organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrated forms of N-[(3R)-3-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-2-methyl­ene­butano­yl]-(1S,2R)-bornane-10,2-sultam and its enanti­omer

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Ioannina, 45110 Ioannina, Greece, and bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: ken@chem.gla.ac.uk

(Received 17 May 2006; accepted 24 May 2006; online 14 July 2006)

Triazolidinediones react with each enantiomeric bornanesultam derivative of tiglic acid to produce the appropriate ene adduct in high yield and with excellent regioselectivity and diastereo­selectivity. The optically pure products, viz. N-[(3R)-3-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-2-methyl­enebutano­yl]-(1S,2R)-bornane-10,2-sultam 0.15-hydrate, C18H26N4O5S·0.15H2O, and its enantiomer N-[(3S)-3-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-2-methyl­enebutano­yl]-(1R,2S)-born­ane-10,2-sultam 0.35-hydrate, C18H26N4O5S·0.35H2O, have been characterized by spectroscopy and single-crystal X-ray analysis. Their structures are the result of Cβ-re attack of the enophile on the double bond of the alkene.

Comment

The ene reaction of a triazolidinedione (TAD), singlet oxygen (1O2) and nitroso­arene with alkenes bearing allylic H atoms has attracted much attention from both the synthetic and the mechanistic points of view, and has recently been reviewed (Vougioukalakis & Orfanopoulos, 2005[Vougioukalakis, G. C. & Orfanopoulos, M. (2005). Synlett, pp. 713-731.]; Adam & Krebs, 2003[Adam, W. & Krebs, O. (2003). Chem. Rev. 103, 4131-4146.]). Isotope effect studies suggest that the reaction proceeds in steps through three-membered-ring inter­mediates, namely a perepoxide, a diaziridinium imide and an aziridine N-oxide (Adam, Krebs et al., 2002[Adam, W., Krebs, O., Orfanopoulos, M., Stratakis, M. & Vougioukalakis, G. C. (2002). J. Org. Chem. 68, 2420-2425.]). The proposal, based on computational results, that there is a biradical inter­mediate (Singleton & Hang, 1999[Singleton, D. A. & Hang, C. (1999). J. Am. Chem. Soc. 121, 11885-11893.]) has subsequently been challenged by stereochemical and stereoisotopic studies (Stratakis et al., 2001[Stratakis, M., Hatzimarinaki, M., Froudakis, G. E. & Orfanopoulos, M. (2001). J. Org. Chem. 66, 3682-3687.]; Vassilikogiannakis et al., 2000[Vassilikogiannakis, G., Elemes, Y. & Orfanopoulos, M. (2000). J. Am. Chem. Soc. 122, 9540-9541.]).

Stereoselective ene reactions employing chiral auxiliaries have been also reported. Asymmetric ene reactions of singlet oxygen, N-phenyl­triazolidinedione and nitroso­arene with tigloyl amides bearing the (1S,2R)-anti­pode of bornane-10,2-sultam as the chiral auxiliary exhibited high chemical yields and excellent diastereoselectivities (Adam et al., 1998[Adam, W., Wirth, T., Pastor, A. & Peters, K. (1998). Eur. J. Org. Chem. pp. 501-506.]). The configurational assignment of the newly formed stereogenic centers in the major products was made by chemical correlation of their structures with those of known compounds, after removal of the chiral auxiliary moiety. The enantiomerically pure acrylic acid derivatives thus obtained are attractive compounds in the synthesis of α-methyl­ene-β-amino acids; these substances and, more especially, the peptides derived from them are of biological and pharmaceutical inter­est.

We have been involved in the development of such stereoselective ene reactions for some time and now communicate our results. These include the X-ray structures of (IIa)[link] and (IIb)[link], the enanti­omeric ene adducts of N-methyl­triazolidinedione, MeTAD, obtained from its reaction with the two chiral tigloyl amides (Ia)[link] and (Ib)[link], each of which bears an anti­pode of bornanesultam. The reactions between (I) and PhTAD are analogous to those shown in the first scheme[link] below.

[Scheme 1]

The structures of the two MeTAD adducts (Fig. 1[link]) establish that the stereochemical outcome of the reaction is consistent with the proposed π-facially diastereoselective enophilic

[Scheme 2]
attack of MeTAD on the tiglic acid derivative (I) (Adam, Degen et al., 2002[Adam, W., Degen, H.-G., Krebs, O. & Saha-Moller, C. R. (2002). J. Am. Chem. Soc. 124, 12938-12939.]). Thus, starting with the chiral tiglate (Ia)[link] as the alkene, the major ene product (IIa)[link], obtained by column chromatography and subsequent crystallization, was found to have a newly formed stereogenic centre with an R configuration, whereas the ene product (IIb)[link] from the (Ib)[link] tiglate amide had an S configuration at the new stereogenic centre. Adam, Degen et al. (2002[Adam, W., Degen, H.-G., Krebs, O. & Saha-Moller, C. R. (2002). J. Am. Chem. Soc. 124, 12938-12939.]) have argued that electrostatic repulsion between the sulfonyl and carbonyl groups, and steric inter­action between the bornane skeleton and the alkene substituents, give (I), the well defined s-trans conformation shown in the scheme[link] above. Repulsions between the sulfonyl group and the incoming enophile then favour Cβ-re attack on the double bond of the alkene over Cβ-si attack. In addition, the products (II) contain intra­molecular N3—H⋯O2 hydrogen bonds (Fig. 1[link], and Tables 1[link] and 2[link]); this source of thermodynamic stability may not be available to the products of Cβ-si attack, in which the positions of the H and MeTAD substituents at C14 would be inter­changed.

The X-ray analyses of (IIa)[link] and (IIb)[link] at 100 K give experimental absolute configurations consistent with conservation of configuration at the stereogenic centres in the starting tiglate amides (Ia)[link] and (Ib)[link]. Apart from minor differences involving partially occupied solvent water sites (see below), the two crystal structures are mirror images. Corresponding bond distances and angles agree well and fully support the formulations in the first scheme[link]. The final difference maps are featureless. The X-ray analyses therefore indicate that the samples are optically pure. As we have recently observed in the case of a fenchone derivative (Fraile et al., 2003[Fraile, A. G., Morris, D. G., Martinez, A. G., de la Moya Cerereo, S., Muir, K. W., Ryder, K. S. & Vilar, E. T. (2003). Org. Biomol. Chem. 1, 700-704.]), crystallization in a space group such as P41212, which has only pure rotational symmetry, is not in itself a guarantee of optical purity.

In both (IIa)[link] and (IIb)[link], there are sites on diad axes thought to be partially occupied by water O atoms. The associated H atoms were not located. In (IIa)[link], there is one such site; its contacts [O1W⋯H10B = 2.27 Å and O1W⋯O3(−[{1\over 2}] + y, [{3\over 2}]x, [{1\over 4}] + z) = 2.841 (4) Å] are consistent with atom O1W donating two and accepting two hydrogen bonds. In (IIb), there are two such sites. Atom O1W has a similar environment to the corresponding site in (IIa)[link] but has a higher occupancy. Atom O2W makes O2W⋯H2A (2.53 Å) and O2W⋯O4(x − 1, y, z) [2.995 (11) Å] contacts, and has very low occupancy. The presence of two hydrate sites and the higher overall water content of (IIb)[link] may explain the slightly greater length of its c axis.

The atomic Uij values of the main residues are moderately well reproduced by TLS analyses [R2 = (ΣΔU2/ΣU2)1/2 = 0.173 and 0.170; Schomaker & Trueblood, 1968[Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.]]. The worst discrepancy in the Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]) rigid bond test is ΔU = 0.004 (11) Å2 for C1—C10 in (IIb).

[Figure 1]
Figure 1
The structures of MeTAD adducts (a) (IIa) and (b) (IIb). The X-ray experiment indicates that the respective configurations at C1, C4, C6 and C14 are SRRR in (IIa) and RSSS in (IIb). Hydrogen bonds are indicated by broken lines and 20% probability displacement ellipsoids are shown.

Experimental

The optically pure tiglic amides (I)[link] were synthesized in high yield according to published procedures (Oppolzer et al., 1988[Oppolzer, W., Poli, G., Starkemann, C. & Bernardinelli, G. (1988). Tetrahedron Lett. 29, 3559-3562.], and references therein) and recrystallized from methanol. The ene reactions were performed in dry CH2Cl2 at room temperature. After 24 h, the original pink colour of the solution had disappeared. The solvent was removed, first in a rotary evaporator and then with a high vacuum pump. The remaining material was chromatographed on an SiO2 column (eluant: EtOAc/n-hexane, 1/3 v/v). The 1H NMR spectra of the product showed a diastereomeric ratio of ca 95:5 (the same ratio was observed when PhTAD was the enophile). After fractional recrystallization of the crude mixture, it was evident from the 1H NMR spectra that only the major diastereomer (II)[link] had been isolated. The pure stereoisomers (II)[link] were characterized by 1H NMR, 13C NMR and FT–IR spectroscopy, elemental analysis, and ESI and FAB mass spectrometry. Their optical rotations were also measured; each pair of enantiomeric products showed rotations of nearly identical magnitudes but of opposite signs. For (IIa)[link], 100 mg of (Ia) gave (IIa) in 60% yield (83 mg) after crystallization (EtOAc/n-hexane), [α]D = −133.8° (c = 0.12, CH2Cl2, 290 K). FT–IR (KBr, cm−1): ν 3245.1, 2988.4, 1774.4, 1710.3, 1686.0, 1467.3, 1420.8, 1340.4, 1321.1, 1288.7, 1130.6, 973.6, 771.5, 536.6; 1H NMR (CDCl3, 250 MHz): δ 1.01 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.32–1.44 (m, 2H, CH2), 1.35 (d, J = 6.75 Hz, 3H, CH3), 1.63 (s, 3H, CH3), 1.80–2.10 (m, 5H, CH, 2 × CH2), 3.05 (s, 3H, CH3), 3.43 (d, J = 13.76 Hz, 1H, CH), 3.57 (d, J = 13.76 Hz, 1H, CH), 4.09 (dd, J = 5.00 and 7.25 Hz, 1H, CH), 5.36 (tq, J = 1.58 and 6.75 Hz, 1H, CH), 5.96 (dd, J = 0.92 and 1.72 Hz, 1H, CH, olefinic), 6.19 (dd, J = 0.92 and 1.44 Hz, 1H, CH, olefinic), 7.51 (s, br, 1H, NH); 13C NMR (CDCl3, 62.9 MHz): δ 13.2, 19.8, 21.4, 25.2, 26.2, 33.2, 38.3, 45.2, 47.7, 48.0, 52.4, 53.6, 66.1, 127.8, 141.1, 155.1, 155.7, 168.4. Analysis calculated for C18H26N4O5S: C 52.67, H 6.38, N 13.65, S 7.81%; found: C 52.65, H 6.37, N 13.64, S 7.79%; FAB–MS: calculated for C18H26N4O5S [M] = 410.49; found = 411 (100). For (IIb)[link], 100 mg of (Ib) gave (IIb) in 63% yield (87 mg) after crystallization (EtOAc/n-hexane), [α]D = +133.1° (c = 0.09, CH2Cl2, 291 K). Analysis calculated for C18H26N4O5S: C 52.67, H 6.38, N 13.65, S 7.81%; found: C 52.66, H 6.36, N 13.64, S 7.78%; FAB–MS: calculated for C18H26N4O5S [M] = 410.49; found = 411 (100).

Compound (IIa)[link]

Crystal data
  • C18H26N4O5S·0.151H2O

  • Mr = 413.21

  • Tetragonal, P 43 21 2

  • a = 12.2857 (1) Å

  • c = 26.1898 (2) Å

  • V = 3953.05 (5) Å3

  • Z = 8

  • Dx = 1.388 Mg m−3

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • Needle, colourless

  • 0.45 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • 9977 measured reflections

  • 5702 independent reflections

  • 5366 reflections with I > 2σ(I)

  • Rint = 0.016

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.03

  • 5702 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0423P)2 + 0.932P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2381 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °) for (IIa)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2 0.935 (17) 1.914 (17) 2.8254 (14) 164.1 (14)

Compound (IIb)[link]

Crystal data
  • C18H26N4O5S·0.3485H2O

  • Mr = 416.77

  • Tetragonal, P 41 21 2

  • a = 12.2794 (2) Å

  • c = 26.3417 (5) Å

  • V = 3971.90 (12) Å3

  • Z = 8

  • Dx = 1.394 Mg m−3

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • Needle, colourless

  • 0.34 × 0.24 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • 10281 measured reflections

  • 5761 independent reflections

  • 4925 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 0.98

  • 5761 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.051P)2 + 0.6973P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2399 Friedel pairs

  • Flack parameter: −0.04 (6)

Table 2
Hydrogen-bond geometry (Å, °) for (IIb)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2 0.95 (2) 1.91 (2) 2.8263 (18) 161.2 (17)

All C- and N-bonded H atoms were located unambiguously in difference maps. In the final refinement, the positions of C-bonded H atoms were determined by HFIX instructions in SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); they were then treated as riding on their parent atoms, with C—H distances of 0.95 (=CH2), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (CH), and Uiso(H) values of 1.5 (meth­yl) or 1.2 times Ueq(C). Apart from one CH3 group in (IIb), an orientation parameter was refined for each methyl group. The H atom bonded to atom N3 was freely refined. The disordered water H atoms were neither located nor included in the calculations.

For both compounds, data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The ene reaction of a triazolinedione (TAD), singlet oxygen (1O2) and nitrosoarene with alkenes bearing allylic H atoms has attracted much attention from both the synthetic and the mechanistic points of view, and has recently been reviewed (Vougioukalakis & Orfanopoulos, 2005; Adam & Krebs, 2003). Isotope effect studies suggest that the reaction proceeds in steps through three-membered-ring intermediates, namely a perepoxide, a diaziridinium imide and an aziridine-N-oxide (Adam, Krebs et al., 2002). The proposal, based on computational results, that there is biradical intermediate (Singleton & Hang, 1999) has subsequently been challenged by stereochemical and stereoisotopic studies (Stratakis et al., 2001; Vassilikogiannakis et al., 2000).

Stereoselective ene reactions employing chiral auxiliaries have been also reported. Asymmetric ene reactions of singlet oxygen, N-phenyltriazolinedione and nitrosoarene with tigloyl amides bearing the (1S,2R)-antipode of bornane-10,2-sultam as the chiral auxiliary exhibited high chemical yields and excellent diastereoselectivities (Adam et al., 1998). The configurational assignment of the newly formed stereogenic centers in the major products was made by chemical correlation of their structures with those of known compounds, after removal of the chiral auxiliary moiety. The enantiomerically pure acrylic acid derivatives thus obtained are attractive compounds in the synthesis of α-methylene-β-amino acids; these substances and, more especially, the peptides derived from them are of biological and pharmaceutical interest.

We have been involved in the development of such stereoselective ene reactions for some time and now communicate our results (Scheme 1). These include the X-ray structures of (2a) and (2b), the enantiomeric ene adducts of N-methyltriazolinedione, MeTAD, obtained from its reaction with the two chiral tigloyl amides (1a) and (1b), each of which bears an antipode of bornanesultam. The reactions between (1) and PhTAD are analogous to those shown in Scheme 1.

The structures of the two MeTAD adducts (Fig. 1) establish that the stereochemical outcome of the reaction is consistent with the proposed π-facially diastereoselective enophilic attack of MeTAD on the tiglic acid derivative (1) (Adam, Degen et al., 2002b). Thus, starting with the chiral tiglate (1a) as the alkene, the major ene product (2a), obtained by column chromatography and subsequent crystallization, was found to have a newly formed stereogenic centre with R configuration, whereas the ene product (2b) from the (1b) tiglate amide had an S configuration at the new stereogenic centre. Adam, Degen et al. (2002) have argued that electrostatic repulsion between the sulfonyl and carbonyl groups and steric interaction between the bornane skeleton and the alkene substituents give (1) the well defined s-trans conformation shown in Scheme 2. Repulsions between the sulfonyl group and the incoming enophile then favour Cβ-re attack on the double bond of the alkene over Cβ-si attack. In addition, the products 2 contain intramolecular N3—H···O2 hydrogen bonds (Fig. 1, and Tables 1 and 2); this source of thermodynamic stability would not be available to the products of Cβ-si attack, in which the positions of the H and MeTAD substituents at C14 would be interchanged.

The X-ray analyses of (2a) and (2b) at 100 K give experimental absolute configurations consistent with conservation of configuration at the stereogenic centres in the starting tiglate amides (1a) and (1b). Apart from minor differences involving partially occupied solvent water sites (see below), the two crystal structures are mirror images. Corresponding bond distances and angles agree well and fully support the formulations in Scheme 1. Final difference maps are featureless. The X-ray analyses therefore indicate that the samples are optically pure. As we have recently observed in the case of a fenchone derivative (Fraile et al., 2003), crystallization in a space group such as P41212, which has only pure rotational symmetry, is not in itself a guarantee of optical purity.

In both (2a) and (2b), there are sites on diad axes thought to be partially occupied by water O atoms. The associated H atoms were not located. In (2a) there is one such site; its contacts [O1W···H10B = 2.27 Å and O1W···O3(−1/2 + y, 3/2 − x, 1/4 + z) = 2.841 (4) Å] are consistent with atom O1W donating two and accepting two hydrogen bonds. In (2b), there are two such sites. Atom O1W has a similar environment to the corresponding site in (2a) but has a higher occupancy. Atom O2W makes contacts O2W···H2A of 2.53 Å and O2W···O4(x − 1, y, z) of 2.995 (11) Å, and has very low occupancy. The presence of two hydrate sites and the higher overall water content of (2b) may explain the slightly greater length of its c axis.

The atomic Uij values of the main residues are moderately well reproduced by TLS analyses [R2 = (ΣΔU2/ΣU2)1/2 = 0.173 and 0.170; Schomaker & Trueblood, 1968]. The worst discrepancy in the Hirshfeld (1976) rigid bond test is ΔU = 0.004 (11) Å2 for C1—C10 in (2b).

Experimental top

The optically pure tiglic amides (1) (Scheme 1) were synthesized in high yield according to published procedures (Oppolzer et al., 1988, and references therein) and recrystallized from methanol. The ene reactions were performed in dry CH2Cl2 at room temperature. After 24 h, the original pink colour of the solution had disappeared. The solvent was removed, first in a rotary evaporator and then with a high vacuum pump. The remaining material was chromatographed on an SiO2 column (eluant EtOAc/n-hexane, 1/3 v/v). The 1H NMR spectra of the product showed a diastereomeric ratio of ca 95:5 (the same ratio was observed when PhTAD was the enophile). After fractional recrystallization of the crude mixture, it was evident from the 1H NMR spectra that only the major diastereomer 2 had been isolated (Scheme 1). The pure stereoisomers 2 were characterized by 1H and 13C NMR, and FT–IR spectroscopy, elemental analysis, and ESI and FAB mass spectrometry. Their optical rotations were also measured; each pair of enantiomeric products showed rotations of nearly identical magnitudes but of opposite signs. For (2a), 100 mg of (1a) gave (2a) in 60% yield (83 mg) after crystallization (EtOAc/n-hexane), [α]D = −133.8° (c = 0.12, CH2Cl2, 290 K). FT–IR (KBr, cm−1): ν 3245.1, 2988.4, 1774.4, 1710.3, 1686.0, 1467.3, 1420.8, 1340.4, 1321.1, 1288.7, 1130.6, 973.6, 771.5, 536.6; 1H NMR (CDCl3, 250 MHz): 1.01 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.32–1.44 (m, 2H, CH2), 1.35 (d, J = 6.75 Hz, 3H, CH3), 1.63 (s, 3H, CH3), 1.80–2.10 (m, 5H, CH, 2 × CH2), 3.05 (s, 3H, CH3), 3.43 (d, J = 13.76 Hz, 1H, CH), 3.57 (d, J = 13.76 Hz, 1H, CH), 4.09 (dd, J = 5.00 and 7.25 Hz, 1H, CH), 5.36 (tq, J = 1.58 and 6.75 Hz, 1H, CH), 5.96 (dd, J = 0.92 and 1.72 Hz, 1H, CH, olefinic), 6.19 (dd, J = 0.92 and 1.44 Hz, 1H, CH, olefinic), 7.51 (s, br, 1H, NH); 13C NMR (CDCl3, 62.9 MHz): 13.2, 19.8, 21.4, 25.2, 26.2, 33.2, 38.3, 45.2, 47.7, 48.0, 52.4, 53.6, 66.1, 127.8, 141.1, 155.1, 155.7, 168.4; Analysis calculated for C18H26N4O5S: C 52.67, H 6.38, N 13.65, S 7.81%; found: C 52.65, H 6.37, N 13.64, S 7.79%; FAB MS: calculated for C18H26N4O5S [M] = 410.49; found: 411 (100). For (2b), 100 mg of (1b) gave (2b) in 63% yield (87 mg) after crystallization (EtOAc/n-hexane), [α]D= +133.1° (c = 0.09, CH2Cl2, 291 K). Analysis calcualted for C18H26N4O5S: C 52.67, H 6.38, N 13.65, S 7.81%; found: C 52.66, H 6.36, N 13.64, S 7.78%; FAB MS: calculated for C18H26O5N4S [M] = 410.49; found: 411 (100).

Refinement top

All C– and N-bonded H atoms were unambiguously located in difference maps. In the final refinement, the positions of C-bonded H atoms were determined by HFIX instructions in SHELXL97 (Sheldrick, 1997); they were then treated as riding on their parent atoms with C—H distances of 0.95 (CH2), 0.98 (CH3), 0.99 (CH2) or 1.00 (CH) Å and Uiso(H) values of 1.5 (methyl) or 1.2 times Ueq(C). Apart from one CH3 group in (2b), an orientation parameter was refined for each methyl group. The H atom bonded to atom N3 was freely refined. The disordered water H atoms were neither located nor included in the calculations.

Computing details top

For both compounds, data collection: Collect (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structures of MeTAD adducts (a) (2a) and (b) (2b). The X-ray experiment indicates that the respective configurations at C1, C4, C6 and C14 are SRRR in (2a) and RSSS in (2b). Hydrogen bonds are indicated by broken lines and 20% probability displacement ellipsoid are shown.
(IIa) N-[(3R)-3-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-2-methylenebutanoyl]- (1S,2R)-bornane-10,2-sultam 0.15-hydrate top
Crystal data top
C18H26N4O5S·0.151H2ODx = 1.388 Mg m3
Mr = 413.21Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 5344 reflections
Hall symbol: P 4nw 2abwθ = 3.4–30.0°
a = 12.2857 (1) ŵ = 0.20 mm1
c = 26.1898 (2) ÅT = 100 K
V = 3953.05 (5) Å3Needle, colourless
Z = 80.45 × 0.20 × 0.20 mm
F(000) = 1756.08
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.016
ϕ and ω scansθmax = 30.0°, θmin = 3.4°
9977 measured reflectionsh = 1717
5702 independent reflectionsk = 1212
5366 reflections with I > 2σ(I)l = 3535
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0423P)2 + 0.932P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.030(Δ/σ)max = 0.001
wR(F2) = 0.077Δρmax = 0.39 e Å3
S = 1.03Δρmin = 0.27 e Å3
5702 reflectionsAbsolute structure: Flack (1983), 2335 Friedel pairs
267 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Crystal data top
C18H26N4O5S·0.151H2OZ = 8
Mr = 413.21Mo Kα radiation
Tetragonal, P43212µ = 0.20 mm1
a = 12.2857 (1) ÅT = 100 K
c = 26.1898 (2) Å0.45 × 0.20 × 0.20 mm
V = 3953.05 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
5366 reflections with I > 2σ(I)
9977 measured reflectionsRint = 0.016
5702 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.39 e Å3
S = 1.03Δρmin = 0.27 e Å3
5702 reflectionsAbsolute structure: Flack (1983), 2335 Friedel pairs
267 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.61428 (2)0.92254 (2)0.896505 (11)0.01270 (7)
O10.59222 (8)0.80857 (8)0.90085 (3)0.01822 (19)
O20.52558 (8)0.99646 (8)0.90749 (3)0.01728 (18)
O30.62211 (8)1.06019 (8)0.76925 (3)0.0209 (2)
O40.23363 (8)1.16499 (9)0.91699 (3)0.0223 (2)
O50.31547 (8)1.21524 (8)0.74797 (3)0.01939 (19)
N10.66354 (8)0.95261 (9)0.83735 (4)0.0132 (2)
N20.37367 (9)1.08908 (9)0.80860 (4)0.0135 (2)
N30.33215 (9)1.06310 (9)0.85821 (4)0.0154 (2)
N40.25339 (9)1.21460 (9)0.83176 (4)0.0161 (2)
C10.82455 (10)0.97538 (10)0.89218 (5)0.0136 (2)
C20.90632 (11)1.06792 (11)0.90194 (5)0.0193 (3)
H2A0.93831.06280.93660.023*
H2B0.87191.14020.89770.023*
C30.99337 (12)1.04648 (12)0.85984 (6)0.0230 (3)
H3A0.99461.10630.83450.028*
H3B1.06681.03870.8750.028*
C40.95569 (10)0.93844 (11)0.83488 (5)0.0187 (2)
H41.01510.89670.81760.022*
C50.85680 (11)0.96344 (12)0.80032 (5)0.0189 (3)
H5A0.83090.89730.78250.023*
H5B0.87411.02040.77490.023*
C60.77246 (10)1.00416 (10)0.83991 (4)0.0141 (2)
H60.76461.08490.8370.017*
C70.90135 (10)0.87756 (10)0.88016 (5)0.0159 (2)
C80.98037 (12)0.85064 (13)0.92385 (6)0.0247 (3)
H8A1.02440.78720.91450.037*
H8B0.93890.83440.95490.037*
H8C1.02820.91310.93010.037*
C90.84461 (12)0.77121 (11)0.86580 (5)0.0213 (3)
H9A0.80990.740.89610.032*
H9B0.89830.71970.85230.032*
H9C0.78920.78560.83970.032*
C100.73384 (10)0.96102 (11)0.93104 (5)0.0159 (2)
H10A0.72121.02990.94970.019*
H10B0.75350.90390.9560.019*
C110.59295 (10)0.98864 (10)0.79818 (4)0.0139 (2)
C120.48755 (10)0.92932 (10)0.79204 (4)0.0136 (2)
C130.48619 (11)0.82106 (11)0.79530 (5)0.0193 (2)
H13A0.55180.78230.80150.023*
H13B0.41960.78260.79140.023*
C140.39201 (10)0.99681 (10)0.77338 (4)0.0138 (2)
H140.41371.02860.73970.017*
C150.28804 (11)0.93206 (12)0.76440 (5)0.0201 (3)
H15A0.230.98140.75340.03*
H15B0.26640.89590.79620.03*
H15C0.30090.87720.73790.03*
C160.26871 (10)1.14965 (11)0.87412 (5)0.0162 (2)
C170.31421 (10)1.17741 (10)0.79089 (5)0.0146 (2)
C180.18613 (12)1.31192 (12)0.83006 (5)0.0239 (3)
H18A0.1361.30730.8010.036*
H18B0.23271.37610.82620.036*
H18C0.14441.31790.86180.036*
H3N0.3878 (14)1.0390 (13)0.8798 (6)0.018 (4)*
O1W0.7449 (3)0.7449 (3)1.00.0243 (16)0.302 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01191 (13)0.01340 (14)0.01279 (12)0.00009 (11)0.00012 (10)0.00006 (10)
O10.0217 (5)0.0149 (4)0.0181 (4)0.0036 (4)0.0000 (4)0.0012 (3)
O20.0145 (4)0.0219 (5)0.0154 (4)0.0040 (4)0.0000 (3)0.0024 (3)
O30.0192 (5)0.0242 (5)0.0192 (4)0.0042 (4)0.0021 (4)0.0062 (4)
O40.0200 (5)0.0297 (6)0.0172 (4)0.0043 (4)0.0019 (4)0.0032 (4)
O50.0196 (5)0.0199 (5)0.0187 (4)0.0023 (4)0.0010 (3)0.0035 (4)
N10.0105 (5)0.0153 (5)0.0140 (4)0.0014 (4)0.0007 (4)0.0011 (4)
N20.0137 (5)0.0146 (5)0.0124 (4)0.0008 (4)0.0013 (4)0.0011 (4)
N30.0147 (5)0.0181 (5)0.0135 (4)0.0019 (4)0.0002 (4)0.0002 (4)
N40.0139 (5)0.0159 (5)0.0184 (5)0.0034 (4)0.0004 (4)0.0010 (4)
C10.0126 (5)0.0115 (5)0.0169 (5)0.0001 (4)0.0011 (4)0.0016 (4)
C20.0167 (6)0.0136 (6)0.0277 (6)0.0033 (5)0.0041 (5)0.0027 (5)
C30.0161 (6)0.0204 (6)0.0327 (7)0.0044 (5)0.0000 (5)0.0004 (5)
C40.0132 (6)0.0178 (6)0.0252 (6)0.0003 (5)0.0029 (5)0.0013 (5)
C50.0147 (6)0.0215 (6)0.0206 (6)0.0022 (5)0.0043 (5)0.0013 (5)
C60.0113 (5)0.0122 (5)0.0189 (5)0.0011 (5)0.0007 (4)0.0007 (4)
C70.0141 (6)0.0124 (5)0.0213 (6)0.0016 (5)0.0008 (4)0.0006 (4)
C80.0194 (7)0.0232 (7)0.0317 (7)0.0059 (5)0.0063 (6)0.0040 (6)
C90.0234 (7)0.0119 (6)0.0287 (6)0.0004 (5)0.0017 (5)0.0025 (5)
C100.0136 (6)0.0185 (6)0.0156 (5)0.0013 (5)0.0027 (4)0.0030 (4)
C110.0139 (5)0.0147 (5)0.0132 (5)0.0015 (4)0.0010 (4)0.0016 (4)
C120.0130 (5)0.0166 (6)0.0113 (5)0.0003 (5)0.0009 (4)0.0009 (4)
C130.0187 (6)0.0170 (6)0.0223 (6)0.0004 (5)0.0031 (5)0.0004 (5)
C140.0138 (5)0.0139 (6)0.0137 (5)0.0003 (5)0.0007 (4)0.0016 (4)
C150.0160 (6)0.0199 (6)0.0243 (6)0.0004 (5)0.0055 (5)0.0040 (5)
C160.0117 (6)0.0194 (6)0.0176 (5)0.0006 (5)0.0020 (4)0.0027 (5)
C170.0108 (5)0.0148 (6)0.0183 (5)0.0008 (5)0.0008 (4)0.0008 (4)
C180.0248 (7)0.0203 (7)0.0266 (6)0.0103 (6)0.0012 (5)0.0021 (5)
O1W0.025 (2)0.025 (2)0.023 (2)0.005 (2)0.0013 (12)0.0013 (12)
Geometric parameters (Å, º) top
S1—O11.4306 (10)C4—H41
S1—O21.4475 (10)C5—C61.5489 (17)
S1—N11.7037 (10)C5—H5A0.99
S1—C101.7887 (13)C5—H5B0.99
O3—C111.2146 (15)C6—H61
O4—C161.2173 (16)C7—C91.5280 (19)
O5—C171.2164 (15)C7—C81.5366 (18)
N1—C111.4143 (15)C8—H8A0.98
N1—C61.4820 (16)C8—H8B0.98
N2—C171.3881 (16)C8—H8C0.98
N2—N31.4318 (14)C9—H9A0.98
N2—C141.4789 (15)C9—H9B0.98
N3—C161.3826 (17)C9—H9C0.98
N3—H3N0.935 (17)C10—H10A0.99
N4—C161.3795 (16)C10—H10B0.99
N4—C171.3830 (16)C11—C121.4946 (17)
N4—C181.4541 (17)C12—C131.3330 (18)
C1—C101.5196 (17)C12—C141.5179 (17)
C1—C21.5385 (17)C13—H13A0.95
C1—C61.5519 (16)C13—H13B0.95
C1—C71.5600 (17)C14—C151.5230 (18)
C2—C31.5584 (19)C14—H141
C2—H2A0.99C15—H15A0.98
C2—H2B0.99C15—H15B0.98
C3—C41.5504 (19)C15—H15C0.98
C3—H3A0.99C18—H18A0.98
C3—H3B0.99C18—H18B0.98
C4—C51.5457 (19)C18—H18C0.98
C4—C71.5529 (18)
O1—S1—O2117.10 (6)C8—C7—C4113.62 (11)
O1—S1—N1110.60 (5)C9—C7—C1115.63 (11)
O2—S1—N1108.18 (5)C8—C7—C1113.43 (11)
O1—S1—C10111.97 (6)C4—C7—C192.47 (9)
O2—S1—C10110.60 (6)C7—C8—H8A109.5
N1—S1—C1096.36 (6)C7—C8—H8B109.5
C11—N1—C6116.92 (10)H8A—C8—H8B109.5
C11—N1—S1120.64 (8)C7—C8—H8C109.5
C6—N1—S1111.85 (7)H8A—C8—H8C109.5
C17—N2—N3106.86 (9)H8B—C8—H8C109.5
C17—N2—C14118.10 (9)C7—C9—H9A109.5
N3—N2—C14116.71 (10)C7—C9—H9B109.5
C16—N3—N2107.63 (10)H9A—C9—H9B109.5
C16—N3—H3N118.2 (10)C7—C9—H9C109.5
N2—N3—H3N111.1 (10)H9A—C9—H9C109.5
C16—N4—C17110.95 (10)H9B—C9—H9C109.5
C16—N4—C18125.30 (11)C1—C10—S1107.11 (8)
C17—N4—C18123.71 (11)C1—C10—H10A110.3
C10—C1—C2116.97 (10)S1—C10—H10A110.3
C10—C1—C6108.35 (10)C1—C10—H10B110.3
C2—C1—C6104.33 (10)S1—C10—H10B110.3
C10—C1—C7119.29 (10)H10A—C10—H10B108.5
C2—C1—C7102.00 (10)O3—C11—N1119.88 (11)
C6—C1—C7104.30 (9)O3—C11—C12122.77 (11)
C1—C2—C3101.87 (10)N1—C11—C12117.18 (10)
C1—C2—H2A111.4C13—C12—C11119.37 (12)
C3—C2—H2A111.4C13—C12—C14123.78 (12)
C1—C2—H2B111.4C11—C12—C14116.00 (11)
C3—C2—H2B111.4C12—C13—H13A120
H2A—C2—H2B109.3C12—C13—H13B120
C4—C3—C2103.78 (11)H13A—C13—H13B120
C4—C3—H3A111N2—C14—C12109.62 (9)
C2—C3—H3A111N2—C14—C15111.64 (10)
C4—C3—H3B111C12—C14—C15114.39 (11)
C2—C3—H3B111N2—C14—H14106.9
H3A—C3—H3B109C12—C14—H14106.9
C5—C4—C3108.14 (11)C15—C14—H14106.9
C5—C4—C7101.83 (10)C14—C15—H15A109.5
C3—C4—C7102.63 (11)C14—C15—H15B109.5
C5—C4—H4114.3H15A—C15—H15B109.5
C3—C4—H4114.3C14—C15—H15C109.5
C7—C4—H4114.3H15A—C15—H15C109.5
C4—C5—C6101.43 (10)H15B—C15—H15C109.5
C4—C5—H5A111.5O4—C16—N4127.15 (12)
C6—C5—H5A111.5O4—C16—N3126.62 (12)
C4—C5—H5B111.5N4—C16—N3106.23 (10)
C6—C5—H5B111.5O5—C17—N4126.57 (12)
H5A—C5—H5B109.3O5—C17—N2126.93 (11)
N1—C6—C5115.83 (10)N4—C17—N2106.49 (10)
N1—C6—C1108.36 (9)N4—C18—H18A109.5
C5—C6—C1103.94 (10)N4—C18—H18B109.5
N1—C6—H6109.5H18A—C18—H18B109.5
C5—C6—H6109.5N4—C18—H18C109.5
C1—C6—H6109.5H18A—C18—H18C109.5
C9—C7—C8106.70 (11)H18B—C18—H18C109.5
C9—C7—C4114.83 (11)
O1—S1—N1—C1194.88 (10)C10—C1—C7—C4171.46 (11)
O2—S1—N1—C1134.59 (11)C2—C1—C7—C457.94 (11)
C10—S1—N1—C11148.76 (10)C6—C1—C7—C450.43 (11)
O1—S1—N1—C6121.56 (9)C2—C1—C10—S1143.21 (10)
O2—S1—N1—C6108.96 (9)C6—C1—C10—S125.74 (12)
C10—S1—N1—C65.20 (9)C7—C1—C10—S193.23 (11)
C17—N2—N3—C1613.96 (13)O1—S1—C10—C1102.76 (9)
C14—N2—N3—C16148.68 (11)O2—S1—C10—C1124.67 (8)
C10—C1—C2—C3172.25 (11)N1—S1—C10—C112.50 (9)
C6—C1—C2—C368.11 (12)C6—N1—C11—O31.37 (17)
C7—C1—C2—C340.24 (12)S1—N1—C11—O3140.43 (10)
C1—C2—C3—C45.13 (13)C6—N1—C11—C12173.95 (10)
C2—C3—C4—C575.38 (13)S1—N1—C11—C1244.25 (14)
C2—C3—C4—C731.74 (13)O3—C11—C12—C13133.07 (13)
C3—C4—C5—C663.15 (13)N1—C11—C12—C1342.10 (16)
C7—C4—C5—C644.53 (12)O3—C11—C12—C1436.78 (16)
C11—N1—C6—C577.66 (13)N1—C11—C12—C14148.05 (10)
S1—N1—C6—C5137.31 (9)C17—N2—C14—C12160.55 (11)
C11—N1—C6—C1166.06 (10)N3—N2—C14—C1269.89 (13)
S1—N1—C6—C121.04 (12)C17—N2—C14—C1571.64 (13)
C4—C5—C6—N1129.82 (11)N3—N2—C14—C1557.93 (13)
C4—C5—C6—C111.08 (12)C13—C12—C14—N2133.24 (12)
C10—C1—C6—N129.93 (13)C11—C12—C14—N257.41 (13)
C2—C1—C6—N1155.23 (10)C13—C12—C14—C156.97 (17)
C7—C1—C6—N198.12 (11)C11—C12—C14—C15176.33 (10)
C10—C1—C6—C5153.68 (10)C17—N4—C16—O4174.00 (13)
C2—C1—C6—C581.03 (11)C18—N4—C16—O43.7 (2)
C7—C1—C6—C525.62 (12)C17—N4—C16—N36.01 (15)
C5—C4—C7—C961.87 (13)C18—N4—C16—N3176.29 (12)
C3—C4—C7—C9173.77 (11)N2—N3—C16—O4167.90 (13)
C5—C4—C7—C8174.89 (11)N2—N3—C16—N412.11 (13)
C3—C4—C7—C862.99 (14)C16—N4—C17—O5177.58 (13)
C5—C4—C7—C157.93 (11)C18—N4—C17—O54.7 (2)
C3—C4—C7—C153.96 (11)C16—N4—C17—N22.72 (14)
C10—C1—C7—C952.31 (15)C18—N4—C17—N2175.02 (12)
C2—C1—C7—C9177.08 (11)N3—N2—C17—O5170.24 (13)
C6—C1—C7—C968.71 (13)C14—N2—C17—O536.26 (19)
C10—C1—C7—C871.42 (15)N3—N2—C17—N410.06 (13)
C2—C1—C7—C859.18 (13)C14—N2—C17—N4144.04 (11)
C6—C1—C7—C8167.55 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.935 (17)1.914 (17)2.8254 (14)164.1 (14)
(IIb) N-[(3S)-3-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-2-methylenebutanoyl]- (1R,2S)-bornane-10,2-sultam 0.35-hydrate top
Crystal data top
C18H26N4O5S·0.3485H2ODx = 1.394 Mg m3
Mr = 416.77Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 5248 reflections
Hall symbol: P 4abw 2nwθ = 3.4–30.0°
a = 12.2794 (2) ŵ = 0.20 mm1
c = 26.3417 (5) ÅT = 100 K
V = 3971.90 (12) Å3Needle, colourless
Z = 80.34 × 0.24 × 0.24 mm
F(000) = 1771.9
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.029
ϕ and ω scansθmax = 30.0°, θmin = 3.4°
10281 measured reflectionsh = 1717
5761 independent reflectionsk = 1212
4925 reflections with I > 2σ(I)l = 3727
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.051P)2 + 0.6973P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.094Δρmax = 0.33 e Å3
S = 0.98Δρmin = 0.30 e Å3
5761 reflectionsAbsolute structure: Flack (1983), 3379 Friedel pairs
269 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Crystal data top
C18H26N4O5S·0.3485H2OZ = 8
Mr = 416.77Mo Kα radiation
Tetragonal, P41212µ = 0.20 mm1
a = 12.2794 (2) ÅT = 100 K
c = 26.3417 (5) Å0.34 × 0.24 × 0.24 mm
V = 3971.90 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
4925 reflections with I > 2σ(I)
10281 measured reflectionsRint = 0.029
5761 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.33 e Å3
S = 0.98Δρmin = 0.30 e Å3
5761 reflectionsAbsolute structure: Flack (1983), 3379 Friedel pairs
269 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.38527 (3)0.07511 (3)0.103784 (15)0.01338 (9)
O10.40787 (10)0.18889 (10)0.09908 (4)0.0184 (2)
O20.47348 (9)0.00080 (10)0.09299 (4)0.0177 (2)
O30.37676 (10)0.05788 (10)0.23180 (4)0.0218 (3)
O40.76523 (10)0.16679 (11)0.08385 (4)0.0230 (3)
O50.68529 (10)0.21530 (10)0.25216 (4)0.0203 (3)
N10.33637 (11)0.04596 (11)0.16285 (5)0.0142 (3)
N20.62621 (11)0.08994 (11)0.19168 (5)0.0144 (3)
N30.66731 (11)0.06448 (12)0.14220 (5)0.0161 (3)
N40.74621 (12)0.21573 (12)0.16868 (5)0.0167 (3)
C10.17483 (13)0.02332 (13)0.10865 (6)0.0138 (3)
C20.09266 (13)0.06889 (14)0.09953 (7)0.0199 (3)
H2A0.12690.14120.1040.024*
H2B0.06050.06440.06510.024*
C30.00588 (15)0.04660 (15)0.14128 (7)0.0242 (4)
H3A0.06760.03880.12630.029*
H3B0.00450.10610.16660.029*
C40.04432 (13)0.06202 (14)0.16570 (7)0.0194 (3)
H40.01480.10440.18280.023*
C50.14316 (14)0.03666 (14)0.19997 (6)0.0190 (3)
H5A0.12560.01990.22550.023*
H5B0.16970.10280.21750.023*
C60.22687 (13)0.00505 (14)0.16073 (6)0.0150 (3)
H60.23430.08590.16390.018*
C70.09856 (13)0.12166 (13)0.12032 (6)0.0167 (3)
C80.01985 (16)0.14852 (16)0.07690 (7)0.0251 (4)
H8A0.02480.21150.08630.038*
H8B0.02750.08570.07050.038*
H8C0.06150.16550.04620.038*
C90.15605 (15)0.22784 (14)0.13415 (7)0.0212 (4)
H9A0.19020.25870.10380.032*
H9B0.2120.21330.15980.032*
H9C0.10280.27970.14780.032*
C100.26551 (13)0.03631 (14)0.06993 (6)0.0161 (3)
H10A0.2460.09290.04480.019*
H10B0.27780.03320.05170.019*
C110.40659 (13)0.01171 (13)0.20213 (6)0.0146 (3)
C120.51276 (13)0.07025 (13)0.20754 (6)0.0141 (3)
C130.51451 (15)0.17838 (14)0.20345 (6)0.0198 (3)
H13A0.44890.21720.19720.024*
H13B0.58130.21670.20680.024*
C140.60771 (13)0.00279 (13)0.22633 (6)0.0146 (3)
H140.58560.02860.25980.018*
C150.71181 (14)0.06715 (15)0.23541 (7)0.0206 (4)
H15A0.76960.01760.24660.031*
H15B0.69890.12230.26160.031*
H15C0.7340.1030.20380.031*
C160.73065 (13)0.15109 (14)0.12648 (6)0.0168 (3)
C170.68562 (13)0.17799 (13)0.20934 (6)0.0147 (3)
C180.81322 (16)0.31329 (15)0.17042 (7)0.0252 (4)
H18A0.87190.30320.19520.038*
H18B0.84460.32680.13680.038*
H18C0.76830.37560.18050.038*
H3N0.6124 (16)0.0387 (16)0.1196 (7)0.020 (5)*
O1W0.25438 (19)0.25438 (19)00.0274 (12)0.593 (8)
O2W0.0894 (13)0.0894 (13)00.043 (8)*0.104 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01218 (18)0.01333 (19)0.01463 (17)0.00008 (15)0.00015 (15)0.00003 (15)
O10.0205 (6)0.0155 (6)0.0191 (6)0.0032 (5)0.0000 (5)0.0011 (5)
O20.0151 (6)0.0214 (6)0.0167 (5)0.0038 (5)0.0005 (4)0.0021 (5)
O30.0194 (6)0.0254 (7)0.0206 (6)0.0038 (5)0.0024 (5)0.0062 (5)
O40.0208 (6)0.0301 (7)0.0182 (6)0.0049 (6)0.0025 (5)0.0037 (5)
O50.0205 (6)0.0219 (6)0.0186 (6)0.0024 (5)0.0011 (5)0.0032 (5)
N10.0122 (6)0.0148 (7)0.0155 (6)0.0016 (5)0.0003 (5)0.0011 (5)
N20.0150 (6)0.0152 (7)0.0130 (6)0.0013 (5)0.0021 (5)0.0004 (5)
N30.0156 (6)0.0193 (7)0.0134 (6)0.0024 (6)0.0010 (5)0.0004 (6)
N40.0142 (7)0.0160 (7)0.0200 (7)0.0026 (6)0.0001 (5)0.0010 (6)
C10.0120 (7)0.0104 (7)0.0191 (8)0.0001 (6)0.0003 (6)0.0008 (6)
C20.0167 (8)0.0127 (7)0.0304 (9)0.0032 (7)0.0044 (7)0.0033 (7)
C30.0168 (8)0.0205 (9)0.0353 (10)0.0058 (7)0.0004 (8)0.0002 (8)
C40.0138 (8)0.0172 (8)0.0271 (9)0.0010 (7)0.0028 (7)0.0012 (7)
C50.0151 (8)0.0193 (8)0.0227 (8)0.0026 (7)0.0039 (7)0.0008 (7)
C60.0120 (7)0.0119 (7)0.0212 (8)0.0021 (6)0.0013 (6)0.0001 (6)
C70.0142 (8)0.0123 (7)0.0235 (8)0.0014 (7)0.0007 (6)0.0016 (6)
C80.0196 (9)0.0221 (9)0.0335 (10)0.0050 (7)0.0053 (8)0.0043 (8)
C90.0221 (9)0.0119 (8)0.0295 (9)0.0005 (7)0.0032 (7)0.0005 (7)
C100.0146 (8)0.0172 (8)0.0165 (8)0.0013 (6)0.0037 (6)0.0030 (6)
C110.0146 (7)0.0139 (7)0.0153 (7)0.0017 (6)0.0016 (6)0.0035 (6)
C120.0127 (7)0.0166 (7)0.0130 (7)0.0007 (6)0.0002 (6)0.0007 (6)
C130.0175 (8)0.0176 (8)0.0242 (9)0.0007 (7)0.0026 (7)0.0006 (7)
C140.0152 (7)0.0137 (7)0.0150 (7)0.0005 (6)0.0004 (6)0.0017 (6)
C150.0158 (8)0.0213 (8)0.0247 (8)0.0023 (7)0.0045 (7)0.0039 (7)
C160.0118 (8)0.0209 (8)0.0176 (8)0.0013 (7)0.0025 (6)0.0031 (7)
C170.0100 (7)0.0144 (7)0.0196 (8)0.0011 (6)0.0006 (6)0.0008 (6)
C180.0253 (9)0.0209 (9)0.0294 (9)0.0114 (8)0.0008 (8)0.0026 (7)
O1W0.0245 (14)0.0245 (14)0.033 (2)0.0033 (14)0.0015 (9)0.0015 (9)
Geometric parameters (Å, º) top
S1—O11.4298 (12)C4—H41
S1—O21.4446 (12)C5—C61.545 (2)
S1—N11.7057 (13)C5—H5A0.99
S1—C101.7846 (17)C5—H5B0.99
O3—C111.215 (2)C6—H61
O4—C161.216 (2)C7—C91.527 (2)
O5—C171.217 (2)C7—C81.533 (2)
N1—C111.411 (2)C8—H8A0.98
N1—C61.484 (2)C8—H8B0.98
N2—C171.385 (2)C8—H8C0.98
N2—N31.4321 (18)C9—H9A0.98
N2—C141.477 (2)C9—H9B0.98
N3—C161.381 (2)C9—H9C0.98
N3—H3N0.95 (2)C10—H10A0.99
N4—C161.379 (2)C10—H10B0.99
N4—C171.384 (2)C11—C121.496 (2)
N4—C181.454 (2)C12—C131.332 (2)
C1—C101.519 (2)C12—C141.514 (2)
C1—C21.536 (2)C13—H13A0.95
C1—C61.553 (2)C13—H13B0.95
C1—C71.559 (2)C14—C151.522 (2)
C2—C31.556 (3)C14—H141
C2—H2A0.99C15—H15A0.98
C2—H2B0.99C15—H15B0.98
C3—C41.554 (2)C15—H15C0.98
C3—H3A0.99C18—H18A0.98
C3—H3B0.99C18—H18B0.98
C4—C51.544 (2)C18—H18C0.98
C4—C71.552 (2)
O1—S1—O2117.04 (8)C8—C7—C4113.92 (14)
O1—S1—N1110.64 (7)C9—C7—C1115.52 (13)
O2—S1—N1108.12 (7)C8—C7—C1113.47 (14)
O1—S1—C10112.18 (8)C4—C7—C192.53 (12)
O2—S1—C10110.54 (8)C7—C8—H8A109.5
N1—S1—C1096.30 (7)C7—C8—H8B109.5
C11—N1—C6117.08 (13)H8A—C8—H8B109.5
C11—N1—S1121.08 (11)C7—C8—H8C109.5
C6—N1—S1111.92 (10)H8A—C8—H8C109.5
C17—N2—N3106.89 (12)H8B—C8—H8C109.5
C17—N2—C14118.38 (13)C7—C9—H9A109.5
N3—N2—C14116.64 (13)C7—C9—H9B109.5
C16—N3—N2107.65 (13)H9A—C9—H9B109.5
C16—N3—H3N117.8 (11)C7—C9—H9C109.5
N2—N3—H3N113.0 (12)H9A—C9—H9C109.5
C16—N4—C17110.89 (13)H9B—C9—H9C109.5
C16—N4—C18125.30 (14)C1—C10—S1107.26 (11)
C17—N4—C18123.76 (14)C1—C10—H10A110.3
C10—C1—C2117.01 (14)S1—C10—H10A110.3
C10—C1—C6108.37 (13)C1—C10—H10B110.3
C2—C1—C6104.08 (13)S1—C10—H10B110.3
C10—C1—C7119.44 (14)H10A—C10—H10B108.5
C2—C1—C7101.97 (13)O3—C11—N1119.82 (15)
C6—C1—C7104.29 (13)O3—C11—C12122.66 (15)
C1—C2—C3102.10 (13)N1—C11—C12117.34 (13)
C1—C2—H2A111.3C13—C12—C11119.04 (15)
C3—C2—H2A111.3C13—C12—C14124.01 (15)
C1—C2—H2B111.3C11—C12—C14116.08 (14)
C3—C2—H2B111.3C12—C13—H13A120
H2A—C2—H2B109.2C12—C13—H13B120
C4—C3—C2103.63 (14)H13A—C13—H13B120
C4—C3—H3A111N2—C14—C12109.77 (12)
C2—C3—H3A111N2—C14—C15111.61 (14)
C4—C3—H3B111C12—C14—C15114.48 (14)
C2—C3—H3B111N2—C14—H14106.9
H3A—C3—H3B109C12—C14—H14106.9
C5—C4—C7102.00 (13)C15—C14—H14106.9
C5—C4—C3107.92 (14)C14—C15—H15A109.5
C7—C4—C3102.50 (14)C14—C15—H15B109.5
C5—C4—H4114.4H15A—C15—H15B109.5
C7—C4—H4114.4C14—C15—H15C109.5
C3—C4—H4114.4H15A—C15—H15C109.5
C4—C5—C6101.46 (13)H15B—C15—H15C109.5
C4—C5—H5A111.5O4—C16—N4127.21 (16)
C6—C5—H5A111.5O4—C16—N3126.55 (16)
C4—C5—H5B111.5N4—C16—N3106.23 (14)
C6—C5—H5B111.5O5—C17—N4126.36 (15)
H5A—C5—H5B109.3O5—C17—N2127.10 (15)
N1—C6—C5115.96 (13)N4—C17—N2106.54 (13)
N1—C6—C1108.13 (12)N4—C18—H18A109.5
C5—C6—C1104.05 (13)N4—C18—H18B109.5
N1—C6—H6109.5H18A—C18—H18B109.5
C5—C6—H6109.5N4—C18—H18C109.5
C1—C6—H6109.5H18A—C18—H18C109.5
C9—C7—C8106.61 (14)H18B—C18—H18C109.5
C9—C7—C4114.68 (14)
O1—S1—N1—C1193.88 (13)C10—C1—C7—C4171.29 (14)
O2—S1—N1—C1135.49 (14)C2—C1—C7—C457.96 (15)
C10—S1—N1—C11149.54 (13)C6—C1—C7—C450.14 (14)
O1—S1—N1—C6121.48 (11)C2—C1—C10—S1143.26 (13)
O2—S1—N1—C6109.15 (11)C6—C1—C10—S126.06 (15)
C10—S1—N1—C64.90 (12)C7—C1—C10—S193.02 (15)
C17—N2—N3—C1613.86 (17)O1—S1—C10—C1102.49 (12)
C14—N2—N3—C16148.94 (14)O2—S1—C10—C1124.89 (11)
C10—C1—C2—C3172.41 (14)N1—S1—C10—C112.84 (12)
C6—C1—C2—C368.07 (15)C6—N1—C11—O31.1 (2)
C7—C1—C2—C340.18 (16)S1—N1—C11—O3141.82 (13)
C1—C2—C3—C45.05 (17)C6—N1—C11—C12174.26 (13)
C2—C3—C4—C575.39 (16)S1—N1—C11—C1242.82 (18)
C2—C3—C4—C731.80 (17)O3—C11—C12—C13132.38 (18)
C7—C4—C5—C644.34 (16)N1—C11—C12—C1342.8 (2)
C3—C4—C5—C663.20 (16)O3—C11—C12—C1437.4 (2)
C11—N1—C6—C576.68 (18)N1—C11—C12—C14147.36 (14)
S1—N1—C6—C5137.14 (12)C17—N2—C14—C12160.88 (14)
C11—N1—C6—C1166.99 (13)N3—N2—C14—C1269.30 (17)
S1—N1—C6—C120.81 (15)C17—N2—C14—C1571.11 (18)
C4—C5—C6—N1129.61 (14)N3—N2—C14—C1558.71 (17)
C4—C5—C6—C111.01 (16)C13—C12—C14—N2132.46 (16)
C10—C1—C6—N129.94 (17)C11—C12—C14—N258.30 (17)
C2—C1—C6—N1155.16 (13)C13—C12—C14—C156.1 (2)
C7—C1—C6—N198.31 (14)C11—C12—C14—C15175.29 (13)
C10—C1—C6—C5153.77 (13)C17—N4—C16—O4173.92 (17)
C2—C1—C6—C581.00 (15)C18—N4—C16—O43.7 (3)
C7—C1—C6—C525.52 (15)C17—N4—C16—N35.91 (18)
C5—C4—C7—C961.98 (17)C18—N4—C16—N3176.52 (16)
C3—C4—C7—C9173.65 (14)N2—N3—C16—O4167.85 (16)
C5—C4—C7—C8174.80 (14)N2—N3—C16—N411.98 (17)
C3—C4—C7—C863.13 (17)C16—N4—C17—O5177.12 (16)
C5—C4—C7—C157.69 (14)C18—N4—C17—O55.3 (3)
C3—C4—C7—C153.98 (14)C16—N4—C17—N22.76 (18)
C10—C1—C7—C952.3 (2)C18—N4—C17—N2174.86 (15)
C2—C1—C7—C9176.92 (14)N3—N2—C17—O5169.86 (16)
C6—C1—C7—C968.82 (17)C14—N2—C17—O535.7 (2)
C10—C1—C7—C871.22 (19)N3—N2—C17—N410.02 (16)
C2—C1—C7—C859.53 (17)C14—N2—C17—N4144.17 (14)
C6—C1—C7—C8167.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.95 (2)1.91 (2)2.8263 (18)161.2 (17)

Experimental details

(IIa)(IIb)
Crystal data
Chemical formulaC18H26N4O5S·0.151H2OC18H26N4O5S·0.3485H2O
Mr413.21416.77
Crystal system, space groupTetragonal, P43212Tetragonal, P41212
Temperature (K)100100
a, c (Å)12.2857 (1), 26.1898 (2)12.2794 (2), 26.3417 (5)
V3)3953.05 (5)3971.90 (12)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.200.20
Crystal size (mm)0.45 × 0.20 × 0.200.34 × 0.24 × 0.24
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9977, 5702, 5366 10281, 5761, 4925
Rint0.0160.029
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.03 0.038, 0.094, 0.98
No. of reflections57025761
No. of parameters267269
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.270.33, 0.30
Absolute structureFlack (1983), 2335 Friedel pairsFlack (1983), 3379 Friedel pairs
Absolute structure parameter0.02 (5)0.04 (6)

Computer programs: Collect (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.935 (17)1.914 (17)2.8254 (14)164.1 (14)
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.95 (2)1.91 (2)2.8263 (18)161.2 (17)
 

Footnotes

Part of this work was presented as a poster at the 13th Inter­national Conference on Organic Synthesis (ICOS-13), Warsaw, Poland, July 1–5, 2000; Y. Elemes: Highly Diastereoselective Ene Reactions with the Aid of a Chiral Auxiliary, p. 265.

Acknowledgements

This work was supported (programme No. 667) by the Research Committee of the University of Ioannina, Greece, and by Glasgow University, Scotland. We thank the NMR centres of both the University of Ioannina, Greece, and the Institute of Organic Chemistry, University of Erlangen–Nürnberg, Germany, for the NMR spectra.

References

First citationAdam, W., Degen, H.-G., Krebs, O. & Saha-Moller, C. R. (2002). J. Am. Chem. Soc. 124, 12938–12939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAdam, W. & Krebs, O. (2003). Chem. Rev. 103, 4131–4146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAdam, W., Krebs, O., Orfanopoulos, M., Stratakis, M. & Vougioukalakis, G. C. (2002). J. Org. Chem. 68, 2420–2425.  Web of Science CrossRef Google Scholar
First citationAdam, W., Wirth, T., Pastor, A. & Peters, K. (1998). Eur. J. Org. Chem. pp. 501–506.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFraile, A. G., Morris, D. G., Martinez, A. G., de la Moya Cerereo, S., Muir, K. W., Ryder, K. S. & Vilar, E. T. (2003). Org. Biomol. Chem. 1, 700–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOppolzer, W., Poli, G., Starkemann, C. & Bernardinelli, G. (1988). Tetrahedron Lett. 29, 3559–3562.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSingleton, D. A. & Hang, C. (1999). J. Am. Chem. Soc. 121, 11885–11893.  Web of Science CrossRef CAS Google Scholar
First citationStratakis, M., Hatzimarinaki, M., Froudakis, G. E. & Orfanopoulos, M. (2001). J. Org. Chem. 66, 3682–3687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVassilikogiannakis, G., Elemes, Y. & Orfanopoulos, M. (2000). J. Am. Chem. Soc. 122, 9540–9541.  Web of Science CrossRef CAS Google Scholar
First citationVougioukalakis, G. C. & Orfanopoulos, M. (2005). Synlett, pp. 713–731.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds