metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

{Bis(3,5-Di-tert-butyl-2-oxido­benzyl)[2-(N,N-di­methyl­amino)ethyl]amine-κ4N,N′,O,O′}zinc(II) and {bis­­(3-tert-butyl-5-methyl-2-oxido­benzyl)[2-(N,N-di­methyl­amino)ethyl]amine-κ4N,N′,O,O′}(tetra­hdyro­furan)zinc(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: joseph.wright@uea.ac.uk

(Received 3 May 2006; accepted 19 May 2006; online 23 June 2006)

The title zinc(II) complexes, [Zn(C34H54N2O2)], (II)[link], and [Zn(C28H42N2O2)(C4H8O)], (III)[link], were obtained as monomeric 1:1 complexes, in contrast with the calcium complexes supported by the same ligand class. Complex (II)[link] crystallizes with two independent mol­ecules in the asymmetric unit, which have similar geometric parameters. The donor atoms in (II)[link] form a distorted trigonal–pyramidal arrangement around the zinc centre. Complex (III)[link] contains a coordinated tetra­hydro­furan mol­ecule, resulting in a five-coordinate trigonal–bipyramidal arrangement around the Zn atom. The electron density provided by the coordination of this tetra­hydro­furan mol­ecule elongates the Zn—O and Zn—N bonds by approximately 0.07 and 0.10 Å, respectively, in comparison with (II)[link]. Neither (II)[link] nor (III)[link] is active as an -caprolactone polymerization catalyst. The data presented here demonstrate that Zn may bind both an ONNO ligand and an additional oxygen-based ligand. The lack of activity is thus not due to steric hinderance at the metal atom.

Comment

The use of biodegradable polymers is of increasing inter­est, with environmental factors being a key driving force (Drumright et al., 2000[Drumright, R. E., Gruber, P. R. & Henton, D. E. (2000). Adv. Mater. 12, 1841-1846.]). A principle route to these materials is the ring-opening polymerization of -caprolactone (CL) (systematic name: oxepan-2-one) or lactide (LA) (systematic name: 3,6-dimethyl-1,4-dioxane-2,5-dione) to give polyesters. Both of these monomers are readily available from corn, and so are themselves renewable (O'Keefe et al., 2001[O'Keefe, B. J., Hillmyer, M. A. & Tolman, W. B. (2001). J. Chem. Soc. Dalton Trans. pp. 2215-2224.]; Dechy-Cabaret et al., 2004[Dechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. (2004). Chem. Rev. 104, 6147-6176.]). In order to control the physical properties and tacticity of these polyesters, a variety of main-group and transition metal complexes have attracted attention.

The syntheses of a number of catalysts for CL and LA polymerization based on substituted aminobis­(2-hydroxy­aryl­methyl) (ONNO) ligand systems have recently been

[Scheme 1]
reported (Sarazin et al., 2006[Sarazin, Y., Howard, R. H., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Dalton Trans. pp. 340-350.]). The first complexes of this class of ligands were those of group IV metals; in particular, the titanium, hafnium and zirconium benzyl complexes were structurally characterised and observed to be highly active in the polymerization of α-olefins (Tshuva et al., 2001a[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001a). Inorg. Chem. 40, 4263-4270.],b[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001b). Chem. Commun. pp. 2120-2121.], 2002[Tshuva, E. Y., Groysman, S., Goldberg, I., Kol, M. & Goldschmidt, Z. (2002). Organometallics, 21, 662-670.]; Groysman et al., 2003[Groysman, S., Goldberg, I., Kol, M., Genizi, E. & Goldschmidt, Z. (2003). Inorg. Chim. Acta, 345, 137-144.]). Although Sarazin et al. (2006[Sarazin, Y., Howard, R. H., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Dalton Trans. pp. 340-350.]) reported solution data on the magnesium, calcium, titanium and zinc complexes of the ONNO ligand (Ia)[link] (R = tBu), only the calcium [compound (IV)] and titanium [compound (V)] systems were structurally characterized. The calcium system was found to form a dimeric complex, both in the solid state and in solution. The solid-state structure showed one Ca⋯H agostic bond at each metal centre (Ca⋯H distances of 2.31 and 2.41 Å), resulting in distorted octa­hedral geometry at both Ca atoms. On the other hand, the titanium system was found to be monomeric and six-coordinate, with two coordination sites occupied by iPrO groups. Equally, solution NMR data for the zinc system, (II)[link], suggested a similar monomeric 1:1 structure. This is in line with the ionic radii of the metal ions, with calcium significantly larger than either titanium or zinc (Ca2+ = 1.14 Å, Zn2+ = 0.88 Å and Ti4+ = 0.75 Å; Atkins et al., 2006[Atkins, P. W., Overton, T., Rourke, J., Weller, M. & Armstrong, F. (2006). Shriver & Atkins Inorganic Chemistry, 4th ed. Oxford University Press.]). The monomeric nature of the zinc–ONNO complex, (II)[link], has now been established by X-ray analysis. The related complex, (III)[link], bearing a less bulky ONNO ligand, has also been synthesized and characterized for the first time.
[Scheme 2]

Complex (II)[link] crystallizes in the triclinic space group P[\overline{1}], with two independent mol­ecules in the asymmetric unit (Fig. 1[link]). Table 1[link] highlights the bond lengths and angles around the metal centre. It can be seen that the two independent mol­ecules exhibit similar geometric values. The metal–donor distances in (II)[link] (Table 1[link]) are similar to those in the previously reported monomeric titanium complex, (V). The M—O distances in (II)[link] fall close to those in (V) [1.9034 (15) and 1.9009 (15) Å], consistent with the similar ionic radii of the central atoms. However, the M—N distances are much longer in the titanium complex [2.400 (2) and 2.335 (2) Å] than in (II)[link]. In contrast, the dimeric calcium complex, (IV), exhibits significantly longer (non-bridging) M—O distances [2.1842 (16) and 2.1817 (16) Å] than (II)[link]. The M—N distances are again significantly shorter in (II)[link] than in (IV) [2.4981 (19)–2.552 (2) Å]. The donor atoms form a distorted trigonal–pyramidal arrangement around the Zn atom, which lies 0.205 (1) Å from mean plane of the O and N atoms which form the base of the pyramid. The Naxial—Zn—donor angles demonstrate the distortion of the mol­ecule from ideal geometry, with the two O atoms bent away from the Zn—Naxial bond.

Complex (III)[link] is trigonal–bipyramidal, with the fifth coordination site occupied by a tetra­hydro­furan (THF) mol­ecule (Fig. 2[link]). The change of R group from tert-butyl to methyl is remote from the metal centre, and so it is reasonable to compare the geometry of (III)[link] with that seen in (II)[link]. As expected, the additional electron density donated by the THF mol­ecule results in the elongation of the metal–donor bond lengths in (III)[link] compared with (II)[link] (Tables 1[link] and 2[link]). The Zn—O bonds are lengthened by approximately 0.07 Å, whilst the Zn—N bonds are extended by approximately 0.1 Å. The geometry of the ONNO ligand at the metal centre is similar to that in (II)[link], although the metal atom is displaced by only 0.0185 (16) Å from the mean plane of the equatorial donors.

Neither complex (II)[link] nor (III)[link] is active in the polymerization of LA or CL, in contrast with (IV). The structures presented in this report demonstrate the ability of the metal centre to bind both the ONNO ligand and an additional oxygen-based ligand. The lack of polymerization activity cannot, therefore, be due to steric protection of the Lewis acidic site.

[Figure 1]
Figure 1
The two independent mol­ecules of (II)[link] in the asymmetric unit, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Both mol­ecules are shown in an arbitary orientation to allow comparison.
[Figure 2]
Figure 2
A representation of (III)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Experimental

The ligands (Ia)[link] (Tshuva et al., 2001a[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001a). Inorg. Chem. 40, 4263-4270.]) and (Ib)[link] (Sarazin et al., 2006[Sarazin, Y., Howard, R. H., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Dalton Trans. pp. 340-350.]) were produced according to literature methods, as was complex (II)[link] (Sarazin et al., 2006[Sarazin, Y., Howard, R. H., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Dalton Trans. pp. 340-350.]). Crystals of (II)[link] suitable for X-ray diffraction were grown from a light petroleum–diethyl ether (1:3 v/v) solution at 268 K. Complex (III)[link] was prepared by a method analogous to that used to produce (II)[link]. Reaction of Zn[N(SiMe3)2]2 (0.97 g, 2.5 mmol) and (Ib) (1.1 g, 2.5 mmol) in light petroleum (30 ml) gave a white solid. 1H NMR (300 MHz, C6D6): δ 7.31 (d, 2H, Ar), 6.60 (d, 2H, Ar), 3.76 (s, 1H, Ar–CH2), 3.72 (s, 1H, Ar–CH2), 3.07 (d, 1H, Ar–CH2), 3.03 (s, 1H, Ar–CH2), 2.34 (s, 6H, 2 × MeAr), 2.04 (t, 1H, N–CH2–CH2–N), 1.76 (s, 18H, tBu), 1.59 (t, 1H, N–CH2–CH2–N), 1.49 (s, 6H, NMe2); 13C NMR (75MHz, C6D6): δ 164.9 (C–O), 138.7 (CAr), 130.5 (CAr), 128.9(CAr), 123.0 (CAr), 122.9 (CAr), 60.1 (Ar–CH2), 59.4 (N–CH2), 46.5 (N–CH2), 41.8 [N(CH3)2], 35.8 [C(CH3)3], 30.2 [C(CH3)3], 22.9 (Ar–CH3). Crystals of (III)[link] suitable for X-ray diffraction were grown from a tetra­hydro­furan–light petroleum–diethyl ether solution (1:1:3 v/v/v) at 268 K.

Compound (II)[link]

Crystal data
  • [Zn(C34H54N2O2)]

  • Mr = 588.16

  • Triclinic, [P \overline 1]

  • a = 12.9275 (12) Å

  • b = 14.0002 (13) Å

  • c = 19.6729 (14) Å

  • α = 100.747 (7)°

  • β = 102.467 (7)°

  • γ = 96.879 (8)°

  • V = 3367.8 (5) Å3

  • Z = 4

  • Dx = 1.160 Mg m−3

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 140 (1) K

  • Plate, colourless

  • 0.20 × 0.08 × 0.02 mm

Data collection
  • Oxford Xcalibur-3 CCD area-detector diffractometer

  • Thin-slice φ and ω scans

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2003[Oxford Diffraction (2003). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.925, Tmax = 0.983

  • 42426 measured reflections

  • 15272 independent reflections

  • 8001 reflections with I > 2σ(I)

  • Rint = 0.076

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.071

  • S = 0.79

  • 15272 reflections

  • 744 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0243P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °) for (II)[link]

Zn1—O101 1.8918 (15)
Zn1—O102 1.8960 (17)
Zn1—N101 2.065 (2)
Zn1—N102 2.0864 (19)
Zn2—O201 1.8821 (16)
Zn2—O202 1.8899 (17)
Zn2—N201 2.0643 (18)
Zn2—N202 2.0727 (19)
O101—Zn1—O102 125.35 (7) 
O101—Zn1—N101 99.58 (7)
O102—Zn1—N101 99.77 (7)
O101—Zn1—N102 112.76 (7)
O102—Zn1—N102 118.59 (8)
N101—Zn1—N102 87.81 (8)
O201—Zn2—O202 121.39 (7)
O201—Zn2—N201 99.95 (7)
O202—Zn2—N201 99.80 (7)
O201—Zn2—N202 113.08 (8)
O202—Zn2—N202 122.20 (8)
N201—Zn2—N202 88.07 (7)

Compound (III)[link]

Crystal data
  • [Zn(C28H42N2O2)(C4H8O)]

  • Mr = 576.11

  • Monoclinic, P 21 /c

  • a = 13.669 (3) Å

  • b = 17.476 (4) Å

  • c = 12.989 (4) Å

  • β = 93.14 (2)°

  • V = 3098.1 (14) Å3

  • Z = 4

  • Dx = 1.235 Mg m−3

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 140 (1) K

  • Block, light yellow

  • 0.06 × 0.06 × 0.02 mm

Data collection
  • Oxford X-calibur-3 CCD area-detector diffractometer

  • Thin-slice φ and ω scans

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2003[Oxford Diffraction (2003). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.801, Tmax = 0.984

  • 33137 measured reflections

  • 7121 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.195

  • θmax = 27.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.073

  • S = 0.68

  • 7121 reflections

  • 353 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0123P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

Table 2
Selected geometric parameters (Å, °) for (III)[link]

Zn1—O102 1.958 (2) 
Zn1—O101 1.961 (2)
Zn1—N101 2.163 (3)
Zn1—N102 2.166 (3)
Zn1—O103 2.246 (3)
O102—Zn1—O101 127.59 (10)
O102—Zn1—N101 93.35 (11)
O101—Zn1—N101 94.41 (10)
O102—Zn1—N102 112.67 (11)
O101—Zn1—N102 119.71 (11)
N101—Zn1—N102 82.88 (12)
O102—Zn1—O103 91.02 (10)
O101—Zn1—O103 87.46 (9)
N101—Zn1—O103 172.77 (11)
N102—Zn1—O103 90.13 (11)

All H atoms were refined using a riding model, with C—H = 0.98–0.99 Å and Uiso(H) = 1.5 or 1.2 times Ueq(C). Methyl H atoms were positioned using residual electron density (HFIX 137). One tert-butyl group of (II)[link] (central atom C112, and methyl atoms C113, C114 and C115) was found to be disordered and was freely refined over two positions. This gave a final occupancy of 0.853 (3) for the major position (shown in Fig. 2[link]). The central atom-to-methyl bonds were restrained to a distance of 1.55 Å for all of the disordered C atoms (DFIX 1.55 0.02). A second tert-butyl group (central atom C127, and methyl atoms C128, C129 and C130) showed evidence of disorder, particularly in the displacement parameters for atom C129. However, this could not be successfully modelled.

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The use of biodegradable polymers is of increasing interest, with environmental factors being a key driving force (Drumright et al., 2000). A principle route to these materials is the ring-opening polymerization of ε-caprolactone (CL) (systematic name: oxepan-2-one) or lactide (LA) (systematic name: 3,6-dimethyl-[1,4]dioxane-2,5-dione) (Fig. 1) to give polyesters. Both of these monomers are readily available from corn, and so are themselves renewable (O'Keefe et al., 2001; Dechy-Cabaret et al., 2004). In order to control the physical properties and tacticity of these polyesters, a variety of main-group and transition metal complexes have attracted attention.

The synthesis of a number of catalysts for CL and LA polymerization based on substituted amino-bis(2-hydroxyarylmethyl) (ONNO) ligand systems has recently been reported (Sarazin et al., 2006). The first complexes of this class of ligands were those of group IV metals; in particular, the titanium, hafnium and zirconium benzyl complexes were structurally characterized and observed to be highly active in the polymerization of α-olefins (Tshuva et al., 2001a,b; Tshuva et al., 2002; Groysman et al., 2003). Although Sarazin et al. (2006) reported solution data on the magnesium, calcium, titanium and zinc complexes of the ONNO ligand (Ia) (R = tBu), only the calcium [(IV)] and titanium [(V)] systems were structurally characterized. The calcium system was found to form a dimeric complex, both in the solid state and in solution. The solid-state structure showed one Ca···H agostic bond at each metal centre (Ca···H distances of 2.31 and 2.41 Å), resulting in distorted octahedral geometry at both Ca atoms. On the other hand, the titanium system was found to be monomeric and six coordinate, with two coordination sites occupied by iPrO groups. Equally, solution NMR data for the zinc system, (II), suggested a similar monomeric 1:1 structure. This is in line with the ionic radii of the metal ions, with calcium significantly larger than either titanium or zinc (Ca2+ 1.14 Å, Zn2+ 0.88 Å, Ti4+ 0.75 Å; Atkins et al., 2006). The monomeric nature of the zinc–ONNO complex, (II), has now been established by X-ray analysis. The related complex, (III), bearing a less bulky ONNO ligand, has also been synthesized and characterized for the first time.

Complex (II) crystallizes in the triclinic spacegroup P1, with two independent molecules in the asymmetric unit (Fig. 2). Table 1 highlights the bond lengths and angles around the metal centre. It can be seen that the two independent molecules exhibit similar geometric values. The metal–donor distances in (II) (Table 1) are similar to those in the previously reported monomeric titanium complex, (V). The M—O distances in (II) fall close to those in (V) [1.9034 (15) and 1.9009 (15) Å], consistent with the similar ionic radii of the central atoms. However, the M—N distances are much longer in the titanium complex [2.400 (2) and 2.335 (2) Å] than in (II). In contrast, the dimeric calcium complex, (IV), exhibits significantly longer (non-bridging) M—O [2.1842 (16) and 2.1817 (16) Å] distances than (II). The M—N distances are again significantly shorter in (II) than in (IV) [2.4981 (19)–2.552 (2) Å]. The donor atoms form a distorted trigonal–pyramidal arrangement around the Zn. The Zn atom is 0.205 (1) Å from mean plane of the O and N atoms which form the base of the pyramid. The Naxial—Zn—donor angles demonstrate the distortion of the molecule from ideal geometry, with the two O atoms bent away from the Zn—Naxial bond.

Complex (III) is trigonal–bipyramidal, with the fifth coordination site occupied by a tetrahydrofuran (THF) molecule (Fig. 3). The change of R group from tBu to methyl is remote from the metal centre, and so it is reasonable to compare the geometry of (III) with that seen in (II). As would be expected, the additional electron density donated by the THF molecule results in the elongation of the metal—donor bond lengths in (III) compared with complex (II) (Table 1 and Table 2). The Zn—O bonds are lengthened by approximately 0.07 Å, whilst the Zn—N bonds are extended by approximately 0.1 Å. The geometry of the ONNO ligand at the metal centre is similar to that in (II), although the metal is displaced by only 0.0185 (16) Å from the mean plane of the equatorial donors.

Neither complex (II) nor complex (III) is active in the polymerization of LA or CL, in contrast with (IV). The structures presented in this report demonstrate the ability of the metal centre to bind both the ONNO ligand and an additional oxygen-based ligand. The lack of polymerization activity cannot, therefore, be due to steric protection of the Lewis acidic site.

Experimental top

The ligands (Ia) (Tshuva et al., 2001a) and (Ib) (Sarazin et al., 2006) were produced by the literature methods, as was complex (II) (Sarazin et al., 2006). Crystals of (II) suitable for X-ray diffraction were grown from a 1:3 light petroleum—diethyl ether solution at 268 K. Complex (III) was prepared by a method analogous to that used to produce (II). Reaction of Zn[N(SiMe3)2]2 (0.97 g, 2.5 mmol) and (Ib) (1.1 g, 2.5 mmol) in light petroleum (30 ml) gave a white solid. Spectroscopic analysis: 1H NMR (300 MHz, C6D6, δ, p.p.m.): 7.31 (d, 2H, Ar), 6.60 (d, 2H, Ar), 3.76 (s, 1H, Ar—CH2), 3.72 (s, 1H, Ar—CH2), 3.07 (d, 1H, Ar—CH2), 3.03 (s, 1H, Ar—CH2), 2.34 (s, 6H, 2 × MeAr), 2.04 (t, 1H, N—CH2—CH2—N), 1.76 (s, 18H, tBu), 1.59 (t, 1H, N—CH2—CH2—N), 1.49 (s, 6H, NMe2); 13C NMR (75 MHz, C6D6, δ, p.p.m.): 164.9 (C—O), 138.7 (CAr), 130.5 (CAr), 128.9(CAr), 123.0 (CAr), 122.9 (CAr), 60.1 (Ar—CH2), 59.4 (N—CH2), 46.5 (N—CH2), 41.8 [N(CH3)2], 35.8 [C(CH3)3], 30.2 [C(CH3)3], 22.9 (Ar—CH3). Crystals of (III) suitable for X-ray diffraction were grown from a 1:1:3 tetrahydrofuran–light petroleum–diethyl ether solution at 268 K.

Refinement top

All H atoms were refined using a riding model, using the default SHELXL97 parameters (Sheldrick, 1997) (C—H = 0.98–0.99 Å Please check added text) and with Uiso(H) = 1.5 or 1.2 times Ueq(C). Methyl H atoms were positioned using residual electron denisty (HFIX 137). One tBu group of (II) (central atom C112, and methyl atoms C113, C114 and C115) was found to be disordered, and was freely refined over two positions. This gave a final occupancy of 0.853 (3) in the major position (shown in Fig. 2). The central atom—methyl bonds were restrained to a distance of 1.55 Å for all of the disordered C atoms (DFIX 1.55 0.02). A second tBu group (central atom C127, and methyl atoms C128, C129 and C130) showed evidence for disorder, particularly in the displacement parameters for C129. However, this could not be successfully modelled.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. ε-Caprolactone and lactide

Fig. 2. The two independent molecules of (II) in the asymmetric unit, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Both molecules are shown in an arbitary orientation to allow comparison.

Fig. 3. A representation of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(II) {Bis(3,5-Di-tert-butyl-2-oxidobenzyl)[2-(N,N-dimethylamino)ethyl]amine- κ4N,N',O,O'}zinc(II) top
Crystal data top
[Zn(C34H54N2O2)]Z = 4
Mr = 588.16F(000) = 1272
Triclinic, P1Dx = 1.160 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.9275 (12) ÅCell parameters from 15277 reflections
b = 14.0002 (13) Åθ = 3.7–27.6°
c = 19.6729 (14) ŵ = 0.76 mm1
α = 100.747 (7)°T = 140 K
β = 102.467 (7)°Plate, colourless
γ = 96.879 (8)°0.20 × 0.08 × 0.02 mm
V = 3367.8 (5) Å3
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
15272 independent reflections
Radiation source: Enhance (Mo) X-ray Source8001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 16.0050 pixels mm-1θmax = 27.6°, θmin = 3.7°
Thin slice ϕ and ω scansh = 1616
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2003)
k = 1818
Tmin = 0.925, Tmax = 0.983l = 2525
42426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
15272 reflections(Δ/σ)max = 0.001
744 parametersΔρmax = 0.45 e Å3
12 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C34H54N2O2)]γ = 96.879 (8)°
Mr = 588.16V = 3367.8 (5) Å3
Triclinic, P1Z = 4
a = 12.9275 (12) ÅMo Kα radiation
b = 14.0002 (13) ŵ = 0.76 mm1
c = 19.6729 (14) ÅT = 140 K
α = 100.747 (7)°0.20 × 0.08 × 0.02 mm
β = 102.467 (7)°
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
15272 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2003)
8001 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.983Rint = 0.076
42426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04212 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.79Δρmax = 0.45 e Å3
15272 reflectionsΔρmin = 0.43 e Å3
744 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.21611 (2)0.06073 (2)0.826370 (15)0.02147 (8)
Zn20.83543 (2)0.48447 (2)0.314827 (15)0.02080 (8)
C1010.32137 (19)0.01416 (17)0.71210 (13)0.0256 (6)
H10A0.31960.00320.66070.031*
H10B0.35890.03320.73540.031*
C1020.38484 (19)0.11712 (16)0.74353 (12)0.0207 (6)
C1030.40703 (19)0.15618 (17)0.81766 (12)0.0197 (6)
C1040.47591 (19)0.24934 (17)0.84629 (12)0.0206 (6)
C1050.51285 (19)0.29836 (17)0.79840 (12)0.0226 (6)
H1050.55800.36060.81740.027*
C1060.48846 (19)0.26283 (17)0.72477 (12)0.0217 (6)
C1070.42495 (19)0.17083 (18)0.69919 (13)0.0236 (6)
H1070.40800.14310.64940.028*
C1080.50685 (19)0.29201 (17)0.92665 (12)0.0234 (6)
C1090.5824 (2)0.39143 (19)0.94640 (13)0.0383 (8)
H10C0.64750.38320.92960.057*
H10D0.60180.41530.99830.057*
H10E0.54610.43920.92390.057*
C1100.5659 (2)0.22020 (18)0.96521 (13)0.0289 (6)
H11A0.51810.15690.95570.043*
H11B0.58710.24811.01670.043*
H11C0.63020.21010.94770.043*
C1110.4072 (2)0.30963 (18)0.95451 (13)0.0292 (6)
H11D0.37150.35690.93100.044*
H11E0.42890.33601.00620.044*
H11F0.35750.24720.94410.044*
C1120.5324 (2)0.32285 (19)0.67592 (13)0.0280 (6)
C1130.6569 (2)0.3308 (2)0.69166 (18)0.0364 (9)0.853 (3)
H11G0.68480.37030.66130.055*0.853 (3)
H11H0.67550.26460.68170.055*0.853 (3)
H11I0.68870.36250.74190.055*0.853 (3)
C1140.4844 (3)0.2784 (2)0.59823 (15)0.0395 (10)0.853 (3)
H11J0.50990.32210.56950.059*0.853 (3)
H11K0.40590.27020.58870.059*0.853 (3)
H11L0.50620.21400.58570.059*0.853 (3)
C1150.5075 (3)0.4286 (2)0.69173 (16)0.0291 (8)0.853 (3)
H11M0.53900.45940.74220.044*0.853 (3)
H11N0.42950.42640.68110.044*0.853 (3)
H11O0.53820.46720.66190.044*0.853 (3)
C3130.5950 (15)0.2543 (12)0.6328 (10)0.0364 (9)0.147 (3)
H33A0.62750.29050.60240.055*0.147 (3)
H33B0.54500.19600.60300.055*0.147 (3)
H33C0.65150.23380.66610.055*0.147 (3)
C3140.4328 (14)0.3315 (15)0.6112 (9)0.0395 (10)0.147 (3)
H34A0.39560.38470.62820.059*0.147 (3)
H34B0.38240.26910.59550.059*0.147 (3)
H34C0.46090.34600.57110.059*0.147 (3)
C3150.5887 (15)0.4250 (10)0.7067 (9)0.0291 (8)0.147 (3)
H35A0.60100.45700.66830.044*0.147 (3)
H35B0.65780.42420.73890.044*0.147 (3)
H35C0.54460.46150.73340.044*0.147 (3)
C1160.1446 (2)0.06182 (18)0.67715 (13)0.0265 (6)
H11P0.13510.03170.62600.032*
H11Q0.18540.12930.68650.032*
C1170.0354 (2)0.06885 (17)0.69117 (13)0.0244 (6)
C1180.02346 (19)0.11206 (16)0.75938 (13)0.0220 (6)
C1190.0807 (2)0.12601 (17)0.76780 (14)0.0252 (6)
C1200.1674 (2)0.09147 (18)0.70836 (14)0.0303 (7)
H1200.23710.09970.71410.036*
C1210.1581 (2)0.04578 (18)0.64143 (15)0.0343 (7)
C1220.0556 (2)0.03642 (17)0.63422 (14)0.0320 (7)
H1220.04650.00680.58880.038*
C1230.0975 (2)0.17830 (18)0.83949 (14)0.0287 (6)
C1240.0317 (2)0.28366 (17)0.86243 (13)0.0291 (6)
H12A0.05690.32170.82690.044*
H12B0.04450.28020.86600.044*
H12C0.04110.31590.90890.044*
C1250.0624 (2)0.11926 (18)0.89690 (13)0.0350 (7)
H12D0.07910.14980.94140.053*
H12E0.01510.11920.90520.053*
H12F0.10090.05130.88060.053*
C1260.2150 (2)0.1888 (2)0.83663 (16)0.0469 (8)
H12G0.23910.22880.80220.070*
H12H0.22110.22110.88400.070*
H12I0.25980.12340.82190.070*
C1270.2555 (2)0.0094 (2)0.57674 (16)0.0462 (9)
C1280.2519 (3)0.0781 (3)0.52605 (17)0.0745 (12)
H12J0.18440.07900.51100.112*
H12K0.25640.14480.55020.112*
H12L0.31260.05500.48410.112*
C1290.2536 (3)0.0951 (2)0.5405 (2)0.124 (2)
H12M0.31820.11900.50140.186*
H12N0.25180.13730.57510.186*
H12O0.18970.09700.52140.186*
C1300.3631 (3)0.0113 (3)0.59868 (19)0.0814 (13)
H13D0.42280.01510.55660.122*
H13E0.36840.07940.61930.122*
H13F0.36630.02900.63410.122*
C1310.1584 (2)0.10094 (16)0.70662 (13)0.0268 (6)
H13G0.17930.13930.66550.032*
H13H0.07930.10600.69430.032*
C1320.1933 (2)0.14385 (17)0.77191 (13)0.0283 (6)
H13I0.15440.21210.76290.034*
H13J0.27120.14640.78060.034*
C1330.2350 (2)0.10487 (19)0.90182 (14)0.0432 (8)
H13K0.21540.17460.90200.065*
H13L0.22060.06380.94380.065*
H13M0.31160.09050.90310.065*
C1340.0546 (2)0.10599 (18)0.83519 (15)0.0370 (7)
H13N0.03470.17680.83200.056*
H13O0.01130.08740.79380.056*
H13P0.04160.06880.87900.056*
C2010.65527 (17)0.45778 (17)0.19360 (12)0.0197 (6)
H20A0.62410.44150.14140.024*
H20B0.63230.51970.21360.024*
C2020.61032 (17)0.37572 (16)0.22537 (12)0.0174 (5)
C2030.63793 (18)0.38410 (17)0.29998 (13)0.0196 (6)
C2040.59083 (19)0.30878 (17)0.32866 (12)0.0204 (6)
C2050.51772 (18)0.23105 (17)0.28150 (12)0.0211 (6)
H2050.48630.18070.30070.025*
C2060.48736 (18)0.22222 (17)0.20753 (12)0.0202 (6)
C2070.53645 (18)0.29562 (16)0.18092 (12)0.0183 (6)
H2070.51930.29130.13090.022*
C2080.6194 (2)0.31407 (18)0.40947 (12)0.0242 (6)
C2090.5605 (2)0.22461 (18)0.42853 (13)0.0348 (7)
H20C0.58320.22910.48000.052*
H20D0.57780.16390.40300.052*
H20E0.48280.22370.41470.052*
C2100.5884 (2)0.40755 (17)0.44889 (13)0.0266 (6)
H21A0.51030.40420.43460.040*
H21B0.62410.46560.43680.040*
H21C0.61080.41260.50050.040*
C2110.7409 (2)0.31509 (19)0.43651 (13)0.0328 (7)
H21D0.78140.37220.42620.049*
H21E0.76020.25440.41240.049*
H21F0.75830.31930.48810.049*
C2120.40207 (19)0.13512 (17)0.16153 (13)0.0235 (6)
C2130.29744 (19)0.13683 (18)0.18712 (14)0.0298 (7)
H21G0.27330.20020.18490.045*
H21H0.31070.12820.23640.045*
H21I0.24180.08320.15630.045*
C2140.3769 (2)0.13907 (18)0.08281 (12)0.0313 (7)
H21J0.35440.20220.07730.047*
H21K0.31900.08490.05580.047*
H21L0.44130.13270.06470.047*
C2150.4407 (2)0.03678 (17)0.16800 (14)0.0324 (7)
H21M0.38520.01800.13860.049*
H21N0.45460.03110.21790.049*
H21O0.50700.03450.15160.049*
C2160.81327 (18)0.39133 (17)0.16733 (13)0.0206 (6)
H21P0.79340.39190.11590.025*
H21Q0.77530.32900.17350.025*
C2170.93294 (18)0.39221 (16)0.18959 (12)0.0184 (6)
C2180.98275 (18)0.38766 (16)0.26066 (12)0.0191 (5)
C2191.09358 (19)0.38057 (16)0.27772 (12)0.0204 (6)
C2201.14985 (19)0.38320 (16)0.22483 (13)0.0226 (6)
H2201.22430.37960.23670.027*
C2211.10328 (19)0.39089 (16)0.15538 (13)0.0204 (6)
C2220.99400 (18)0.39491 (16)0.13988 (13)0.0208 (6)
H2220.95960.39970.09310.025*
C2231.14889 (19)0.36973 (18)0.35306 (13)0.0239 (6)
C2241.0919 (2)0.27716 (18)0.37025 (13)0.0309 (7)
H22A1.12640.27190.41860.046*
H22B1.09690.21840.33590.046*
H22C1.01610.28230.36710.046*
C2251.1460 (2)0.46093 (18)0.40904 (13)0.0332 (7)
H22D1.18420.45450.45630.050*
H22E1.07120.46660.40910.050*
H22F1.18070.52000.39760.050*
C2261.2677 (2)0.3587 (2)0.35992 (14)0.0369 (7)
H22G1.30700.41760.35110.055*
H22H1.27240.30060.32490.055*
H22I1.29930.35070.40810.055*
C2271.16632 (19)0.38907 (18)0.09749 (13)0.0244 (6)
C2281.1392 (2)0.4676 (2)0.05450 (14)0.0376 (7)
H22J1.15780.53300.08660.056*
H22K1.06220.45460.03150.056*
H22L1.18030.46550.01800.056*
C2291.1350 (2)0.28661 (18)0.04725 (14)0.0334 (7)
H22M1.17470.28380.01000.050*
H22N1.05770.27430.02520.050*
H22O1.15260.23630.07450.050*
C2301.28785 (19)0.40901 (18)0.12852 (13)0.0292 (6)
H23A1.30850.47330.16200.044*
H23B1.32450.40910.08980.044*
H23C1.30850.35740.15370.044*
C2310.81672 (19)0.57145 (16)0.19410 (12)0.0212 (6)
H23D0.76780.58440.15190.025*
H23E0.88830.56960.18400.025*
C2320.8256 (2)0.65388 (17)0.25868 (13)0.0260 (6)
H23F0.85860.71690.25040.031*
H23G0.75290.66090.26530.031*
C2330.8727 (2)0.69441 (19)0.38847 (14)0.0426 (8)
H23H0.91610.67950.43140.064*
H23I0.79640.68060.38810.064*
H23J0.89260.76420.38840.064*
C2341.0084 (2)0.65339 (19)0.32612 (15)0.0352 (7)
H23K1.02740.72170.32230.053*
H23L1.02340.60860.28610.053*
H23M1.05110.64360.37110.053*
N1010.20907 (16)0.00364 (13)0.72052 (10)0.0218 (5)
N1020.17089 (17)0.08316 (14)0.83635 (11)0.0284 (5)
N2010.77509 (15)0.47478 (13)0.20724 (10)0.0187 (5)
N2020.89223 (16)0.63242 (14)0.32436 (11)0.0253 (5)
O1010.36577 (12)0.10567 (11)0.86029 (8)0.0227 (4)
O1020.10972 (13)0.14260 (11)0.81524 (8)0.0224 (4)
O2010.70621 (12)0.46305 (11)0.34334 (8)0.0216 (4)
O2020.92543 (12)0.38776 (11)0.31033 (8)0.0213 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02403 (18)0.01658 (17)0.02199 (18)0.00116 (13)0.00418 (14)0.00286 (13)
Zn20.01902 (17)0.01911 (17)0.02331 (18)0.00040 (13)0.00428 (14)0.00509 (14)
C1010.0316 (16)0.0234 (14)0.0220 (15)0.0048 (12)0.0091 (12)0.0020 (12)
C1020.0234 (14)0.0159 (13)0.0202 (14)0.0009 (10)0.0052 (11)0.0010 (11)
C1030.0212 (14)0.0181 (13)0.0221 (14)0.0055 (11)0.0072 (11)0.0063 (11)
C1040.0223 (14)0.0194 (13)0.0205 (14)0.0031 (11)0.0077 (11)0.0026 (11)
C1050.0228 (14)0.0216 (14)0.0214 (14)0.0011 (11)0.0073 (11)0.0006 (11)
C1060.0222 (14)0.0230 (14)0.0207 (14)0.0020 (11)0.0088 (11)0.0038 (11)
C1070.0283 (15)0.0251 (15)0.0180 (14)0.0054 (12)0.0080 (12)0.0031 (12)
C1080.0242 (15)0.0241 (14)0.0200 (14)0.0011 (11)0.0072 (11)0.0016 (11)
C1090.0476 (19)0.0385 (17)0.0196 (15)0.0116 (14)0.0086 (14)0.0047 (13)
C1100.0255 (15)0.0381 (16)0.0216 (15)0.0052 (12)0.0061 (12)0.0030 (12)
C1110.0354 (16)0.0302 (15)0.0233 (15)0.0106 (12)0.0102 (13)0.0027 (12)
C1120.0324 (17)0.0293 (16)0.0256 (16)0.0021 (13)0.0163 (13)0.0057 (13)
C1130.036 (2)0.036 (2)0.047 (2)0.0081 (16)0.0238 (17)0.0160 (17)
C1140.058 (3)0.038 (2)0.0239 (18)0.0050 (17)0.0205 (17)0.0051 (16)
C1150.033 (2)0.0315 (18)0.0257 (18)0.0038 (16)0.0101 (16)0.0115 (15)
C3130.036 (2)0.036 (2)0.047 (2)0.0081 (16)0.0238 (17)0.0160 (17)
C3140.058 (3)0.038 (2)0.0239 (18)0.0050 (17)0.0205 (17)0.0051 (16)
C3150.033 (2)0.0315 (18)0.0257 (18)0.0038 (16)0.0101 (16)0.0115 (15)
C1160.0376 (17)0.0189 (14)0.0199 (15)0.0036 (12)0.0029 (12)0.0025 (11)
C1170.0277 (15)0.0182 (14)0.0245 (15)0.0002 (11)0.0005 (12)0.0066 (12)
C1180.0239 (15)0.0126 (13)0.0245 (15)0.0016 (11)0.0020 (12)0.0035 (11)
C1190.0248 (15)0.0158 (14)0.0320 (16)0.0018 (11)0.0019 (13)0.0073 (12)
C1200.0234 (15)0.0258 (15)0.0381 (18)0.0021 (12)0.0021 (13)0.0107 (13)
C1210.0341 (18)0.0194 (15)0.0397 (18)0.0009 (12)0.0121 (14)0.0101 (13)
C1220.0471 (19)0.0180 (14)0.0219 (15)0.0033 (13)0.0068 (14)0.0016 (12)
C1230.0230 (15)0.0281 (15)0.0356 (17)0.0009 (12)0.0078 (13)0.0095 (13)
C1240.0297 (16)0.0254 (15)0.0334 (16)0.0054 (12)0.0111 (13)0.0046 (12)
C1250.0386 (18)0.0273 (15)0.0356 (17)0.0075 (13)0.0090 (14)0.0065 (13)
C1260.0276 (17)0.061 (2)0.053 (2)0.0051 (15)0.0159 (15)0.0110 (17)
C1270.044 (2)0.0327 (18)0.044 (2)0.0073 (14)0.0230 (16)0.0030 (15)
C1280.072 (3)0.092 (3)0.047 (2)0.013 (2)0.0203 (19)0.022 (2)
C1290.106 (4)0.047 (2)0.137 (4)0.028 (2)0.097 (3)0.044 (2)
C1300.040 (2)0.096 (3)0.081 (3)0.012 (2)0.028 (2)0.017 (2)
C1310.0363 (16)0.0140 (13)0.0268 (15)0.0003 (11)0.0080 (13)0.0011 (11)
C1320.0294 (16)0.0169 (14)0.0357 (17)0.0005 (12)0.0047 (13)0.0043 (12)
C1330.063 (2)0.0321 (17)0.0344 (18)0.0113 (15)0.0057 (16)0.0128 (14)
C1340.0449 (19)0.0196 (15)0.0480 (19)0.0029 (13)0.0193 (15)0.0067 (13)
C2010.0160 (13)0.0223 (14)0.0203 (14)0.0023 (10)0.0040 (11)0.0049 (11)
C2020.0133 (13)0.0180 (13)0.0216 (14)0.0017 (10)0.0054 (10)0.0052 (11)
C2030.0162 (13)0.0191 (13)0.0232 (14)0.0041 (10)0.0049 (11)0.0029 (11)
C2040.0212 (14)0.0189 (13)0.0226 (14)0.0047 (11)0.0074 (11)0.0047 (11)
C2050.0205 (14)0.0189 (13)0.0269 (15)0.0007 (11)0.0105 (11)0.0086 (11)
C2060.0177 (14)0.0190 (14)0.0223 (14)0.0008 (11)0.0045 (11)0.0024 (11)
C2070.0172 (13)0.0214 (14)0.0168 (13)0.0041 (11)0.0057 (11)0.0030 (11)
C2080.0287 (15)0.0243 (14)0.0193 (14)0.0035 (12)0.0063 (12)0.0040 (11)
C2090.0546 (19)0.0272 (15)0.0233 (15)0.0024 (14)0.0131 (14)0.0062 (12)
C2100.0256 (15)0.0306 (15)0.0254 (15)0.0034 (12)0.0097 (12)0.0074 (12)
C2110.0394 (17)0.0366 (16)0.0222 (15)0.0130 (13)0.0048 (13)0.0051 (13)
C2120.0216 (14)0.0208 (14)0.0247 (15)0.0018 (11)0.0050 (12)0.0009 (12)
C2130.0226 (15)0.0290 (15)0.0349 (17)0.0020 (12)0.0069 (13)0.0038 (13)
C2140.0250 (15)0.0331 (16)0.0276 (16)0.0082 (12)0.0025 (12)0.0007 (13)
C2150.0275 (16)0.0222 (15)0.0405 (18)0.0020 (12)0.0043 (14)0.0018 (13)
C2160.0201 (14)0.0173 (13)0.0239 (15)0.0021 (11)0.0043 (11)0.0051 (11)
C2170.0145 (13)0.0156 (13)0.0242 (14)0.0023 (10)0.0033 (11)0.0040 (11)
C2180.0186 (13)0.0126 (12)0.0247 (14)0.0019 (10)0.0046 (11)0.0047 (11)
C2190.0186 (14)0.0162 (13)0.0236 (14)0.0007 (10)0.0008 (11)0.0038 (11)
C2200.0134 (13)0.0209 (14)0.0315 (16)0.0013 (11)0.0031 (11)0.0043 (12)
C2210.0181 (14)0.0173 (13)0.0244 (15)0.0024 (10)0.0040 (11)0.0026 (11)
C2220.0207 (14)0.0183 (13)0.0211 (14)0.0020 (10)0.0019 (11)0.0031 (11)
C2230.0206 (14)0.0264 (15)0.0224 (15)0.0032 (11)0.0006 (11)0.0053 (12)
C2240.0271 (15)0.0319 (16)0.0344 (17)0.0054 (12)0.0021 (13)0.0148 (13)
C2250.0321 (17)0.0360 (17)0.0249 (16)0.0051 (13)0.0041 (13)0.0038 (13)
C2260.0241 (16)0.0526 (19)0.0328 (17)0.0080 (13)0.0027 (13)0.0164 (15)
C2270.0198 (14)0.0288 (15)0.0256 (15)0.0065 (11)0.0074 (12)0.0044 (12)
C2280.0306 (17)0.0501 (19)0.0449 (18)0.0155 (14)0.0183 (14)0.0260 (15)
C2290.0264 (16)0.0391 (17)0.0303 (16)0.0045 (13)0.0053 (13)0.0009 (13)
C2300.0255 (15)0.0310 (15)0.0318 (16)0.0046 (12)0.0112 (12)0.0039 (12)
C2310.0198 (14)0.0170 (13)0.0278 (15)0.0001 (10)0.0067 (11)0.0085 (11)
C2320.0228 (15)0.0170 (14)0.0383 (17)0.0009 (11)0.0066 (12)0.0088 (12)
C2330.058 (2)0.0310 (17)0.0339 (18)0.0070 (15)0.0071 (16)0.0011 (14)
C2340.0300 (17)0.0260 (16)0.0448 (19)0.0059 (13)0.0010 (14)0.0122 (14)
N1010.0259 (12)0.0134 (11)0.0244 (12)0.0010 (9)0.0053 (10)0.0023 (9)
N1020.0332 (14)0.0221 (12)0.0272 (13)0.0009 (10)0.0025 (11)0.0069 (10)
N2010.0161 (11)0.0133 (10)0.0259 (12)0.0006 (8)0.0039 (9)0.0050 (9)
N2020.0265 (13)0.0183 (12)0.0282 (13)0.0003 (9)0.0048 (10)0.0024 (10)
O1010.0233 (10)0.0241 (9)0.0192 (9)0.0002 (7)0.0032 (8)0.0056 (8)
O1020.0216 (10)0.0204 (9)0.0214 (10)0.0027 (7)0.0005 (8)0.0009 (8)
O2010.0201 (9)0.0190 (9)0.0221 (10)0.0033 (7)0.0052 (8)0.0000 (7)
O2020.0211 (10)0.0227 (9)0.0236 (10)0.0038 (7)0.0072 (8)0.0112 (8)
Geometric parameters (Å, º) top
Zn1—O1011.8918 (15)C132—H13I0.9900
Zn1—O1021.8960 (17)C132—H13J0.9900
Zn1—N1012.065 (2)C133—N1021.478 (3)
Zn1—N1022.0864 (19)C133—H13K0.9800
Zn2—O2011.8821 (16)C133—H13L0.9800
Zn2—O2021.8899 (17)C133—H13M0.9800
Zn2—N2012.0643 (18)C134—N1021.493 (3)
Zn2—N2022.0727 (19)C134—H13N0.9800
C101—N1011.490 (3)C134—H13O0.9800
C101—C1021.516 (3)C134—H13P0.9800
C101—H10A0.9900C201—N2011.495 (3)
C101—H10B0.9900C201—C2021.521 (3)
C102—C1071.394 (3)C201—H20A0.9900
C102—C1031.412 (3)C201—H20B0.9900
C103—O1011.346 (2)C202—C2071.397 (3)
C103—C1041.429 (3)C202—C2031.412 (3)
C104—C1051.394 (3)C203—O2011.348 (3)
C104—C1081.528 (3)C203—C2041.420 (3)
C105—C1061.393 (3)C204—C2051.392 (3)
C105—H1050.9500C204—C2081.538 (3)
C106—C1071.383 (3)C205—C2061.401 (3)
C106—C1121.541 (3)C205—H2050.9500
C107—H1070.9500C206—C2071.386 (3)
C108—C1111.534 (3)C206—C2121.535 (3)
C108—C1091.533 (3)C207—H2070.9500
C108—C1101.545 (3)C208—C2101.535 (3)
C109—H10C0.9800C208—C2091.536 (3)
C109—H10D0.9800C208—C2111.543 (3)
C109—H10E0.9800C209—H20C0.9800
C110—H11A0.9800C209—H20D0.9800
C110—H11B0.9800C209—H20E0.9800
C110—H11C0.9800C210—H21A0.9800
C111—H11D0.9800C210—H21B0.9800
C111—H11E0.9800C210—H21C0.9800
C111—H11F0.9800C211—H21D0.9800
C112—C3151.476 (13)C211—H21E0.9800
C112—C1141.500 (4)C211—H21F0.9800
C112—C1151.542 (4)C212—C2141.525 (3)
C112—C1131.558 (4)C212—C2151.537 (3)
C112—C3131.573 (14)C212—C2131.543 (3)
C112—C3141.638 (14)C213—H21G0.9800
C113—H11G0.9800C213—H21H0.9800
C113—H11H0.9800C213—H21I0.9800
C113—H11I0.9800C214—H21J0.9800
C114—H11J0.9800C214—H21K0.9800
C114—H11K0.9800C214—H21L0.9800
C114—H11L0.9800C215—H21M0.9800
C115—H11M0.9800C215—H21N0.9800
C115—H11N0.9800C215—H21O0.9800
C115—H11O0.9800C216—N2011.479 (3)
C313—H33A0.9800C216—C2171.512 (3)
C313—H33B0.9800C216—H21P0.9900
C313—H33C0.9800C216—H21Q0.9900
C314—H34A0.9800C217—C2221.386 (3)
C314—H34B0.9800C217—C2181.424 (3)
C314—H34C0.9800C218—O2021.348 (3)
C315—H35A0.9800C218—C2191.419 (3)
C315—H35B0.9800C219—C2201.396 (3)
C315—H35C0.9800C219—C2231.544 (3)
C116—N1011.484 (3)C220—C2211.399 (3)
C116—C1171.506 (4)C220—H2200.9500
C116—H11P0.9900C221—C2221.390 (3)
C116—H11Q0.9900C221—C2271.535 (3)
C117—C1221.400 (3)C222—H2220.9500
C117—C1181.414 (3)C223—C2251.533 (3)
C118—O1021.347 (3)C223—C2261.542 (3)
C118—C1191.424 (3)C223—C2241.543 (3)
C119—C1201.397 (3)C224—H22A0.9800
C119—C1231.535 (4)C224—H22B0.9800
C120—C1211.389 (4)C224—H22C0.9800
C120—H1200.9500C225—H22D0.9800
C121—C1221.382 (4)C225—H22E0.9800
C121—C1271.542 (3)C225—H22F0.9800
C122—H1220.9500C226—H22G0.9800
C123—C1261.533 (4)C226—H22H0.9800
C123—C1251.543 (3)C226—H22I0.9800
C123—C1241.545 (3)C227—C2301.529 (3)
C124—H12A0.9800C227—C2281.536 (3)
C124—H12B0.9800C227—C2291.536 (3)
C124—H12C0.9800C228—H22J0.9800
C125—H12D0.9800C228—H22K0.9800
C125—H12E0.9800C228—H22L0.9800
C125—H12F0.9800C229—H22M0.9800
C126—H12G0.9800C229—H22N0.9800
C126—H12H0.9800C229—H22O0.9800
C126—H12I0.9800C230—H23A0.9800
C127—C1291.509 (4)C230—H23B0.9800
C127—C1281.513 (4)C230—H23C0.9800
C127—C1301.545 (5)C231—N2011.485 (2)
C128—H12J0.9800C231—C2321.522 (3)
C128—H12K0.9800C231—H23D0.9900
C128—H12L0.9800C231—H23E0.9900
C129—H12M0.9800C232—N2021.493 (3)
C129—H12N0.9800C232—H23F0.9900
C129—H12O0.9800C232—H23G0.9900
C130—H13D0.9800C233—N2021.480 (3)
C130—H13E0.9800C233—H23H0.9800
C130—H13F0.9800C233—H23I0.9800
C131—N1011.480 (3)C233—H23J0.9800
C131—C1321.522 (3)C234—N2021.487 (3)
C131—H13G0.9900C234—H23K0.9800
C131—H13H0.9900C234—H23L0.9800
C132—N1021.493 (3)C234—H23M0.9800
O101—Zn1—O102125.35 (7)N201—C201—H20A108.8
O101—Zn1—N10199.58 (7)C202—C201—H20A108.8
O102—Zn1—N10199.77 (7)N201—C201—H20B108.8
O101—Zn1—N102112.76 (7)C202—C201—H20B108.8
O102—Zn1—N102118.59 (8)H20A—C201—H20B107.7
N101—Zn1—N10287.81 (8)C207—C202—C203120.41 (19)
O201—Zn2—O202121.39 (7)C207—C202—C201119.6 (2)
O201—Zn2—N20199.95 (7)C203—C202—C201119.85 (19)
O202—Zn2—N20199.80 (7)O201—C203—C202120.64 (19)
O201—Zn2—N202113.08 (8)O201—C203—C204120.6 (2)
O202—Zn2—N202122.20 (8)C202—C203—C204118.8 (2)
N201—Zn2—N20288.07 (7)C205—C204—C203117.9 (2)
N101—C101—C102113.5 (2)C205—C204—C208121.4 (2)
N101—C101—H10A108.9C203—C204—C208120.7 (2)
C102—C101—H10A108.9C204—C205—C206124.3 (2)
N101—C101—H10B108.9C204—C205—H205117.9
C102—C101—H10B108.9C206—C205—H205117.9
H10A—C101—H10B107.7C207—C206—C205116.5 (2)
C107—C102—C103120.4 (2)C207—C206—C212124.2 (2)
C107—C102—C101119.5 (2)C205—C206—C212119.29 (19)
C103—C102—C101120.0 (2)C206—C207—C202122.1 (2)
O101—C103—C102120.5 (2)C206—C207—H207119.0
O101—C103—C104121.1 (2)C202—C207—H207119.0
C102—C103—C104118.4 (2)C210—C208—C209108.1 (2)
C105—C104—C103117.6 (2)C210—C208—C204109.91 (19)
C105—C104—C108122.2 (2)C209—C208—C204111.91 (19)
C103—C104—C108120.25 (19)C210—C208—C211109.6 (2)
C106—C105—C104124.9 (2)C209—C208—C211107.1 (2)
C106—C105—H105117.6C204—C208—C211110.2 (2)
C104—C105—H105117.6C208—C209—H20C109.5
C107—C106—C105116.0 (2)C208—C209—H20D109.5
C107—C106—C112122.8 (2)H20C—C209—H20D109.5
C105—C106—C112121.1 (2)C208—C209—H20E109.5
C106—C107—C102122.6 (2)H20C—C209—H20E109.5
C106—C107—H107118.7H20D—C209—H20E109.5
C102—C107—H107118.7C208—C210—H21A109.5
C104—C108—C111110.94 (19)C208—C210—H21B109.5
C104—C108—C109112.04 (19)H21A—C210—H21B109.5
C111—C108—C109106.9 (2)C208—C210—H21C109.5
C104—C108—C110109.4 (2)H21A—C210—H21C109.5
C111—C108—C110109.88 (19)H21B—C210—H21C109.5
C109—C108—C110107.6 (2)C208—C211—H21D109.5
C108—C109—H10C109.5C208—C211—H21E109.5
C108—C109—H10D109.5H21D—C211—H21E109.5
H10C—C109—H10D109.5C208—C211—H21F109.5
C108—C109—H10E109.5H21D—C211—H21F109.5
H10C—C109—H10E109.5H21E—C211—H21F109.5
H10D—C109—H10E109.5C214—C212—C206112.00 (18)
C108—C110—H11A109.5C214—C212—C215107.8 (2)
C108—C110—H11B109.5C206—C212—C215110.6 (2)
H11A—C110—H11B109.5C214—C212—C213108.4 (2)
C108—C110—H11C109.5C206—C212—C213109.4 (2)
H11A—C110—H11C109.5C215—C212—C213108.62 (19)
H11B—C110—H11C109.5C212—C213—H21G109.5
C108—C111—H11D109.5C212—C213—H21H109.5
C108—C111—H11E109.5H21G—C213—H21H109.5
H11D—C111—H11E109.5C212—C213—H21I109.5
C108—C111—H11F109.5H21G—C213—H21I109.5
H11D—C111—H11F109.5H21H—C213—H21I109.5
H11E—C111—H11F109.5C212—C214—H21J109.5
C114—C112—C115108.0 (2)C212—C214—H21K109.5
C315—C112—C106118.9 (7)H21J—C214—H21K109.5
C114—C112—C106112.5 (2)C212—C214—H21L109.5
C115—C112—C106109.8 (2)H21J—C214—H21L109.5
C114—C112—C113109.3 (3)H21K—C214—H21L109.5
C115—C112—C113107.4 (2)C212—C215—H21M109.5
C106—C112—C113109.7 (2)C212—C215—H21N109.5
C315—C112—C313115.3 (10)H21M—C215—H21N109.5
C106—C112—C313106.4 (6)C212—C215—H21O109.5
C315—C112—C314105.1 (10)H21M—C215—H21O109.5
C106—C112—C314109.1 (7)H21N—C215—H21O109.5
C313—C112—C314100.3 (11)N201—C216—C217114.68 (19)
C112—C113—H11G109.5N201—C216—H21P108.6
C112—C113—H11H109.5C217—C216—H21P108.6
C112—C113—H11I109.5N201—C216—H21Q108.6
C112—C114—H11J109.5C217—C216—H21Q108.6
C112—C114—H11K109.5H21P—C216—H21Q107.6
C112—C114—H11L109.5C222—C217—C218119.8 (2)
C112—C115—H11M109.5C222—C217—C216119.6 (2)
C112—C115—H11N109.5C218—C217—C216120.5 (2)
C112—C115—H11O109.5O202—C218—C219120.6 (2)
C112—C313—H33A109.5O202—C218—C217120.8 (2)
C112—C313—H33B109.5C219—C218—C217118.6 (2)
H33A—C313—H33B109.5C220—C219—C218118.3 (2)
C112—C313—H33C109.5C220—C219—C223121.6 (2)
H33A—C313—H33C109.5C218—C219—C223120.1 (2)
H33B—C313—H33C109.5C219—C220—C221124.0 (2)
C112—C314—H34A109.5C219—C220—H220118.0
C112—C314—H34B109.5C221—C220—H220118.0
H34A—C314—H34B109.5C222—C221—C220116.2 (2)
C112—C314—H34C109.5C222—C221—C227121.0 (2)
H34A—C314—H34C109.5C220—C221—C227122.7 (2)
H34B—C314—H34C109.5C217—C222—C221123.0 (2)
C112—C315—H35A109.5C217—C222—H222118.5
C112—C315—H35B109.5C221—C222—H222118.5
H35A—C315—H35B109.5C225—C223—C226107.4 (2)
C112—C315—H35C109.5C225—C223—C224109.4 (2)
H35A—C315—H35C109.5C226—C223—C224107.3 (2)
H35B—C315—H35C109.5C225—C223—C219110.3 (2)
N101—C116—C117114.7 (2)C226—C223—C219112.2 (2)
N101—C116—H11P108.6C224—C223—C219110.14 (18)
C117—C116—H11P108.6C223—C224—H22A109.5
N101—C116—H11Q108.6C223—C224—H22B109.5
C117—C116—H11Q108.6H22A—C224—H22B109.5
H11P—C116—H11Q107.6C223—C224—H22C109.5
C122—C117—C118119.5 (3)H22A—C224—H22C109.5
C122—C117—C116118.8 (2)H22B—C224—H22C109.5
C118—C117—C116121.5 (2)C223—C225—H22D109.5
O102—C118—C117120.6 (2)C223—C225—H22E109.5
O102—C118—C119120.3 (2)H22D—C225—H22E109.5
C117—C118—C119119.1 (2)C223—C225—H22F109.5
C120—C119—C118117.8 (2)H22D—C225—H22F109.5
C120—C119—C123120.9 (2)H22E—C225—H22F109.5
C118—C119—C123121.3 (2)C223—C226—H22G109.5
C121—C120—C119124.2 (3)C223—C226—H22H109.5
C121—C120—H120117.9H22G—C226—H22H109.5
C119—C120—H120117.9C223—C226—H22I109.5
C122—C121—C120116.7 (2)H22G—C226—H22I109.5
C122—C121—C127120.4 (3)H22H—C226—H22I109.5
C120—C121—C127122.8 (3)C230—C227—C228107.4 (2)
C121—C122—C117122.6 (3)C230—C227—C229108.7 (2)
C121—C122—H122118.7C228—C227—C229109.3 (2)
C117—C122—H122118.7C230—C227—C221112.47 (19)
C126—C123—C119113.1 (2)C228—C227—C221110.7 (2)
C126—C123—C125107.1 (2)C229—C227—C221108.19 (19)
C119—C123—C125109.9 (2)C227—C228—H22J109.5
C126—C123—C124106.8 (2)C227—C228—H22K109.5
C119—C123—C124109.94 (19)H22J—C228—H22K109.5
C125—C123—C124109.9 (2)C227—C228—H22L109.5
C123—C124—H12A109.5H22J—C228—H22L109.5
C123—C124—H12B109.5H22K—C228—H22L109.5
H12A—C124—H12B109.5C227—C229—H22M109.5
C123—C124—H12C109.5C227—C229—H22N109.5
H12A—C124—H12C109.5H22M—C229—H22N109.5
H12B—C124—H12C109.5C227—C229—H22O109.5
C123—C125—H12D109.5H22M—C229—H22O109.5
C123—C125—H12E109.5H22N—C229—H22O109.5
H12D—C125—H12E109.5C227—C230—H23A109.5
C123—C125—H12F109.5C227—C230—H23B109.5
H12D—C125—H12F109.5H23A—C230—H23B109.5
H12E—C125—H12F109.5C227—C230—H23C109.5
C123—C126—H12G109.5H23A—C230—H23C109.5
C123—C126—H12H109.5H23B—C230—H23C109.5
H12G—C126—H12H109.5N201—C231—C232110.62 (18)
C123—C126—H12I109.5N201—C231—H23D109.5
H12G—C126—H12I109.5C232—C231—H23D109.5
H12H—C126—H12I109.5N201—C231—H23E109.5
C129—C127—C128111.1 (3)C232—C231—H23E109.5
C129—C127—C121110.1 (2)H23D—C231—H23E108.1
C128—C127—C121108.6 (2)N202—C232—C231110.71 (19)
C129—C127—C130108.0 (3)N202—C232—H23F109.5
C128—C127—C130107.1 (3)C231—C232—H23F109.5
C121—C127—C130111.9 (3)N202—C232—H23G109.5
C127—C128—H12J109.5C231—C232—H23G109.5
C127—C128—H12K109.5H23F—C232—H23G108.1
H12J—C128—H12K109.5N202—C233—H23H109.5
C127—C128—H12L109.5N202—C233—H23I109.5
H12J—C128—H12L109.5H23H—C233—H23I109.5
H12K—C128—H12L109.5N202—C233—H23J109.5
C127—C129—H12M109.5H23H—C233—H23J109.5
C127—C129—H12N109.5H23I—C233—H23J109.5
H12M—C129—H12N109.5N202—C234—H23K109.5
C127—C129—H12O109.5N202—C234—H23L109.5
H12M—C129—H12O109.5H23K—C234—H23L109.5
H12N—C129—H12O109.5N202—C234—H23M109.5
C127—C130—H13D109.5H23K—C234—H23M109.5
C127—C130—H13E109.5H23L—C234—H23M109.5
H13D—C130—H13E109.5C131—N101—C116112.97 (18)
C127—C130—H13F109.5C131—N101—C101112.12 (19)
H13D—C130—H13F109.5C116—N101—C101110.95 (18)
H13E—C130—H13F109.5C131—N101—Zn1105.41 (13)
N101—C131—C132110.62 (19)C116—N101—Zn1107.63 (15)
N101—C131—H13G109.5C101—N101—Zn1107.36 (14)
C132—C131—H13G109.5C133—N102—C134108.6 (2)
N101—C131—H13H109.5C133—N102—C132110.2 (2)
C132—C131—H13H109.5C134—N102—C132110.09 (19)
H13G—C131—H13H108.1C133—N102—Zn1112.54 (15)
N102—C132—C131111.0 (2)C134—N102—Zn1112.60 (16)
N102—C132—H13I109.4C132—N102—Zn1102.73 (14)
C131—C132—H13I109.4C216—N201—C231112.96 (18)
N102—C132—H13J109.4C216—N201—C201111.35 (17)
C131—C132—H13J109.4C231—N201—C201111.65 (17)
H13I—C132—H13J108.0C216—N201—Zn2108.05 (14)
N102—C133—H13K109.5C231—N201—Zn2105.30 (13)
N102—C133—H13L109.5C201—N201—Zn2107.10 (14)
H13K—C133—H13L109.5C233—N202—C234108.8 (2)
N102—C133—H13M109.5C233—N202—C232109.8 (2)
H13K—C133—H13M109.5C234—N202—C232110.57 (19)
H13L—C133—H13M109.5C233—N202—Zn2111.58 (15)
N102—C134—H13N109.5C234—N202—Zn2113.50 (16)
N102—C134—H13O109.5C232—N202—Zn2102.38 (13)
H13N—C134—H13O109.5C103—O101—Zn1113.05 (13)
N102—C134—H13P109.5C118—O102—Zn1118.15 (15)
H13N—C134—H13P109.5C203—O201—Zn2111.79 (14)
H13O—C134—H13P109.5C218—O202—Zn2115.18 (13)
N201—C201—C202113.91 (18)
N101—C101—C102—C107118.9 (2)C217—C218—C219—C2203.1 (3)
N101—C101—C102—C10363.9 (3)O202—C218—C219—C2231.8 (3)
C107—C102—C103—O101178.1 (2)C217—C218—C219—C223176.6 (2)
C101—C102—C103—O1014.8 (3)C218—C219—C220—C2211.0 (3)
C107—C102—C103—C1043.2 (3)C223—C219—C220—C221178.7 (2)
C101—C102—C103—C104173.9 (2)C219—C220—C221—C2220.7 (3)
O101—C103—C104—C105178.2 (2)C219—C220—C221—C227177.3 (2)
C102—C103—C104—C1053.1 (3)C218—C217—C222—C2211.7 (3)
O101—C103—C104—C1081.9 (3)C216—C217—C222—C221176.7 (2)
C102—C103—C104—C108176.8 (2)C220—C221—C222—C2170.4 (3)
C103—C104—C105—C1060.7 (4)C227—C221—C222—C217177.0 (2)
C108—C104—C105—C106179.3 (2)C220—C219—C223—C225117.5 (3)
C104—C105—C106—C1071.7 (4)C218—C219—C223—C22562.8 (3)
C104—C105—C106—C112179.5 (2)C220—C219—C223—C2262.2 (3)
C105—C106—C107—C1021.6 (4)C218—C219—C223—C226177.5 (2)
C112—C106—C107—C102179.6 (2)C220—C219—C223—C224121.7 (2)
C103—C102—C107—C1060.8 (4)C218—C219—C223—C22458.0 (3)
C101—C102—C107—C106176.3 (2)C222—C221—C227—C230166.5 (2)
C105—C104—C108—C111118.6 (2)C220—C221—C227—C23017.1 (3)
C103—C104—C108—C11161.5 (3)C222—C221—C227—C22846.3 (3)
C105—C104—C108—C1090.8 (3)C220—C221—C227—C228137.3 (2)
C103—C104—C108—C109179.1 (2)C222—C221—C227—C22973.4 (3)
C105—C104—C108—C110120.0 (2)C220—C221—C227—C229103.0 (2)
C103—C104—C108—C11059.9 (3)N201—C231—C232—N20254.9 (2)
C107—C106—C112—C315172.9 (9)C132—C131—N101—C116152.8 (2)
C105—C106—C112—C3158.4 (10)C132—C131—N101—C10180.9 (3)
C107—C106—C112—C1149.4 (4)C132—C131—N101—Zn135.6 (2)
C105—C106—C112—C114171.9 (3)C117—C116—N101—C13162.4 (3)
C107—C106—C112—C115129.7 (3)C117—C116—N101—C101170.7 (2)
C105—C106—C112—C11551.5 (3)C117—C116—N101—Zn153.5 (2)
C107—C106—C112—C113112.5 (3)C102—C101—N101—C131165.37 (18)
C105—C106—C112—C11366.2 (3)C102—C101—N101—C11667.3 (2)
C107—C106—C112—C31355.0 (8)C102—C101—N101—Zn150.1 (2)
C105—C106—C112—C313123.8 (8)O101—Zn1—N101—C131122.62 (14)
C107—C106—C112—C31452.4 (9)O102—Zn1—N101—C131108.74 (15)
C105—C106—C112—C314128.8 (9)N102—Zn1—N101—C1319.91 (15)
N101—C116—C117—C122122.9 (2)O101—Zn1—N101—C116116.56 (14)
N101—C116—C117—C11860.5 (3)O102—Zn1—N101—C11612.08 (15)
C122—C117—C118—O102179.09 (19)N102—Zn1—N101—C116130.73 (15)
C116—C117—C118—O1024.4 (3)O101—Zn1—N101—C1012.93 (15)
C122—C117—C118—C1193.0 (3)O102—Zn1—N101—C101131.57 (14)
C116—C117—C118—C119173.5 (2)N102—Zn1—N101—C101109.78 (15)
O102—C118—C119—C120178.99 (19)C131—C132—N102—C133161.6 (2)
C117—C118—C119—C1203.1 (3)C131—C132—N102—C13478.6 (2)
O102—C118—C119—C1231.7 (3)C131—C132—N102—Zn141.5 (2)
C117—C118—C119—C123176.2 (2)O101—Zn1—N102—C13336.1 (2)
C118—C119—C120—C1211.0 (3)O102—Zn1—N102—C133124.49 (19)
C123—C119—C120—C121178.3 (2)N101—Zn1—N102—C133135.6 (2)
C119—C120—C121—C1221.2 (4)O101—Zn1—N102—C134159.25 (15)
C119—C120—C121—C127179.4 (2)O102—Zn1—N102—C1341.34 (19)
C120—C121—C122—C1171.4 (4)N101—Zn1—N102—C134101.28 (17)
C127—C121—C122—C117179.6 (2)O101—Zn1—N102—C13282.36 (15)
C118—C117—C122—C1210.7 (3)O102—Zn1—N102—C132117.05 (15)
C116—C117—C122—C121175.9 (2)N101—Zn1—N102—C13217.11 (15)
C120—C119—C123—C1261.2 (3)C217—C216—N201—C23165.6 (2)
C118—C119—C123—C126178.1 (2)C217—C216—N201—C201167.82 (18)
C120—C119—C123—C125118.4 (2)C217—C216—N201—Zn250.5 (2)
C118—C119—C123—C12562.3 (3)C232—C231—N201—C216151.28 (19)
C120—C119—C123—C124120.5 (2)C232—C231—N201—C20182.3 (2)
C118—C119—C123—C12458.8 (3)C232—C231—N201—Zn233.6 (2)
C122—C121—C127—C12950.7 (4)C202—C201—N201—C21669.0 (2)
C120—C121—C127—C129131.2 (3)C202—C201—N201—C231163.70 (19)
C122—C121—C127—C12871.2 (3)C202—C201—N201—Zn248.9 (2)
C120—C121—C127—C128106.9 (3)O201—Zn2—N201—C216118.55 (13)
C122—C121—C127—C130170.8 (3)O202—Zn2—N201—C2165.99 (14)
C120—C121—C127—C13011.1 (4)N202—Zn2—N201—C216128.35 (14)
N101—C131—C132—N10254.8 (3)O201—Zn2—N201—C231120.49 (14)
N201—C201—C202—C207122.2 (2)O202—Zn2—N201—C231114.98 (14)
N201—C201—C202—C20362.0 (3)N202—Zn2—N201—C2317.39 (15)
C207—C202—C203—O201177.6 (2)O201—Zn2—N201—C2011.52 (15)
C201—C202—C203—O2011.8 (3)O202—Zn2—N201—C201126.05 (14)
C207—C202—C203—C2041.2 (3)N202—Zn2—N201—C201111.59 (15)
C201—C202—C203—C204177.0 (2)C231—C232—N202—C233162.33 (19)
O201—C203—C204—C205177.5 (2)C231—C232—N202—C23477.5 (2)
C202—C203—C204—C2051.3 (3)C231—C232—N202—Zn243.7 (2)
O201—C203—C204—C2081.9 (3)O201—Zn2—N202—C23337.09 (18)
C202—C203—C204—C208179.3 (2)O202—Zn2—N202—C233122.54 (17)
C203—C204—C205—C2060.1 (4)N201—Zn2—N202—C233137.09 (17)
C208—C204—C205—C206179.4 (2)O201—Zn2—N202—C234160.49 (15)
C204—C205—C206—C2071.5 (4)O202—Zn2—N202—C2340.86 (19)
C204—C205—C206—C212177.3 (2)N201—Zn2—N202—C23499.52 (17)
C205—C206—C207—C2021.6 (4)O201—Zn2—N202—C23280.33 (16)
C212—C206—C207—C202177.2 (2)O202—Zn2—N202—C232120.04 (15)
C203—C202—C207—C2060.3 (4)N201—Zn2—N202—C23219.67 (15)
C201—C202—C207—C206175.5 (2)C102—C103—O101—Zn149.8 (3)
C205—C204—C208—C210118.9 (2)C104—C103—O101—Zn1131.49 (19)
C203—C204—C208—C21060.6 (3)O102—Zn1—O101—C10363.10 (18)
C205—C204—C208—C2091.3 (3)N101—Zn1—O101—C10346.21 (16)
C203—C204—C208—C209179.3 (2)N102—Zn1—O101—C103137.86 (16)
C205—C204—C208—C211120.3 (2)C117—C118—O102—Zn142.2 (2)
C203—C204—C208—C21160.3 (3)C119—C118—O102—Zn1139.94 (18)
C207—C206—C212—C2140.4 (3)O101—Zn1—O102—C118143.80 (15)
C205—C206—C212—C214178.4 (2)N101—Zn1—O102—C11834.58 (16)
C207—C206—C212—C215119.8 (3)N102—Zn1—O102—C11858.27 (17)
C205—C206—C212—C21561.4 (3)C202—C203—O201—Zn252.7 (3)
C207—C206—C212—C213120.6 (3)C204—C203—O201—Zn2128.5 (2)
C205—C206—C212—C21358.1 (3)O202—Zn2—O201—C20359.93 (16)
N201—C216—C217—C222120.8 (2)N201—Zn2—O201—C20348.10 (15)
N201—C216—C217—C21860.9 (3)N202—Zn2—O201—C203140.25 (14)
C222—C217—C218—O202178.1 (2)C219—C218—O202—Zn2134.45 (18)
C216—C217—C218—O2023.5 (3)C217—C218—O202—Zn247.1 (2)
C222—C217—C218—C2193.4 (3)O201—Zn2—O202—C218149.80 (14)
C216—C217—C218—C219174.9 (2)N201—Zn2—O202—C21841.69 (15)
O202—C218—C219—C220178.5 (2)N202—Zn2—O202—C21852.23 (17)
(III) {bis(3-tert-butyl-5-methyl-2-oxidobenzyl)[2-(N,N- dimethylamino)ethyl]amine-κ4N,N',O,O'}(tetrahdyrofuran)zinc(II) top
Crystal data top
[Zn(C28H42N2O2)(C4H8O)]F(000) = 1240
Mr = 576.11Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33137 reflections
a = 13.669 (3) Åθ = 3.5–27.8°
b = 17.476 (4) ŵ = 0.83 mm1
c = 12.989 (4) ÅT = 140 K
β = 93.14 (2)°Block, light yellow
V = 3098.1 (14) Å30.06 × 0.06 × 0.02 mm
Z = 4
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
7121 independent reflections
Radiation source: Enhance (Mo) X-ray Source2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.195
Detector resolution: 16.0050 pixels mm-1θmax = 27.8°, θmin = 3.5°
Thin slice ϕ and ω scansh = 1717
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2003)
k = 2222
Tmin = 0.801, Tmax = 0.984l = 1717
33137 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 0.68 w = 1/[σ2(Fo2) + (0.0123P)2]
where P = (Fo2 + 2Fc2)/3
7121 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(C28H42N2O2)(C4H8O)]V = 3098.1 (14) Å3
Mr = 576.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.669 (3) ŵ = 0.83 mm1
b = 17.476 (4) ÅT = 140 K
c = 12.989 (4) Å0.06 × 0.06 × 0.02 mm
β = 93.14 (2)°
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
7121 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2003)
2308 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.984Rint = 0.195
33137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 0.68Δρmax = 0.37 e Å3
7121 reflectionsΔρmin = 0.49 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22744 (3)0.61170 (3)0.54949 (4)0.02396 (13)
C1010.1033 (2)0.4792 (2)0.6099 (3)0.0253 (11)
H10A0.08110.47500.53630.030*
H10B0.09460.42840.64200.030*
C1020.0392 (3)0.5365 (2)0.6613 (3)0.0214 (10)
C1030.0319 (2)0.6109 (3)0.6210 (3)0.0207 (9)
C1040.0403 (3)0.6613 (2)0.6631 (3)0.0223 (10)
C1050.0899 (2)0.6363 (2)0.7476 (3)0.0265 (11)
H1050.13540.67010.77640.032*
C1060.0765 (3)0.5643 (2)0.7922 (3)0.0256 (11)
C1070.0114 (3)0.5146 (2)0.7466 (3)0.0295 (11)
H1070.00160.46470.77440.035*
C1080.0585 (3)0.7421 (2)0.6183 (3)0.0247 (11)
C1090.1424 (3)0.7858 (2)0.6676 (3)0.0430 (13)
H10C0.20350.75670.65730.064*
H10D0.15040.83620.63520.064*
H10E0.12660.79210.74160.064*
C1100.0869 (2)0.7375 (2)0.5015 (3)0.0332 (12)
H11A0.03640.70910.46670.050*
H11B0.09230.78930.47290.050*
H11C0.14990.71110.49090.050*
C1110.0355 (3)0.7915 (2)0.6355 (3)0.0358 (12)
H11D0.04880.80010.70950.054*
H11E0.02590.84080.60040.054*
H11F0.09120.76480.60730.054*
C1120.1278 (3)0.5405 (2)0.8888 (3)0.0404 (13)
H11G0.08560.55240.95020.061*
H11H0.14100.48540.88640.061*
H11I0.18970.56850.89190.061*
C1160.2477 (2)0.5003 (2)0.7264 (3)0.0238 (10)
H11J0.24070.44820.75510.029*
H11K0.20550.53500.76490.029*
C1170.3533 (3)0.5255 (2)0.7448 (3)0.0203 (10)
C1180.3853 (2)0.5982 (2)0.7136 (3)0.0239 (11)
C1190.4821 (2)0.6238 (2)0.7508 (3)0.0223 (10)
C1200.5386 (3)0.5738 (2)0.8123 (3)0.0251 (11)
H1200.60160.59080.83700.030*
C1210.5098 (3)0.5005 (2)0.8406 (3)0.0240 (10)
C1220.4153 (3)0.4777 (2)0.8068 (3)0.0261 (11)
H1220.39230.42880.82620.031*
C1230.5177 (3)0.7050 (2)0.7271 (3)0.0252 (11)
C1240.4451 (2)0.7647 (2)0.7650 (3)0.0316 (12)
H12A0.38080.75700.72940.047*
H12B0.46890.81620.75030.047*
H12C0.43930.75890.83950.047*
C1250.5299 (2)0.7143 (2)0.6099 (3)0.0310 (12)
H12D0.58130.67960.58830.047*
H12E0.54820.76720.59510.047*
H12F0.46800.70190.57200.047*
C1260.6184 (2)0.7233 (2)0.7830 (3)0.0375 (13)
H12G0.61300.71900.85770.056*
H12H0.63820.77550.76580.056*
H12I0.66760.68700.76070.056*
C1270.5753 (2)0.4501 (2)0.9102 (3)0.0338 (12)
H12J0.61200.41500.86790.051*
H12K0.53490.42060.95600.051*
H12L0.62120.48220.95150.051*
C1310.2679 (2)0.4449 (2)0.5555 (3)0.0280 (11)
H13I0.24200.39260.56420.034*
H13J0.33760.44520.58070.034*
C1320.2601 (3)0.4663 (2)0.4442 (3)0.0281 (11)
H13K0.30280.43220.40570.034*
H13L0.19180.45830.41700.034*
C1330.2600 (2)0.5684 (2)0.3200 (3)0.0364 (12)
H13P0.28750.53160.27250.055*
H13Q0.28500.61970.30600.055*
H13R0.18840.56830.31020.055*
C1340.3991 (2)0.5550 (2)0.4403 (3)0.0352 (12)
H13M0.43040.52260.39000.053*
H13N0.42080.53910.51020.053*
H13O0.41750.60850.42980.053*
C1350.1758 (3)0.7394 (2)0.3759 (3)0.0362 (12)
H13A0.11620.70760.37960.043*
H13B0.20450.73030.30860.043*
C1360.1512 (3)0.8229 (2)0.3880 (3)0.0380 (13)
H13C0.09420.82950.43110.046*
H13D0.13650.84730.32010.046*
C1370.2433 (2)0.8563 (2)0.4406 (3)0.0340 (12)
H13E0.29080.87170.38960.041*
H13F0.22800.90100.48360.041*
C1380.2821 (3)0.7908 (2)0.5060 (3)0.0315 (12)
H13G0.35460.79130.50980.038*
H13H0.25960.79570.57690.038*
N1010.21178 (19)0.49954 (17)0.6170 (2)0.0202 (8)
N1020.2883 (2)0.54682 (17)0.4261 (2)0.0231 (9)
O1010.08671 (15)0.63419 (13)0.54433 (19)0.0262 (7)
O1020.32714 (16)0.64392 (13)0.65463 (19)0.0268 (7)
O1030.24679 (16)0.72042 (15)0.4607 (2)0.0295 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0181 (2)0.0245 (3)0.0287 (3)0.0006 (3)0.00329 (19)0.0010 (3)
C1010.022 (2)0.018 (3)0.036 (3)0.005 (2)0.007 (2)0.002 (2)
C1020.018 (2)0.019 (3)0.027 (3)0.003 (2)0.003 (2)0.005 (2)
C1030.020 (2)0.020 (2)0.022 (3)0.004 (2)0.0040 (18)0.003 (3)
C1040.018 (2)0.023 (3)0.026 (3)0.001 (2)0.003 (2)0.001 (2)
C1050.019 (2)0.031 (3)0.030 (3)0.000 (2)0.002 (2)0.006 (2)
C1060.023 (2)0.026 (3)0.027 (3)0.011 (2)0.002 (2)0.003 (2)
C1070.024 (2)0.026 (3)0.039 (3)0.005 (2)0.001 (2)0.006 (2)
C1080.018 (2)0.027 (3)0.029 (3)0.006 (2)0.008 (2)0.002 (2)
C1090.042 (3)0.033 (3)0.055 (4)0.009 (2)0.010 (2)0.004 (3)
C1100.026 (2)0.030 (3)0.043 (3)0.005 (2)0.007 (2)0.002 (2)
C1110.035 (3)0.029 (3)0.042 (3)0.002 (2)0.006 (2)0.006 (2)
C1120.030 (3)0.052 (3)0.038 (3)0.006 (2)0.001 (2)0.001 (3)
C1160.021 (2)0.020 (3)0.030 (3)0.0033 (19)0.002 (2)0.000 (2)
C1170.014 (2)0.024 (3)0.022 (3)0.000 (2)0.0004 (19)0.000 (2)
C1180.020 (2)0.028 (3)0.023 (3)0.004 (2)0.0033 (19)0.001 (2)
C1190.019 (2)0.028 (3)0.020 (2)0.004 (2)0.0011 (18)0.003 (2)
C1200.019 (2)0.026 (3)0.029 (3)0.002 (2)0.006 (2)0.004 (2)
C1210.021 (2)0.030 (3)0.021 (3)0.005 (2)0.001 (2)0.003 (2)
C1220.029 (3)0.020 (3)0.030 (3)0.005 (2)0.004 (2)0.003 (2)
C1230.019 (2)0.028 (3)0.028 (3)0.002 (2)0.006 (2)0.001 (2)
C1240.029 (2)0.030 (3)0.035 (3)0.006 (2)0.006 (2)0.006 (2)
C1250.021 (2)0.030 (3)0.042 (3)0.001 (2)0.003 (2)0.001 (2)
C1260.016 (2)0.047 (3)0.049 (3)0.008 (2)0.007 (2)0.010 (3)
C1270.026 (2)0.032 (3)0.042 (3)0.006 (2)0.005 (2)0.006 (2)
C1310.017 (2)0.023 (3)0.044 (3)0.004 (2)0.005 (2)0.004 (2)
C1320.023 (2)0.031 (3)0.030 (3)0.005 (2)0.003 (2)0.002 (3)
C1330.030 (2)0.035 (3)0.044 (3)0.009 (2)0.000 (2)0.006 (2)
C1340.025 (2)0.039 (3)0.042 (3)0.005 (2)0.000 (2)0.008 (2)
C1350.033 (3)0.048 (3)0.027 (3)0.004 (2)0.009 (2)0.003 (3)
C1360.031 (3)0.041 (3)0.041 (3)0.001 (2)0.008 (2)0.013 (3)
C1370.030 (3)0.029 (3)0.043 (3)0.004 (2)0.007 (2)0.004 (2)
C1380.028 (3)0.032 (3)0.034 (3)0.002 (2)0.004 (2)0.003 (3)
N1010.0116 (17)0.025 (2)0.024 (2)0.0014 (16)0.0028 (15)0.0080 (18)
N1020.024 (2)0.017 (2)0.027 (3)0.0112 (16)0.0055 (17)0.0003 (17)
O1010.0175 (14)0.035 (2)0.0258 (18)0.0036 (13)0.0026 (12)0.0045 (14)
O1020.0221 (15)0.0262 (18)0.0309 (19)0.0008 (13)0.0102 (13)0.0015 (14)
O1030.0271 (17)0.0294 (19)0.030 (2)0.0073 (14)0.0117 (14)0.0005 (17)
Geometric parameters (Å, º) top
Zn1—O1021.958 (2)C121—C1221.399 (4)
Zn1—O1011.961 (2)C121—C1271.518 (4)
Zn1—N1012.163 (3)C122—H1220.9500
Zn1—N1022.166 (3)C123—C1241.540 (5)
Zn1—O1032.246 (3)C123—C1251.550 (5)
C101—C1021.510 (5)C123—C1261.554 (4)
C101—N1011.523 (4)C124—H12A0.9800
C101—H10A0.9900C124—H12B0.9800
C101—H10B0.9900C124—H12C0.9800
C102—C1071.392 (5)C125—H12D0.9800
C102—C1031.404 (5)C125—H12E0.9800
C103—O1011.342 (4)C125—H12F0.9800
C103—C1041.451 (5)C126—H12G0.9800
C104—C1051.393 (5)C126—H12H0.9800
C104—C1081.542 (5)C126—H12I0.9800
C105—C1061.393 (5)C127—H12J0.9800
C105—H1050.9500C127—H12K0.9800
C106—C1071.398 (5)C127—H12L0.9800
C106—C1121.529 (5)C131—N1011.484 (4)
C107—H1070.9500C131—C1321.492 (5)
C108—C1091.546 (4)C131—H13I0.9900
C108—C1101.547 (5)C131—H13J0.9900
C108—C1111.555 (4)C132—N1021.481 (4)
C109—H10C0.9800C132—H13K0.9900
C109—H10D0.9800C132—H13L0.9900
C109—H10E0.9800C133—N1021.461 (4)
C110—H11A0.9800C133—H13P0.9800
C110—H11B0.9800C133—H13Q0.9800
C110—H11C0.9800C133—H13R0.9800
C111—H11D0.9800C134—N1021.522 (4)
C111—H11E0.9800C134—H13M0.9800
C111—H11F0.9800C134—H13N0.9800
C112—H11G0.9800C134—H13O0.9800
C112—H11H0.9800C135—O1031.466 (4)
C112—H11I0.9800C135—C1361.508 (5)
C116—N1011.478 (4)C135—H13A0.9900
C116—C1171.515 (4)C135—H13B0.9900
C116—H11J0.9900C136—C1371.516 (4)
C116—H11K0.9900C136—H13C0.9900
C117—C1181.411 (5)C136—H13D0.9900
C117—C1221.411 (5)C137—C1381.504 (4)
C118—O1021.337 (4)C137—H13E0.9900
C118—C1191.454 (4)C137—H13F0.9900
C119—C1201.389 (5)C138—O1031.436 (4)
C119—C1231.538 (5)C138—H13G0.9900
C120—C1211.395 (5)C138—H13H0.9900
C120—H1200.9500
O102—Zn1—O101127.59 (10)C124—C123—C126106.4 (3)
O102—Zn1—N10193.35 (11)C125—C123—C126107.3 (3)
O101—Zn1—N10194.41 (10)C123—C124—H12A109.5
O102—Zn1—N102112.67 (11)C123—C124—H12B109.5
O101—Zn1—N102119.71 (11)H12A—C124—H12B109.5
N101—Zn1—N10282.88 (12)C123—C124—H12C109.5
O102—Zn1—O10391.02 (10)H12A—C124—H12C109.5
O101—Zn1—O10387.46 (9)H12B—C124—H12C109.5
N101—Zn1—O103172.77 (11)C123—C125—H12D109.5
N102—Zn1—O10390.13 (11)C123—C125—H12E109.5
C102—C101—N101113.9 (3)H12D—C125—H12E109.5
C102—C101—H10A108.8C123—C125—H12F109.5
N101—C101—H10A108.8H12D—C125—H12F109.5
C102—C101—H10B108.8H12E—C125—H12F109.5
N101—C101—H10B108.8C123—C126—H12G109.5
H10A—C101—H10B107.7C123—C126—H12H109.5
C107—C102—C103121.6 (4)H12G—C126—H12H109.5
C107—C102—C101119.7 (4)C123—C126—H12I109.5
C103—C102—C101118.7 (4)H12G—C126—H12I109.5
O101—C103—C102121.7 (4)H12H—C126—H12I109.5
O101—C103—C104121.0 (4)C121—C127—H12J109.5
C102—C103—C104117.3 (4)C121—C127—H12K109.5
C105—C104—C103118.5 (4)H12J—C127—H12K109.5
C105—C104—C108120.6 (4)C121—C127—H12L109.5
C103—C104—C108120.9 (4)H12J—C127—H12L109.5
C104—C105—C106123.6 (4)H12K—C127—H12L109.5
C104—C105—H105118.2N101—C131—C132110.4 (3)
C106—C105—H105118.2N101—C131—H13I109.6
C105—C106—C107117.2 (4)C132—C131—H13I109.6
C105—C106—C112122.1 (4)N101—C131—H13J109.6
C107—C106—C112120.7 (4)C132—C131—H13J109.6
C102—C107—C106121.5 (4)H13I—C131—H13J108.1
C102—C107—H107119.3N102—C132—C131112.7 (3)
C106—C107—H107119.3N102—C132—H13K109.0
C104—C108—C109113.8 (3)C131—C132—H13K109.0
C104—C108—C110110.4 (3)N102—C132—H13L109.0
C109—C108—C110106.3 (3)C131—C132—H13L109.0
C104—C108—C111109.8 (3)H13K—C132—H13L107.8
C109—C108—C111107.0 (3)N102—C133—H13P109.5
C110—C108—C111109.3 (3)N102—C133—H13Q109.5
C108—C109—H10C109.5H13P—C133—H13Q109.5
C108—C109—H10D109.5N102—C133—H13R109.5
H10C—C109—H10D109.5H13P—C133—H13R109.5
C108—C109—H10E109.5H13Q—C133—H13R109.5
H10C—C109—H10E109.5N102—C134—H13M109.5
H10D—C109—H10E109.5N102—C134—H13N109.5
C108—C110—H11A109.5H13M—C134—H13N109.5
C108—C110—H11B109.5N102—C134—H13O109.5
H11A—C110—H11B109.5H13M—C134—H13O109.5
C108—C110—H11C109.5H13N—C134—H13O109.5
H11A—C110—H11C109.5O103—C135—C136106.5 (3)
H11B—C110—H11C109.5O103—C135—H13A110.4
C108—C111—H11D109.5C136—C135—H13A110.4
C108—C111—H11E109.5O103—C135—H13B110.4
H11D—C111—H11E109.5C136—C135—H13B110.4
C108—C111—H11F109.5H13A—C135—H13B108.6
H11D—C111—H11F109.5C135—C136—C137103.5 (3)
H11E—C111—H11F109.5C135—C136—H13C111.1
C106—C112—H11G109.5C137—C136—H13C111.1
C106—C112—H11H109.5C135—C136—H13D111.1
H11G—C112—H11H109.5C137—C136—H13D111.1
C106—C112—H11I109.5H13C—C136—H13D109.0
H11G—C112—H11I109.5C138—C137—C136102.8 (3)
H11H—C112—H11I109.5C138—C137—H13E111.2
N101—C116—C117114.7 (3)C136—C137—H13E111.2
N101—C116—H11J108.6C138—C137—H13F111.2
C117—C116—H11J108.6C136—C137—H13F111.2
N101—C116—H11K108.6H13E—C137—H13F109.1
C117—C116—H11K108.6O103—C138—C137108.6 (3)
H11J—C116—H11K107.6O103—C138—H13G110.0
C118—C117—C122120.7 (3)C137—C138—H13G110.0
C118—C117—C116121.6 (3)O103—C138—H13H110.0
C122—C117—C116117.1 (3)C137—C138—H13H110.0
O102—C118—C117121.2 (3)H13G—C138—H13H108.3
O102—C118—C119120.6 (4)C116—N101—C131111.7 (3)
C117—C118—C119118.1 (4)C116—N101—C101109.3 (3)
C120—C119—C118117.7 (4)C131—N101—C101110.3 (3)
C120—C119—C123121.6 (3)C116—N101—Zn1110.3 (2)
C118—C119—C123120.6 (3)C131—N101—Zn1107.4 (2)
C119—C120—C121125.0 (3)C101—N101—Zn1107.7 (2)
C119—C120—H120117.5C133—N102—C132109.7 (3)
C121—C120—H120117.5C133—N102—C134107.5 (3)
C120—C121—C122116.5 (4)C132—N102—C134109.6 (3)
C120—C121—C127121.6 (3)C133—N102—Zn1118.0 (2)
C122—C121—C127121.7 (4)C132—N102—Zn1105.4 (2)
C121—C122—C117121.8 (4)C134—N102—Zn1106.4 (2)
C121—C122—H122119.1C103—O101—Zn1120.1 (2)
C117—C122—H122119.1C118—O102—Zn1126.6 (2)
C119—C123—C124110.2 (3)C138—O103—C135107.9 (3)
C119—C123—C125110.2 (3)C138—O103—Zn1124.1 (2)
C124—C123—C125110.4 (3)C135—O103—Zn1119.1 (2)
C119—C123—C126112.3 (3)
N101—C101—C102—C107115.4 (4)C117—C116—N101—Zn157.5 (3)
N101—C101—C102—C10365.0 (4)C132—C131—N101—C116157.3 (3)
C107—C102—C103—O101174.4 (3)C132—C131—N101—C10180.9 (4)
C101—C102—C103—O1016.1 (5)C132—C131—N101—Zn136.3 (3)
C107—C102—C103—C1047.8 (5)C102—C101—N101—C11662.7 (4)
C101—C102—C103—C104171.8 (3)C102—C101—N101—C131174.1 (3)
O101—C103—C104—C105175.3 (3)C102—C101—N101—Zn157.1 (3)
C102—C103—C104—C1056.8 (5)O102—Zn1—N101—C11620.8 (2)
O101—C103—C104—C1082.2 (5)O101—Zn1—N101—C116107.3 (2)
C102—C103—C104—C108175.7 (3)N102—Zn1—N101—C116133.3 (2)
C103—C104—C105—C1062.1 (6)O102—Zn1—N101—C131101.0 (2)
C108—C104—C105—C106179.6 (3)O101—Zn1—N101—C131130.8 (2)
C104—C105—C106—C1072.0 (6)N102—Zn1—N101—C13111.4 (2)
C104—C105—C106—C112176.3 (3)O102—Zn1—N101—C101140.1 (2)
C103—C102—C107—C1063.8 (6)O101—Zn1—N101—C10112.0 (2)
C101—C102—C107—C106175.7 (3)N102—Zn1—N101—C101107.4 (2)
C105—C106—C107—C1021.2 (6)C131—C132—N102—C133168.3 (3)
C112—C106—C107—C102177.1 (3)C131—C132—N102—C13473.9 (4)
C105—C104—C108—C1096.4 (5)C131—C132—N102—Zn140.2 (3)
C103—C104—C108—C109176.2 (3)O102—Zn1—N102—C133131.6 (2)
C105—C104—C108—C110125.8 (4)O101—Zn1—N102—C13346.7 (3)
C103—C104—C108—C11056.8 (4)N101—Zn1—N102—C133137.7 (2)
C105—C104—C108—C111113.6 (4)O103—Zn1—N102—C13340.5 (2)
C103—C104—C108—C11163.8 (4)O102—Zn1—N102—C132105.5 (2)
N101—C116—C117—C11859.3 (5)O101—Zn1—N102—C13276.2 (3)
N101—C116—C117—C122129.2 (4)N101—Zn1—N102—C13214.8 (2)
C122—C117—C118—O102179.9 (3)O103—Zn1—N102—C132163.4 (2)
C116—C117—C118—O1028.9 (6)O102—Zn1—N102—C13410.9 (3)
C122—C117—C118—C1192.7 (5)O101—Zn1—N102—C134167.4 (2)
C116—C117—C118—C119168.5 (3)N101—Zn1—N102—C134101.5 (2)
O102—C118—C119—C120179.5 (3)O103—Zn1—N102—C13480.3 (2)
C117—C118—C119—C1202.1 (5)C102—C103—O101—Zn145.9 (4)
O102—C118—C119—C1232.6 (5)C104—C103—O101—Zn1136.3 (3)
C117—C118—C119—C123174.8 (3)O102—Zn1—O101—C10360.3 (3)
C118—C119—C120—C1210.4 (6)N101—Zn1—O101—C10337.4 (3)
C123—C119—C120—C121177.3 (4)N102—Zn1—O101—C103121.7 (3)
C119—C120—C121—C1222.4 (6)O103—Zn1—O101—C103149.6 (3)
C119—C120—C121—C127178.6 (4)C117—C118—O102—Zn131.9 (5)
C120—C121—C122—C1171.8 (6)C119—C118—O102—Zn1150.7 (3)
C127—C121—C122—C117178.0 (4)O101—Zn1—O102—C118120.9 (3)
C118—C117—C122—C1210.7 (6)N101—Zn1—O102—C11822.7 (3)
C116—C117—C122—C121170.9 (3)N102—Zn1—O102—C11861.0 (3)
C120—C119—C123—C124120.8 (4)O103—Zn1—O102—C118151.5 (3)
C118—C119—C123—C12456.0 (5)C137—C138—O103—C1357.5 (4)
C120—C119—C123—C125117.1 (4)C137—C138—O103—Zn1154.2 (2)
C118—C119—C123—C12566.1 (4)C136—C135—O103—C13813.5 (4)
C120—C119—C123—C1262.5 (5)C136—C135—O103—Zn1135.2 (2)
C118—C119—C123—C126174.3 (3)O102—Zn1—O103—C13825.4 (3)
N101—C131—C132—N10253.6 (4)O101—Zn1—O103—C138102.2 (3)
O103—C135—C136—C13728.7 (4)N102—Zn1—O103—C138138.1 (3)
C135—C136—C137—C13832.1 (4)O102—Zn1—O103—C135168.8 (3)
C136—C137—C138—O10325.1 (4)O101—Zn1—O103—C13541.2 (3)
C117—C116—N101—C13161.9 (4)N102—Zn1—O103—C13578.6 (3)
C117—C116—N101—C101175.8 (3)

Experimental details

(II)(III)
Crystal data
Chemical formula[Zn(C34H54N2O2)][Zn(C28H42N2O2)(C4H8O)]
Mr588.16576.11
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)140140
a, b, c (Å)12.9275 (12), 14.0002 (13), 19.6729 (14)13.669 (3), 17.476 (4), 12.989 (4)
α, β, γ (°)100.747 (7), 102.467 (7), 96.879 (8)90, 93.14 (2), 90
V3)3367.8 (5)3098.1 (14)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.760.83
Crystal size (mm)0.20 × 0.08 × 0.020.06 × 0.06 × 0.02
Data collection
DiffractometerOxford Xcalibur3 CCD area-detector
diffractometer
Oxford Xcalibur3 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2003)
Multi-scan
(ABSPACK; Oxford Diffraction, 2003)
Tmin, Tmax0.925, 0.9830.801, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
42426, 15272, 8001 33137, 7121, 2308
Rint0.0760.195
(sin θ/λ)max1)0.6520.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.071, 0.79 0.049, 0.073, 0.68
No. of reflections152727121
No. of parameters744353
No. of restraints120
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.430.37, 0.49

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (II) top
Zn1—O1011.8918 (15)Zn2—O2011.8821 (16)
Zn1—O1021.8960 (17)Zn2—O2021.8899 (17)
Zn1—N1012.065 (2)Zn2—N2012.0643 (18)
Zn1—N1022.0864 (19)Zn2—N2022.0727 (19)
O101—Zn1—O102125.35 (7)O201—Zn2—O202121.39 (7)
O101—Zn1—N10199.58 (7)O201—Zn2—N20199.95 (7)
O102—Zn1—N10199.77 (7)O202—Zn2—N20199.80 (7)
O101—Zn1—N102112.76 (7)O201—Zn2—N202113.08 (8)
O102—Zn1—N102118.59 (8)O202—Zn2—N202122.20 (8)
N101—Zn1—N10287.81 (8)N201—Zn2—N20288.07 (7)
Selected geometric parameters (Å, º) for (III) top
Zn1—O1021.958 (2)Zn1—N1022.166 (3)
Zn1—O1011.961 (2)Zn1—O1032.246 (3)
Zn1—N1012.163 (3)
O102—Zn1—O101127.59 (10)N101—Zn1—N10282.88 (12)
O102—Zn1—N10193.35 (11)O102—Zn1—O10391.02 (10)
O101—Zn1—N10194.41 (10)O101—Zn1—O10387.46 (9)
O102—Zn1—N102112.67 (11)N101—Zn1—O103172.77 (11)
O101—Zn1—N102119.71 (11)N102—Zn1—O10390.13 (11)
 

Acknowledgements

RHH and JAW thank the EPSRC for funding.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAtkins, P. W., Overton, T., Rourke, J., Weller, M. & Armstrong, F. (2006). Shriver & Atkins Inorganic Chemistry, 4th ed. Oxford University Press.  Google Scholar
First citationDechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. (2004). Chem. Rev. 104, 6147–6176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDrumright, R. E., Gruber, P. R. & Henton, D. E. (2000). Adv. Mater. 12, 1841–1846.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGroysman, S., Goldberg, I., Kol, M., Genizi, E. & Goldschmidt, Z. (2003). Inorg. Chim. Acta, 345, 137–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Keefe, B. J., Hillmyer, M. A. & Tolman, W. B. (2001). J. Chem. Soc. Dalton Trans. pp. 2215–2224.  Google Scholar
First citationOxford Diffraction (2003). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSarazin, Y., Howard, R. H., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Dalton Trans. pp. 340–350.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001a). Inorg. Chem. 40, 4263–4270.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001b). Chem. Commun. pp. 2120–2121.  CrossRef Google Scholar
First citationTshuva, E. Y., Groysman, S., Goldberg, I., Kol, M. & Goldschmidt, Z. (2002). Organometallics, 21, 662–670.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds