organic compounds
Three substituted (Z)-5-benzylidene-2-thioxothiazolidin-4-ones: hydrogen-bonded dimers that can be effectively isolated or linked into chains either by aromatic π–π stacking interactions or by dipolar carbonyl–carbonyl interactions
aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
In each of the isomeric compounds (Z)-5-(2-fluorobenzylidene)-2-thioxothiazolidin-4-one, C10H6FNOS2, (I), and (Z)-5-(4-fluorobenzylidene)-2-thioxothiazolidin-4-one, C10H6FNOS2, (II), there is a very wide C—C—C angle (ca 130°) at the methine C atom linking the two rings. In each isomer, paired N—H⋯O hydrogen bonds link the molecules into centrosymmetric R22(8) dimers; the hydrogen-bonded dimers are linked into chains by an aromatic π–π stacking interaction in isomer (I) and by an antiparallel dipolar carbonyl–carbonyl interaction in isomer (II). (Z)-5-(3,4,5-Trimethoxybenzylidene)-2-thioxothiazolidin-4-one, C13H13NO4S2, (III), which crystallizes with Z′ = 2 in the P, shows the same very wide angle at the bridging methine C atom; the two independent molecules are linked into an isolated dimer having no crystallographic symmetry.
Comment
We report here the structures of three substituted (Z)-5-benzylidene-2-thioxothiazolidin-4-ones, namely two isomers of (Z)-5-(fluorobenzylidene)-2-thioxothiazolidin-4-one, (I) and (II) (Figs. 1 and 2), and (Z)-5-(3,4,5-trimethoxybenzylidene)-2-thioxothiazolidin-4-one, (III) (Fig. 3), and we briefly compare these with the structures of the four analogues (IV)–(VII) (see scheme), which have been reported recently (Delgado et al., 2005). As for compounds (IV)–(VII), compounds (I)–(III) have been prepared by condensation of 2-thioxothiazolidin-4-one (rhodanine) with a substituted benzaldehyde using microwave radiation in a solvent-free system.
The molecules of compounds (I)–(III) are all effectively planar, as shown by the values of the Cx5—Cx57—Cx51—Cx52 torsion angle, where x is nil for compounds (I) and (II), and x = 1 or 2, respectively, for the two independent molecules in compound (III) (Table 1); this angle defines the rotation of the aryl ring relative to the rest of the molecule. In each isomer, the Cx5—Cx57—Cx51 angle is very large, ca 130°, and these angles, together with the exocyclic angles at Cx5 and Cx51, are consistent with the occurrence of a repulsive intramolecular interaction between atoms Sx1 and Hx56 (Table 2). This behaviour closely mimics that in the analogues (IV)–(VII). In each of the molecules in (III), the methoxy groups at Cx53 and Cx55 have their C atoms almost coplanar with the adjacent aryl rings (Table 1), but those at Cx54 have the C atoms well removed from this plane for steric reasons.
The supramolecular structures of compounds (I)–(III) are very simple. In the isomers (I) and (II), the molecules are linked by paired N—H⋯O hydrogen bonds (Table 2) into centrosymmetric R22(8) (Bernstein et al., 1995) dimers; in each isomer, the was selected such that the dimer containing the reference molecule is centred at (, , ) (Figs. 4 and 5). The structures of (I) and (II) differ, however, in the manner in which the hydrogen-bonded dimers are linked into chains. In (III), the two independent molecules are again linked into a dimer but this does not exhibit even approximate centrosymmetry. There are no direction-specific interactions between the dimeric units in (III).
The hydrogen-bonded dimers in (I) are linked by an aromatic π–π stacking interaction. The aryl rings in the molecules at (x, y, z) and (2 − x, −y, 1 − z), which lie, respectively, in the R22(8) dimers centred at (, , ) and (, −, ), are strictly parallel, with an interplanar spacing of 3.366 (2) Å; the ring-centroid separation is 3.692 (2) Å, corresponding to an almost ideal ring offset of 1.515 (2) Å. Propagation by inversion of this interaction links the dimers into chains running parallel to the [10] direction (Fig. 6).
In (II), the hydrogen-bonded dimers are linked by an antiparallel carbonyl–carbonyl interaction, which is centrosymmetric. The molecules at (x, y, z) and (−x, 1 − y, 1 − z) are components of the dimers centred at (, , ) and (−, , ), respectively; their carbonyl groups are antiparallel, with a C⋯Oii distance of 3.181 (4) Å and an O—C⋯Oii angle of 100.5 (2)° [symmetry code: (ii) −x, −y + 1, −z + 1], producing a slightly sheared interaction of type II (Allen et al., 1998), which links the dimers into chains running parallel to the [100] direction (Fig. 7).
We note very briefly the different patterns of supramolecular aggregation in the analogues (IV)–(VII) (Delgado et al., 2005). In (IV), which crystallizes with Z′ = 2 in the P21/n, the two independent molecules are linked by N—H⋯O bonds into a dimer, as in (III), but these dimers are not isolated; instead they are linked by C—H⋯π(arene) hydrogen bonds into sheets. Compound (V) is effectively isomorphous with (III) and the molecules form centrosymmetric dimers, which are linked into chains by a dipolar carbonyl–carbonyl interaction. No dimers formed by paired N—H⋯O hydrogen bonds are discernible in the structure of (VI); instead the molecules are linked into chains of rings by a combination of N—H⋯S and C—H⋯O hydrogen bonds. In (VII), the usual R22(8) dimers are formed and these are linked into chains of rings by C—H⋯S hydrogen bonds. Thus, within the extended series (I)–(VII), it is apparent that rather modest changes to the peripheral substituents can have a significant influence on the overall supramolecular aggregation.
Experimental
Equimolar quantities (1 mmol of each component) of 2-thioxothiazolidin-4-one and the appropriate substituted benzaldehyde were placed in open Pyrex glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by : orange crystals, m.p. 438 K, yield 53%; MS (70 eV) m/z (%): 239 (4, M+), 152 (100), 108 (2). (II): orange crystals, m.p. 495 K, yield 88%; MS (70 eV) m/z (%): 239 (24, M+), 152 (100), 107 (20). (III): orange crystals, m.p. 474 K, yield 85%; MS (70 eV) m/z (%): 313 (18, M+2), 312 (11, M+1), 311(88, M+), 224 [100, (M – C2HNOS)+], 209 (94), 181 (16), 166 (9).
The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. (I)Compound (I)
Crystal data
|
Compound (II)
Crystal data
|
Refinement
|
Compound (III)
Crystal data
|
|
For each of (I) and (II), the P21/c was uniquely assigned from the Crystals of (III) are triclinic; the P was selected and confirmed by the subsequent structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.93 Å for (I) and (II), and 0.95 (aromatic) and 0.98 Å (methyl) for (III), and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C);H atoms bonded to N atoms were allowed to ride at the distances found from the difference maps [N—H = 0.86–0.88 Å with Uiso(H) = 1.2Ueq(N)].
For all compounds, data collection: COLLECT (Hooft, 1999); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S0108270106018038/sk3027sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270106018038/sk3027Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270106018038/sk3027IIsup3.hkl
Structure factors: contains datablock III. DOI: 10.1107/S0108270106018038/sk3027IIIsup4.hkl
Equimolar quantities (1 mmol of each component) of 2-thioxothiazolidin-4-one and the appropriate substituted benzaldehyde were placed in open Pyrex glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by
The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. (I) orange crystals, m.p. 438 K, yield 53%; MS (70 eV) m/z (%) 239 (4, M+), 152 ?(100), 108? (2). (II) orange crystals, m.p. 495 K, yield 88%; MS (70 eV) m/z (%) 239 (24, M+), 152? (100), 107?(20). (III) orange crystals, m.p. 474 K, yield 85%; MS (70 eV) m/z (%) 313 (18, M+2), 312 (11, M+1), 311(88, M+), 224 [100, (M– C2HNOS)+], 209?(94), 181 (16), 166 (9).For each of (I) and (II) the 1 was selected, and confirmed by the subsequent structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding atoms with distances C—H 0.93 Å for (I) and (II), and 0.95 and 0.98 Å for (III), and with Uiso(H) values of 1.2 or 1.5 times Ueq(C); H atoms bonded to N atoms were allowed to ride at the distances found from the difference maps [N—H = 0.86–0.88 Å with Uiso(H) = 1.2Ueq(N)].
P21/c was uniquely assigned from the Crystals of (III) are triclinic; the PFor all compounds, data collection: COLLECT (Hooft, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).Fig. 1. A molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 3. The two independent molecules of (III), showing the atom-labelling scheme and the N—H···O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 4. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z). | |
Fig. 5. Part of the crystal structure of II) showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity the H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z). | |
Fig. 6. A stereoview of part of the crystal structure of (I), showing the formation of a π-stacked [110] chain of hydrogen-bonded dimers. For the sake of clarity, H atoms bonded to C atoms have been omitted. | |
Fig. 7. A stereoview of part of the crystal structure of (II), showing the formation of a [100] chain of hydrogen-bonded dimers linked by dipolar carbonyl–carbonyl interactions. For the sake of clarity, H atoms bonded to C atoms have been omitted. |
C10H6FNOS2 | F(000) = 488 |
Mr = 239.28 | Dx = 1.552 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2337 reflections |
a = 11.1848 (4) Å | θ = 3.1–27.5° |
b = 7.7651 (4) Å | µ = 0.50 mm−1 |
c = 12.3611 (5) Å | T = 298 K |
β = 107.417 (3)° | Plate, orange |
V = 1024.35 (8) Å3 | 0.36 × 0.32 × 0.04 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 2337 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1768 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ϕ and ω scans | h = −12→14 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −10→9 |
Tmin = 0.869, Tmax = 0.980 | l = −16→12 |
9920 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3103P] where P = (Fo2 + 2Fc2)/3 |
2337 reflections | (Δ/σ)max < 0.001 |
141 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C10H6FNOS2 | V = 1024.35 (8) Å3 |
Mr = 239.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1848 (4) Å | µ = 0.50 mm−1 |
b = 7.7651 (4) Å | T = 298 K |
c = 12.3611 (5) Å | 0.36 × 0.32 × 0.04 mm |
β = 107.417 (3)° |
Bruker–Nonius KappaCCD diffractometer | 2337 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1768 reflections with I > 2σ(I) |
Tmin = 0.869, Tmax = 0.980 | Rint = 0.042 |
9920 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.22 e Å−3 |
2337 reflections | Δρmin = −0.32 e Å−3 |
141 parameters |
x | y | z | Uiso*/Ueq | ||
S1 | 0.77713 (4) | 0.41358 (7) | 0.32725 (4) | 0.04646 (17) | |
S2 | 0.55447 (5) | 0.59484 (9) | 0.17861 (5) | 0.0631 (2) | |
F52 | 1.02797 (13) | 0.09006 (18) | 0.72332 (10) | 0.0683 (4) | |
O4 | 0.64154 (13) | 0.3975 (2) | 0.57676 (12) | 0.0597 (4) | |
N3 | 0.58930 (13) | 0.4942 (2) | 0.39335 (14) | 0.0455 (4) | |
C2 | 0.62862 (16) | 0.5068 (2) | 0.29922 (17) | 0.0441 (4) | |
C4 | 0.66675 (16) | 0.4158 (2) | 0.48794 (17) | 0.0432 (4) | |
C5 | 0.78410 (16) | 0.3595 (2) | 0.46621 (16) | 0.0397 (4) | |
C51 | 0.99811 (15) | 0.2238 (2) | 0.54620 (15) | 0.0379 (4) | |
C52 | 1.07477 (18) | 0.1314 (3) | 0.63747 (16) | 0.0449 (4) | |
C53 | 1.19345 (19) | 0.0782 (3) | 0.64488 (19) | 0.0525 (5) | |
C54 | 1.24000 (18) | 0.1142 (3) | 0.5559 (2) | 0.0547 (5) | |
C55 | 1.16815 (17) | 0.2025 (3) | 0.46334 (19) | 0.0527 (5) | |
C56 | 1.04901 (16) | 0.2572 (3) | 0.45890 (17) | 0.0460 (5) | |
C57 | 0.87484 (16) | 0.2811 (2) | 0.54795 (16) | 0.0409 (4) | |
H3 | 0.5178 | 0.5350 | 0.3933 | 0.055* | |
H57 | 0.8552 | 0.2585 | 0.6151 | 0.041 (5)* | |
H53 | 1.2413 | 0.0184 | 0.7082 | 0.064 (7)* | |
H54 | 1.3202 | 0.0784 | 0.5585 | 0.066 (7)* | |
H55 | 1.1996 | 0.2264 | 0.4034 | 0.067 (7)* | |
H56 | 1.0015 | 0.3170 | 0.3955 | 0.055 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0347 (2) | 0.0600 (3) | 0.0463 (3) | 0.0085 (2) | 0.0146 (2) | 0.0011 (2) |
C2 | 0.0307 (8) | 0.0441 (10) | 0.0544 (11) | −0.0019 (8) | 0.0083 (8) | −0.0051 (8) |
S2 | 0.0413 (3) | 0.0787 (4) | 0.0625 (4) | 0.0055 (3) | 0.0050 (3) | 0.0140 (3) |
N3 | 0.0283 (7) | 0.0515 (10) | 0.0571 (10) | 0.0055 (7) | 0.0135 (7) | −0.0029 (8) |
C4 | 0.0336 (9) | 0.0458 (10) | 0.0519 (11) | 0.0024 (8) | 0.0155 (8) | −0.0051 (8) |
O4 | 0.0448 (7) | 0.0840 (12) | 0.0575 (9) | 0.0167 (7) | 0.0260 (7) | 0.0056 (8) |
C5 | 0.0326 (8) | 0.0421 (9) | 0.0469 (10) | 0.0013 (8) | 0.0155 (8) | −0.0053 (8) |
C57 | 0.0377 (9) | 0.0432 (10) | 0.0446 (10) | 0.0017 (8) | 0.0163 (8) | −0.0032 (8) |
C51 | 0.0320 (8) | 0.0388 (9) | 0.0414 (10) | 0.0021 (7) | 0.0091 (7) | −0.0043 (7) |
C52 | 0.0452 (10) | 0.0473 (10) | 0.0398 (10) | 0.0019 (9) | 0.0092 (8) | −0.0049 (8) |
F52 | 0.0711 (8) | 0.0922 (10) | 0.0428 (7) | 0.0174 (7) | 0.0189 (6) | 0.0098 (6) |
C53 | 0.0416 (10) | 0.0504 (11) | 0.0544 (12) | 0.0085 (9) | −0.0027 (9) | −0.0023 (10) |
C54 | 0.0302 (9) | 0.0508 (12) | 0.0794 (15) | 0.0051 (8) | 0.0105 (10) | −0.0066 (11) |
C55 | 0.0367 (10) | 0.0595 (13) | 0.0659 (13) | 0.0025 (9) | 0.0212 (9) | 0.0022 (10) |
C56 | 0.0338 (9) | 0.0527 (11) | 0.0522 (11) | 0.0063 (8) | 0.0139 (8) | 0.0054 (9) |
S1—C5 | 1.7471 (19) | C51—C56 | 1.387 (2) |
S1—C2 | 1.7487 (18) | C51—C52 | 1.394 (3) |
C2—N3 | 1.365 (2) | C52—F52 | 1.355 (2) |
C2—S2 | 1.624 (2) | C52—C53 | 1.367 (3) |
N3—C4 | 1.372 (3) | C53—C54 | 1.379 (3) |
N3—H3 | 0.86 | C53—H53 | 0.93 |
C4—O4 | 1.221 (2) | C54—C55 | 1.369 (3) |
C4—C5 | 1.482 (2) | C54—H54 | 0.93 |
C5—C57 | 1.345 (3) | C55—C56 | 1.384 (2) |
C57—C51 | 1.455 (2) | C55—H55 | 0.93 |
C57—H57 | 0.93 | C56—H56 | 0.93 |
C5—S1—C2 | 93.12 (9) | C56—C51—C57 | 124.47 (17) |
N3—C2—S2 | 127.32 (14) | C52—C51—C57 | 120.08 (16) |
N3—C2—S1 | 109.32 (14) | F52—C52—C53 | 118.11 (18) |
S2—C2—S1 | 123.36 (12) | F52—C52—C51 | 117.88 (16) |
C2—N3—C4 | 118.43 (15) | C53—C52—C51 | 124.01 (19) |
C2—N3—H3 | 120.6 | C52—C53—C54 | 118.44 (19) |
C4—N3—H3 | 120.9 | C52—C53—H53 | 120.7 |
O4—C4—N3 | 124.16 (16) | C54—C53—H53 | 120.9 |
O4—C4—C5 | 125.73 (18) | C55—C54—C53 | 120.05 (18) |
N3—C4—C5 | 110.11 (16) | C55—C54—H54 | 119.8 |
C57—C5—C4 | 120.50 (17) | C53—C54—H54 | 120.1 |
C57—C5—S1 | 130.48 (14) | C54—C55—C56 | 120.3 (2) |
C4—C5—S1 | 109.02 (13) | C54—C55—H55 | 119.9 |
C5—C57—C51 | 129.25 (17) | C56—C55—H55 | 119.8 |
C5—C57—H57 | 115.2 | C55—C56—C51 | 121.76 (18) |
C51—C57—H57 | 115.5 | C55—C56—H56 | 119.1 |
C56—C51—C52 | 115.44 (16) | C51—C56—H56 | 119.1 |
C5—S1—C2—N3 | −0.19 (15) | C5—C57—C51—C56 | 6.7 (3) |
C5—S1—C2—S2 | 179.10 (13) | C5—C57—C51—C52 | −174.60 (19) |
S2—C2—N3—C4 | −179.38 (15) | C56—C51—C52—F52 | −177.76 (17) |
S1—C2—N3—C4 | −0.1 (2) | C57—C51—C52—F52 | 3.4 (3) |
C2—N3—C4—O4 | 179.91 (18) | C56—C51—C52—C53 | 1.4 (3) |
C2—N3—C4—C5 | 0.4 (2) | C57—C51—C52—C53 | −177.47 (19) |
O4—C4—C5—C57 | −0.2 (3) | F52—C52—C53—C54 | 177.62 (18) |
N3—C4—C5—C57 | 179.22 (17) | C51—C52—C53—C54 | −1.5 (3) |
O4—C4—C5—S1 | 179.99 (17) | C52—C53—C54—C55 | 0.5 (3) |
N3—C4—C5—S1 | −0.55 (19) | C53—C54—C55—C56 | 0.5 (3) |
C2—S1—C5—C57 | −179.32 (19) | C54—C55—C56—C51 | −0.6 (3) |
C2—S1—C5—C4 | 0.42 (14) | C52—C51—C56—C55 | −0.3 (3) |
C4—C5—C57—C51 | −176.72 (18) | C57—C51—C56—C55 | 178.51 (19) |
S1—C5—C57—C51 | 3.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O4i | 0.86 | 2.00 | 2.843 (2) | 168 |
C56—H56···S1 | 0.93 | 2.51 | 3.226 (2) | 134 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C10H6FNOS2 | F(000) = 488 |
Mr = 239.28 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2287 reflections |
a = 4.9173 (2) Å | θ = 3.6–27.5° |
b = 19.8906 (10) Å | µ = 0.50 mm−1 |
c = 10.4976 (6) Å | T = 298 K |
β = 92.929 (3)° | Lath, orange |
V = 1025.41 (9) Å3 | 0.60 × 0.35 × 0.12 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 2287 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1430 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
ϕ and ω scans | h = −5→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −25→25 |
Tmin = 0.753, Tmax = 0.942 | l = −10→13 |
7246 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.082 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0211P)2 + 1.095P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2287 reflections | Δρmax = 0.31 e Å−3 |
137 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0071 (17) |
C10H6FNOS2 | V = 1025.41 (9) Å3 |
Mr = 239.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.9173 (2) Å | µ = 0.50 mm−1 |
b = 19.8906 (10) Å | T = 298 K |
c = 10.4976 (6) Å | 0.60 × 0.35 × 0.12 mm |
β = 92.929 (3)° |
Bruker–Nonius KappaCCD diffractometer | 2287 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1430 reflections with I > 2σ(I) |
Tmin = 0.753, Tmax = 0.942 | Rint = 0.053 |
7246 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.31 e Å−3 |
2287 reflections | Δρmin = −0.27 e Å−3 |
137 parameters |
x | y | z | Uiso*/Ueq | ||
S1 | −0.09085 (14) | 0.50772 (4) | 0.18496 (8) | 0.0407 (3) | |
S2 | 0.27590 (19) | 0.38918 (5) | 0.17203 (11) | 0.0585 (3) | |
F54 | −1.0271 (4) | 0.75575 (11) | 0.0713 (2) | 0.0693 (7) | |
O4 | 0.2516 (4) | 0.56639 (11) | 0.5020 (2) | 0.0420 (6) | |
N3 | 0.2897 (4) | 0.48323 (13) | 0.3535 (2) | 0.0354 (6) | |
C2 | 0.1782 (5) | 0.45690 (16) | 0.2424 (3) | 0.0364 (8) | |
C4 | 0.1741 (5) | 0.54003 (16) | 0.4010 (3) | 0.0326 (7) | |
C5 | −0.0537 (5) | 0.56341 (15) | 0.3145 (3) | 0.0313 (7) | |
C51 | −0.4126 (5) | 0.65280 (15) | 0.2672 (3) | 0.0331 (7) | |
C52 | −0.5213 (6) | 0.71123 (17) | 0.3166 (3) | 0.0488 (9) | |
C53 | −0.7278 (7) | 0.74614 (18) | 0.2514 (4) | 0.0552 (10) | |
C54 | −0.8236 (6) | 0.72169 (18) | 0.1359 (3) | 0.0452 (9) | |
C55 | −0.7269 (6) | 0.66447 (18) | 0.0836 (3) | 0.0469 (9) | |
C56 | −0.5198 (6) | 0.63011 (17) | 0.1496 (3) | 0.0422 (8) | |
C57 | −0.1918 (5) | 0.61927 (15) | 0.3396 (3) | 0.0338 (7) | |
H3 | 0.4394 | 0.4631 | 0.3794 | 0.043* | |
H57 | −0.1380 | 0.6402 | 0.4160 | 0.041* | |
H52 | −0.4536 | 0.7272 | 0.3952 | 0.059* | |
H53 | −0.7995 | 0.7852 | 0.2851 | 0.066* | |
H55 | −0.7983 | 0.6489 | 0.0053 | 0.056* | |
H56 | −0.4507 | 0.5911 | 0.1147 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0365 (4) | 0.0431 (5) | 0.0412 (5) | 0.0036 (3) | −0.0109 (3) | −0.0059 (4) |
C2 | 0.0318 (14) | 0.0370 (19) | 0.0400 (19) | −0.0028 (13) | −0.0012 (13) | 0.0007 (15) |
S2 | 0.0548 (5) | 0.0492 (6) | 0.0700 (7) | 0.0099 (4) | −0.0105 (5) | −0.0200 (5) |
N3 | 0.0286 (11) | 0.0401 (16) | 0.0368 (15) | 0.0057 (11) | −0.0052 (10) | −0.0014 (13) |
C4 | 0.0270 (13) | 0.0377 (19) | 0.0330 (18) | −0.0010 (13) | 0.0003 (12) | 0.0048 (15) |
O4 | 0.0393 (11) | 0.0500 (15) | 0.0356 (13) | 0.0088 (10) | −0.0098 (10) | −0.0048 (11) |
C5 | 0.0279 (13) | 0.0361 (18) | 0.0296 (17) | −0.0019 (12) | −0.0031 (12) | 0.0017 (14) |
C57 | 0.0324 (14) | 0.0378 (19) | 0.0307 (17) | −0.0018 (13) | −0.0032 (12) | 0.0003 (15) |
F54 | 0.0589 (12) | 0.0675 (15) | 0.0787 (17) | 0.0202 (11) | −0.0233 (11) | 0.0161 (13) |
C51 | 0.0284 (13) | 0.0332 (18) | 0.0372 (18) | −0.0015 (12) | −0.0027 (12) | 0.0035 (14) |
C54 | 0.0344 (15) | 0.047 (2) | 0.054 (2) | 0.0034 (15) | −0.0074 (15) | 0.0155 (18) |
C52 | 0.0445 (17) | 0.046 (2) | 0.054 (2) | 0.0059 (16) | −0.0145 (16) | −0.0095 (18) |
C53 | 0.0512 (19) | 0.042 (2) | 0.071 (3) | 0.0125 (17) | −0.0120 (18) | −0.007 (2) |
C55 | 0.0451 (17) | 0.056 (2) | 0.038 (2) | 0.0045 (17) | −0.0107 (15) | 0.0038 (18) |
C56 | 0.0417 (16) | 0.046 (2) | 0.038 (2) | 0.0068 (15) | −0.0034 (14) | 0.0003 (16) |
S1—C2 | 1.748 (3) | F54—C54 | 1.360 (3) |
S1—C5 | 1.756 (3) | C51—C52 | 1.391 (4) |
C2—N3 | 1.367 (4) | C51—C56 | 1.393 (4) |
C2—S2 | 1.621 (3) | C54—C55 | 1.360 (5) |
N3—C4 | 1.370 (4) | C54—C53 | 1.367 (5) |
N3—H3 | 0.87 | C52—C53 | 1.382 (4) |
C4—O4 | 1.226 (3) | C52—H52 | 0.93 |
C4—C5 | 1.481 (4) | C53—H53 | 0.93 |
C5—C57 | 1.336 (4) | C55—C56 | 1.383 (4) |
C57—C51 | 1.455 (4) | C55—H55 | 0.93 |
C57—H57 | 0.93 | C56—H56 | 0.93 |
C2—S1—C5 | 92.91 (14) | C52—C51—C57 | 118.6 (3) |
N3—C2—S2 | 126.3 (2) | C56—C51—C57 | 123.6 (3) |
N3—C2—S1 | 109.7 (2) | C55—C54—F54 | 118.6 (3) |
S2—C2—S1 | 124.05 (18) | C55—C54—C53 | 123.0 (3) |
C2—N3—C4 | 118.1 (2) | F54—C54—C53 | 118.4 (3) |
C2—N3—H3 | 112.8 | C53—C52—C51 | 121.4 (3) |
C4—N3—H3 | 128.8 | C53—C52—H52 | 119.3 |
O4—C4—N3 | 123.4 (2) | C51—C52—H52 | 119.3 |
O4—C4—C5 | 126.1 (3) | C54—C53—C52 | 118.1 (3) |
N3—C4—C5 | 110.5 (2) | C54—C53—H53 | 120.9 |
C57—C5—C4 | 121.1 (3) | C52—C53—H53 | 120.9 |
C57—C5—S1 | 130.1 (2) | C54—C55—C56 | 118.3 (3) |
C4—C5—S1 | 108.8 (2) | C54—C55—H55 | 120.8 |
C5—C57—C51 | 130.6 (3) | C56—C55—H55 | 120.8 |
C5—C57—H57 | 114.7 | C55—C56—C51 | 121.3 (3) |
C51—C57—H57 | 114.7 | C55—C56—H56 | 119.3 |
C52—C51—C56 | 117.8 (3) | C51—C56—H56 | 119.3 |
C5—S1—C2—N3 | −1.2 (2) | S1—C5—C57—C51 | −1.5 (5) |
C5—S1—C2—S2 | 179.0 (2) | C5—C57—C51—C52 | 179.9 (3) |
S2—C2—N3—C4 | −178.0 (2) | C5—C57—C51—C56 | −1.0 (5) |
S1—C2—N3—C4 | 2.2 (3) | C56—C51—C52—C53 | −0.4 (5) |
C2—N3—C4—O4 | 177.3 (3) | C57—C51—C52—C53 | 178.8 (3) |
C2—N3—C4—C5 | −2.2 (4) | C55—C54—C53—C52 | 0.7 (6) |
O4—C4—C5—C57 | 2.5 (5) | F54—C54—C53—C52 | 179.9 (3) |
N3—C4—C5—C57 | −178.0 (3) | C51—C52—C53—C54 | −0.1 (6) |
O4—C4—C5—S1 | −178.4 (3) | F54—C54—C55—C56 | 179.9 (3) |
N3—C4—C5—S1 | 1.1 (3) | C53—C54—C55—C56 | −0.9 (6) |
C2—S1—C5—C57 | 179.0 (3) | C54—C55—C56—C51 | 0.4 (5) |
C2—S1—C5—C4 | 0.1 (2) | C52—C51—C56—C55 | 0.2 (5) |
C4—C5—C57—C51 | 177.4 (3) | C57—C51—C56—C55 | −178.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C56—H56···S1 | 0.93 | 2.51 | 3.230 (3) | 135 |
N3—H3···O4i | 0.87 | 2.00 | 2.831 (3) | 159 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C13H13NO4S2 | Z = 4 |
Mr = 311.36 | F(000) = 648 |
Triclinic, P1 | Dx = 1.483 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3432 (4) Å | Cell parameters from 6377 reflections |
b = 10.9105 (4) Å | θ = 2.7–27.5° |
c = 13.4621 (4) Å | µ = 0.39 mm−1 |
α = 100.399 (2)° | T = 120 K |
β = 91.572 (2)° | Plate, orange |
γ = 110.301 (2)° | 0.10 × 0.08 × 0.03 mm |
V = 1394.72 (9) Å3 |
Bruker–Nonius KappaCCD diffractometer | 6377 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 3786 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.106 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
ϕ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −14→14 |
Tmin = 0.952, Tmax = 0.988 | l = −17→17 |
29714 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0539P)2] where P = (Fo2 + 2Fc2)/3 |
6377 reflections | (Δ/σ)max = 0.001 |
367 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C13H13NO4S2 | γ = 110.301 (2)° |
Mr = 311.36 | V = 1394.72 (9) Å3 |
Triclinic, P1 | Z = 4 |
a = 10.3432 (4) Å | Mo Kα radiation |
b = 10.9105 (4) Å | µ = 0.39 mm−1 |
c = 13.4621 (4) Å | T = 120 K |
α = 100.399 (2)° | 0.10 × 0.08 × 0.03 mm |
β = 91.572 (2)° |
Bruker–Nonius KappaCCD diffractometer | 6377 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3786 reflections with I > 2σ(I) |
Tmin = 0.952, Tmax = 0.988 | Rint = 0.106 |
29714 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.33 e Å−3 |
6377 reflections | Δρmin = −0.42 e Å−3 |
367 parameters |
x | y | z | Uiso*/Ueq | ||
S11 | 0.88927 (7) | 1.14205 (7) | 0.93278 (5) | 0.02349 (18) | |
S12 | 0.88234 (8) | 1.14023 (7) | 0.71059 (5) | 0.02956 (19) | |
O14 | 0.71179 (19) | 0.76133 (18) | 0.88920 (12) | 0.0254 (4) | |
N13 | 0.7868 (2) | 0.9277 (2) | 0.79756 (14) | 0.0208 (5) | |
C12 | 0.8492 (3) | 1.0620 (3) | 0.80518 (18) | 0.0225 (6) | |
C14 | 0.7672 (3) | 0.8801 (3) | 0.88691 (18) | 0.0205 (6) | |
C15 | 0.8220 (3) | 0.9912 (3) | 0.97520 (18) | 0.0197 (6) | |
C157 | 0.8165 (3) | 0.9684 (3) | 1.07014 (18) | 0.0201 (6) | |
C151 | 0.8672 (3) | 1.0580 (3) | 1.16742 (18) | 0.0185 (6) | |
C152 | 0.8448 (3) | 1.0027 (3) | 1.25423 (18) | 0.0206 (6) | |
C153 | 0.8926 (3) | 1.0830 (3) | 1.34957 (18) | 0.0211 (6) | |
O153 | 0.87569 (19) | 1.03880 (18) | 1.43900 (12) | 0.0271 (5) | |
C158 | 0.8139 (3) | 0.8987 (3) | 1.4343 (2) | 0.0302 (7) | |
C154 | 0.9635 (3) | 1.2197 (3) | 1.36037 (18) | 0.0204 (6) | |
O154 | 1.01952 (17) | 1.29983 (17) | 1.45341 (12) | 0.0231 (4) | |
C155 | 0.9863 (3) | 1.2757 (3) | 1.27333 (18) | 0.0189 (6) | |
C159 | 0.9202 (3) | 1.3319 (3) | 1.51525 (19) | 0.0272 (7) | |
O155 | 1.05683 (18) | 1.41070 (17) | 1.29121 (12) | 0.0242 (4) | |
C150 | 1.0806 (3) | 1.4715 (3) | 1.20455 (19) | 0.0270 (7) | |
C156 | 0.9384 (3) | 1.1951 (3) | 1.17770 (18) | 0.0205 (6) | |
S21 | 0.57903 (7) | 0.34519 (7) | 0.58269 (5) | 0.02293 (18) | |
C22 | 0.5770 (3) | 0.4278 (3) | 0.70628 (18) | 0.0200 (6) | |
S22 | 0.52094 (8) | 0.35185 (7) | 0.79946 (5) | 0.0296 (2) | |
N23 | 0.6282 (2) | 0.5620 (2) | 0.71191 (15) | 0.0198 (5) | |
C24 | 0.6698 (2) | 0.6082 (3) | 0.62460 (18) | 0.0185 (6) | |
O24 | 0.71258 (18) | 0.72673 (17) | 0.62060 (12) | 0.0223 (4) | |
C25 | 0.6511 (3) | 0.4955 (2) | 0.53957 (18) | 0.0177 (6) | |
C257 | 0.6865 (2) | 0.5166 (3) | 0.44703 (18) | 0.0190 (6) | |
C251 | 0.6724 (3) | 0.4227 (3) | 0.35233 (17) | 0.0177 (6) | |
C252 | 0.7184 (3) | 0.4747 (3) | 0.26660 (18) | 0.0208 (6) | |
C253 | 0.7018 (3) | 0.3897 (3) | 0.17292 (18) | 0.0212 (6) | |
O253 | 0.75011 (19) | 0.43225 (18) | 0.08640 (12) | 0.0284 (5) | |
C258 | 0.7887 (3) | 0.5719 (3) | 0.0867 (2) | 0.0370 (8) | |
C254 | 0.6374 (3) | 0.2523 (3) | 0.16284 (18) | 0.0208 (6) | |
O254 | 0.61905 (19) | 0.16169 (18) | 0.07461 (12) | 0.0278 (5) | |
C259 | 0.5633 (3) | 0.1858 (3) | −0.01633 (19) | 0.0287 (7) | |
C255 | 0.5947 (3) | 0.2002 (3) | 0.24972 (18) | 0.0195 (6) | |
O255 | 0.53508 (19) | 0.06435 (17) | 0.23400 (12) | 0.0257 (4) | |
C250 | 0.5024 (3) | 0.0074 (3) | 0.32222 (19) | 0.0304 (7) | |
C256 | 0.6117 (3) | 0.2846 (3) | 0.34292 (18) | 0.0206 (6) | |
H13 | 0.7599 | 0.8731 | 0.7380 | 0.025* | |
H157 | 0.7716 | 0.8775 | 1.0740 | 0.024* | |
H152 | 0.7966 | 0.9096 | 1.2478 | 0.025* | |
H18A | 0.7188 | 0.8661 | 1.4021 | 0.045* | |
H18B | 0.8128 | 0.8810 | 1.5032 | 0.045* | |
H18C | 0.8677 | 0.8528 | 1.3945 | 0.045* | |
H19A | 0.8769 | 1.3824 | 1.4816 | 0.041* | |
H19B | 0.9669 | 1.3858 | 1.5813 | 0.041* | |
H19C | 0.8488 | 1.2493 | 1.5251 | 0.041* | |
H10A | 1.1406 | 1.4365 | 1.1622 | 0.040* | |
H10B | 1.1256 | 1.5683 | 1.2269 | 0.040* | |
H10C | 0.9920 | 1.4511 | 1.1652 | 0.040* | |
H156 | 0.9540 | 1.2332 | 1.1190 | 0.025* | |
H23 | 0.6347 | 0.6178 | 0.7695 | 0.024* | |
H257 | 0.7274 | 0.6079 | 0.4429 | 0.023* | |
H252 | 0.7610 | 0.5684 | 0.2724 | 0.025* | |
H28A | 0.7130 | 0.6017 | 0.1086 | 0.055* | |
H28B | 0.8073 | 0.5874 | 0.0181 | 0.055* | |
H28C | 0.8722 | 0.6222 | 0.1335 | 0.055* | |
H29A | 0.5023 | 0.2362 | 0.0017 | 0.043* | |
H29B | 0.5103 | 0.1003 | −0.0614 | 0.043* | |
H29C | 0.6393 | 0.2371 | −0.0511 | 0.043* | |
H20A | 0.5867 | 0.0343 | 0.3684 | 0.046* | |
H20B | 0.4639 | −0.0902 | 0.3019 | 0.046* | |
H20C | 0.4342 | 0.0390 | 0.3567 | 0.046* | |
H256 | 0.5818 | 0.2484 | 0.4010 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S11 | 0.0321 (4) | 0.0175 (4) | 0.0181 (3) | 0.0061 (3) | 0.0020 (3) | 0.0025 (3) |
C12 | 0.0272 (16) | 0.0233 (17) | 0.0187 (14) | 0.0122 (14) | 0.0021 (11) | 0.0027 (12) |
S12 | 0.0422 (5) | 0.0256 (4) | 0.0210 (4) | 0.0101 (4) | 0.0051 (3) | 0.0085 (3) |
N13 | 0.0297 (13) | 0.0178 (13) | 0.0121 (11) | 0.0063 (11) | 0.0011 (9) | 0.0007 (9) |
C14 | 0.0210 (15) | 0.0207 (16) | 0.0204 (14) | 0.0082 (13) | 0.0047 (11) | 0.0036 (12) |
O14 | 0.0358 (12) | 0.0189 (12) | 0.0172 (9) | 0.0054 (10) | 0.0045 (8) | 0.0014 (8) |
C15 | 0.0209 (15) | 0.0151 (15) | 0.0210 (14) | 0.0051 (12) | 0.0022 (11) | 0.0012 (11) |
C157 | 0.0212 (15) | 0.0170 (15) | 0.0207 (14) | 0.0050 (12) | 0.0034 (11) | 0.0038 (11) |
C151 | 0.0188 (14) | 0.0191 (16) | 0.0165 (13) | 0.0061 (12) | 0.0027 (11) | 0.0024 (11) |
C152 | 0.0235 (15) | 0.0151 (15) | 0.0200 (14) | 0.0031 (12) | −0.0008 (11) | 0.0032 (11) |
C153 | 0.0238 (15) | 0.0239 (16) | 0.0161 (13) | 0.0087 (13) | 0.0017 (11) | 0.0054 (11) |
O153 | 0.0377 (12) | 0.0229 (11) | 0.0154 (9) | 0.0033 (9) | 0.0010 (8) | 0.0059 (8) |
C158 | 0.0348 (18) | 0.0301 (19) | 0.0241 (15) | 0.0057 (15) | 0.0053 (13) | 0.0132 (13) |
C154 | 0.0188 (15) | 0.0224 (16) | 0.0169 (13) | 0.0059 (13) | 0.0009 (11) | −0.0010 (11) |
O154 | 0.0225 (10) | 0.0268 (11) | 0.0146 (9) | 0.0059 (9) | −0.0005 (8) | −0.0027 (8) |
C155 | 0.0193 (14) | 0.0153 (15) | 0.0204 (14) | 0.0044 (12) | 0.0023 (11) | 0.0032 (11) |
C159 | 0.0343 (17) | 0.0270 (17) | 0.0203 (14) | 0.0139 (14) | 0.0003 (12) | −0.0010 (12) |
O155 | 0.0302 (11) | 0.0179 (11) | 0.0208 (10) | 0.0043 (9) | 0.0034 (8) | 0.0028 (8) |
C150 | 0.0321 (17) | 0.0169 (16) | 0.0278 (15) | 0.0027 (14) | 0.0006 (13) | 0.0070 (12) |
C156 | 0.0253 (15) | 0.0211 (16) | 0.0160 (13) | 0.0090 (13) | 0.0007 (11) | 0.0047 (11) |
S21 | 0.0317 (4) | 0.0167 (4) | 0.0185 (3) | 0.0065 (3) | 0.0042 (3) | 0.0031 (3) |
C22 | 0.0239 (15) | 0.0218 (16) | 0.0153 (13) | 0.0098 (13) | 0.0008 (11) | 0.0031 (11) |
S22 | 0.0444 (5) | 0.0247 (4) | 0.0219 (4) | 0.0120 (4) | 0.0096 (3) | 0.0102 (3) |
N23 | 0.0276 (13) | 0.0165 (13) | 0.0139 (11) | 0.0078 (11) | 0.0020 (9) | 0.0002 (9) |
C24 | 0.0165 (14) | 0.0227 (17) | 0.0166 (13) | 0.0073 (13) | 0.0013 (11) | 0.0045 (12) |
O24 | 0.0294 (11) | 0.0160 (11) | 0.0188 (9) | 0.0052 (9) | 0.0033 (8) | 0.0025 (8) |
C25 | 0.0175 (14) | 0.0135 (14) | 0.0193 (13) | 0.0032 (12) | −0.0011 (11) | 0.0019 (11) |
C257 | 0.0162 (14) | 0.0165 (15) | 0.0227 (14) | 0.0039 (12) | 0.0002 (11) | 0.0041 (11) |
C251 | 0.0183 (14) | 0.0178 (15) | 0.0157 (13) | 0.0056 (12) | −0.0007 (10) | 0.0022 (11) |
C252 | 0.0219 (15) | 0.0174 (15) | 0.0218 (14) | 0.0053 (12) | 0.0018 (11) | 0.0044 (11) |
C253 | 0.0240 (15) | 0.0283 (17) | 0.0133 (13) | 0.0112 (13) | 0.0042 (11) | 0.0049 (12) |
O253 | 0.0376 (12) | 0.0249 (12) | 0.0179 (10) | 0.0048 (10) | 0.0072 (8) | 0.0047 (8) |
C258 | 0.051 (2) | 0.032 (2) | 0.0282 (16) | 0.0102 (16) | 0.0138 (14) | 0.0138 (14) |
C254 | 0.0238 (15) | 0.0210 (16) | 0.0163 (13) | 0.0087 (13) | −0.0005 (11) | −0.0001 (11) |
O254 | 0.0444 (13) | 0.0261 (11) | 0.0144 (9) | 0.0170 (10) | −0.0004 (8) | −0.0002 (8) |
C259 | 0.0346 (18) | 0.0318 (18) | 0.0190 (14) | 0.0136 (15) | −0.0030 (12) | 0.0010 (12) |
C255 | 0.0203 (14) | 0.0160 (16) | 0.0190 (14) | 0.0047 (12) | −0.0033 (11) | 0.0003 (11) |
O255 | 0.0359 (12) | 0.0177 (11) | 0.0193 (10) | 0.0058 (9) | 0.0006 (8) | 0.0010 (8) |
C250 | 0.0412 (19) | 0.0187 (16) | 0.0278 (15) | 0.0065 (14) | 0.0032 (14) | 0.0048 (13) |
C256 | 0.0240 (15) | 0.0253 (17) | 0.0151 (13) | 0.0109 (13) | 0.0033 (11) | 0.0066 (11) |
S11—C12 | 1.747 (3) | S21—C22 | 1.748 (2) |
S11—C15 | 1.757 (3) | S21—C25 | 1.761 (3) |
C12—N13 | 1.364 (3) | C22—N23 | 1.359 (3) |
C12—S12 | 1.637 (3) | C22—S22 | 1.637 (2) |
N13—C14 | 1.387 (3) | N23—C24 | 1.383 (3) |
N13—H13 | 0.88 | N23—H23 | 0.88 |
C14—O14 | 1.228 (3) | C24—O24 | 1.225 (3) |
C14—C15 | 1.473 (4) | C24—C25 | 1.475 (3) |
C15—C157 | 1.345 (3) | C25—C257 | 1.345 (3) |
C157—C151 | 1.446 (3) | C257—C251 | 1.453 (3) |
C157—H157 | 0.95 | C257—H257 | 0.95 |
C151—C156 | 1.398 (4) | C251—C256 | 1.397 (4) |
C151—C152 | 1.398 (3) | C251—C252 | 1.399 (3) |
C152—C153 | 1.385 (3) | C252—C253 | 1.391 (3) |
C152—H152 | 0.95 | C252—H252 | 0.95 |
C153—O153 | 1.370 (3) | C253—O253 | 1.374 (3) |
C153—C154 | 1.392 (4) | C253—C254 | 1.392 (4) |
O153—C158 | 1.426 (3) | O253—C258 | 1.435 (3) |
C158—H18A | 0.98 | C258—H28A | 0.98 |
C158—H18B | 0.98 | C258—H28B | 0.98 |
C158—H18C | 0.98 | C258—H28C | 0.98 |
C154—O154 | 1.372 (3) | C254—O254 | 1.363 (3) |
C154—C155 | 1.406 (3) | C254—C255 | 1.407 (3) |
O154—C159 | 1.436 (3) | O254—C259 | 1.443 (3) |
C155—O155 | 1.369 (3) | C259—H29A | 0.98 |
C155—C156 | 1.390 (3) | C259—H29B | 0.98 |
C159—H19A | 0.98 | C259—H29C | 0.98 |
C159—H19B | 0.98 | C255—O255 | 1.367 (3) |
C159—H19C | 0.98 | C255—C256 | 1.383 (3) |
O155—C150 | 1.429 (3) | O255—C250 | 1.433 (3) |
C150—H10A | 0.98 | C250—H20A | 0.98 |
C150—H10B | 0.98 | C250—H20B | 0.98 |
C150—H10C | 0.98 | C250—H20C | 0.98 |
C156—H156 | 0.95 | C256—H256 | 0.95 |
C12—S11—C15 | 92.79 (12) | C22—S21—C25 | 92.91 (12) |
N13—C12—S12 | 126.18 (19) | N23—C22—S22 | 126.26 (19) |
N13—C12—S11 | 110.00 (18) | N23—C22—S21 | 109.76 (17) |
S12—C12—S11 | 123.82 (17) | S22—C22—S21 | 123.98 (16) |
C12—N13—C14 | 117.7 (2) | C22—N23—C24 | 118.1 (2) |
C12—N13—H13 | 121.2 | C22—N23—H23 | 120.9 |
C14—N13—H13 | 121.2 | C24—N23—H23 | 120.9 |
O14—C14—N13 | 123.3 (2) | O24—C24—N23 | 123.3 (2) |
O14—C14—C15 | 126.4 (2) | O24—C24—C25 | 126.3 (2) |
N13—C14—C15 | 110.3 (2) | N23—C24—C25 | 110.4 (2) |
C157—C15—C14 | 120.8 (2) | C257—C25—C24 | 120.9 (2) |
C157—C15—S11 | 130.0 (2) | C257—C25—S21 | 130.2 (2) |
C14—C15—S11 | 109.22 (18) | C24—C25—S21 | 108.83 (17) |
C15—C157—C151 | 131.3 (3) | C25—C257—C251 | 130.6 (3) |
C15—C157—H157 | 114.4 | C25—C257—H257 | 114.7 |
C151—C157—H157 | 114.4 | C251—C257—H257 | 114.7 |
C156—C151—C152 | 119.4 (2) | C256—C251—C252 | 119.2 (2) |
C156—C151—C157 | 123.0 (2) | C256—C251—C257 | 123.0 (2) |
C152—C151—C157 | 117.6 (2) | C252—C251—C257 | 117.8 (2) |
C153—C152—C151 | 120.3 (2) | C253—C252—C251 | 120.3 (2) |
C153—C152—H152 | 119.8 | C253—C252—H252 | 119.8 |
C151—C152—H152 | 119.8 | C251—C252—H252 | 119.8 |
O153—C153—C152 | 124.8 (2) | O253—C253—C252 | 123.8 (2) |
O153—C153—C154 | 114.6 (2) | O253—C253—C254 | 115.6 (2) |
C152—C153—C154 | 120.6 (2) | C252—C253—C254 | 120.5 (2) |
C153—O153—C158 | 118.2 (2) | C253—O253—C258 | 117.4 (2) |
O153—C158—H18A | 109.5 | O253—C258—H28A | 109.5 |
O153—C158—H18B | 109.5 | O253—C258—H28B | 109.5 |
H18A—C158—H18B | 109.5 | H28A—C258—H28B | 109.5 |
O153—C158—H18C | 109.5 | O253—C258—H28C | 109.5 |
H18A—C158—H18C | 109.5 | H28A—C258—H28C | 109.5 |
H18B—C158—H18C | 109.5 | H28B—C258—H28C | 109.5 |
O154—C154—C153 | 121.6 (2) | O254—C254—C253 | 124.5 (2) |
O154—C154—C155 | 118.9 (2) | O254—C254—C255 | 116.4 (2) |
C153—C154—C155 | 119.3 (2) | C253—C254—C255 | 119.0 (2) |
C154—O154—C159 | 114.13 (19) | C254—O254—C259 | 118.4 (2) |
O155—C155—C156 | 124.7 (2) | O254—C259—H29A | 109.5 |
O155—C155—C154 | 115.3 (2) | O254—C259—H29B | 109.5 |
C156—C155—C154 | 120.0 (2) | H29A—C259—H29B | 109.5 |
O154—C159—H19A | 109.5 | O254—C259—H29C | 109.5 |
O154—C159—H19B | 109.5 | H29A—C259—H29C | 109.5 |
H19A—C159—H19B | 109.5 | H29B—C259—H29C | 109.5 |
O154—C159—H19C | 109.5 | O255—C255—C256 | 124.1 (2) |
H19A—C159—H19C | 109.5 | O255—C255—C254 | 115.5 (2) |
H19B—C159—H19C | 109.5 | C256—C255—C254 | 120.4 (2) |
C155—O155—C150 | 116.85 (19) | C255—O255—C250 | 116.83 (19) |
O155—C150—H10A | 109.5 | O255—C250—H20A | 109.5 |
O155—C150—H10B | 109.5 | O255—C250—H20B | 109.5 |
H10A—C150—H10B | 109.5 | H20A—C250—H20B | 109.5 |
O155—C150—H10C | 109.5 | O255—C250—H20C | 109.5 |
H10A—C150—H10C | 109.5 | H20A—C250—H20C | 109.5 |
H10B—C150—H10C | 109.5 | H20B—C250—H20C | 109.5 |
C155—C156—C151 | 120.3 (2) | C255—C256—C251 | 120.5 (2) |
C155—C156—H156 | 119.8 | C255—C256—H256 | 119.8 |
C151—C156—H156 | 119.8 | C251—C256—H256 | 119.8 |
C15—S11—C12—N13 | 0.51 (19) | C25—S21—C22—N23 | 0.25 (19) |
C15—S11—C12—S12 | −179.82 (17) | C25—S21—C22—S22 | −179.75 (17) |
S12—C12—N13—C14 | −179.79 (18) | S22—C22—N23—C24 | −179.51 (18) |
S11—C12—N13—C14 | −0.1 (3) | S21—C22—N23—C24 | 0.5 (3) |
C12—N13—C14—O14 | 179.8 (2) | C22—N23—C24—O24 | 177.2 (2) |
C12—N13—C14—C15 | −0.4 (3) | C22—N23—C24—C25 | −1.2 (3) |
O14—C14—C15—C157 | 1.0 (4) | O24—C24—C25—C257 | 2.6 (4) |
N13—C14—C15—C157 | −178.8 (2) | N23—C24—C25—C257 | −179.1 (2) |
O14—C14—C15—S11 | −179.4 (2) | O24—C24—C25—S21 | −177.1 (2) |
N13—C14—C15—S11 | 0.8 (2) | N23—C24—C25—S21 | 1.2 (2) |
C12—S11—C15—C157 | 178.8 (2) | C22—S21—C25—C257 | 179.5 (2) |
C12—S11—C15—C14 | −0.74 (19) | C22—S21—C25—C24 | −0.84 (18) |
C14—C15—C157—C151 | 177.2 (2) | C24—C25—C257—C251 | −177.2 (2) |
S11—C15—C157—C151 | −2.2 (4) | S21—C25—C257—C251 | 2.4 (4) |
C15—C157—C151—C156 | −1.2 (4) | C25—C257—C251—C256 | 1.6 (4) |
C15—C157—C151—C152 | 179.9 (3) | C25—C257—C251—C252 | 179.5 (2) |
C156—C151—C152—C153 | 0.1 (4) | C256—C251—C252—C253 | 0.9 (4) |
C157—C151—C152—C153 | 179.1 (2) | C257—C251—C252—C253 | −177.1 (2) |
C151—C152—C153—O153 | 179.8 (2) | C251—C252—C253—O253 | −176.6 (2) |
C151—C152—C153—C154 | 0.0 (4) | C251—C252—C253—C254 | 1.1 (4) |
C152—C153—O153—C158 | 5.1 (4) | C252—C253—O253—C258 | −15.8 (4) |
C154—C153—O153—C158 | −175.1 (2) | C254—C253—O253—C258 | 166.4 (2) |
O153—C153—C154—O154 | 4.4 (3) | O253—C253—C254—O254 | −0.9 (4) |
C152—C153—C154—O154 | −175.7 (2) | C252—C253—C254—O254 | −178.7 (2) |
O153—C153—C154—C155 | −179.9 (2) | O253—C253—C254—C255 | 175.1 (2) |
C152—C153—C154—C155 | 0.0 (4) | C252—C253—C254—C255 | −2.7 (4) |
C153—C154—O154—C159 | −77.3 (3) | C253—C254—O254—C259 | −48.1 (3) |
C155—C154—O154—C159 | 107.0 (3) | C255—C254—O254—C259 | 135.8 (2) |
O154—C154—C155—O155 | −4.2 (3) | O254—C254—C255—O255 | −2.3 (3) |
C153—C154—C155—O155 | 180.0 (2) | C253—C254—C255—O255 | −178.6 (2) |
O154—C154—C155—C156 | 175.8 (2) | O254—C254—C255—C256 | 178.8 (2) |
C153—C154—C155—C156 | 0.0 (4) | C253—C254—C255—C256 | 2.5 (4) |
C156—C155—O155—C150 | 0.6 (3) | C256—C255—O255—C250 | −6.9 (3) |
C154—C155—O155—C150 | −179.3 (2) | C254—C255—O255—C250 | 174.3 (2) |
O155—C155—C156—C151 | −179.9 (2) | O255—C255—C256—C251 | −179.3 (2) |
C154—C155—C156—C151 | 0.0 (4) | C254—C255—C256—C251 | −0.6 (4) |
C152—C151—C156—C155 | −0.1 (4) | C252—C251—C256—C255 | −1.2 (4) |
C157—C151—C156—C155 | −179.0 (2) | C257—C251—C256—C255 | 176.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C156—H156···S11 | 0.95 | 2.50 | 3.237 (2) | 134 |
C256—H256···S21 | 0.95 | 2.49 | 3.227 (2) | 134 |
N13—H13···O24 | 0.88 | 1.95 | 2.814 (3) | 168 |
N23—H23···O14 | 0.88 | 1.96 | 2.807 (3) | 162 |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C10H6FNOS2 | C10H6FNOS2 | C13H13NO4S2 |
Mr | 239.28 | 239.28 | 311.36 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 298 | 298 | 120 |
a, b, c (Å) | 11.1848 (4), 7.7651 (4), 12.3611 (5) | 4.9173 (2), 19.8906 (10), 10.4976 (6) | 10.3432 (4), 10.9105 (4), 13.4621 (4) |
α, β, γ (°) | 90, 107.417 (3), 90 | 90, 92.929 (3), 90 | 100.399 (2), 91.572 (2), 110.301 (2) |
V (Å3) | 1024.35 (8) | 1025.41 (9) | 1394.72 (9) |
Z | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.50 | 0.50 | 0.39 |
Crystal size (mm) | 0.36 × 0.32 × 0.04 | 0.60 × 0.35 × 0.12 | 0.10 × 0.08 × 0.03 |
Data collection | |||
Diffractometer | Bruker–Nonius KappaCCD diffractometer | Bruker–Nonius KappaCCD diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.869, 0.980 | 0.753, 0.942 | 0.952, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9920, 2337, 1768 | 7246, 2287, 1430 | 29714, 6377, 3786 |
Rint | 0.042 | 0.053 | 0.106 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 | 0.650 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.105, 1.04 | 0.082, 0.110, 1.09 | 0.063, 0.119, 1.00 |
No. of reflections | 2337 | 2287 | 6377 |
No. of parameters | 141 | 137 | 367 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.32 | 0.31, −0.27 | 0.33, −0.42 |
Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
Parameter | (I) | (II) | (III) | (III) |
x | nil | nil | 1 | 2 |
Cx5—Cx57—Cx51 | 129.25 (17) | 130.6 (3) | 131.3 (3) | 130.6 (3) |
Sx1—Cx5—Cx57 | 130.48 (14) | 130.1 (2) | 130.0 (2) | 130.2 (2) |
Cx4—Cx5—Cx57 | 120.50 (17) | 121.1 (3) | 120.8 (2) | 120.9 (2) |
Cx52—Cx51—Cx56 | 115.44 (16) | 118.6 (3) | 119.4 (2) | 117.8 (2) |
Cx57—Cx51—Cx56 | 124.47 (17) | 123.6 (3) | 123.0 (2) | 123.0 (2) |
Cx5—Cx57—Cx51—Cx52 | -174.60 (19) | 179.9 (3) | 179.9 (3) | 179.5 (3) |
Cx52—Cx53—Ox53—Cx58 | 5.1 (4) | -15.8 (4) | ||
Cx53—Cx54—Ox54—Cx59 | -77.3 (3) | -48.1 (3) | ||
Cx54—Cx55—Ox55—Cx50 | -179.3 (2) | 174.3 (2) |
Compound | D-H···A | D-H | H···A | D···A | D-H···A |
(I) | C56—H56···S1 | 0.93 | 2.51 | 3.226 (2) | 134 |
N3—H3···O4i | 0.86 | 2.00 | 2.843 (2) | 168 | |
(II) | C56—H56···S1 | 0.93 | 2.51 | 3.230 (3) | 135 |
N3—H3···O4i | 0.87 | 2.00 | 2.831 (3) | 159 | |
(III) | C156—H156···S11 | 0.95 | 2.50 | 3.237 (2) | 134 |
N13—H13···O24 | 0.88 | 1.95 | 2.814 (3) | 168 | |
C256—H256···S21 | 0.95 | 2.49 | 3.227 (2) | 134 | |
N23—H23···O14 | 0.88 | 1.96 | 2.807 (3) | 162 |
Symmetry code: (i) 1 − x, 1 − y, 1 − z. |
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JP thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.
References
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Delgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477–o482. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
We report here the structures of three substituted (Z)-5-(benzylidene)-2-thioxothiazolidin-4-ones, namely two isomers of (Z)-5-(fluorobenzylidene)-2-thioxothiazolidin-4-one, (I) and (II) (Figs. 1 and 2), and (Z)-5-(3,4,5-trimethoxybenzylidene)-2-thioxothiazolidin-4-one, (III) (Fig. 3), and we briefly compare these with the structures of the four analogues (IV)–(VII) which have been reported recently (Delgado et al., 2005). As for compounds (IV)–(VII), the title compounds (I)-(III) have been prepared by condensation of 2-thioxothiazolidin-4-one (rhodanine) with a substituted benzaldehyde using microwave radiation in a solvent-free system.
The molecules of compounds (I)–(III) are both effectively planar, as shown by the values of the Cx5—Cx57—Cx51—Cx52 torsion angle, where x = nil for compounds (I) and (II), and x = 1 or 2, respectively, for the two independent molecules in compound (III) (Table 1); this angle defines the rotation of the aryl ring relative to the rest of the molecule. In each isomer the Cx5—Cx57—Cx51 angle is very large, ca 130°, and these angles, together with the exocyclic angles at Cx5 and Cx51, are consistent with the occurrence of a repulsive intramolecular interaction between Sx1 and Hx56 (Table 2). This behaviour closely mimics that in the analogues (IV)–(VII). In each of the molecules in (III), the methoxy groups at Cx53 and Cx55 have their C atoms almost coplanar with the adjacent aryl rings (Table 1), but those at Cx54 have the C atoms well removed from this plane for steric reasons.
The supramolecular structures of compounds (I)–(III) are very simple. In the isomers (I) and (II) the molecules are linked by paired N—H···O hydrogen bonds (Table 2) into centrosymmetric R22(8) (Bernstein et al., 1995) dimers; in each isomer the asymmetric unit was selected such that the dimer containing the reference molecule is centred at (1/2, 1/2, 1/2) (Figs. 4 and 5). The structures of (I) and (II) differ, however, in the manner in which the hydrogen-bonded dimers are linked into chains. In compound (III), the two independent molecules are again linked into a dimer but this does not exhibit even approximate centrosymmetry. There are no direction-specific interactions between the dimeric units in compound (III).
The hydrogen-bonded dimers in (I) are linked by an aromatic π–π stacking interaction. The aryl rings in the molecules at (x, y, z) and (2 − x, −y, 1 − z), which lie, respectively, in the R22(8) dimers centred at (1/2, 1/2, 1/2) and (3/2, −1/2, 1/2) are strictly parallel, with an interplanar spacing of 3.366 (2) Å; the ring-centroid separation is 3.692 (2) Å, corresponding to an almost ideal ring offset of 1.515 (2) Å. Propagation by inversion of this interaction links the dimers into chains running parallel to the [110] direction (Fig. 6).
In compound (II), the hydrogen-bonded dimers are linked by an antiparallel carbonyl–carbonyl interaction, which is centrosymmetric. The molecules at (x, y, z) and (−x, 1 − y, 1 − z) are components of the dimers centred at (1/2, 1/2, 1/2) and (−1/2, 1/2, 1/2), respectively; their carbonyl groups are antiparallel, with a C···Oi distance of 3.181 (4) Å and an O—C···Oi angle of 100.5 (2)° [symmetry code: (i) −x, 1 − y, 1 − z], producing a slightly sheared interaction of type (II) (Allen et al., 1998), which links the dimers into chains running parallel to the [100] direction (Fig. 7).
We note very briefly the different patterns of supramolecular aggregation in the analogues (IV)–(VII) (Delgado et al., 2005). In compound (IV), which crystallizes with Z' = 2 in space group P21/n, the two independent molecules are linked by N—H···O bonds into a dimer, as in (III), but these dimers are not isolated; instead they are linked by C—H···π(arene) hydrogen bonds into sheets. Compound (V) is effectively isomorphous with (III) and the molecules form centrosymmetric dimers, which are linked into chains by a dipolar carbonyl–carbonyl interaction. No dimers formed by paired N—H···O hydrogen bonds are discernible in the structure of (VI); instead the molecules are linked into chains of rings by a combination of N—H···S and C—H···O hydrogen bonds. In (VII), the usual R22(8) dimers are formed and these are linked into chains of rings by C—H···S hydrogen bonds. Thus within the extended series (I)–(VII) it is apparent that rather modest changes to the peripheral substituents can have a significant influence on the overall supramolecular aggregation.