organic compounds
1,2-Bis(diphenylphosphino)benzene and two related mono-methiodides, [o-C6H4(PR2)(PR2Me)]I (R = Ph or Me)
aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England
*Correspondence e-mail: m.webster@soton.ac.uk
The structures of the compounds 1,2-bis(diphenylphosphino)benzene, C30H24P2, [2-(diphenylphosphino)phenyl]methyldiphenylphosphonium iodide, C31H27P2+·I−, and [2-(dimethylphosphino)phenyl]trimethylphosphonium iodide, C11H19P2+·I−, show that quaternization only occurs at one P centre and results in significantly shorter P—C bonds and larger C—P—C angles, consistent with the formal oxidation from PIII to PV.
Comment
Diphosphines, o-C6H4(PR2)2 (R = Ph, Me, etc.), are widely used in coordination and organometallic chemistry. The rigid o-phenylene backbone pre-organizes the ligands for and its rigidity resists dissociation from metal centres (the `o-phenylene backbone' effect; Levason, 1990). A combination of these effects, especially when combined as in the case of R = Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard 3d-metal centres, such as MnII, FeIV or NiIV, or oxophilic early metals including ZrIV and HfIV (Warren & Bennett, 1976; Levason, 1990; Levason et al., 2004). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As, are also readily prepared (Hill et al., 2002; Genge et al., 2001; Sigl et al., 1998a). A further consequence of the o-phenylene backbone is that, in contrast to diphosphinoalkanes, quaternization of o-C6H4(PR2)2 with MeI in acetone or affords exclusively the mono-phosphonium salts [o-C6H4(PR2)(PR2Me)]I, since the nucleophilicity of the second P atom is markedly reduced by the positive charge on the neighbouring phosphonium centre. Phosphonium salts, [PR4]+, are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di-R-phosphinophenyl)phosphonium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized Ph2PCH2PPh2H+ has been structurally characterized in [TiCl5(Ph2PCH2PPh2H)] (Hart et al., 2001). During the course of studies on the coordination chemistry of o-C6H4(PR2)2 (R = Ph or Me), we obtained crystals of the three title materials and report their structures here.
o-C6H4(PPh2)2, (I) (Fig. 1 and Table 1), has P—C distances of 1.836 (3)–1.851 (3) Å; addition of the Me group in the phosphonium salt (II) results in shortening of the P1—C distances to 1.787 (2)–1.814 (2) Å, consistent with formal oxidation from PIII to PV, leaving the P2—C distances essentially unchanged (Fig. 2 and Table 2). Although even with excess MeI quaternization only occurs at one P centre (evidence of transmitted electronic effects), there are no significant differences in the P—C bond lengths and the C—P—C angles at P2 in (II) [the average of the three angles is 102.2 (19)°] compared with those in (I) [the average of the six angles is 101.8 (16)°]. The P⋯P distance of the neutral ligand [3.166 (1) Å] increases in the methiodide to 3.300 (1) Å, and the C—P—C angles increase by about 7° at the phosphonium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991) in PPh3 derivatives, although the presence of PIII and PV within the same molecule in [o-C6H4(PPh2)(PPh2Me)]I provides a particularly clear example. Comparison of (I) with the of o-C6H4[P(O)Ph2]2 (Davis et al., 2006) reveals similar changes in the geometry at both P atoms.
o-C6H4(PMe2)2 is a liquid at ambient temperatures and has not been obtained in crystalline form; thus, comparisons with the mono-methiodide [o-C6H4(PMe2)(PMe3)]I, (III), are not possible. However, the same trends as observed in (II) are apparent in the cation, with the P1—C distances shorter by ca 0.04 Å than the P2—C distances and with the C—P—C angles at P1 some 8° larger than those at P2 (Fig. 3 and Table 3). While o-C6H4(PMe2)2 very readily oxidizes in air, the PIII centre in the mono-methiodide appears to be stable to air oxidation. The shortest anion–cation distance in the methiodides is 3.04 Å (I⋯H), indicating no unusual interactions. Related compounds in the literature include o-C6H4(PMePh)2 (Roberts et al., 1980) and [o-C6H4(PPh2)(PPh2H)]+ (Sigl et al., 1998b)
Experimental
o-C6H4(PR2)2 (R = Ph or Me) were prepared according to published procedures (McFarlane & McFarlane, 1983; Kyba et al., 1983). [o-C6H4(PR2)(PR2Me)]I (R = Me or Ph) were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. o-C6H4(PPh2)2: m.p. 458 K; 31P{1H} NMR (CH2Cl2 relative 85% H3PO4): δ −13.0; EI–MS (m/z) = 446 a.m.u. (M+). [o-C6H4(PPh2)(PPh2Me)]I: 31P{1H} NMR (CH2Cl2): δ −14.8 (d, 3JPP = 26 Hz), 22.6 (d, 3JPP = 26 Hz); ES–MS (m/z) = 461 a.m.u. (M+). [o-C6H4(PMe2)(PMe3)]I: 31P{1H} NMR (CH2Cl2): δ −53.4 (d, 3JPP = 22 Hz), 22.0 (d, 3JPP = 22 Hz); ES–MS (m/z) = 213 a.m.u. (M+). Crystals of o-C6H4(PPh2)2 were obtained by slow evaporation from a CH2Cl2 solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.
Compound (I)
Crystal data
|
Refinement
|
|
Compound (II)
Crystal data
|
Refinement
|
|
Compound (III)
Crystal data
|
Refinement
|
|
H atoms were placed in calculated positions [C—H = 0.95 (aromatic) and 0.98 Å (methyl)]. For (I) and (II), a common refined Uiso(H) value was used for all the H atoms. For (III), Uiso(H) values for phenyl H atoms were set at 1.2Ueq(C) of the bonded C atoms, whilst the methyl H atoms were given a common refined Uiso(H) value. The largest peak and trough in the difference electron-density map for [o-C6H4(PMe2)(PMe3)]I were less than 1 Å from the I atom.
For compounds (I) and (II), data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO. For compound (III), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S0108270106015915/fa3012sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock 01njh029. DOI: 10.1107/S0108270106015915/fa3012Isup2.hkl
Structure factors: contains datablock 01njh034. DOI: 10.1107/S0108270106015915/fa3012IIsup3.hkl
Structure factors: contains datablock diphosi. DOI: 10.1107/S0108270106015915/fa3012IIIsup4.hkl
o-C6H4(PR2)2 (R = Ph or Me) were prepared according to published procedures (McFarlane & McFarlane, 1983; Kyba et al., 1983). [o-C6H4(PR2)(PR2Me)]I (R = Me or Ph) were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. o-C6H4(PPh2)2: m.p. 458 K; 31P{1H} NMR (CH2Cl2 relative 85% H3PO4): δ −13.0; EIMS (m/z) = 446 a.m.u. (M+). [o-C6H4(PPh2)(PPh2Me)]I: 31P{1H} NMR (CH2Cl2): δ −14.8 (d, 3JPP = 26 Hz), 22.6 (d, 3JPP = 26 Hz); ES+MS (m/z) = 461 a.m.u. (M+). [o-C6H4(PMe2)(PMe3)]I: 31P{1H} NMR (CH2Cl2): δ −53.4 (d, 3JPP = 22 Hz), 22.0 (d, 3JPP = 22 Hz); ES+MS (m/z) = 213 a.m.u. (M+). Crystals of o-C6H4(PPh2)2 were obtained by slow evaporation from CH2Cl2 solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.
H atoms were placed in calculated positions [C—H = 0.95 (aromatic) and 0.98 Å (Me)]. For (I) and (II), a common refined Uiso(H) value was used for all the H atoms. For (III), Uiso(H) for phenyl H atoms was set at 1.2Ueq(C) of the bonded C atom, whilst the methyl H atoms were given a common refined Uiso(H) value. The largest peak and trough in the difference electron-density map for [o-C6H4(PMe2)(PMe3)]I were less than 1 Å from the I atom.
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997) for (I), (II); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (III). Cell
COLLECT and DENZO for (I), (II); MSC/AFC Diffractometer Control Software for (III). Data reduction: COLLECT and DENZO for (I), (II); TEXSAN (Molecular Structure Corporation, 1995) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).C30H24P2 | Z = 2 |
Mr = 446.43 | F(000) = 468 |
Triclinic, P1 | Dx = 1.279 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1930 (15) Å | Cell parameters from 19324 reflections |
b = 12.442 (2) Å | θ = 2.9–27.5° |
c = 12.584 (3) Å | µ = 0.20 mm−1 |
α = 109.846 (5)° | T = 120 K |
β = 99.918 (5)° | Block, colourless |
γ = 98.330 (15)° | 0.12 × 0.10 × 0.06 mm |
V = 1159.6 (4) Å3 |
Nonius KappaCCD area-detector diffractometer | 5122 independent reflections |
Radiation source: Nonius rotating anode | 2565 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.132 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −10→10 |
Tmin = 0.892, Tmax = 0.985 | k = −16→16 |
15781 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3 |
5122 reflections | (Δ/σ)max = 0.001 |
290 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C30H24P2 | γ = 98.330 (15)° |
Mr = 446.43 | V = 1159.6 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1930 (15) Å | Mo Kα radiation |
b = 12.442 (2) Å | µ = 0.20 mm−1 |
c = 12.584 (3) Å | T = 120 K |
α = 109.846 (5)° | 0.12 × 0.10 × 0.06 mm |
β = 99.918 (5)° |
Nonius KappaCCD area-detector diffractometer | 5122 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 2565 reflections with I > 2σ(I) |
Tmin = 0.892, Tmax = 0.985 | Rint = 0.132 |
15781 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.54 e Å−3 |
5122 reflections | Δρmin = −0.33 e Å−3 |
290 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.09646 (10) | 0.23706 (7) | 0.30948 (7) | 0.0236 (2) | |
P2 | −0.13684 (10) | −0.00554 (7) | 0.13258 (7) | 0.0268 (2) | |
C1 | −0.1175 (3) | 0.1934 (2) | 0.3309 (2) | 0.0202 (7) | |
C2 | −0.2208 (4) | 0.0838 (2) | 0.2523 (2) | 0.0221 (7) | |
C3 | −0.3839 (4) | 0.0516 (3) | 0.2645 (3) | 0.0261 (7) | |
H3 | −0.4527 | −0.0226 | 0.2139 | 0.0307 (18)* | |
C4 | −0.4490 (4) | 0.1255 (3) | 0.3493 (3) | 0.0270 (8) | |
H4 | −0.5623 | 0.1027 | 0.3543 | 0.0307 (18)* | |
C5 | −0.3474 (4) | 0.2330 (3) | 0.4268 (2) | 0.0243 (7) | |
H5 | −0.3907 | 0.2844 | 0.4846 | 0.0307 (18)* | |
C6 | −0.1820 (4) | 0.2634 (2) | 0.4181 (2) | 0.0230 (7) | |
H6 | −0.1105 | 0.3345 | 0.4736 | 0.0307 (18)* | |
C7 | 0.2186 (3) | 0.3115 (3) | 0.4613 (2) | 0.0224 (7) | |
C8 | 0.2469 (4) | 0.2409 (3) | 0.5256 (3) | 0.0272 (7) | |
H8 | 0.1923 | 0.1602 | 0.4930 | 0.0307 (18)* | |
C9 | 0.3531 (4) | 0.2868 (3) | 0.6358 (3) | 0.0327 (8) | |
H9 | 0.3706 | 0.2377 | 0.6785 | 0.0307 (18)* | |
C10 | 0.4340 (4) | 0.4038 (3) | 0.6841 (3) | 0.0329 (8) | |
H10 | 0.5086 | 0.4350 | 0.7593 | 0.0307 (18)* | |
C11 | 0.4059 (4) | 0.4748 (3) | 0.6227 (3) | 0.0317 (8) | |
H11 | 0.4596 | 0.5556 | 0.6565 | 0.0307 (18)* | |
C12 | 0.2997 (4) | 0.4293 (3) | 0.5117 (3) | 0.0266 (7) | |
H12 | 0.2823 | 0.4791 | 0.4699 | 0.0307 (18)* | |
C13 | 0.0741 (3) | 0.3568 (2) | 0.2578 (2) | 0.0217 (7) | |
C14 | 0.1414 (4) | 0.3541 (3) | 0.1622 (3) | 0.0299 (8) | |
H14 | 0.1947 | 0.2924 | 0.1283 | 0.0307 (18)* | |
C15 | 0.1312 (4) | 0.4405 (3) | 0.1164 (3) | 0.0346 (8) | |
H15 | 0.1755 | 0.4366 | 0.0506 | 0.0307 (18)* | |
C16 | 0.0572 (4) | 0.5320 (3) | 0.1659 (3) | 0.0312 (8) | |
H16 | 0.0528 | 0.5918 | 0.1352 | 0.0307 (18)* | |
C17 | −0.0109 (4) | 0.5367 (3) | 0.2603 (3) | 0.0300 (8) | |
H17 | −0.0623 | 0.5995 | 0.2945 | 0.0307 (18)* | |
C18 | −0.0034 (4) | 0.4487 (3) | 0.3048 (3) | 0.0274 (8) | |
H18 | −0.0522 | 0.4514 | 0.3686 | 0.0307 (18)* | |
C19 | −0.3111 (4) | −0.1371 (3) | 0.0608 (3) | 0.0275 (8) | |
C20 | −0.3281 (4) | −0.2339 (3) | 0.0934 (3) | 0.0298 (8) | |
H20 | −0.2469 | −0.2338 | 0.1572 | 0.0307 (18)* | |
C21 | −0.4619 (4) | −0.3301 (3) | 0.0343 (3) | 0.0329 (8) | |
H21 | −0.4731 | −0.3946 | 0.0587 | 0.0307 (18)* | |
C22 | −0.5789 (4) | −0.3324 (3) | −0.0599 (3) | 0.0368 (9) | |
H22 | −0.6709 | −0.3981 | −0.1002 | 0.0307 (18)* | |
C23 | −0.5618 (4) | −0.2388 (3) | −0.0956 (3) | 0.0397 (9) | |
H23 | −0.6416 | −0.2406 | −0.1610 | 0.0307 (18)* | |
C24 | −0.4291 (4) | −0.1425 (3) | −0.0364 (3) | 0.0360 (9) | |
H24 | −0.4178 | −0.0790 | −0.0622 | 0.0307 (18)* | |
C25 | 0.0162 (4) | −0.0645 (2) | 0.2096 (3) | 0.0243 (7) | |
C26 | 0.0205 (4) | −0.0640 (3) | 0.3206 (3) | 0.0293 (8) | |
H26 | −0.0579 | −0.0305 | 0.3619 | 0.0307 (18)* | |
C27 | 0.1393 (4) | −0.1126 (3) | 0.3720 (3) | 0.0333 (8) | |
H27 | 0.1436 | −0.1102 | 0.4487 | 0.0307 (18)* | |
C28 | 0.2503 (4) | −0.1641 (3) | 0.3110 (3) | 0.0335 (8) | |
H28 | 0.3314 | −0.1970 | 0.3459 | 0.0307 (18)* | |
C29 | 0.2443 (4) | −0.1679 (3) | 0.1997 (3) | 0.0336 (8) | |
H29 | 0.3192 | −0.2053 | 0.1574 | 0.0307 (18)* | |
C30 | 0.1294 (4) | −0.1173 (2) | 0.1487 (3) | 0.0279 (8) | |
H30 | 0.1278 | −0.1185 | 0.0727 | 0.0307 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0213 (5) | 0.0221 (5) | 0.0248 (5) | 0.0055 (4) | 0.0049 (3) | 0.0055 (4) |
P2 | 0.0283 (5) | 0.0226 (5) | 0.0248 (5) | 0.0069 (4) | 0.0035 (4) | 0.0037 (4) |
C1 | 0.0197 (16) | 0.0199 (16) | 0.0211 (16) | 0.0069 (13) | 0.0014 (13) | 0.0087 (13) |
C2 | 0.0220 (17) | 0.0194 (16) | 0.0237 (17) | 0.0063 (13) | 0.0015 (13) | 0.0075 (14) |
C3 | 0.0245 (18) | 0.0219 (17) | 0.0270 (18) | 0.0003 (14) | 0.0032 (14) | 0.0063 (14) |
C4 | 0.0202 (18) | 0.0276 (18) | 0.0327 (19) | 0.0057 (14) | 0.0058 (14) | 0.0107 (15) |
C5 | 0.0251 (18) | 0.0261 (17) | 0.0240 (17) | 0.0106 (15) | 0.0087 (14) | 0.0089 (14) |
C6 | 0.0247 (18) | 0.0173 (16) | 0.0225 (17) | 0.0028 (14) | 0.0015 (14) | 0.0047 (14) |
C7 | 0.0160 (16) | 0.0264 (18) | 0.0231 (17) | 0.0048 (14) | 0.0042 (13) | 0.0074 (14) |
C8 | 0.0203 (17) | 0.0298 (18) | 0.0315 (19) | 0.0056 (14) | 0.0072 (14) | 0.0110 (15) |
C9 | 0.0268 (19) | 0.050 (2) | 0.032 (2) | 0.0166 (17) | 0.0093 (15) | 0.0245 (17) |
C10 | 0.0252 (19) | 0.047 (2) | 0.0199 (18) | 0.0047 (17) | 0.0014 (14) | 0.0070 (17) |
C11 | 0.0239 (19) | 0.032 (2) | 0.0276 (19) | −0.0008 (15) | 0.0026 (15) | 0.0021 (16) |
C12 | 0.0230 (18) | 0.0273 (18) | 0.0282 (18) | 0.0054 (14) | 0.0077 (14) | 0.0080 (15) |
C13 | 0.0173 (16) | 0.0212 (16) | 0.0212 (17) | 0.0011 (13) | −0.0001 (13) | 0.0048 (13) |
C14 | 0.0279 (18) | 0.0319 (19) | 0.0261 (18) | 0.0083 (15) | 0.0062 (15) | 0.0053 (15) |
C15 | 0.037 (2) | 0.044 (2) | 0.0278 (19) | 0.0083 (17) | 0.0069 (16) | 0.0192 (17) |
C16 | 0.0304 (19) | 0.0277 (19) | 0.032 (2) | −0.0026 (16) | −0.0041 (15) | 0.0153 (16) |
C17 | 0.0300 (19) | 0.0215 (18) | 0.032 (2) | 0.0049 (15) | 0.0004 (15) | 0.0056 (15) |
C18 | 0.0275 (18) | 0.0274 (19) | 0.0262 (18) | 0.0056 (15) | 0.0092 (14) | 0.0076 (15) |
C19 | 0.0298 (19) | 0.0251 (18) | 0.0219 (18) | 0.0091 (15) | 0.0051 (14) | 0.0009 (14) |
C20 | 0.0321 (19) | 0.0300 (19) | 0.0204 (17) | 0.0060 (15) | 0.0031 (14) | 0.0030 (15) |
C21 | 0.038 (2) | 0.0206 (18) | 0.034 (2) | 0.0030 (15) | 0.0075 (16) | 0.0050 (15) |
C22 | 0.030 (2) | 0.028 (2) | 0.034 (2) | 0.0006 (16) | −0.0013 (16) | −0.0048 (16) |
C23 | 0.037 (2) | 0.032 (2) | 0.033 (2) | 0.0104 (17) | −0.0103 (16) | −0.0010 (17) |
C24 | 0.047 (2) | 0.0252 (19) | 0.031 (2) | 0.0127 (17) | 0.0010 (17) | 0.0057 (15) |
C25 | 0.0230 (17) | 0.0182 (16) | 0.0258 (18) | 0.0019 (14) | 0.0022 (14) | 0.0039 (14) |
C26 | 0.0277 (18) | 0.0294 (19) | 0.0301 (19) | 0.0110 (15) | 0.0069 (15) | 0.0084 (15) |
C27 | 0.038 (2) | 0.0288 (19) | 0.034 (2) | 0.0105 (16) | 0.0043 (16) | 0.0139 (16) |
C28 | 0.0254 (19) | 0.0253 (19) | 0.050 (2) | 0.0079 (15) | 0.0029 (16) | 0.0160 (17) |
C29 | 0.0212 (18) | 0.0228 (18) | 0.053 (2) | 0.0051 (15) | 0.0125 (16) | 0.0078 (17) |
C30 | 0.0251 (18) | 0.0233 (18) | 0.0322 (19) | 0.0008 (15) | 0.0107 (15) | 0.0064 (15) |
P1—C1 | 1.851 (3) | C14—H14 | 0.9500 |
P1—C7 | 1.839 (3) | C15—C16 | 1.378 (4) |
P1—C13 | 1.836 (3) | C15—H15 | 0.9500 |
P2—C2 | 1.849 (3) | C16—C17 | 1.385 (4) |
P2—C19 | 1.846 (3) | C16—H16 | 0.9500 |
P2—C25 | 1.838 (3) | C17—C18 | 1.393 (4) |
C1—C6 | 1.388 (4) | C17—H17 | 0.9500 |
C1—C2 | 1.420 (4) | C18—H18 | 0.9500 |
C2—C3 | 1.388 (4) | C19—C20 | 1.394 (4) |
C3—C4 | 1.393 (4) | C19—C24 | 1.398 (4) |
C3—H3 | 0.9500 | C20—C21 | 1.387 (4) |
C4—C5 | 1.394 (4) | C20—H20 | 0.9500 |
C4—H4 | 0.9500 | C21—C22 | 1.380 (4) |
C5—C6 | 1.387 (4) | C21—H21 | 0.9500 |
C5—H5 | 0.9500 | C22—C23 | 1.380 (4) |
C6—H6 | 0.9500 | C22—H22 | 0.9500 |
C7—C12 | 1.390 (4) | C23—C24 | 1.382 (4) |
C7—C8 | 1.399 (4) | C23—H23 | 0.9500 |
C8—C9 | 1.382 (4) | C24—H24 | 0.9500 |
C8—H8 | 0.9500 | C25—C26 | 1.390 (4) |
C9—C10 | 1.382 (4) | C25—C30 | 1.399 (4) |
C9—H9 | 0.9500 | C26—C27 | 1.396 (4) |
C10—C11 | 1.375 (4) | C26—H26 | 0.9500 |
C10—H10 | 0.9500 | C27—C28 | 1.380 (4) |
C11—C12 | 1.389 (4) | C27—H27 | 0.9500 |
C11—H11 | 0.9500 | C28—C29 | 1.377 (4) |
C12—H12 | 0.9500 | C28—H28 | 0.9500 |
C13—C18 | 1.394 (4) | C29—C30 | 1.389 (4) |
C13—C14 | 1.398 (4) | C29—H29 | 0.9500 |
C14—C15 | 1.387 (4) | C30—H30 | 0.9500 |
C13—P1—C7 | 104.17 (13) | C16—C15—C14 | 120.4 (3) |
C13—P1—C1 | 102.65 (13) | C16—C15—H15 | 119.8 |
C7—P1—C1 | 100.67 (13) | C14—C15—H15 | 119.8 |
C25—P2—C19 | 99.70 (14) | C15—C16—C17 | 120.0 (3) |
C25—P2—C2 | 101.79 (13) | C15—C16—H16 | 120.0 |
C19—P2—C2 | 101.67 (13) | C17—C16—H16 | 120.0 |
C6—C1—C2 | 118.9 (3) | C16—C17—C18 | 119.5 (3) |
C6—C1—P1 | 123.2 (2) | C16—C17—H17 | 120.2 |
C2—C1—P1 | 117.8 (2) | C18—C17—H17 | 120.2 |
C3—C2—C1 | 118.6 (3) | C17—C18—C13 | 121.5 (3) |
C3—C2—P2 | 122.9 (2) | C17—C18—H18 | 119.3 |
C1—C2—P2 | 118.4 (2) | C13—C18—H18 | 119.3 |
C2—C3—C4 | 121.6 (3) | C20—C19—C24 | 117.8 (3) |
C2—C3—H3 | 119.2 | C20—C19—P2 | 124.4 (2) |
C4—C3—H3 | 119.2 | C24—C19—P2 | 117.7 (3) |
C3—C4—C5 | 119.8 (3) | C21—C20—C19 | 121.0 (3) |
C3—C4—H4 | 120.1 | C21—C20—H20 | 119.5 |
C5—C4—H4 | 120.1 | C19—C20—H20 | 119.5 |
C6—C5—C4 | 118.8 (3) | C22—C21—C20 | 120.1 (3) |
C6—C5—H5 | 120.6 | C22—C21—H21 | 120.0 |
C4—C5—H5 | 120.6 | C20—C21—H21 | 120.0 |
C5—C6—C1 | 122.1 (3) | C21—C22—C23 | 119.8 (3) |
C5—C6—H6 | 118.9 | C21—C22—H22 | 120.1 |
C1—C6—H6 | 118.9 | C23—C22—H22 | 120.1 |
C12—C7—C8 | 118.2 (3) | C22—C23—C24 | 120.2 (3) |
C12—C7—P1 | 124.7 (2) | C22—C23—H23 | 119.9 |
C8—C7—P1 | 116.8 (2) | C24—C23—H23 | 119.9 |
C9—C8—C7 | 120.9 (3) | C23—C24—C19 | 121.0 (3) |
C9—C8—H8 | 119.6 | C23—C24—H24 | 119.5 |
C7—C8—H8 | 119.6 | C19—C24—H24 | 119.5 |
C10—C9—C8 | 120.2 (3) | C26—C25—C30 | 119.0 (3) |
C10—C9—H9 | 119.9 | C26—C25—P2 | 124.2 (2) |
C8—C9—H9 | 119.9 | C30—C25—P2 | 116.7 (2) |
C11—C10—C9 | 119.6 (3) | C25—C26—C27 | 120.5 (3) |
C11—C10—H10 | 120.2 | C25—C26—H26 | 119.8 |
C9—C10—H10 | 120.2 | C27—C26—H26 | 119.8 |
C10—C11—C12 | 120.5 (3) | C28—C27—C26 | 119.8 (3) |
C10—C11—H11 | 119.7 | C28—C27—H27 | 120.1 |
C12—C11—H11 | 119.7 | C26—C27—H27 | 120.1 |
C11—C12—C7 | 120.6 (3) | C29—C28—C27 | 120.3 (3) |
C11—C12—H12 | 119.7 | C29—C28—H28 | 119.9 |
C7—C12—H12 | 119.7 | C27—C28—H28 | 119.9 |
C18—C13—C14 | 117.8 (3) | C28—C29—C30 | 120.4 (3) |
C18—C13—P1 | 126.0 (2) | C28—C29—H29 | 119.8 |
C14—C13—P1 | 116.3 (2) | C30—C29—H29 | 119.8 |
C15—C14—C13 | 120.8 (3) | C29—C30—C25 | 120.0 (3) |
C15—C14—H14 | 119.6 | C29—C30—H30 | 120.0 |
C13—C14—H14 | 119.6 | C25—C30—H30 | 120.0 |
C13—P1—C1—C6 | −69.3 (3) | C1—P1—C13—C14 | −134.7 (2) |
C7—P1—C1—C6 | 38.0 (3) | C18—C13—C14—C15 | 0.2 (4) |
C13—P1—C1—C2 | 109.4 (2) | P1—C13—C14—C15 | −180.0 (2) |
C7—P1—C1—C2 | −143.3 (2) | C13—C14—C15—C16 | 1.2 (4) |
C6—C1—C2—C3 | 1.0 (4) | C14—C15—C16—C17 | −1.4 (4) |
P1—C1—C2—C3 | −177.7 (2) | C15—C16—C17—C18 | 0.2 (4) |
C6—C1—C2—P2 | 177.3 (2) | C16—C17—C18—C13 | 1.3 (4) |
P1—C1—C2—P2 | −1.4 (3) | C14—C13—C18—C17 | −1.4 (4) |
C25—P2—C2—C3 | −108.3 (3) | P1—C13—C18—C17 | 178.8 (2) |
C19—P2—C2—C3 | −5.7 (3) | C25—P2—C19—C20 | 17.6 (3) |
C25—P2—C2—C1 | 75.6 (2) | C2—P2—C19—C20 | −86.7 (3) |
C19—P2—C2—C1 | 178.2 (2) | C25—P2—C19—C24 | −159.1 (2) |
C1—C2—C3—C4 | 1.9 (4) | C2—P2—C19—C24 | 96.6 (3) |
P2—C2—C3—C4 | −174.2 (2) | C24—C19—C20—C21 | −2.7 (5) |
C2—C3—C4—C5 | −2.2 (5) | P2—C19—C20—C21 | −179.3 (2) |
C3—C4—C5—C6 | −0.5 (4) | C19—C20—C21—C22 | 1.4 (5) |
C4—C5—C6—C1 | 3.6 (4) | C20—C21—C22—C23 | 0.4 (5) |
C2—C1—C6—C5 | −3.8 (4) | C21—C22—C23—C24 | −0.7 (5) |
P1—C1—C6—C5 | 174.8 (2) | C22—C23—C24—C19 | −0.7 (5) |
C13—P1—C7—C12 | −11.1 (3) | C20—C19—C24—C23 | 2.3 (5) |
C1—P1—C7—C12 | −117.2 (3) | P2—C19—C24—C23 | 179.2 (2) |
C13—P1—C7—C8 | 176.5 (2) | C19—P2—C25—C26 | −88.4 (3) |
C1—P1—C7—C8 | 70.4 (2) | C2—P2—C25—C26 | 15.8 (3) |
C12—C7—C8—C9 | −0.3 (4) | C19—P2—C25—C30 | 88.7 (2) |
P1—C7—C8—C9 | 172.6 (2) | C2—P2—C25—C30 | −167.1 (2) |
C7—C8—C9—C10 | −0.3 (4) | C30—C25—C26—C27 | 1.8 (4) |
C8—C9—C10—C11 | 1.1 (5) | P2—C25—C26—C27 | 178.8 (2) |
C9—C10—C11—C12 | −1.3 (5) | C25—C26—C27—C28 | −1.7 (5) |
C10—C11—C12—C7 | 0.6 (5) | C26—C27—C28—C29 | −0.1 (5) |
C8—C7—C12—C11 | 0.2 (4) | C27—C28—C29—C30 | 1.7 (5) |
P1—C7—C12—C11 | −172.2 (2) | C28—C29—C30—C25 | −1.5 (5) |
C7—P1—C13—C18 | −59.5 (3) | C26—C25—C30—C29 | −0.2 (4) |
C1—P1—C13—C18 | 45.1 (3) | P2—C25—C30—C29 | −177.5 (2) |
C7—P1—C13—C14 | 120.7 (2) |
C31H27P2+·I− | Z = 2 |
Mr = 588.37 | F(000) = 592 |
Triclinic, P1 | Dx = 1.483 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3323 (5) Å | Cell parameters from 26612 reflections |
b = 11.8412 (10) Å | θ = 2.9–27.5° |
c = 12.7828 (10) Å | µ = 1.36 mm−1 |
α = 69.536 (3)° | T = 120 K |
β = 67.260 (3)° | Needle, colourless |
γ = 70.847 (4)° | 0.20 × 0.08 × 0.04 mm |
V = 1317.22 (16) Å3 |
Nonius KappaCCD area-detector diffractometer | 5956 independent reflections |
Radiation source: Nonius rotating anode | 5063 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −13→13 |
Tmin = 0.855, Tmax = 0.945 | k = −15→15 |
20101 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.2511P] where P = (Fo2 + 2Fc2)/3 |
5956 reflections | (Δ/σ)max = 0.001 |
308 parameters | Δρmax = 0.95 e Å−3 |
0 restraints | Δρmin = −1.08 e Å−3 |
C31H27P2+·I− | γ = 70.847 (4)° |
Mr = 588.37 | V = 1317.22 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.3323 (5) Å | Mo Kα radiation |
b = 11.8412 (10) Å | µ = 1.36 mm−1 |
c = 12.7828 (10) Å | T = 120 K |
α = 69.536 (3)° | 0.20 × 0.08 × 0.04 mm |
β = 67.260 (3)° |
Nonius KappaCCD area-detector diffractometer | 5956 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 5063 reflections with I > 2σ(I) |
Tmin = 0.855, Tmax = 0.945 | Rint = 0.053 |
20101 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.95 e Å−3 |
5956 reflections | Δρmin = −1.08 e Å−3 |
308 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.117295 (15) | 0.172142 (14) | 0.149953 (13) | 0.02858 (7) | |
P1 | 0.62201 (6) | 0.24647 (5) | 0.79838 (5) | 0.01708 (12) | |
P2 | 0.40964 (6) | 0.15057 (5) | 0.72616 (5) | 0.02066 (13) | |
C1 | 0.6882 (2) | 0.19519 (19) | 0.66503 (19) | 0.0176 (4) | |
C2 | 0.5980 (2) | 0.15597 (19) | 0.63244 (19) | 0.0187 (4) | |
C3 | 0.6539 (2) | 0.1208 (2) | 0.5274 (2) | 0.0221 (5) | |
H3 | 0.5939 | 0.0955 | 0.5033 | 0.0358 (15)* | |
C4 | 0.7952 (2) | 0.1218 (2) | 0.4572 (2) | 0.0230 (5) | |
H4 | 0.8315 | 0.0963 | 0.3866 | 0.0358 (15)* | |
C5 | 0.8832 (2) | 0.1604 (2) | 0.4905 (2) | 0.0238 (5) | |
H5 | 0.9798 | 0.1615 | 0.4426 | 0.0358 (15)* | |
C6 | 0.8301 (2) | 0.1971 (2) | 0.5935 (2) | 0.0205 (5) | |
H6 | 0.8904 | 0.2238 | 0.6160 | 0.0358 (15)* | |
C7 | 0.7634 (2) | 0.2857 (2) | 0.81887 (19) | 0.0206 (5) | |
C8 | 0.7573 (3) | 0.4069 (2) | 0.8120 (2) | 0.0259 (5) | |
H8 | 0.6831 | 0.4722 | 0.7886 | 0.0358 (15)* | |
C9 | 0.8612 (3) | 0.4318 (2) | 0.8398 (2) | 0.0322 (6) | |
H9 | 0.8586 | 0.5146 | 0.8343 | 0.0358 (15)* | |
C10 | 0.9672 (3) | 0.3371 (2) | 0.8752 (2) | 0.0297 (6) | |
H10 | 1.0365 | 0.3549 | 0.8953 | 0.0358 (15)* | |
C11 | 0.9745 (3) | 0.2161 (3) | 0.8819 (2) | 0.0301 (6) | |
H11 | 1.0490 | 0.1515 | 0.9057 | 0.0358 (15)* | |
C12 | 0.8726 (2) | 0.1893 (2) | 0.8537 (2) | 0.0259 (5) | |
H12 | 0.8770 | 0.1064 | 0.8580 | 0.0358 (15)* | |
C13 | 0.4791 (2) | 0.38034 (19) | 0.78352 (19) | 0.0184 (4) | |
C14 | 0.4939 (2) | 0.4686 (2) | 0.6759 (2) | 0.0231 (5) | |
H14 | 0.5805 | 0.4586 | 0.6130 | 0.0358 (15)* | |
C15 | 0.3829 (3) | 0.5707 (2) | 0.6606 (2) | 0.0284 (5) | |
H15 | 0.3936 | 0.6310 | 0.5873 | 0.0358 (15)* | |
C16 | 0.2559 (3) | 0.5851 (2) | 0.7523 (2) | 0.0282 (5) | |
H16 | 0.1792 | 0.6547 | 0.7414 | 0.0358 (15)* | |
C17 | 0.2410 (2) | 0.4978 (2) | 0.8599 (2) | 0.0269 (5) | |
H17 | 0.1542 | 0.5084 | 0.9225 | 0.0358 (15)* | |
C18 | 0.3514 (2) | 0.3958 (2) | 0.8768 (2) | 0.0233 (5) | |
H18 | 0.3410 | 0.3367 | 0.9508 | 0.0358 (15)* | |
C19 | 0.3121 (2) | 0.2234 (2) | 0.6171 (2) | 0.0233 (5) | |
C20 | 0.2954 (3) | 0.1611 (2) | 0.5502 (2) | 0.0305 (6) | |
H20 | 0.3359 | 0.0750 | 0.5602 | 0.0358 (15)* | |
C21 | 0.2211 (3) | 0.2225 (3) | 0.4700 (2) | 0.0373 (6) | |
H21 | 0.2101 | 0.1788 | 0.4254 | 0.0358 (15)* | |
C22 | 0.1626 (3) | 0.3472 (3) | 0.4545 (2) | 0.0430 (7) | |
H22 | 0.1117 | 0.3898 | 0.3988 | 0.0358 (15)* | |
C23 | 0.1780 (3) | 0.4107 (3) | 0.5201 (3) | 0.0423 (7) | |
H23 | 0.1381 | 0.4971 | 0.5088 | 0.0358 (15)* | |
C24 | 0.2512 (3) | 0.3493 (2) | 0.6021 (2) | 0.0319 (6) | |
H24 | 0.2597 | 0.3930 | 0.6479 | 0.0358 (15)* | |
C25 | 0.4167 (2) | −0.0148 (2) | 0.76049 (19) | 0.0211 (5) | |
C26 | 0.2891 (2) | −0.0556 (2) | 0.7960 (2) | 0.0264 (5) | |
H26 | 0.2016 | 0.0033 | 0.7919 | 0.0358 (15)* | |
C27 | 0.2896 (3) | −0.1805 (2) | 0.8369 (2) | 0.0287 (5) | |
H27 | 0.2030 | −0.2070 | 0.8594 | 0.0358 (15)* | |
C28 | 0.4165 (3) | −0.2674 (2) | 0.8450 (2) | 0.0285 (5) | |
H28 | 0.4166 | −0.3531 | 0.8737 | 0.0358 (15)* | |
C29 | 0.5427 (3) | −0.2286 (2) | 0.8111 (2) | 0.0257 (5) | |
H29 | 0.6296 | −0.2877 | 0.8165 | 0.0358 (15)* | |
C30 | 0.5423 (2) | −0.1028 (2) | 0.7690 (2) | 0.0226 (5) | |
H30 | 0.6294 | −0.0770 | 0.7458 | 0.0358 (15)* | |
C31 | 0.5646 (3) | 0.1262 (2) | 0.9247 (2) | 0.0236 (5) | |
H31A | 0.6457 | 0.0548 | 0.9297 | 0.0358 (15)* | |
H31B | 0.4866 | 0.1018 | 0.9183 | 0.0358 (15)* | |
H31C | 0.5301 | 0.1562 | 0.9953 | 0.0358 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01795 (9) | 0.03424 (11) | 0.02820 (10) | −0.00356 (7) | −0.00608 (7) | −0.00499 (7) |
P1 | 0.0174 (3) | 0.0166 (3) | 0.0173 (3) | −0.0063 (2) | −0.0039 (2) | −0.0036 (2) |
P2 | 0.0173 (3) | 0.0212 (3) | 0.0251 (3) | −0.0071 (2) | −0.0029 (2) | −0.0093 (2) |
C1 | 0.0187 (10) | 0.0141 (10) | 0.0182 (11) | −0.0037 (9) | −0.0055 (9) | −0.0025 (8) |
C2 | 0.0182 (10) | 0.0150 (11) | 0.0225 (12) | −0.0047 (9) | −0.0045 (9) | −0.0052 (9) |
C3 | 0.0224 (11) | 0.0214 (12) | 0.0244 (12) | −0.0082 (10) | −0.0048 (10) | −0.0075 (9) |
C4 | 0.0255 (12) | 0.0209 (12) | 0.0203 (12) | −0.0044 (10) | −0.0037 (10) | −0.0069 (9) |
C5 | 0.0173 (11) | 0.0262 (12) | 0.0234 (12) | −0.0056 (10) | −0.0010 (9) | −0.0062 (9) |
C6 | 0.0151 (10) | 0.0224 (11) | 0.0228 (12) | −0.0046 (9) | −0.0041 (9) | −0.0058 (9) |
C7 | 0.0204 (11) | 0.0261 (12) | 0.0161 (11) | −0.0097 (10) | −0.0021 (9) | −0.0059 (9) |
C8 | 0.0279 (12) | 0.0265 (13) | 0.0253 (13) | −0.0099 (11) | −0.0099 (10) | −0.0034 (10) |
C9 | 0.0409 (15) | 0.0344 (14) | 0.0311 (14) | −0.0208 (13) | −0.0132 (12) | −0.0060 (11) |
C10 | 0.0254 (12) | 0.0432 (16) | 0.0272 (14) | −0.0166 (12) | −0.0057 (11) | −0.0113 (11) |
C11 | 0.0234 (12) | 0.0409 (15) | 0.0290 (14) | −0.0047 (11) | −0.0102 (11) | −0.0121 (11) |
C12 | 0.0245 (12) | 0.0287 (13) | 0.0274 (13) | −0.0051 (10) | −0.0089 (10) | −0.0100 (10) |
C13 | 0.0195 (11) | 0.0162 (11) | 0.0228 (12) | −0.0069 (9) | −0.0056 (9) | −0.0071 (9) |
C14 | 0.0232 (11) | 0.0201 (12) | 0.0247 (12) | −0.0065 (10) | −0.0053 (10) | −0.0048 (9) |
C15 | 0.0354 (14) | 0.0187 (12) | 0.0318 (14) | −0.0050 (11) | −0.0136 (11) | −0.0043 (10) |
C16 | 0.0275 (13) | 0.0186 (12) | 0.0430 (15) | 0.0015 (10) | −0.0158 (12) | −0.0137 (11) |
C17 | 0.0185 (11) | 0.0293 (13) | 0.0364 (14) | −0.0051 (10) | −0.0021 (10) | −0.0196 (11) |
C18 | 0.0243 (12) | 0.0256 (12) | 0.0232 (12) | −0.0111 (10) | −0.0027 (10) | −0.0100 (10) |
C19 | 0.0143 (10) | 0.0259 (12) | 0.0262 (13) | −0.0067 (10) | −0.0012 (9) | −0.0064 (10) |
C20 | 0.0223 (12) | 0.0357 (15) | 0.0348 (15) | −0.0034 (11) | −0.0071 (11) | −0.0153 (11) |
C21 | 0.0231 (13) | 0.0563 (19) | 0.0329 (15) | −0.0084 (13) | −0.0060 (11) | −0.0152 (13) |
C22 | 0.0254 (14) | 0.060 (2) | 0.0349 (16) | −0.0145 (14) | −0.0124 (12) | 0.0063 (14) |
C23 | 0.0275 (14) | 0.0292 (15) | 0.057 (2) | −0.0066 (12) | −0.0141 (14) | 0.0054 (13) |
C24 | 0.0224 (12) | 0.0269 (14) | 0.0430 (16) | −0.0089 (11) | −0.0057 (11) | −0.0066 (11) |
C25 | 0.0201 (11) | 0.0267 (12) | 0.0183 (11) | −0.0092 (10) | −0.0018 (9) | −0.0088 (9) |
C26 | 0.0199 (11) | 0.0293 (13) | 0.0316 (14) | −0.0091 (10) | −0.0028 (10) | −0.0119 (10) |
C27 | 0.0268 (12) | 0.0323 (14) | 0.0315 (14) | −0.0168 (11) | −0.0009 (11) | −0.0127 (11) |
C28 | 0.0338 (14) | 0.0263 (13) | 0.0279 (14) | −0.0150 (11) | −0.0047 (11) | −0.0073 (10) |
C29 | 0.0273 (12) | 0.0219 (12) | 0.0282 (13) | −0.0053 (10) | −0.0094 (10) | −0.0059 (10) |
C30 | 0.0217 (11) | 0.0250 (12) | 0.0221 (12) | −0.0092 (10) | −0.0033 (9) | −0.0070 (9) |
C31 | 0.0249 (12) | 0.0227 (12) | 0.0208 (12) | −0.0078 (10) | −0.0058 (10) | −0.0020 (9) |
P1—C1 | 1.814 (2) | C15—C16 | 1.389 (4) |
P1—C7 | 1.801 (2) | C15—H15 | 0.9500 |
P1—C13 | 1.789 (2) | C16—C17 | 1.390 (4) |
P1—C31 | 1.787 (2) | C16—H16 | 0.9500 |
P2—C2 | 1.858 (2) | C17—C18 | 1.382 (3) |
P2—C19 | 1.838 (2) | C17—H17 | 0.9500 |
P2—C25 | 1.834 (2) | C18—H18 | 0.9500 |
C1—C6 | 1.399 (3) | C19—C24 | 1.390 (3) |
C1—C2 | 1.406 (3) | C19—C20 | 1.395 (3) |
C2—C3 | 1.394 (3) | C20—C21 | 1.374 (4) |
C3—C4 | 1.389 (3) | C20—H20 | 0.9500 |
C3—H3 | 0.9500 | C21—C22 | 1.374 (4) |
C4—C5 | 1.387 (3) | C21—H21 | 0.9500 |
C4—H4 | 0.9500 | C22—C23 | 1.385 (4) |
C5—C6 | 1.382 (3) | C22—H22 | 0.9500 |
C5—H5 | 0.9500 | C23—C24 | 1.384 (4) |
C6—H6 | 0.9500 | C23—H23 | 0.9500 |
C7—C8 | 1.390 (3) | C24—H24 | 0.9500 |
C7—C12 | 1.401 (3) | C25—C30 | 1.387 (3) |
C8—C9 | 1.393 (3) | C25—C26 | 1.407 (3) |
C8—H8 | 0.9500 | C26—C27 | 1.386 (3) |
C9—C10 | 1.372 (4) | C26—H26 | 0.9500 |
C9—H9 | 0.9500 | C27—C28 | 1.391 (4) |
C10—C11 | 1.383 (4) | C27—H27 | 0.9500 |
C10—H10 | 0.9500 | C28—C29 | 1.384 (3) |
C11—C12 | 1.390 (3) | C28—H28 | 0.9500 |
C11—H11 | 0.9500 | C29—C30 | 1.395 (3) |
C12—H12 | 0.9500 | C29—H29 | 0.9500 |
C13—C14 | 1.395 (3) | C30—H30 | 0.9500 |
C13—C18 | 1.405 (3) | C31—H31A | 0.9800 |
C14—C15 | 1.383 (3) | C31—H31B | 0.9800 |
C14—H14 | 0.9500 | C31—H31C | 0.9800 |
C31—P1—C13 | 111.96 (11) | C16—C15—H15 | 120.0 |
C31—P1—C7 | 106.12 (11) | C15—C16—C17 | 120.0 (2) |
C13—P1—C7 | 109.57 (10) | C15—C16—H16 | 120.0 |
C31—P1—C1 | 111.19 (11) | C17—C16—H16 | 120.0 |
C13—P1—C1 | 107.57 (10) | C18—C17—C16 | 120.7 (2) |
C7—P1—C1 | 110.46 (10) | C18—C17—H17 | 119.7 |
C25—P2—C19 | 104.26 (10) | C16—C17—H17 | 119.7 |
C25—P2—C2 | 100.67 (10) | C17—C18—C13 | 119.3 (2) |
C19—P2—C2 | 101.50 (10) | C17—C18—H18 | 120.3 |
C6—C1—C2 | 120.2 (2) | C13—C18—H18 | 120.3 |
C6—C1—P1 | 119.05 (16) | C24—C19—C20 | 118.8 (2) |
C2—C1—P1 | 120.79 (16) | C24—C19—P2 | 116.69 (19) |
C3—C2—C1 | 118.1 (2) | C20—C19—P2 | 124.54 (18) |
C3—C2—P2 | 120.60 (17) | C21—C20—C19 | 121.0 (2) |
C1—C2—P2 | 121.29 (17) | C21—C20—H20 | 119.5 |
C4—C3—C2 | 121.5 (2) | C19—C20—H20 | 119.5 |
C4—C3—H3 | 119.2 | C22—C21—C20 | 120.0 (3) |
C2—C3—H3 | 119.2 | C22—C21—H21 | 120.0 |
C5—C4—C3 | 119.8 (2) | C20—C21—H21 | 120.0 |
C5—C4—H4 | 120.1 | C21—C22—C23 | 119.9 (3) |
C3—C4—H4 | 120.1 | C21—C22—H22 | 120.0 |
C6—C5—C4 | 119.9 (2) | C23—C22—H22 | 120.0 |
C6—C5—H5 | 120.1 | C22—C23—C24 | 120.4 (3) |
C4—C5—H5 | 120.1 | C22—C23—H23 | 119.8 |
C5—C6—C1 | 120.5 (2) | C24—C23—H23 | 119.8 |
C5—C6—H6 | 119.7 | C23—C24—C19 | 119.9 (3) |
C1—C6—H6 | 119.7 | C23—C24—H24 | 120.1 |
C8—C7—C12 | 120.4 (2) | C19—C24—H24 | 120.1 |
C8—C7—P1 | 121.09 (17) | C30—C25—C26 | 118.3 (2) |
C12—C7—P1 | 118.25 (17) | C30—C25—P2 | 121.11 (17) |
C7—C8—C9 | 119.3 (2) | C26—C25—P2 | 119.94 (17) |
C7—C8—H8 | 120.3 | C27—C26—C25 | 120.7 (2) |
C9—C8—H8 | 120.3 | C27—C26—H26 | 119.6 |
C10—C9—C8 | 120.2 (2) | C25—C26—H26 | 119.6 |
C10—C9—H9 | 119.9 | C26—C27—C28 | 120.2 (2) |
C8—C9—H9 | 119.9 | C26—C27—H27 | 119.9 |
C9—C10—C11 | 120.9 (2) | C28—C27—H27 | 119.9 |
C9—C10—H10 | 119.6 | C29—C28—C27 | 119.7 (2) |
C11—C10—H10 | 119.6 | C29—C28—H28 | 120.1 |
C10—C11—C12 | 119.9 (2) | C27—C28—H28 | 120.1 |
C10—C11—H11 | 120.1 | C28—C29—C30 | 120.0 (2) |
C12—C11—H11 | 120.1 | C28—C29—H29 | 120.0 |
C11—C12—C7 | 119.3 (2) | C30—C29—H29 | 120.0 |
C11—C12—H12 | 120.3 | C25—C30—C29 | 121.1 (2) |
C7—C12—H12 | 120.3 | C25—C30—H30 | 119.5 |
C14—C13—C18 | 119.8 (2) | C29—C30—H30 | 119.5 |
C14—C13—P1 | 118.95 (17) | P1—C31—H31A | 109.5 |
C18—C13—P1 | 121.20 (18) | P1—C31—H31B | 109.5 |
C15—C14—C13 | 120.2 (2) | H31A—C31—H31B | 109.5 |
C15—C14—H14 | 119.9 | P1—C31—H31C | 109.5 |
C13—C14—H14 | 119.9 | H31A—C31—H31C | 109.5 |
C14—C15—C16 | 120.0 (2) | H31B—C31—H31C | 109.5 |
C14—C15—H15 | 120.0 | ||
C31—P1—C1—C6 | −120.55 (18) | C1—P1—C13—C14 | −41.0 (2) |
C13—P1—C1—C6 | 116.54 (18) | C31—P1—C13—C18 | 14.6 (2) |
C7—P1—C1—C6 | −3.0 (2) | C7—P1—C13—C18 | −102.85 (19) |
C31—P1—C1—C2 | 60.5 (2) | C1—P1—C13—C18 | 137.03 (18) |
C13—P1—C1—C2 | −62.4 (2) | C18—C13—C14—C15 | −0.5 (3) |
C7—P1—C1—C2 | 178.05 (18) | P1—C13—C14—C15 | 177.57 (17) |
C6—C1—C2—C3 | −0.6 (3) | C13—C14—C15—C16 | −0.4 (3) |
P1—C1—C2—C3 | 178.32 (16) | C14—C15—C16—C17 | 0.9 (4) |
C6—C1—C2—P2 | 179.28 (16) | C15—C16—C17—C18 | −0.4 (4) |
P1—C1—C2—P2 | −1.8 (3) | C16—C17—C18—C13 | −0.5 (3) |
C25—P2—C2—C3 | 61.1 (2) | C14—C13—C18—C17 | 1.0 (3) |
C19—P2—C2—C3 | −46.0 (2) | P1—C13—C18—C17 | −177.07 (17) |
C25—P2—C2—C1 | −118.77 (19) | C25—P2—C19—C24 | 160.35 (18) |
C19—P2—C2—C1 | 134.12 (19) | C2—P2—C19—C24 | −95.36 (19) |
C1—C2—C3—C4 | 1.2 (3) | C25—P2—C19—C20 | −19.4 (2) |
P2—C2—C3—C4 | −178.73 (18) | C2—P2—C19—C20 | 84.9 (2) |
C2—C3—C4—C5 | −1.0 (4) | C24—C19—C20—C21 | 0.5 (4) |
C3—C4—C5—C6 | 0.2 (3) | P2—C19—C20—C21 | −179.8 (2) |
C4—C5—C6—C1 | 0.3 (3) | C19—C20—C21—C22 | 0.3 (4) |
C2—C1—C6—C5 | −0.1 (3) | C20—C21—C22—C23 | −0.3 (4) |
P1—C1—C6—C5 | −179.05 (18) | C21—C22—C23—C24 | −0.5 (4) |
C31—P1—C7—C8 | −126.2 (2) | C22—C23—C24—C19 | 1.3 (4) |
C13—P1—C7—C8 | −5.2 (2) | C20—C19—C24—C23 | −1.3 (4) |
C1—P1—C7—C8 | 113.14 (19) | P2—C19—C24—C23 | 179.0 (2) |
C31—P1—C7—C12 | 47.4 (2) | C19—P2—C25—C30 | 136.05 (19) |
C13—P1—C7—C12 | 168.42 (18) | C2—P2—C25—C30 | 31.1 (2) |
C1—P1—C7—C12 | −73.2 (2) | C19—P2—C25—C26 | −53.6 (2) |
C12—C7—C8—C9 | 0.2 (4) | C2—P2—C25—C26 | −158.46 (19) |
P1—C7—C8—C9 | 173.65 (19) | C30—C25—C26—C27 | −0.9 (3) |
C7—C8—C9—C10 | −0.9 (4) | P2—C25—C26—C27 | −171.54 (19) |
C8—C9—C10—C11 | 1.1 (4) | C25—C26—C27—C28 | 1.0 (4) |
C9—C10—C11—C12 | −0.6 (4) | C26—C27—C28—C29 | −0.6 (4) |
C10—C11—C12—C7 | −0.1 (4) | C27—C28—C29—C30 | 0.0 (4) |
C8—C7—C12—C11 | 0.3 (4) | C26—C25—C30—C29 | 0.3 (3) |
P1—C7—C12—C11 | −173.35 (18) | P2—C25—C30—C29 | 170.87 (18) |
C31—P1—C13—C14 | −163.44 (17) | C28—C29—C30—C25 | 0.1 (4) |
C7—P1—C13—C14 | 79.11 (19) |
C11H19P2+·I− | F(000) = 672 |
Mr = 340.10 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 20 reflections |
a = 9.2002 (16) Å | θ = 14.2–17.8° |
b = 11.846 (3) Å | µ = 2.36 mm−1 |
c = 13.566 (2) Å | T = 150 K |
β = 94.312 (14)° | Rhomb, colourless |
V = 1474.3 (5) Å3 | 0.2 × 0.2 × 0.05 mm |
Z = 4 |
Rigaku AFC-7S diffractometer | 1772 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.120 |
Graphite monochromator | θmax = 25.0°, θmin = 2.2° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −14→14 |
Tmin = 0.596, Tmax = 0.890 | l = −16→16 |
5375 measured reflections | 3 standard reflections every 150 reflections |
2587 independent reflections | intensity decay: 0.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0668P)2] where P = (Fo2 + 2Fc2)/3 |
2587 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 2.21 e Å−3 |
0 restraints | Δρmin = −2.89 e Å−3 |
C11H19P2+·I− | V = 1474.3 (5) Å3 |
Mr = 340.10 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2002 (16) Å | µ = 2.36 mm−1 |
b = 11.846 (3) Å | T = 150 K |
c = 13.566 (2) Å | 0.2 × 0.2 × 0.05 mm |
β = 94.312 (14)° |
Rigaku AFC-7S diffractometer | 1772 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.120 |
Tmin = 0.596, Tmax = 0.890 | 3 standard reflections every 150 reflections |
5375 measured reflections | intensity decay: 0.0% |
2587 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.97 | Δρmax = 2.21 e Å−3 |
2587 reflections | Δρmin = −2.89 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.65499 (4) | 0.22429 (3) | 0.41541 (2) | 0.03245 (18) | |
P1 | 0.38142 (16) | 0.15971 (12) | 0.66226 (9) | 0.0239 (3) | |
P2 | 0.07559 (19) | 0.30052 (14) | 0.70472 (11) | 0.0325 (4) | |
C1 | 0.2839 (6) | 0.1354 (5) | 0.7721 (3) | 0.0234 (12) | |
C2 | 0.1562 (7) | 0.1915 (5) | 0.7908 (4) | 0.0248 (12) | |
C3 | 0.0909 (7) | 0.1654 (5) | 0.8773 (4) | 0.0310 (13) | |
H3 | 0.0044 | 0.2039 | 0.8917 | 0.037* | |
C4 | 0.1491 (7) | 0.0849 (5) | 0.9426 (4) | 0.0320 (14) | |
H4 | 0.1016 | 0.0675 | 1.0006 | 0.038* | |
C5 | 0.2768 (7) | 0.0295 (5) | 0.9235 (4) | 0.0334 (14) | |
H5 | 0.3180 | −0.0248 | 0.9690 | 0.040* | |
C6 | 0.3440 (7) | 0.0533 (5) | 0.8382 (4) | 0.0319 (14) | |
H6 | 0.4305 | 0.0144 | 0.8243 | 0.038* | |
C7 | 0.5420 (6) | 0.0735 (5) | 0.6670 (4) | 0.0294 (13) | |
H7A | 0.5144 | −0.0061 | 0.6716 | 0.066 (6)* | |
H7B | 0.6065 | 0.0942 | 0.7250 | 0.066 (6)* | |
H7C | 0.5930 | 0.0853 | 0.6069 | 0.066 (6)* | |
C8 | 0.4417 (7) | 0.3032 (5) | 0.6534 (4) | 0.0291 (13) | |
H8A | 0.5007 | 0.3237 | 0.7139 | 0.066 (6)* | |
H8B | 0.3568 | 0.3533 | 0.6451 | 0.066 (6)* | |
H8C | 0.5004 | 0.3110 | 0.5964 | 0.066 (6)* | |
C9 | 0.2738 (7) | 0.1198 (5) | 0.5522 (4) | 0.0344 (15) | |
H9A | 0.2425 | 0.0411 | 0.5578 | 0.066 (6)* | |
H9B | 0.3321 | 0.1277 | 0.4950 | 0.066 (6)* | |
H9C | 0.1879 | 0.1688 | 0.5435 | 0.066 (6)* | |
C10 | 0.0333 (8) | 0.4127 (5) | 0.7911 (4) | 0.0434 (17) | |
H10A | 0.1230 | 0.4526 | 0.8134 | 0.066 (6)* | |
H10B | −0.0102 | 0.3795 | 0.8481 | 0.066 (6)* | |
H10C | −0.0357 | 0.4659 | 0.7578 | 0.066 (6)* | |
C11 | −0.1076 (8) | 0.2407 (6) | 0.6756 (5) | 0.0401 (16) | |
H11A | −0.1015 | 0.1783 | 0.6287 | 0.066 (6)* | |
H11B | −0.1724 | 0.2993 | 0.6463 | 0.066 (6)* | |
H11C | −0.1462 | 0.2127 | 0.7364 | 0.066 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0407 (3) | 0.0340 (3) | 0.0227 (2) | −0.00266 (19) | 0.00296 (15) | −0.00182 (15) |
P1 | 0.0308 (8) | 0.0203 (7) | 0.0209 (6) | −0.0020 (7) | 0.0039 (5) | 0.0014 (5) |
P2 | 0.0377 (9) | 0.0300 (9) | 0.0296 (7) | 0.0065 (8) | 0.0017 (6) | 0.0075 (6) |
C1 | 0.033 (3) | 0.019 (3) | 0.018 (2) | −0.002 (3) | 0.002 (2) | 0.000 (2) |
C2 | 0.034 (3) | 0.017 (3) | 0.023 (2) | 0.002 (3) | 0.002 (2) | −0.001 (2) |
C3 | 0.039 (4) | 0.028 (3) | 0.026 (3) | −0.001 (3) | 0.006 (2) | −0.006 (2) |
C4 | 0.047 (4) | 0.030 (3) | 0.019 (2) | −0.008 (3) | 0.008 (2) | −0.002 (2) |
C5 | 0.048 (4) | 0.025 (3) | 0.027 (3) | −0.001 (3) | −0.005 (3) | 0.004 (2) |
C6 | 0.043 (4) | 0.026 (3) | 0.027 (3) | 0.007 (3) | 0.002 (3) | 0.001 (2) |
C7 | 0.028 (3) | 0.027 (3) | 0.035 (3) | −0.001 (3) | 0.007 (2) | 0.004 (2) |
C8 | 0.039 (4) | 0.020 (3) | 0.029 (3) | −0.007 (3) | 0.005 (2) | 0.003 (2) |
C9 | 0.045 (4) | 0.034 (4) | 0.023 (3) | −0.003 (3) | −0.003 (2) | −0.003 (2) |
C10 | 0.054 (5) | 0.025 (3) | 0.050 (4) | 0.011 (4) | −0.002 (3) | 0.000 (3) |
C11 | 0.039 (4) | 0.039 (4) | 0.040 (3) | 0.009 (3) | −0.009 (3) | −0.003 (3) |
P1—C1 | 1.820 (5) | C6—H6 | 0.9500 |
P1—C7 | 1.794 (6) | C7—H7A | 0.9800 |
P1—C8 | 1.795 (6) | C7—H7B | 0.9800 |
P1—C9 | 1.792 (5) | C7—H7C | 0.9800 |
P2—C2 | 1.858 (5) | C8—H8A | 0.9800 |
P2—C10 | 1.832 (6) | C8—H8B | 0.9800 |
P2—C11 | 1.843 (7) | C8—H8C | 0.9800 |
C1—C2 | 1.390 (8) | C9—H9A | 0.9800 |
C1—C6 | 1.408 (7) | C9—H9B | 0.9800 |
C2—C3 | 1.392 (8) | C9—H9C | 0.9800 |
C3—C4 | 1.383 (8) | C10—H10A | 0.9800 |
C3—H3 | 0.9500 | C10—H10B | 0.9800 |
C4—C5 | 1.388 (9) | C10—H10C | 0.9800 |
C4—H4 | 0.9500 | C11—H11A | 0.9800 |
C5—C6 | 1.381 (8) | C11—H11B | 0.9800 |
C5—H5 | 0.9500 | C11—H11C | 0.9800 |
C9—P1—C8 | 110.4 (3) | H7A—C7—H7B | 109.5 |
C9—P1—C7 | 106.4 (3) | P1—C7—H7C | 109.5 |
C8—P1—C7 | 106.5 (3) | H7A—C7—H7C | 109.5 |
C9—P1—C1 | 111.4 (3) | H7B—C7—H7C | 109.5 |
C8—P1—C1 | 112.2 (3) | P1—C8—H8A | 109.5 |
C7—P1—C1 | 109.6 (3) | P1—C8—H8B | 109.5 |
C10—P2—C11 | 100.4 (3) | H8A—C8—H8B | 109.5 |
C10—P2—C2 | 101.3 (3) | P1—C8—H8C | 109.5 |
C11—P2—C2 | 100.5 (3) | H8A—C8—H8C | 109.5 |
C2—C1—C6 | 120.8 (5) | H8B—C8—H8C | 109.5 |
C2—C1—P1 | 123.3 (4) | P1—C9—H9A | 109.5 |
C6—C1—P1 | 115.9 (5) | P1—C9—H9B | 109.5 |
C1—C2—C3 | 118.2 (5) | H9A—C9—H9B | 109.5 |
C1—C2—P2 | 121.4 (4) | P1—C9—H9C | 109.5 |
C3—C2—P2 | 120.4 (5) | H9A—C9—H9C | 109.5 |
C4—C3—C2 | 121.5 (6) | H9B—C9—H9C | 109.5 |
C4—C3—H3 | 119.2 | P2—C10—H10A | 109.5 |
C2—C3—H3 | 119.2 | P2—C10—H10B | 109.5 |
C3—C4—C5 | 119.9 (6) | H10A—C10—H10B | 109.5 |
C3—C4—H4 | 120.0 | P2—C10—H10C | 109.5 |
C5—C4—H4 | 120.0 | H10A—C10—H10C | 109.5 |
C6—C5—C4 | 120.0 (5) | H10B—C10—H10C | 109.5 |
C6—C5—H5 | 120.0 | P2—C11—H11A | 109.5 |
C4—C5—H5 | 120.0 | P2—C11—H11B | 109.5 |
C5—C6—C1 | 119.7 (6) | H11A—C11—H11B | 109.5 |
C5—C6—H6 | 120.2 | P2—C11—H11C | 109.5 |
C1—C6—H6 | 120.2 | H11A—C11—H11C | 109.5 |
P1—C7—H7A | 109.5 | H11B—C11—H11C | 109.5 |
P1—C7—H7B | 109.5 | ||
C9—P1—C1—C2 | −63.7 (5) | C11—P2—C2—C1 | 122.7 (5) |
C8—P1—C1—C2 | 60.6 (5) | C10—P2—C2—C3 | 44.5 (6) |
C7—P1—C1—C2 | 178.8 (5) | C11—P2—C2—C3 | −58.5 (5) |
C9—P1—C1—C6 | 115.1 (5) | C1—C2—C3—C4 | −1.0 (9) |
C8—P1—C1—C6 | −120.5 (5) | P2—C2—C3—C4 | −179.8 (5) |
C7—P1—C1—C6 | −2.4 (5) | C2—C3—C4—C5 | 1.2 (9) |
C6—C1—C2—C3 | 1.0 (8) | C3—C4—C5—C6 | −1.3 (9) |
P1—C1—C2—C3 | 179.7 (4) | C4—C5—C6—C1 | 1.2 (9) |
C6—C1—C2—P2 | 179.7 (4) | C2—C1—C6—C5 | −1.1 (9) |
P1—C1—C2—P2 | −1.5 (7) | P1—C1—C6—C5 | −179.9 (5) |
C10—P2—C2—C1 | −134.3 (5) |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C30H24P2 | C31H27P2+·I− | C11H19P2+·I− |
Mr | 446.43 | 588.37 | 340.10 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 120 | 120 | 150 |
a, b, c (Å) | 8.1930 (15), 12.442 (2), 12.584 (3) | 10.3323 (5), 11.8412 (10), 12.7828 (10) | 9.2002 (16), 11.846 (3), 13.566 (2) |
α, β, γ (°) | 109.846 (5), 99.918 (5), 98.330 (15) | 69.536 (3), 67.260 (3), 70.847 (4) | 90, 94.312 (14), 90 |
V (Å3) | 1159.6 (4) | 1317.22 (16) | 1474.3 (5) |
Z | 2 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.20 | 1.36 | 2.36 |
Crystal size (mm) | 0.12 × 0.10 × 0.06 | 0.20 × 0.08 × 0.04 | 0.2 × 0.2 × 0.05 |
Data collection | |||
Diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer | Rigaku AFC-7S diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1997) | Multi-scan (SORTAV; Blessing, 1997) | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.892, 0.985 | 0.855, 0.945 | 0.596, 0.890 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15781, 5122, 2565 | 20101, 5956, 5063 | 5375, 2587, 1772 |
Rint | 0.132 | 0.053 | 0.120 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 | 0.595 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.132, 0.93 | 0.031, 0.074, 1.02 | 0.046, 0.121, 0.97 |
No. of reflections | 5122 | 5956 | 2587 |
No. of parameters | 290 | 308 | 128 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.33 | 0.95, −1.08 | 2.21, −2.89 |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), COLLECT and DENZO, MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).
P1—C1 | 1.851 (3) | P2—C19 | 1.846 (3) |
P1—C7 | 1.839 (3) | P2—C25 | 1.838 (3) |
P1—C13 | 1.836 (3) | C1—C2 | 1.420 (4) |
P2—C2 | 1.849 (3) | ||
C13—P1—C7 | 104.17 (13) | C25—P2—C2 | 101.79 (13) |
C13—P1—C1 | 102.65 (13) | C19—P2—C2 | 101.67 (13) |
C7—P1—C1 | 100.67 (13) | C2—C1—P1 | 117.8 (2) |
C25—P2—C19 | 99.70 (14) | C1—C2—P2 | 118.4 (2) |
P1—C1 | 1.814 (2) | P2—C2 | 1.858 (2) |
P1—C7 | 1.801 (2) | P2—C19 | 1.838 (2) |
P1—C13 | 1.789 (2) | P2—C25 | 1.834 (2) |
P1—C31 | 1.787 (2) | C1—C2 | 1.406 (3) |
C31—P1—C13 | 111.96 (11) | C25—P2—C19 | 104.26 (10) |
C31—P1—C7 | 106.12 (11) | C25—P2—C2 | 100.67 (10) |
C13—P1—C7 | 109.57 (10) | C19—P2—C2 | 101.50 (10) |
C31—P1—C1 | 111.19 (11) | C2—C1—P1 | 120.79 (16) |
C13—P1—C1 | 107.57 (10) | C1—C2—P2 | 121.29 (17) |
C7—P1—C1 | 110.46 (10) |
P1—C1 | 1.820 (5) | P2—C2 | 1.858 (5) |
P1—C7 | 1.794 (6) | P2—C10 | 1.832 (6) |
P1—C8 | 1.795 (6) | P2—C11 | 1.843 (7) |
P1—C9 | 1.792 (5) | C1—C2 | 1.390 (8) |
C9—P1—C8 | 110.4 (3) | C10—P2—C11 | 100.4 (3) |
C9—P1—C7 | 106.4 (3) | C10—P2—C2 | 101.3 (3) |
C8—P1—C7 | 106.5 (3) | C11—P2—C2 | 100.5 (3) |
C9—P1—C1 | 111.4 (3) | C2—C1—P1 | 123.3 (4) |
C8—P1—C1 | 112.2 (3) | C1—C2—P2 | 121.4 (4) |
C7—P1—C1 | 109.6 (3) |
Acknowledgements
The authors thank the EPSRC for access to the Chemical Database Service at Daresbury and Dr N. J. Hill for data collections.
References
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930–936. Web of Science CSD CrossRef CAS Google Scholar
Dunne, B. J., Morris, R. B. & Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653–661. CrossRef Web of Science Google Scholar
Genge, A. R. J., Hill, N. J., Levason, W. & Reid, G. (2001). J. Chem. Soc. Dalton Trans. pp. 1007–1012. Web of Science CSD CrossRef Google Scholar
Hart, R., Levason, W., Patel, B. & Reid, G. (2001). Eur. J. Inorg. Chem. pp. 2927–2933. CrossRef Google Scholar
Hill, N. J., Levason, W. & Reid, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1188–1192. CrossRef Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kyba, E. P., Liu, S. T. & Harris, R. L. (1983). Organometallics, 2, 1877–1879. CrossRef CAS Web of Science Google Scholar
Levason, W. (1990). Comments Inorg. Chem. 9, 331–361. CrossRef CAS Google Scholar
Levason, W., Matthews, M. L., Patel, B., Reid, G. & Webster, M. (2004). Dalton Trans. pp. 3305–3312. CrossRef Google Scholar
McFarlane, H. C. E. & McFarlane, W. (1983). Polyhedron, 2, 303–304. CrossRef CAS Web of Science Google Scholar
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Google Scholar
Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Roberts, N. K., Skelton, B. W. & White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1567–1571. CrossRef Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sigl, M., Schier, A. & Schmidbaur, H. (1998a). Eur. J. Inorg. Chem. pp. 203–210. CrossRef Google Scholar
Sigl, M., Schier, A. & Schmidbaur, H. (1998b). Z. Naturforsch. Teil B, 53, 1313–1315. CAS Google Scholar
Warren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126–3140. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Diphosphines, o-C6H4(PR2)2 (R = Ph, Me etc.), are widely used in coordination and organometallic chemistry. The rigid o-phenylene backbone pre-organizes the ligands for chelation and its rigidity resists dissociation from metal centres (the `o-phenylene backbone' effect; Levason, 1990). A combination of these effects, especially when combined as in the case of R = Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard 3d-metal centres, such as MnII, FeIV or NiIV, or oxophilic early metals including ZrIV and HfIV (Warren & Bennett, 1976; Levason, 1990; Levason et al., 2004). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As, are also readily prepared (Hill et al., 2002; Genge et al., 2001; Sigl et al., 1998a). A further consequence of the o-phenylene backbone is that, in contrast to diphosphinoalkanes, quaternization of o-C6H4(PR2)2 with MeI in acetone or alcohols affords exclusively the mono-phosphonium salts [o-C6H4(PR2)(PR2Me)]I, since the nucleophilicity of the second phosphorus is markedly reduced by the positive charge on the neighbouring phosphonium centre. Phosphonium salts [PR4]+ are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di-R-phosphanylphenyl)phosphonium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized [Ph2PCH2PPh2H]+ has been structurally characterized in [TiCl5(Ph2PCH2PPh2H)] (Hart et al., 2001). During the course of studies on the coordination chemistry of o-C6H4(PR2)2 (R = Ph or Me) we obtained crystals of the three title materials and report here their structures.
o-C6H4(PPh2)2, (I) (Fig. 1 and Table 1), has P—C distances 1.836 (3)–1.851 (3) Å and addition of the Me group in the phosphonium salt (II) results in shortening of the P1—C distances to 1.787 (2)–1.814 (2) Å, consistent with formal oxidation from PIII to PV and leaving the P2—C distances essentially unchanged (Fig. 2 and Table 2). Although even with excess MeI, quaternization only occurs at one P centre (evidence of transmitted electronic effects), there is no significant difference in the P—C bond lengths and the C—P—C angles at P2 in (II) [the average of the three angles is 102.2 (19)°] compared with those in (I) [the average of six angles is 101.8 (16)°]. The P···P distance of the neutral ligand [3.166 (1) Å] increases in the methiodide to 3.300 (1) Å,and the C—P—C angles increase by about 7° at the phosphonium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991) in PPh3 derivatives, although the presence of PIII and PV within the same molecule in [o-C6H4(PPh2)(PPh2Me)]I provides a particularly clear example. Comparison of (I) with the crystal structure of [o-C6H4{P(O)Ph2}2] (Davis et al., 2006) reveals similar changes in the geometry at both P atoms.
o-C6H4(PMe2)2 is a liquid at ambient temperatures and has not been obtained in crystalline form, thus comparisons with the mono methiodide [o-C6H4(PMe2)(PMe3)]I, (III), are not possible. However, the same trends are apparent in the cation, with P1—C shorter by ca 0.04 Å than P2—C distances and increases in the C—P—C angles with those at P1 some 8° larger than those at P2 (Fig. 3 and Table 3). While o-C6H4(PMe2)2 very readily oxidizes in air, the PIII centre in the mono-methiodide appears to be stable to air oxidation. The shortest anion–cation distance in the methiodides is 3.04 Å (I···H), indicating no unusual interactions. Related compounds in the literature include o-C6H4(PMePh)2 (Roberts et al., 1980) and [o-C6H4(PPh2)(PPh2H)]+ (Sigl et al., 1998b)