.1680 (3)1.04593 (11)0.0562 (5)
C231.3428 (3)0.1136 (3)1.09983 (11)0.0606 (5)
C241.4930 (3)0.1716 (3)1.09157 (11)0.0547 (5)
Cl241.65861 (8)0.10979 (9)1.15977 (3)0.0842 (2)
C251.5151 (3)0.2780 (3)1.02911 (12)0.0642 (6)
C261.3836 (3)0.3275 (3)0.97435 (12)0.0599 (5)
C30.9524 (2)0.2492 (3)0.91120 (11)0.0527 (5)
C3a0.8685 (2)0.3300 (2)0.84570 (10)0.0469 (4)
N40.7391 (2)0.3016 (2)0.80175 (9)0.0507 (4)
C50.6888 (2)0.4025 (2)0.73986 (10)0.0452 (4)
C510.5699 (2)0.3462 (2)0.68737 (10)0.0465 (4)
C520.6068 (3)0.3371 (3)0.60422 (11)0.0571 (5)
C530.5079 (3)0.2670 (3)0.55670 (12)0.0663 (6)
C540.3702 (3)0.2072 (3)0.59155 (14)0.0679 (6)
C550.3304 (3)0.2168 (3)0.67400 (14)0.0633 (5)
C560.4317 (2)0.2839 (2)0.72158 (12)0.0528 (5)
C5a0.7590 (2)0.5459 (2)0.72105 (10)0.0434 (4)
C60.6680 (2)0.6921 (2)0.66908 (10)0.0469 (4)
O60.52063 (17)0.70479 (18)0.64352 (8)0.0627 (4)
C70.7561 (2)0.8327 (2)0.65564 (11)0.0526 (5)
C80.9643 (2)0.7765 (2)0.65949 (11)0.0487 (4)
C811.0343 (3)0.9341 (3)0.65439 (14)0.0691 (6)
C821.0586 (3)0.6529 (3)0.59010 (12)0.0657 (6)
C91.0059 (2)0.6890 (2)0.74082 (11)0.0494 (4)
C9a0.9038 (2)0.5623 (2)0.76069 (10)0.0432 (4)
N9b0.95727 (18)0.45152 (18)0.82242 (8)0.0433 (3)
H221.10510.13191.05270.067*
H231.33030.03861.14110.073*
H251.61790.31651.02370.077*
H261.40020.39740.93140.072*
H30.92390.16240.94150.063*
H520.69900.37850.58030.069*
H530.53450.26020.50110.080*
H540.30360.16010.55940.081*
H550.23560.17830.69750.076*
H560.40690.28720.77730.063*
H7A0.70120.92250.69580.063*
H7B0.72830.88260.60320.063*
H81A1.00840.99000.60370.104*
H81B1.16420.89800.65870.104*
H81C0.97421.01300.69760.104*
H82A1.02980.70940.53970.099*
H82B1.01660.55290.59350.099*
H82C1.18890.61840.59340.099*
H9A1.13640.63030.73990.059*
H9B0.97470.77670.78290.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0444 (8)0.0523 (9)0.0424 (8)0.0125 (7)0.0109 (6)0.0051 (7)
C20.0463 (10)0.0471 (11)0.0393 (9)0.0087 (8)0.0024 (7)0.0030 (8)
C210.0471 (10)0.0457 (10)0.0395 (9)0.0077 (8)0.0050 (7)0.0007 (8)
C220.0587 (12)0.0643 (13)0.0477 (11)0.0206 (10)0.0099 (9)0.0106 (10)
C230.0703 (13)0.0643 (14)0.0439 (11)0.0144 (11)0.0106 (9)0.0130 (9)
C240.0526 (11)0.0586 (12)0.0452 (10)0.0030 (9)0.0107 (8)0.0047 (9)
Cl240.0757 (4)0.1010 (5)0.0681 (4)0.0075 (3)0.0336 (3)0.0050 (3)
C250.0544 (12)0.0784 (15)0.0634 (13)0.0234 (11)0.0133 (9)0.0082 (11)
C260.0590 (12)0.0701 (14)0.0534 (11)0.0224 (10)0.0125 (9)0.0153 (10)
C30.0541 (10)0.0579 (12)0.0487 (10)0.0207 (9)0.0079 (8)0.0136 (9)
C3a0.0460 (10)0.0508 (11)0.0444 (10)0.0157 (8)0.0027 (8)0.0056 (8)
N40.0502 (9)0.0583 (10)0.0474 (9)0.0212 (8)0.0094 (7)0.0089 (7)
C50.0406 (9)0.0512 (11)0.0424 (9)0.0121 (8)0.0022 (7)0.0014 (8)
C510.0458 (9)0.0454 (10)0.0473 (10)0.0112 (8)0.0087 (7)0.0022 (8)
C520.0633 (12)0.0599 (13)0.0494 (11)0.0196 (10)0.0079 (9)0.0023 (9)
C530.0838 (15)0.0627 (14)0.0513 (11)0.0165 (12)0.0202 (11)0.0001 (10)
C540.0745 (14)0.0583 (13)0.0752 (15)0.0187 (11)0.0342 (12)0.0004 (11)
C550.0546 (11)0.0600 (13)0.0806 (15)0.0225 (10)0.0166 (10)0.0030 (11)
C560.0488 (10)0.0557 (12)0.0543 (11)0.0159 (9)0.0055 (8)0.0016 (9)
C5a0.0411 (9)0.0457 (10)0.0412 (9)0.0100 (8)0.0036 (7)0.0023 (8)
C60.0439 (10)0.0512 (11)0.0422 (9)0.0083 (8)0.0069 (7)0.0014 (8)
O60.0543 (8)0.0651 (9)0.0699 (9)0.0147 (7)0.0254 (7)0.0102 (7)
C70.0517 (10)0.0462 (11)0.0574 (11)0.0093 (9)0.0129 (8)0.0100 (9)
C80.0468 (10)0.0449 (11)0.0544 (11)0.0131 (8)0.0093 (8)0.0118 (8)
C810.0642 (13)0.0602 (14)0.0877 (16)0.0239 (11)0.0181 (11)0.0254 (12)
C820.0617 (12)0.0728 (15)0.0578 (12)0.0149 (11)0.0013 (9)0.0064 (11)
C90.0473 (10)0.0493 (11)0.0525 (11)0.0150 (8)0.0098 (8)0.0074 (9)
C9a0.0417 (9)0.0426 (10)0.0411 (9)0.0067 (8)0.0037 (7)0.0038 (8)
N9b0.0415 (7)0.0473 (9)0.0408 (8)0.0124 (7)0.0065 (6)0.0050 (7)
Geometric parameters (Å, º) top
N1—C21.338 (2)C53—H530.93
N1—N9b1.3613 (18)C54—C551.378 (3)
C2—C31.397 (2)C54—H540.93
C2—C211.473 (2)C55—C561.379 (3)
C21—C221.382 (3)C55—H550.93
C21—C261.383 (3)C56—H560.93
C22—C231.386 (3)C5a—C9a1.380 (2)
C22—H220.93C5a—C61.490 (2)
C23—C241.367 (3)C6—O61.217 (2)
C23—H230.93C6—C71.499 (3)
C24—C251.373 (3)C7—C81.532 (2)
C24—Cl241.7319 (18)C7—H7A0.97
C25—C261.383 (3)C7—H7B0.97
C25—H250.93C8—C821.525 (3)
C26—H260.93C8—C811.529 (3)
C3—C3a1.370 (2)C8—C91.532 (2)
C3—H30.93C81—H81A0.96
C3a—N41.358 (2)C81—H81B0.96
C3a—N9b1.392 (2)C81—H81C0.96
N4—C51.316 (2)C82—H82A0.96
C5—C5a1.445 (2)C82—H82B0.96
C5—C511.485 (2)C82—H82C0.96
C51—C561.385 (2)C9—C9a1.489 (2)
C51—C521.387 (2)C9—H9A0.97
C52—C531.380 (3)C9—H9B0.97
C52—H520.93C9a—N9b1.362 (2)
C53—C541.374 (3)
C2—N1—N9b103.71 (13)C56—C55—H55120.1
N1—C2—C3112.69 (15)C55—C56—C51120.81 (19)
N1—C2—C21119.93 (15)C55—C56—H56119.6
C3—C2—C21127.28 (16)C51—C56—H56119.6
C22—C21—C26117.92 (17)C9a—C5a—C5119.19 (16)
C22—C21—C2121.00 (16)C9a—C5a—C6116.89 (16)
C26—C21—C2121.02 (16)C5—C5a—C6123.38 (15)
C21—C22—C23121.46 (18)O6—C6—C5a121.75 (16)
C21—C22—H22119.3O6—C6—C7120.70 (16)
C23—C22—H22119.3C5a—C6—C7117.30 (15)
C24—C23—C22119.26 (18)C6—C7—C8115.23 (15)
C24—C23—H23120.4C6—C7—H7A108.5
C22—C23—H23120.4C8—C7—H7A108.5
C23—C24—C25120.60 (18)C6—C7—H7B108.5
C23—C24—Cl24120.06 (16)C8—C7—H7B108.5
C25—C24—Cl24119.34 (16)H7A—C7—H7B107.5
C24—C25—C26119.64 (19)C82—C8—C81109.14 (16)
C24—C25—H25120.2C82—C8—C9110.68 (15)
C26—C25—H25120.2C81—C8—C9108.87 (15)
C21—C26—C25121.08 (18)C82—C8—C7110.40 (16)
C21—C26—H26119.5C81—C8—C7110.08 (15)
C25—C26—H26119.5C9—C8—C7107.65 (14)
C3a—C3—C2105.76 (16)C8—C81—H81A109.5
C3a—C3—H3127.1C8—C81—H81B109.5
C2—C3—H3127.1H81A—C81—H81B109.5
N4—C3a—C3132.78 (17)C8—C81—H81C109.5
N4—C3a—N9b121.39 (15)H81A—C81—H81C109.5
C3—C3a—N9b105.56 (15)H81B—C81—H81C109.5
C5—N4—C3a117.86 (15)C8—C82—H82A109.5
N4—C5—C5a122.00 (15)C8—C82—H82B109.5
N4—C5—C51114.49 (16)H82A—C82—H82B109.5
C5a—C5—C51123.26 (15)C8—C82—H82C109.5
C56—C51—C52118.65 (17)H82A—C82—H82C109.5
C56—C51—C5119.90 (16)H82B—C82—H82C109.5
C52—C51—C5121.07 (16)C9a—C9—C8113.01 (14)
C53—C52—C51120.57 (19)C9a—C9—H9A109.0
C53—C52—H52119.7C8—C9—H9A109.0
C51—C52—H52119.7C9a—C9—H9B109.0
C54—C53—C52120.0 (2)C8—C9—H9B109.0
C54—C53—H53120.0H9A—C9—H9B107.8
C52—C53—H53120.0N9b—C9a—C5a116.62 (15)
C53—C54—C55120.18 (19)N9b—C9a—C9118.01 (15)
C53—C54—H54119.9C5a—C9a—C9125.37 (16)
C55—C54—H54119.9N1—N9b—C9a125.77 (14)
C54—C55—C56119.7 (2)N1—N9b—C3a112.27 (13)
C54—C55—H55120.1C9a—N9b—C3a121.92 (14)
N9b—N1—C2—C30.34 (19)C52—C51—C56—C551.2 (3)
N9b—N1—C2—C21176.36 (14)C5—C51—C56—C55174.23 (18)
N1—C2—C21—C22169.51 (17)N4—C5—C5a—C9a10.4 (3)
C3—C2—C21—C2214.3 (3)C51—C5—C5a—C9a163.36 (16)
N1—C2—C21—C2613.3 (3)N4—C5—C5a—C6160.86 (16)
C3—C2—C21—C26162.87 (18)C51—C5—C5a—C625.3 (3)
C26—C21—C22—C230.5 (3)C9a—C5a—C6—O6166.47 (16)
C2—C21—C22—C23176.72 (17)C5—C5a—C6—O65.0 (3)
C21—C22—C23—C242.3 (3)C9a—C5a—C6—C77.9 (2)
C22—C23—C24—C252.1 (3)C5—C5a—C6—C7179.37 (16)
C22—C23—C24—Cl24178.33 (15)O6—C6—C7—C8156.83 (17)
C23—C24—C25—C260.3 (3)C5a—C6—C7—C828.8 (2)
Cl24—C24—C25—C26179.87 (16)C6—C7—C8—C8265.8 (2)
C22—C21—C26—C251.3 (3)C6—C7—C8—C81173.63 (16)
C2—C21—C26—C25178.57 (18)C6—C7—C8—C955.1 (2)
C24—C25—C26—C211.4 (3)C82—C8—C9—C9a74.47 (19)
N1—C2—C3—C3a0.9 (2)C81—C8—C9—C9a165.57 (16)
C21—C2—C3—C3a175.47 (16)C7—C8—C9—C9a46.3 (2)
C2—C3—C3a—N4172.82 (19)C5—C5a—C9a—N9b7.5 (2)
C2—C3—C3a—N9b1.09 (19)C6—C5a—C9a—N9b164.36 (14)
C3—C3a—N4—C5178.59 (19)C5—C5a—C9a—C9171.86 (16)
N9b—C3a—N4—C55.5 (2)C6—C5a—C9a—C916.3 (3)
C3a—N4—C5—C5a3.6 (2)C8—C9—C9a—N9b166.60 (15)
C3a—N4—C5—C51170.65 (15)C8—C9—C9a—C5a12.7 (3)
N4—C5—C51—C5641.2 (2)C2—N1—N9b—C9a177.47 (15)
C5a—C5—C51—C56144.56 (17)C2—N1—N9b—C3a0.39 (18)
N4—C5—C51—C52131.68 (18)C5a—C9a—N9b—N1178.93 (14)
C5a—C5—C51—C5242.5 (3)C9—C9a—N9b—N11.7 (2)
C56—C51—C52—C530.1 (3)C5a—C9a—N9b—C3a1.3 (2)
C5—C51—C52—C53172.89 (18)C9—C9a—N9b—C3a179.33 (15)
C51—C52—C53—C540.7 (3)N4—C3a—N9b—N1173.80 (15)
C52—C53—C54—C550.0 (3)C3—C3a—N9b—N10.96 (19)
C53—C54—C55—C561.2 (3)N4—C3a—N9b—C9a8.2 (2)
C54—C55—C56—C511.8 (3)C3—C3a—N9b—C9a176.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O6i0.932.483.358 (2)158
Symmetry code: (i) x+1, y+1, z+1.
(IV) 2-(4-Methylphenyl)-8,8-dimethyl-6,7,8,9- tetrahydropyrazolo[2,3-a]quinazolin-6-one monohydrate top
Crystal data top
C19H19N3O·H2OZ = 2
Mr = 323.39F(000) = 344
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8190 (7) ÅCell parameters from 3593 reflections
b = 10.4640 (13) Åθ = 5.0–27.5°
c = 13.847 (2) ŵ = 0.09 mm1
α = 78.447 (12)°T = 120 K
β = 79.647 (9)°Plate, colourless
γ = 84.882 (12)°0.4 × 0.3 × 0.2 mm
V = 811.37 (19) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3593 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 5.0°
CCD rotation images, thick slices scansh = 77
Absorption correction: multi-scan
EVALCCD (Duisenberg et al., 2003)
k = 1313
Tmin = 0.956, Tmax = 0.986l = 1717
16071 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1104P)2 + 0.257P]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H19N3O·H2Oγ = 84.882 (12)°
Mr = 323.39V = 811.37 (19) Å3
Triclinic, P1Z = 2
a = 5.8190 (7) ÅMo Kα radiation
b = 10.4640 (13) ŵ = 0.09 mm1
c = 13.847 (2) ÅT = 120 K
α = 78.447 (12)°0.4 × 0.3 × 0.2 mm
β = 79.647 (9)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3593 independent reflections
Absorption correction: multi-scan
EVALCCD (Duisenberg et al., 2003)
1683 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.986Rint = 0.105
16071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
3593 reflectionsΔρmin = 0.34 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4867 (4)0.4888 (2)0.76676 (18)0.0254 (6)
C20.4297 (5)0.3645 (3)0.7751 (2)0.0249 (7)
C210.2074 (5)0.3195 (3)0.8368 (2)0.0250 (7)
C220.1450 (6)0.1915 (3)0.8459 (2)0.0303 (8)
C230.0569 (6)0.1471 (3)0.9059 (2)0.0323 (8)
C240.2092 (6)0.2284 (3)0.9588 (2)0.0322 (8)
C2410.4293 (6)0.1800 (4)1.0247 (2)0.0408 (9)
C250.1511 (6)0.3569 (3)0.9484 (2)0.0322 (8)
C260.0549 (6)0.4021 (3)0.8886 (2)0.0283 (8)
C30.6004 (5)0.2902 (3)0.7226 (2)0.0260 (7)
C3a0.7788 (6)0.3719 (3)0.6801 (2)0.0243 (7)
N40.9911 (4)0.3558 (2)0.62428 (18)0.0267 (7)
C51.1196 (6)0.4579 (3)0.5965 (2)0.0255 (7)
C5a1.0461 (5)0.5827 (3)0.6204 (2)0.0240 (7)
C61.1915 (6)0.6948 (3)0.5807 (2)0.0259 (7)
O61.3922 (4)0.6808 (2)0.53614 (16)0.0328 (6)
C71.0806 (6)0.8269 (3)0.5932 (2)0.0287 (8)
C80.9192 (5)0.8252 (3)0.6942 (2)0.0251 (7)
C810.7952 (6)0.9598 (3)0.6966 (3)0.0328 (8)
C821.0669 (6)0.7911 (3)0.7779 (2)0.0315 (8)
C90.7336 (5)0.7252 (3)0.7071 (2)0.0256 (7)
C9a0.8317 (6)0.5998 (3)0.6778 (2)0.0250 (7)
N9b0.7010 (4)0.4932 (2)0.70840 (17)0.0238 (6)
O1W1.6975 (4)0.8730 (2)0.41290 (18)0.0408 (7)
H220.24440.13400.80980.036*
H230.09340.05900.91140.039*
H24A0.50260.12360.99180.061*
H24B0.53730.25451.03720.061*
H24C0.39190.13011.08830.061*
H250.25390.41500.98270.039*
H260.09170.49020.88320.034*
H30.59450.20140.71740.031*
H51.27050.44780.55810.031*
H7B0.98890.86010.53880.034*
H7A1.20540.88790.58690.034*
H81A0.69010.95800.76060.049*
H81B0.70420.98300.64190.049*
H81C0.91161.02490.68890.049*
H82A1.17970.85820.76950.047*
H82B1.15100.70610.77500.047*
H82C0.96460.78690.84280.047*
H9A0.65660.70760.77780.031*
H9B0.61260.76300.66600.031*
H1W1.81470.80790.39350.061*
H2W1.57100.82230.45150.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0235 (15)0.0248 (15)0.0264 (14)0.0043 (11)0.0006 (12)0.0032 (11)
C20.0243 (18)0.0259 (18)0.0249 (16)0.0014 (14)0.0099 (14)0.0005 (13)
C210.0247 (17)0.0251 (17)0.0255 (16)0.0035 (14)0.0069 (14)0.0020 (13)
C220.034 (2)0.0284 (19)0.0286 (18)0.0026 (15)0.0069 (15)0.0031 (14)
C230.038 (2)0.0280 (19)0.0301 (18)0.0085 (16)0.0051 (16)0.0010 (14)
C240.0331 (19)0.040 (2)0.0250 (17)0.0141 (16)0.0084 (15)0.0001 (15)
C2410.038 (2)0.052 (2)0.0313 (19)0.0199 (19)0.0009 (16)0.0047 (16)
C250.0307 (19)0.038 (2)0.0280 (17)0.0054 (16)0.0021 (15)0.0066 (15)
C260.033 (2)0.0248 (18)0.0275 (17)0.0048 (15)0.0056 (15)0.0044 (13)
C30.0270 (18)0.0242 (17)0.0276 (17)0.0039 (14)0.0050 (14)0.0052 (13)
C3a0.0279 (18)0.0237 (17)0.0226 (16)0.0002 (14)0.0077 (14)0.0053 (13)
N40.0267 (15)0.0281 (16)0.0246 (14)0.0006 (12)0.0033 (12)0.0043 (11)
C50.0236 (17)0.0295 (19)0.0226 (16)0.0009 (14)0.0011 (13)0.0057 (13)
C5a0.0220 (17)0.0259 (18)0.0240 (16)0.0025 (13)0.0043 (14)0.0033 (13)
C60.0249 (19)0.0298 (18)0.0234 (16)0.0025 (14)0.0049 (14)0.0047 (13)
O60.0262 (14)0.0338 (14)0.0369 (13)0.0029 (11)0.0007 (11)0.0078 (10)
C70.0245 (17)0.0283 (18)0.0321 (17)0.0046 (14)0.0007 (14)0.0050 (14)
C80.0217 (17)0.0219 (17)0.0301 (17)0.0046 (13)0.0000 (14)0.0038 (13)
C810.0311 (19)0.0233 (18)0.042 (2)0.0019 (15)0.0031 (16)0.0089 (14)
C820.0313 (19)0.0316 (19)0.0326 (18)0.0018 (15)0.0049 (15)0.0091 (14)
C90.0229 (17)0.0244 (17)0.0281 (17)0.0019 (14)0.0005 (14)0.0057 (13)
C9a0.0259 (18)0.0268 (18)0.0241 (16)0.0070 (14)0.0081 (14)0.0034 (13)
N9b0.0246 (15)0.0247 (15)0.0233 (13)0.0019 (12)0.0050 (12)0.0060 (11)
O1W0.0341 (14)0.0300 (14)0.0559 (16)0.0064 (11)0.0003 (12)0.0068 (11)
Geometric parameters (Å, º) top
N1—C21.348 (4)C5—H50.95
N1—N9b1.358 (4)C5a—C9a1.371 (4)
C2—C31.396 (4)C5a—C61.465 (4)
C2—C211.475 (4)C6—O61.230 (4)
C21—C261.390 (5)C6—C71.501 (4)
C21—C221.394 (5)C7—C81.536 (4)
C22—C231.371 (5)C7—H7B0.99
C22—H220.95C7—H7A0.99
C23—C241.388 (5)C8—C811.528 (4)
C23—H230.95C8—C821.532 (4)
C24—C251.389 (5)C8—C91.534 (4)
C24—C2411.496 (5)C81—H81A0.98
C241—H24A0.98C81—H81B0.98
C241—H24B0.98C81—H81C0.98
C241—H24C0.98C82—H82A0.98
C25—C261.390 (5)C82—H82B0.98
C25—H250.95C82—H82C0.98
C26—H260.95C9—C9a1.486 (4)
C3—C3a1.376 (4)C9—H9A0.99
C3—H30.95C9—H9B0.99
C3a—N41.350 (4)C9a—N9b1.360 (4)
C3a—N9b1.415 (4)O1W—H1W0.9620
N4—C51.312 (4)O1W—H2W0.9609
C5—C5a1.422 (4)
C2—N1—N9b103.5 (2)O6—C6—C5a121.0 (3)
N1—C2—C3113.2 (3)O6—C6—C7122.0 (3)
N1—C2—C21120.0 (3)C5a—C6—C7116.9 (3)
C3—C2—C21126.8 (3)C6—C7—C8113.1 (3)
C26—C21—C22117.8 (3)C6—C7—H7B109.0
C26—C21—C2121.4 (3)C8—C7—H7B109.0
C22—C21—C2120.8 (3)C6—C7—H7A109.0
C23—C22—C21121.4 (3)C8—C7—H7A109.0
C23—C22—H22119.3H7B—C7—H7A107.8
C21—C22—H22119.3C81—C8—C82109.4 (3)
C22—C23—C24121.3 (3)C81—C8—C9108.5 (3)
C22—C23—H23119.4C82—C8—C9111.1 (3)
C24—C23—H23119.4C81—C8—C7109.7 (3)
C23—C24—C25117.7 (3)C82—C8—C7108.9 (3)
C23—C24—C241121.4 (3)C9—C8—C7109.2 (3)
C25—C24—C241120.9 (3)C8—C81—H81A109.5
C24—C241—H24A109.5C8—C81—H81B109.5
C24—C241—H24B109.5H81A—C81—H81B109.5
H24A—C241—H24B109.5C8—C81—H81C109.5
C24—C241—H24C109.5H81A—C81—H81C109.5
H24A—C241—H24C109.5H81B—C81—H81C109.5
H24B—C241—H24C109.5C8—C82—H82A109.5
C24—C25—C26121.2 (3)C8—C82—H82B109.5
C24—C25—H25119.4H82A—C82—H82B109.5
C26—C25—H25119.4C8—C82—H82C109.5
C25—C26—C21120.6 (3)H82A—C82—H82C109.5
C25—C26—H26119.7H82B—C82—H82C109.5
C21—C26—H26119.7C9a—C9—C8113.1 (3)
C3a—C3—C2105.8 (3)C9a—C9—H9A109.0
C3a—C3—H3127.1C8—C9—H9A109.0
C2—C3—H3127.1C9a—C9—H9B109.0
N4—C3a—C3133.7 (3)C8—C9—H9B109.0
N4—C3a—N9b121.2 (3)H9A—C9—H9B107.8
C3—C3a—N9b105.1 (3)N9b—C9a—C5a116.5 (3)
C5—N4—C3a117.1 (3)N9b—C9a—C9118.6 (3)
N4—C5—C5a123.8 (3)C5a—C9a—C9124.9 (3)
N4—C5—H5118.1N1—N9b—C9a125.8 (3)
C5a—C5—H5118.1N1—N9b—C3a112.4 (2)
C9a—C5a—C5119.6 (3)C9a—N9b—C3a121.8 (3)
C9a—C5a—C6119.5 (3)H1W—O1W—H2W103.5
C5—C5a—C6120.9 (3)
N9b—N1—C2—C30.8 (3)C9a—C5a—C6—C78.7 (4)
N9b—N1—C2—C21178.1 (2)C5—C5a—C6—C7168.5 (3)
N1—C2—C21—C261.1 (4)O6—C6—C7—C8144.2 (3)
C3—C2—C21—C26177.6 (3)C5a—C6—C7—C838.3 (4)
N1—C2—C21—C22179.7 (3)C6—C7—C8—C81174.3 (3)
C3—C2—C21—C221.6 (4)C6—C7—C8—C8266.0 (3)
C26—C21—C22—C231.6 (4)C6—C7—C8—C955.5 (3)
C2—C21—C22—C23177.6 (3)C81—C8—C9—C9a163.8 (3)
C21—C22—C23—C241.0 (5)C82—C8—C9—C9a75.9 (3)
C22—C23—C24—C250.5 (5)C7—C8—C9—C9a44.3 (3)
C22—C23—C24—C241179.7 (3)C5—C5a—C9a—N9b0.2 (4)
C23—C24—C25—C261.3 (5)C6—C5a—C9a—N9b177.0 (2)
C241—C24—C25—C26178.9 (3)C5—C5a—C9a—C9179.3 (3)
C24—C25—C26—C210.6 (5)C6—C5a—C9a—C92.1 (5)
C22—C21—C26—C250.8 (4)C8—C9—C9a—N9b163.7 (2)
C2—C21—C26—C25178.4 (3)C8—C9—C9a—C5a17.1 (4)
N1—C2—C3—C3a1.3 (3)C2—N1—N9b—C9a179.3 (3)
C21—C2—C3—C3a177.5 (3)C2—N1—N9b—C3a0.0 (3)
C2—C3—C3a—N4177.5 (3)C5a—C9a—N9b—N1178.9 (3)
C2—C3—C3a—N9b1.2 (3)C9—C9a—N9b—N11.9 (4)
C3—C3a—N4—C5179.5 (3)C5a—C9a—N9b—C3a1.8 (4)
N9b—C3a—N4—C51.0 (4)C9—C9a—N9b—C3a177.4 (2)
C3a—N4—C5—C5a1.1 (4)N4—C3a—N9b—N1178.1 (2)
N4—C5—C5a—C9a1.7 (4)C3—C3a—N9b—N10.8 (3)
N4—C5—C5a—C6175.5 (3)N4—C3a—N9b—C9a2.5 (4)
C9a—C5a—C6—O6173.8 (3)C3—C3a—N9b—C9a178.6 (2)
C5—C5a—C6—O69.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N4i0.962.002.944 (4)167
O1W—H2W···O60.961.952.879 (3)163
C5—H5···O6i0.952.583.465 (4)154
Symmetry code: (i) x+3, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC19H18ClN3OC20H21N3O2C24H20ClN3OC19H19N3O·H2O
Mr339.81335.40401.88323.39
Crystal system, space groupTriclinic, P1Monoclinic, P21/cTriclinic, P1Triclinic, P1
Temperature (K)120120298120
a, b, c (Å)8.5280 (12), 8.8610 (14), 11.7340 (16)17.7659 (6), 8.5730 (2), 11.3982 (3)7.6778 (2), 8.1298 (3), 16.6417 (5)5.8190 (7), 10.4640 (13), 13.847 (2)
α, β, γ (°)100.992 (10), 93.118 (15), 110.524 (9)90, 101.094 (2), 9089.080 (2), 85.123 (2), 72.490 (2)78.447 (12), 79.647 (9), 84.882 (12)
V3)808.1 (2)1703.56 (8)987.06 (5)811.37 (19)
Z2422
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.250.090.210.09
Crystal size (mm)0.4 × 0.3 × 0.20.40 × 0.22 × 0.080.45 × 0.40 × 0.100.4 × 0.3 × 0.2
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
EVALCCD (Duisenberg et al., 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
EVALCCD (Duisenberg et al., 2003)
Tmin, Tmax0.861, 0.9520.956, 0.9930.927, 0.9790.956, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
17119, 3562, 2542 14346, 3886, 2825 17614, 4513, 2799 16071, 3593, 1683
Rint0.0380.0420.0380.105
(sin θ/λ)max1)0.6490.6490.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.08 0.053, 0.153, 1.07 0.049, 0.134, 1.03 0.069, 0.223, 1.04
No. of reflections3562388645133593
No. of parameters220231262220
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.420.18, 0.220.18, 0.260.40, 0.34

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), DENZO (Otwinowski & Minor, 1997) and COLLECT, EVALCCD (Duisenberg et al., 2003), DENZO and COLLECT, SIR97 (Altomare et al., 1999) and WinGX (Farrugia, 1999), SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O24i0.932.463.385 (2)173
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O6i0.932.483.358 (2)158
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N4i0.962.002.944 (4)167
O1W—H2W···O60.961.952.879 (3)163
C5—H5···O6i0.952.583.465 (4)154
Symmetry code: (i) x+3, y+1, z+1.
Selected geometric parameters (Å, °) for compounds (I)–(IV) top
Parameter(I)(II)(III)(IV)
N1-C21.342 (3)1.348 (2)1.339 (2)1.348 (4)
C2-C31.405 (3)1.399 (2)1.397 (2)1.396 (4)
C3-C3a1.381 (3)1.373 (2)1.370 (2)1.376 (4)
C3a-N41.362 (3)1.358 (2)1.358 (2)1.350 (4)
N4-C51.320 (3)1.315 (2)1.316 (2)1.312 (4)
C5-C5a1.447 (3)1.442 (2)1.445 (2)1.422 (4)
C5a-C9a1.376 (3)1.379 (2)1.380 (2)1.371 (4)
C9a-N9b1.357 (3)1.359 (2)1.362 (2)1.360 (4)
N9b-N11.357 (2)1.3651 (18)1.3613 (18)1.358 (4)
C3a-N9b1.394 (3)1.390 (2)1.392 (2)1.415 (4)
(pyrazole)-(C21–C26)5.6 (2)6.3 (2)14.2 (2)3.6 (2)
(pyrimidine)-(C51–C56)44.7 (2)
θ51.8 (3)52.7 (2)65.0 (2)52.4 (4)
ϕ150.0 (4)156.8 (3)169.7 (2)160.1 (5)
 

Acknowledgements

The X-ray data for (II) and (III) were collected at the EPSRC X-ray Crystallographic Service, University of Southampton; the authors thank the staff for all their help and advice. JC and JMT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JMT also thanks Universidad de Jaén for a scholarship grant. JQ and SC thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and UDENAR (Universidad de Nariño, Colombia) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093–1095.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004a). Acta Cryst. C60, o265–o269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004b). Acta Cryst. C60, o479–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Quiroga, J., Portilla, J. & Glidewell, C. (2004). Acta Cryst. C60, o604–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Nogueras, M., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o398–o403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds