organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3-(5-Chloro-3-methyl-1-phenyl­pyrazol-4-yl)-1,5-di­phenyl­pentane-1,5-dione: sheets built from C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 30 June 2006; accepted 3 July 2006; online 29 July 2006)

Mol­ecules of the title compound, C27H23ClN2O2, are linked into sheets of alternating large and small rings by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds.

Comment

The title compound, (I)[link], has been obtained from the base-catalysed condensation of 5-chloro-3-methyl-1-phenyl­pyrazole-4-carbaldehyde with acetophenone. Evidently, the intended target 3-(5-chloro-3-methyl-1-phenyl­pyrazol-4-yl)-1-phenyl­propenone, (II)[link], required as an inter­mediate for the synthesis of novel fused heterocyclic systems, has undergone a Michael-type reaction with a further mol­ecule of aceto­phenone to form the observed product, (I)[link].

Compound (I)[link] and the analogous 3-(5-chloro-3-methyl-1-phenyl­pyrazol-4-yl)-1,5-di-2-thienylpentane-1,5-dione, (III)[link] (Trilleras et al., 2005[Trilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1892-o1894.]), both crystallize in the space group Pbca, with dimensions which are fairly similar, bearing in mind the different temperatures for the two determinations [293 (2) K for (I)[link] and 120 (2) K for (III)[link]], and hence the two compounds are isomorphous. In addition, the corresponding atom coordinates are very similar, as are the mol­ecular conformations, with an all-trans and nearly planar aliphatic chain exhibiting approximate local mirror symmetry (Table 1[link]). Indeed, with the exception of the N-bound phenyl ring (C11–C16), which makes a dihedral angle of 42.7 (2)° with the pyrazole ring, the entire mol­ecule has approximate mirror symmetry. However, there are some significant differences between the supra­molecular structures of (I)[link] and (III)[link], so that these compounds are not strictly isostructural.

The supra­molecular aggregation in compound (I)[link] is determined by a combination of C—H⋯O and C—H⋯π(arene)

[Scheme 1]
hydrogen bonds (Table 1[link]). Atom C8 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the C91–C96 ring in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming by inversion a centrosymmetric dimer, centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 2[link]). This behaviour thus mimics that of compound (III)[link], where one of the thio­phene rings acts as the hydrogen-bond acceptor. However, while the dimers in (III)[link] are not further linked by any direction-specific inter­molecular forces, those in (I)[link] are linked into sheets by a single C—H⋯O hydrogen bond, whose action in isolation is to link the mol­ecules into chains. Atom C14 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O7 in the mol­ecule at (−x, [{1\over 2}] + y, [{3\over 2}] − z), so forming a C(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y, [{3\over 4}]) (Fig. 3[link]). The combined action of the two hydrogen bonds generates a sheet.

The C14 atoms in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), act as hydrogen-bond donors to O7 atoms in the mol­ecules at (−x, [{1\over 2}] + y, [{3\over 2}] − z) and (1 + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively, which form parts of the dimers centred at (−[{1\over 2}], 1, 1) and ([{3\over 2}], 0, 0), respectively. Similarly, the O7 atoms at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from the C14 atoms in the mol­ecules at (−x, −[{1\over 2}] + y, [{3\over 2}] − z) and (1 + x, [{3\over 2}] − y, −[{1\over 2}] + z), respectively, which themselves lie in the dimers centred at (−[{1\over 2}], 0, 1) and ([{3\over 2}], 1, 0). Thus, each dimer is linked to four adjacent dimers, and propagation of these inter­molecular inter­actions by the space-group symmetry operations links the mol­ecules into a (102) sheet containing large and small rings alternating in chessboard fashion (Fig. 4[link]).

The only direction-specific contact between adjacent sheets is a rather long C—H⋯O contact with aryl atom C73 as the donor (Table 2[link]), but whose H⋯O distance is close to the van der Waals limit. This inter­action is, therefore, probably of little or no structural significance.

In closely analogous 1,5-bis­(4-chloro­phenyl)-3-(2-chloro­quinolin-3-yl)pentane-1,5-dione, (IV)[link] (Insuasty et al., 2006[Insuasty, B., Torres, H., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o39-o41.]), which also crystallizes in the space group Pbca, although with unit-cell dimensions markedly different from those of (I)[link] and (III)[link], a combination of one C—H⋯N hydrogen bond and one C—H⋯O hydrogen bond links the mol­ecules into sheets of R44(26) rings, but C—H⋯π(arene) hydrogen bonds are absent.

[Figure 1]
Figure 1
A view of the mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a centrosymmetric dimer formed by paired C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a C(12) chain along [010] formed by C—H⋯O hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, [{1\over 2}] + y, [{3\over 2}] − z) and (−x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a (102) sheet by the combined action of C—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Experimental

To a solution of acetophenone (1 mmol) and 5-chloro-4-formyl-3-methyl-1-phenyl­pyrazole (0.5 mmol) in absolute ethanol (10 ml), a catalytic amount of sodium hydroxide (1 pellet) was added and the reaction mixture was stirred at room temperature for 1 h. The precipitate which formed was isolated by filtration, washed with ethanol, dried and finally recrystallized from dimethyl­formamide to give colourless crystals suitable for single-crystal X-ray diffraction (m.p. 390 K, yield 65%). MS (70 eV) m/z (%): 442 (1, M+), 323 (30), 287 (16), 105 (100), 77 (58), 51 (10).

Crystal data
  • C27H23ClN2O2

  • Mr = 442.92

  • Orthorhombic, P b c a

  • a = 15.2964 (3) Å

  • b = 17.4366 (2) Å

  • c = 16.8320 (3) Å

  • V = 4489.39 (13) Å3

  • Z = 8

  • Dx = 1.311 Mg m−3

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.25 × 0.07 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.994

  • 48477 measured reflections

  • 5148 independent reflections

  • 3253 reflections with I > 2σ(I)

  • Rint = 0.076

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.06

  • 5148 reflections

  • 291 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.071P)2 + 0.5899P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.0049 (6)

Table 1
Selected torsion angles (°)

C72—C71—C7—C6 −169.29 (18)
C71—C7—C6—C41 −165.78 (16)
C7—C6—C41—C8 −157.20 (16)
C3—C4—C41—C6 −116.5 (2)
C92—C91—C9—C8 177.01 (17)
C91—C9—C8—C41 174.85 (16)
C9—C8—C41—C6 166.61 (16)
C3—C4—C41—C8 119.4 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C91–C96 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.97 2.79 3.673 (2) 152
C14—H14⋯O7ii 0.93 2.50 3.402 (3) 165
C73—H73⋯O9iii 0.93 2.59 3.449 (3) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, [-y+{\script{1\over 2}}], [z+{\script{1\over 2}}].

The space group Pbca was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) or 0.98 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, (I), has been obtained from the base-catalysed condensation of 5-chloro-3-methyl-1-phenylpyrazole-4-carbaldehyde with acetophenone. Evidently, the intended target 3-(5-chloro-3-methyl-1-phenylpyrazol-4-yl)-1-phenylpropenone, (II), required as an intermediate for the synthesis of novel fused heterocyclic systems, has undergone a Michael-type reaction with a further molecule of acetophenone to form the observed product, (I).

Compound (I) and the analogous 3-(5-chloro-3-methyl-1-phenylpyrazol-4-yl)-1,5-di-2-thienylpentane-1,5-dione, (III) (Trilleras et al., 2005), both crystallize in space group Pbca, with dimensions which are fairly similar bearing in mind the different temperatures for the two determinations [293 (2) K for (I) and 120 (2) K for (III)], and hence the two compounds are isomorphous. In addition, the corresponding atom coordinates are very similar, as are the molecular conformations, with an all-trans and nearly planar aliphatic chain exhibiting approximate local mirror symmetry (Table 1). Indeed, with the exception of the N-phenyl ring C11–C16, which makes a dihedral angle of 42.7 (2)° with the pyrazole ring, the entire molecule has approximate mirror symmetry. However, there are some significant differences between the supramolecular structures of (I) and (III), so that these compounds are not strictly isostructural.

The supramolecular aggregation in compound (I) is determined by a combination of C—H···O and C—H···π(arene) hydrogen bonds (Table 1). Atom C8 in the molecule at (x, y, z) acts as hydrogen-bond donor to the ring C91–C96 in the molecule at (1 − x, 1 − y, 1 − z), so forming by inversion a centrosymmetric dimer, centred at (1/2, 1/2, 1/2) (Fig. 2). This behaviour thus mimics that of compound (III), where one of the thiophene rings acts as the hydrogen-bond acceptor. However, while the dimers in (III) are not further linked by any direction-specific intermolecular forces, those in (I) are linked into sheets by a single C—H···O hydrogen bond, whose action in isolation is to link the molecules into chains. Atom C14 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O7 in the molecule at (−x, 1/2 + y, 3/2 − z), so forming a C(12) (Bernstein et al., 1995) chain running parallel to the [010] direction and generated by the 21screw axis along (0, y, 3/4) (Fig. 3). The combined action of the two hydrogen bonds generates a sheet.

The atoms C14 in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which form the dimer centred at (1/2, 1/2, 1/2), act as hydrogen-bond donors to atoms O7 in the molecules at (−x, 1/2 + y, 3/2 − z) and (1 + x, 1/2 − y, −1/2 + z), respectively, which form parts of the dimers centred at (−1/2, 1, 1) and (3/2, 0, 0), respectively. Similarly, the atoms O7 at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from the atoms C14 in the molecules at (−x, −1/2 + y, 3/2 − z) and (1 + x, 3/2 − y, −1/2 + z), respectively, which themselves lie in the dimers centred at (−1/2, 0, 1) and (3/2, 1, 0). Thus, each dimer is linked to four adjacent dimers, and propagation of these intermolecular interactions by the space group symmetry operations links the molecules into a (102) sheet containing large and small rings alternating in chessboard fashion (Fig. 4).

The only direction-specific contact between adjacent sheets is a rather long C—H···O contact with aryl atom C73 as the donor (Table 2), but whose H···O distance is close to the van der Waals limit. This interaction is, therefore, probably of little or no structural significance.

In the closely analogous compound 1,5-bis(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)pentane-1,5-dione, (IV) (Insuasty et al., 2006), which also crystallizes in space group Pbca, although with unit-cell dimensions markedly different from those of (I) and (III), a combination one C—H···N hydrogen bond and one C—H···O hydrogen bond links the molecules into sheets of R44(26) rings, but C—H···π(arene) hydrogen bonds are absent.

Experimental top

To a solution of 5-chloro-4-formyl-3-methyl-1-phenylpyrazole (0.5 mmol) and acetophenone (1 mmol) in absolute ethanol (10 ml), a catalytic amount of sodium hydroxide (1 pellet) was added and the reaction mixture was stirred at room temperature for 1 h. The precipitate which formed was isolated by filtration, washed with ethanol, dried and finally recrystallized from dimethylformamide to give colourless crystals suitable for single-crystal X-ray diffraction (m.p. 390 K, yield 65%). MS (70 eV) m/z (%) 442 (1, M+), 323?(30), 287?(16), 105?(100), 77?(58), 51?(10).

Refinement top

The space group Pbca was uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) or 0.98 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of compound (I), showing the formation of a centrosymmetric dimer formed by paired C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the formation of a C(12) chain along [010] formed by C—H···O hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, 1/2 + y, 3/2 − z) and (−x, −1/2 + y, 3/2 − z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a (102) sheet by the combined action of C—H···O and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
3-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)-1,5-diphenylpentane-1,5-dione top
Crystal data top
C27H23ClN2O2F(000) = 1856
Mr = 442.92Dx = 1.311 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5148 reflections
a = 15.2964 (3) Åθ = 2.1–27.5°
b = 17.4366 (2) ŵ = 0.20 mm1
c = 16.8320 (3) ÅT = 120 K
V = 4489.39 (13) Å3Needle, colourless
Z = 80.25 × 0.07 × 0.03 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5148 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2222
Tmin = 0.923, Tmax = 0.994l = 2121
48477 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.071P)2 + 0.5899P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5148 reflectionsΔρmax = 0.34 e Å3
291 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (6)
Crystal data top
C27H23ClN2O2V = 4489.39 (13) Å3
Mr = 442.92Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.2964 (3) ŵ = 0.20 mm1
b = 17.4366 (2) ÅT = 120 K
c = 16.8320 (3) Å0.25 × 0.07 × 0.03 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3253 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.994Rint = 0.076
48477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
5148 reflectionsΔρmin = 0.36 e Å3
291 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08215 (10)0.51879 (9)0.67052 (9)0.0306 (4)
C110.01801 (13)0.57556 (12)0.68856 (12)0.0326 (5)
C120.01904 (13)0.61321 (12)0.76064 (13)0.0363 (5)
C130.04328 (14)0.66959 (13)0.77567 (13)0.0402 (5)
C140.10655 (14)0.68606 (13)0.72017 (14)0.0419 (6)
C150.10830 (13)0.64651 (13)0.64901 (15)0.0426 (6)
C160.04554 (13)0.59163 (12)0.63219 (13)0.0368 (5)
N20.05817 (10)0.45273 (9)0.63228 (9)0.0317 (4)
C30.13242 (12)0.41443 (11)0.62071 (11)0.0289 (5)
C310.13026 (14)0.33782 (12)0.58143 (13)0.0376 (5)
C40.20619 (12)0.45476 (11)0.65004 (11)0.0266 (4)
C410.30143 (12)0.43254 (11)0.64849 (11)0.0280 (4)
C60.33765 (13)0.42224 (11)0.73321 (11)0.0295 (4)
C70.31158 (13)0.34732 (11)0.77115 (11)0.0292 (4)
O70.28295 (10)0.29494 (8)0.73048 (9)0.0424 (4)
C710.32357 (12)0.33693 (11)0.85842 (11)0.0272 (4)
C720.31328 (13)0.26362 (12)0.89033 (12)0.0350 (5)
C730.32038 (14)0.25179 (13)0.97102 (13)0.0420 (5)
C740.33885 (14)0.31228 (13)1.02112 (13)0.0423 (5)
C750.35083 (14)0.38514 (12)0.99041 (13)0.0396 (5)
C760.34331 (13)0.39723 (11)0.90936 (12)0.0324 (5)
C80.35730 (12)0.49020 (11)0.60219 (11)0.0287 (4)
C90.34092 (12)0.49125 (11)0.51367 (12)0.0290 (4)
O90.29296 (9)0.44428 (8)0.48188 (8)0.0370 (4)
C910.38728 (12)0.55060 (11)0.46528 (11)0.0278 (4)
C920.37698 (12)0.55107 (12)0.38296 (12)0.0314 (5)
C930.41941 (13)0.60481 (12)0.33684 (12)0.0364 (5)
C940.47220 (14)0.65961 (12)0.37192 (13)0.0377 (5)
C950.48274 (15)0.66021 (12)0.45313 (13)0.0418 (5)
C960.44089 (13)0.60586 (12)0.50000 (12)0.0365 (5)
C50.17038 (12)0.52049 (11)0.68095 (11)0.0283 (4)
Cl50.22177 (3)0.59854 (3)0.72142 (3)0.03617 (17)
H120.06080.60110.79870.044*
H130.04210.69630.82350.048*
H140.14810.72370.73050.050*
H150.15200.65690.61210.051*
H160.04600.56590.58380.044*
H31A0.07080.32410.56990.056*
H31B0.15540.30020.61620.056*
H31C0.16320.33980.53290.056*
H410.30590.38300.62140.034*
H6A0.40090.42520.73140.035*
H6B0.31690.46410.76610.035*
H720.30150.22240.85690.042*
H730.31270.20280.99180.050*
H740.34330.30411.07560.051*
H750.36390.42591.02410.048*
H760.35160.44620.88880.039*
H8A0.34630.54110.62320.034*
H8B0.41850.47850.61130.034*
H920.34110.51480.35890.038*
H930.41250.60420.28190.044*
H940.50050.69600.34070.045*
H950.51800.69720.47670.050*
H960.44870.60640.55480.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0310 (9)0.0305 (9)0.0304 (9)0.0023 (7)0.0013 (7)0.0019 (7)
C110.0300 (11)0.0329 (11)0.0348 (12)0.0029 (9)0.0082 (9)0.0048 (9)
C120.0341 (12)0.0395 (12)0.0354 (12)0.0003 (9)0.0043 (9)0.0036 (10)
C130.0459 (13)0.0348 (12)0.0400 (13)0.0001 (10)0.0158 (11)0.0041 (10)
C140.0362 (12)0.0358 (12)0.0536 (15)0.0038 (10)0.0151 (11)0.0135 (11)
C150.0314 (12)0.0497 (14)0.0466 (14)0.0031 (10)0.0058 (10)0.0138 (11)
C160.0339 (11)0.0422 (12)0.0343 (12)0.0031 (10)0.0048 (9)0.0070 (10)
N20.0335 (9)0.0329 (9)0.0286 (9)0.0063 (8)0.0011 (7)0.0024 (7)
C30.0323 (11)0.0327 (11)0.0218 (10)0.0047 (9)0.0002 (8)0.0013 (8)
C310.0424 (12)0.0361 (12)0.0342 (12)0.0060 (10)0.0033 (10)0.0056 (10)
C40.0315 (10)0.0272 (10)0.0212 (10)0.0050 (8)0.0021 (8)0.0001 (8)
C410.0317 (11)0.0298 (10)0.0226 (10)0.0011 (8)0.0000 (8)0.0003 (8)
C60.0286 (10)0.0329 (11)0.0269 (11)0.0040 (9)0.0001 (8)0.0025 (8)
C70.0298 (10)0.0287 (10)0.0290 (11)0.0012 (8)0.0002 (9)0.0002 (9)
O70.0612 (10)0.0314 (8)0.0347 (9)0.0099 (7)0.0099 (7)0.0001 (6)
C710.0225 (10)0.0312 (10)0.0278 (11)0.0002 (8)0.0005 (8)0.0042 (8)
C720.0376 (11)0.0314 (11)0.0361 (12)0.0046 (9)0.0054 (9)0.0028 (9)
C730.0455 (13)0.0394 (12)0.0411 (13)0.0045 (11)0.0046 (10)0.0137 (11)
C740.0420 (12)0.0555 (14)0.0293 (12)0.0053 (11)0.0020 (10)0.0078 (11)
C750.0479 (13)0.0418 (13)0.0292 (12)0.0050 (10)0.0041 (10)0.0026 (10)
C760.0355 (11)0.0311 (11)0.0306 (11)0.0007 (9)0.0011 (9)0.0031 (9)
C80.0288 (10)0.0312 (10)0.0261 (11)0.0021 (8)0.0017 (8)0.0005 (8)
C90.0314 (10)0.0275 (10)0.0282 (11)0.0040 (9)0.0017 (8)0.0021 (8)
O90.0491 (9)0.0344 (8)0.0274 (8)0.0100 (7)0.0011 (7)0.0025 (6)
C910.0296 (10)0.0285 (10)0.0252 (11)0.0045 (8)0.0022 (8)0.0018 (8)
C920.0288 (10)0.0368 (11)0.0287 (11)0.0026 (9)0.0011 (8)0.0017 (9)
C930.0370 (12)0.0468 (13)0.0253 (11)0.0064 (10)0.0005 (9)0.0079 (9)
C940.0391 (12)0.0346 (11)0.0394 (13)0.0036 (10)0.0084 (10)0.0144 (10)
C950.0484 (13)0.0346 (12)0.0423 (14)0.0089 (10)0.0023 (11)0.0002 (10)
C960.0455 (13)0.0372 (12)0.0267 (11)0.0042 (10)0.0019 (9)0.0003 (9)
C50.0287 (11)0.0321 (11)0.0240 (10)0.0065 (9)0.0005 (8)0.0000 (8)
Cl50.0369 (3)0.0328 (3)0.0388 (3)0.0075 (2)0.0021 (2)0.0088 (2)
Geometric parameters (Å, º) top
N1—C51.361 (2)C7—C711.491 (3)
N1—N21.370 (2)C71—C761.390 (3)
N1—C111.426 (3)C71—C721.395 (3)
C11—C121.380 (3)C72—C731.378 (3)
C11—C161.387 (3)C72—H720.93
C12—C131.392 (3)C73—C741.380 (3)
C12—H120.93C73—H730.93
C13—C141.375 (3)C74—C751.384 (3)
C13—H130.93C74—H740.93
C14—C151.382 (3)C75—C761.385 (3)
C14—H140.93C75—H750.93
C15—C161.385 (3)C76—H760.93
C15—H150.93C8—C91.511 (3)
C16—H160.93C8—H8A0.97
N2—C31.332 (2)C8—H8B0.97
C3—C41.418 (3)C9—O91.223 (2)
C3—C311.491 (3)C9—C911.496 (3)
C31—H31A0.96C91—C961.394 (3)
C31—H31B0.96C91—C921.394 (3)
C31—H31C0.96C92—C931.379 (3)
C4—C51.373 (3)C92—H920.93
C4—C411.508 (3)C93—C941.383 (3)
C41—C81.533 (3)C93—H930.93
C41—C61.540 (3)C94—C951.376 (3)
C41—H410.98C94—H940.93
C6—C71.508 (3)C95—C961.389 (3)
C6—H6A0.97C95—H950.93
C6—H6B0.97C96—H960.93
C7—O71.222 (2)C5—Cl51.7130 (19)
C5—N1—N2110.14 (15)C76—C71—C72118.68 (18)
C5—N1—C11129.75 (16)C76—C71—C7122.85 (17)
N2—N1—C11119.97 (16)C72—C71—C7118.46 (17)
C12—C11—C16120.89 (19)C73—C72—C71120.51 (19)
C12—C11—N1120.64 (18)C73—C72—H72119.7
C16—C11—N1118.47 (19)C71—C72—H72119.7
C11—C12—C13119.2 (2)C72—C73—C74120.3 (2)
C11—C12—H12120.4C72—C73—H73119.9
C13—C12—H12120.4C74—C73—H73119.9
C14—C13—C12120.4 (2)C73—C74—C75120.0 (2)
C14—C13—H13119.8C73—C74—H74120.0
C12—C13—H13119.8C75—C74—H74120.0
C13—C14—C15119.9 (2)C74—C75—C76119.8 (2)
C13—C14—H14120.1C74—C75—H75120.1
C15—C14—H14120.1C76—C75—H75120.1
C14—C15—C16120.6 (2)C75—C76—C71120.70 (19)
C14—C15—H15119.7C75—C76—H76119.7
C16—C15—H15119.7C71—C76—H76119.7
C15—C16—C11119.1 (2)C9—C8—C41114.64 (15)
C15—C16—H16120.5C9—C8—H8A108.6
C11—C16—H16120.5C41—C8—H8A108.6
C3—N2—N1105.19 (15)C9—C8—H8B108.6
N2—C3—C4112.27 (17)C41—C8—H8B108.6
N2—C3—C31119.69 (17)H8A—C8—H8B107.6
C4—C3—C31128.04 (18)O9—C9—C91120.63 (17)
C3—C31—H31A109.5O9—C9—C8121.53 (17)
C3—C31—H31B109.5C91—C9—C8117.83 (16)
H31A—C31—H31B109.5C96—C91—C92118.62 (18)
C3—C31—H31C109.5C96—C91—C9121.93 (17)
H31A—C31—H31C109.5C92—C91—C9119.45 (17)
H31B—C31—H31C109.5C93—C92—C91120.68 (19)
C5—C4—C3103.20 (16)C93—C92—H92119.7
C5—C4—C41127.36 (17)C91—C92—H92119.7
C3—C4—C41129.45 (17)C92—C93—C94120.24 (19)
C4—C41—C8112.27 (15)C92—C93—H93119.9
C4—C41—C6111.19 (15)C94—C93—H93119.9
C8—C41—C6110.28 (15)C95—C94—C93119.84 (19)
C4—C41—H41107.6C95—C94—H94120.1
C8—C41—H41107.6C93—C94—H94120.1
C6—C41—H41107.6C94—C95—C96120.3 (2)
C7—C6—C41113.45 (16)C94—C95—H95119.8
C7—C6—H6A108.9C96—C95—H95119.8
C41—C6—H6A108.9C95—C96—C91120.31 (19)
C7—C6—H6B108.9C95—C96—H96119.8
C41—C6—H6B108.9C91—C96—H96119.8
H6A—C6—H6B107.7N1—C5—C4109.19 (16)
O7—C7—C71120.32 (17)N1—C5—Cl5121.57 (15)
O7—C7—C6120.33 (17)C4—C5—Cl5129.12 (15)
C71—C7—C6119.33 (16)
C5—N1—C11—C1245.8 (3)C91—C9—C8—C41174.85 (16)
N2—N1—C11—C12138.94 (19)C9—C8—C41—C6166.61 (16)
C5—N1—C11—C16134.5 (2)C3—C4—C41—C8119.4 (2)
N2—N1—C11—C1640.7 (3)C76—C71—C72—C731.6 (3)
C16—C11—C12—C131.9 (3)C7—C71—C72—C73177.48 (18)
N1—C11—C12—C13178.51 (18)C71—C72—C73—C740.8 (3)
C11—C12—C13—C141.8 (3)C72—C73—C74—C750.4 (3)
C12—C13—C14—C150.1 (3)C73—C74—C75—C760.7 (3)
C13—C14—C15—C161.6 (3)C74—C75—C76—C710.2 (3)
C14—C15—C16—C111.5 (3)C72—C71—C76—C751.3 (3)
C12—C11—C16—C150.2 (3)C7—C71—C76—C75177.74 (18)
N1—C11—C16—C15179.88 (17)C4—C41—C8—C968.8 (2)
C5—N1—N2—C30.7 (2)C41—C8—C9—O96.8 (3)
C11—N1—N2—C3176.81 (16)O9—C9—C91—C96178.63 (18)
N1—N2—C3—C40.7 (2)C8—C9—C91—C963.0 (3)
N1—N2—C3—C31178.70 (17)O9—C9—C91—C921.4 (3)
N2—C3—C4—C50.5 (2)C96—C91—C92—C930.4 (3)
C31—C3—C4—C5178.91 (19)C9—C91—C92—C93179.57 (17)
N2—C3—C4—C41179.47 (17)C91—C92—C93—C940.7 (3)
C31—C3—C4—C411.2 (3)C92—C93—C94—C950.3 (3)
C5—C4—C41—C860.5 (2)C93—C94—C95—C960.3 (3)
C5—C4—C41—C663.6 (2)C94—C95—C96—C910.5 (3)
C4—C41—C6—C777.6 (2)C92—C91—C96—C950.2 (3)
C41—C6—C7—O716.0 (3)C9—C91—C96—C95179.84 (19)
O7—C7—C71—C76170.18 (19)N2—N1—C5—C40.5 (2)
C6—C7—C71—C7611.6 (3)C11—N1—C5—C4176.05 (18)
O7—C7—C71—C728.9 (3)N2—N1—C5—Cl5175.80 (13)
C72—C71—C7—C6169.29 (18)C11—N1—C5—Cl50.2 (3)
C71—C7—C6—C41165.78 (16)C3—C4—C5—N10.0 (2)
C7—C6—C41—C8157.20 (16)C41—C4—C5—N1179.94 (17)
C3—C4—C41—C6116.5 (2)C3—C4—C5—Cl5175.88 (15)
C92—C91—C9—C8177.01 (17)C41—C4—C5—Cl54.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.793.673 (2)152
C14—H14···O7ii0.932.503.402 (3)165
C73—H73···O9iii0.932.593.449 (3)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H23ClN2O2
Mr442.92
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)15.2964 (3), 17.4366 (2), 16.8320 (3)
V3)4489.39 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.25 × 0.07 × 0.03
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.923, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
48477, 5148, 3253
Rint0.076
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.06
No. of reflections5148
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) top
C72—C71—C7—C6169.29 (18)C92—C91—C9—C8177.01 (17)
C71—C7—C6—C41165.78 (16)C91—C9—C8—C41174.85 (16)
C7—C6—C41—C8157.20 (16)C9—C8—C41—C6166.61 (16)
C3—C4—C41—C6116.5 (2)C3—C4—C41—C8119.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.793.673 (2)152
C14—H14···O7ii0.932.503.402 (3)165
C73—H73···O9iii0.932.593.449 (3)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The X-ray data were collected by the EPSRC National X-­ray Crystallography Service, University of Southampton, England. JC and JMT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JMT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC National X-ray Crystallography Service. JT and JQ thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationInsuasty, B., Torres, H., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o39–o41.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1892–o1894.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds