metal-organic compounds
A polymeric solvent-free variant of a hydridomagnesium inverse crown
aWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: a.r.kennedy@strath.ac.uk
A solvent-free agostically propagated polymeric variant of a previously reported hydride-containing inverse crown molecule has been prepared, namely tetra-μ2-diisopropylamido-di-μ2-hydrido-dimagnesium(II)disodium(I), [Mg2Na2H2(C6H14N)4]. The contains two crystallographically independent centrosymmetric molecules, each existing as a cationic eight-membered ring, with alternating metal and N atoms, which acts as a host towards two hydride anions. The metal amide rings are linked via Na⋯C agostic interactions to produce one-dimensional polymeric chains propagating along the crystallographic b direction.
Comment
Recent work in our group has focused on the special synergic chemistry which can take place when an alkali metal amide is placed within the same molecular environment as its magnesium bis(amide) congener (Mulvey, 2006). A consequence of this work was the development of a new class of compounds which have become known as `inverse due to their inverse topological relationship with conventional crown ether complexes (Mulvey, 2001). Further compounds were subsequently prepared which had a similar cationic `host' ring, but the `guests' were anions which did not contain oxygen. These oxygen-free compounds have become known as `inverse crowns' (Mulvey, 2006).
As part of our study, the reaction of mixed sodium–magnesium tris(diisopropylamide), NaMg(DA)3, with different substrates was probed. In the presence of ferrocene, ruthenocene or osmocene, a simultaneous regioselective fourfold deprotonation of the metallocene occurred to give a 16-membered inverse crown molecule (Clegg et al., 2001; Andrikopoulos et al., 2004). The title complex, (I), was serendipitously prepared by heating under reflux a hydrocarbon solution of NaMg(DA)3 with the arene complex bis(benzene)chromium. The reaction was attempted in order to ascertain whether the arene complex could undergo deprotonation akin to the No deprotonation was detected by X-ray or NMR spectroscopic analyses, and the only compounds to precipitate from solution were (I) and unreacted bis(benzene)chromium. It is now known that bis(benzene)chromium can be selectively monodeprotonated using a different base, [(TMEDA)·Na(μ-Bu)(μ-TMP)Mg(TMP)], where TMP is 2,2,6,6-tetramethylpiperidide and TMEDA is N,N,N′,N′-tetramethylethylenediamine (Hevia et al., 2005).
The structure of (I) contains two crystallographically independent molecules, each residing on a centre of symmetry (Fig. 1). The internal geometric parameters of both molecules are essentially identical: Mg1—N2 = 2.078 (2) Å versus Mg2—N4 2.062 (2) Å is the largest difference between the two inverse-crown frames. Key geometric parameters can be found in Table 1. Compound (I) is a polymeric solvent-free variant of the previously prepared compound [Na2Mg2(μ-DA)4(μ-H)2.(toluene)2], (II), which has the same connectivity as (I) but with the addition of a toluene molecule π-bonded to each Na atom (Gallagher et al., 2002). This toluene-to-Na π–ion interaction causes a significant difference in the Na—N bond lengths, which are shorter in (I) [2.397 (2)–2.407 (2) Å] than in the solvated (II) [2.481 (2) Å]. The endocyclic N—Na—N angles are also different [136.1 (1)–137.5 (1)° for (I) and 132.1 (1)° for (II)]. The Na atoms of (I) compensate for the loss of bound toluene by forming a range of agostic interactions. Some of these are intramolecular [Na⋯C = 2.962 (4)–3.124 (4) Å], but each Na atom also forms one intermolecular agostic bond [Na⋯C = 3.014 (4) and 3.125 (4) Å], hence propagating one-dimensional polymeric chains along the crystallographic b direction (Fig. 2).
Metal hydrides are of interest as reducing agents, but magnesium hydrides are not as well known as their aluminium counterparts. In fact, in addition to (I) and (II), only two similar molecular magnesium hydrides have been structurally characterized to date, namely the K analogue of (II) (Andrikopoulos et al., 2003) and a TiMg2 species where the hydrides bridge all three metals (Mokuolu et al., 2003). In (I), each hydride forms a slightly asymmetrical bridge between the two Mg atoms of a ring, with Mg—H distances in the range 1.91 (2)–1.94 (2) Å. Comparing small differences in M—H bond distances from X-ray data is of course dangerous. We note, however, that these distances are similar to those found for (II) [1.88 (2) Å] and for the K analogue of (II) [1.94 (2) Å], which has a larger metal amide ring than the Na species. More significance can be attached to the collective difference between these Mg—H distances and the longer distances [2.029 (15)–2.045 (15) Å] found in the μ3-hydrido TiMg2 complex.
Experimental
All experimental manipulations were carried out using standard Schlenk techniques under an argon atmosphere. n-BuNa (5 mmol) (Lochmann et al., 1966) was suspended in hexane (10 ml) and a heptane solution of dibutylmagnesium (5 mmol) was added to produce a congealed brown mass. Diisopropylamine (15 mmol) was then introduced slowly to give a yellow solution. Bis(benzene)chromium (1.25 mmol) (Fischer & Hafner, 1955) was added and the mixture was heated under reflux for 2 h. The resulting dark solution was left to cool to ambient temperature in a Dewar flask filled with hot water. Large colourless crystals of (I) and small black crystals of bis(benzene)chromium were isolated. 1H NMR (400.13 MHz, C6D5CD3, 300 K): δ 3.70 (2H, s, Mg—H), 3.17 (8H, m, CH), 1.19 (48H, d, CH3); 13C NMR (100.62 MHz, C6D5CD3, 300 K): δ 49.5 (CH), 27.7 (CH3).
Crystal data
|
Data collection
|
Refinement
|
The hydride H atoms and those attached to agostic C atoms were found in a difference synthesis and refined isotropically. All other H atoms were constrained to geometrically idealized positions using a riding model; for CH atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), and for CH3 atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).
Data collection: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997); cell DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S0108270106025091/hj3015sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270106025091/hj3015Isup2.hkl
All experimental manipulations were carried out using standard Schlenk techniques under an argon atmosphere. n-BuNa (5 mmol) (Lochmann et al., 1966) was suspended in hexane (10 ml) and a heptane solution of dibutylmagnesium (5 mmol) was added to produce a congealed brown mass. Diisopropylamine (15 mmol) was then introduced slowly to give a yellow solution. Bis(benzene)chromium (1.25 mmol) (Fischer & Hafner, 1955) was added and the mixture was heated to reflux for 2 h. The resulting dark solution was left to cool to ambient temperature in a Dewar flask filled with hot water. Large colourless crystals of (I) and small black crystals of bis(benzene)chromium were isolated. Spectroscopic analysis: 1H NMR (400.13 MHz, C6D5CD3, 300 K, δ, p.p.m.): 3.70 (2H, s, Mg—H), 3,17 (8H, m, CH), 1.19 (48H, d, CH3); 13C NMR (100.62 MHz, C6D5CD3, 300 K, δ, p.p.m.): 49.5 (CH), 27.7 (CH3).
The hydride H atoms and those attached to agostic C atoms were found in the difference synthesis and refined isotropically. All other H atoms were constrained to geometrically idealized positions using a riding model; for CH atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), and for CH3 atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).
Data collection: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997); cell
DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Non-hydride H atoms have been omitted for clarity. | |
Fig. 2. Part of the polymeric chain that extends along the b direction. Each chain is constructed of units from only one of the two crystallographically independent fragments shown in Fig. 1. |
[Mg2Na2H2(C6H14N)4] | Z = 2 |
Mr = 497.34 | F(000) = 552 |
Triclinic, P1 | Dx = 1.063 Mg m−3 |
a = 8.2448 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1118 (5) Å | Cell parameters from 27877 reflections |
c = 20.1990 (9) Å | θ = 1.0–27.5° |
α = 82.419 (3)° | µ = 0.12 mm−1 |
β = 83.897 (3)° | T = 123 K |
γ = 68.916 (2)° | Cut tablet, colourless |
V = 1554.36 (13) Å3 | 0.40 × 0.38 × 0.30 mm |
Nonius KappaCCD area-detector diffractometer | 3944 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.064 |
Graphite monochromator | θmax = 27.5°, θmin = 1.0° |
ω and ϕ scans | h = −10→10 |
27877 measured reflections | k = −13→12 |
7078 independent reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0385P)2 + 0.9833P] where P = (Fo2 + 2Fc2)/3 |
7078 reflections | (Δ/σ)max = 0.001 |
383 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Mg2Na2H2(C6H14N)4] | γ = 68.916 (2)° |
Mr = 497.34 | V = 1554.36 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.2448 (4) Å | Mo Kα radiation |
b = 10.1118 (5) Å | µ = 0.12 mm−1 |
c = 20.1990 (9) Å | T = 123 K |
α = 82.419 (3)° | 0.40 × 0.38 × 0.30 mm |
β = 83.897 (3)° |
Nonius KappaCCD area-detector diffractometer | 3944 reflections with I > 2σ(I) |
27877 measured reflections | Rint = 0.064 |
7078 independent reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.31 e Å−3 |
7078 reflections | Δρmin = −0.35 e Å−3 |
383 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.03200 (12) | 0.56412 (9) | 0.93234 (4) | 0.0220 (2) | |
Mg2 | 0.47299 (12) | 0.98155 (9) | 0.43125 (4) | 0.0208 (2) | |
Na1 | −0.08348 (16) | 0.75621 (12) | 1.04797 (5) | 0.0368 (3) | |
Na2 | 0.44062 (16) | 0.75794 (12) | 0.54499 (5) | 0.0353 (3) | |
N1 | 0.0755 (3) | 0.4255 (2) | 0.86140 (10) | 0.0258 (6) | |
N2 | 0.0322 (3) | 0.7691 (2) | 0.93427 (10) | 0.0217 (5) | |
N3 | 0.5443 (3) | 0.8397 (2) | 0.63300 (10) | 0.0229 (5) | |
N4 | 0.4696 (3) | 0.7807 (2) | 0.42496 (10) | 0.0230 (5) | |
C1 | −0.2398 (4) | 0.5322 (3) | 0.84208 (14) | 0.0343 (7) | |
H1A | −0.2661 | 0.4979 | 0.8882 | 0.051* | |
H1B | −0.3279 | 0.5309 | 0.8134 | 0.051* | |
H1C | −0.2407 | 0.6297 | 0.8406 | 0.051* | |
C2 | −0.0612 (4) | 0.4360 (3) | 0.81724 (14) | 0.0303 (7) | |
H2 | −0.0326 | 0.4790 | 0.7721 | 0.036* | |
C3 | −0.0705 (5) | 0.2907 (3) | 0.80860 (17) | 0.0457 (9) | |
H3A | 0.0460 | 0.2256 | 0.7957 | 0.069* | |
H3B | −0.1495 | 0.3019 | 0.7736 | 0.069* | |
H3C | −0.1138 | 0.2517 | 0.8509 | 0.069* | |
C4 | 0.2878 (4) | 0.5061 (3) | 0.78403 (15) | 0.0425 (9) | |
H4A | 0.1920 | 0.5607 | 0.7555 | 0.064* | |
H4B | 0.3960 | 0.4701 | 0.7561 | 0.064* | |
H4C | 0.3010 | 0.5677 | 0.8151 | 0.064* | |
C5 | 0.2476 (4) | 0.3810 (3) | 0.82365 (15) | 0.0322 (7) | |
C6 | 0.3930 (5) | 0.2971 (5) | 0.8693 (2) | 0.0510 (10) | |
C7 | 0.2060 (5) | 0.9323 (4) | 0.93143 (18) | 0.0322 (7) | |
C8 | 0.2053 (4) | 0.7851 (3) | 0.92144 (13) | 0.0260 (7) | |
H8 | 0.2464 | 0.7668 | 0.8740 | 0.031* | |
C9 | 0.3354 (4) | 0.6743 (3) | 0.96666 (16) | 0.0403 (8) | |
H9A | 0.2999 | 0.6922 | 1.0135 | 0.060* | |
H9B | 0.4512 | 0.6805 | 0.9555 | 0.060* | |
H9C | 0.3388 | 0.5790 | 0.9601 | 0.060* | |
C10 | −0.2842 (4) | 0.8848 (4) | 0.92044 (17) | 0.0301 (7) | |
C11 | −0.1023 (4) | 0.8845 (3) | 0.89692 (13) | 0.0293 (7) | |
H11 | −0.0959 | 0.9767 | 0.9069 | 0.035* | |
C12 | −0.0759 (4) | 0.8809 (4) | 0.82088 (14) | 0.0459 (9) | |
H12A | 0.0384 | 0.8867 | 0.8055 | 0.069* | |
H12B | −0.1672 | 0.9618 | 0.7992 | 0.069* | |
H12C | −0.0818 | 0.7917 | 0.8092 | 0.069* | |
C13 | 0.2317 (4) | 0.8908 (4) | 0.66313 (18) | 0.0391 (9) | |
C14 | 0.4100 (4) | 0.8528 (3) | 0.68899 (13) | 0.0302 (7) | |
H14 | 0.4383 | 0.7570 | 0.7151 | 0.036* | |
C15 | 0.4103 (4) | 0.9577 (4) | 0.73705 (15) | 0.0422 (9) | |
H15A | 0.5278 | 0.9316 | 0.7523 | 0.063* | |
H15B | 0.3288 | 0.9544 | 0.7757 | 0.063* | |
H15C | 0.3746 | 1.0543 | 0.7139 | 0.063* | |
C16 | 0.7212 (4) | 0.5817 (3) | 0.64939 (15) | 0.0342 (7) | |
H16A | 0.6175 | 0.5674 | 0.6728 | 0.051* | |
H16B | 0.8256 | 0.5146 | 0.6703 | 0.051* | |
H16C | 0.7269 | 0.5653 | 0.6023 | 0.051* | |
C17 | 0.7113 (4) | 0.7345 (3) | 0.65381 (13) | 0.0270 (7) | |
H17 | 0.7231 | 0.7447 | 0.7015 | 0.032* | |
C18 | 0.8654 (4) | 0.7580 (3) | 0.61175 (16) | 0.0371 (8) | |
H18A | 0.8522 | 0.7550 | 0.5644 | 0.056* | |
H18B | 0.9737 | 0.6830 | 0.6255 | 0.056* | |
H18C | 0.8693 | 0.8511 | 0.6183 | 0.056* | |
C19 | 0.1531 (4) | 0.8403 (4) | 0.45291 (16) | 0.0313 (7) | |
C20 | 0.3062 (4) | 0.7735 (3) | 0.40427 (14) | 0.0282 (7) | |
H20 | 0.3215 | 0.6705 | 0.4057 | 0.034* | |
C21 | 0.2644 (4) | 0.8413 (4) | 0.33283 (15) | 0.0448 (9) | |
H21A | 0.2454 | 0.9432 | 0.3300 | 0.067* | |
H21B | 0.1590 | 0.8285 | 0.3211 | 0.067* | |
H21C | 0.3621 | 0.7954 | 0.3017 | 0.067* | |
C22 | 0.6442 (5) | 0.5219 (4) | 0.4218 (2) | 0.0445 (9) | |
C23 | 0.6215 (4) | 0.6745 (3) | 0.39362 (14) | 0.0283 (7) | |
H23 | 0.6039 | 0.6838 | 0.3448 | 0.034* | |
C24 | 0.7886 (4) | 0.7004 (3) | 0.40082 (18) | 0.0442 (9) | |
H24A | 0.7797 | 0.7953 | 0.3794 | 0.066* | |
H24B | 0.8867 | 0.6283 | 0.3793 | 0.066* | |
H24C | 0.8072 | 0.6943 | 0.4484 | 0.066* | |
H1H | −0.157 (3) | 0.563 (3) | 0.9967 (12) | 0.027 (7)* | |
H2H | 0.344 (3) | 1.028 (3) | 0.5160 (12) | 0.030 (7)* | |
H6A | 0.378 (4) | 0.206 (4) | 0.8933 (16) | 0.055 (10)* | |
H6B | 0.501 (5) | 0.273 (4) | 0.8461 (18) | 0.061 (12)* | |
H6C | 0.399 (4) | 0.347 (4) | 0.9063 (18) | 0.060 (12)* | |
H7A | 0.139 (5) | 1.007 (4) | 0.8969 (17) | 0.063 (11)* | |
H7B | 0.325 (4) | 0.933 (3) | 0.9276 (14) | 0.039 (9)* | |
H7C | 0.164 (4) | 0.951 (3) | 0.9755 (15) | 0.030 (8)* | |
H10A | −0.299 (3) | 0.795 (3) | 0.9170 (12) | 0.021 (7)* | |
H10B | −0.371 (4) | 0.958 (3) | 0.8952 (14) | 0.040 (9)* | |
H10C | −0.316 (4) | 0.911 (3) | 0.9673 (16) | 0.041 (9)* | |
H5 | 0.248 (4) | 0.318 (3) | 0.7913 (15) | 0.041 (9)* | |
H13A | 0.144 (4) | 0.911 (3) | 0.6967 (16) | 0.050 (10)* | |
H13B | 0.217 (4) | 0.811 (3) | 0.6423 (15) | 0.045 (10)* | |
H13C | 0.205 (4) | 0.971 (3) | 0.6302 (15) | 0.035 (8)* | |
H19A | 0.166 (4) | 0.785 (3) | 0.4994 (15) | 0.037 (8)* | |
H19B | 0.046 (4) | 0.845 (3) | 0.4376 (14) | 0.042 (9)* | |
H19C | 0.138 (4) | 0.940 (3) | 0.4570 (14) | 0.039 (9)* | |
H22A | 0.681 (4) | 0.507 (3) | 0.4671 (17) | 0.048 (10)* | |
H22B | 0.734 (5) | 0.454 (4) | 0.3961 (16) | 0.058 (11)* | |
H22C | 0.534 (5) | 0.501 (4) | 0.4218 (17) | 0.066 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0274 (6) | 0.0232 (5) | 0.0179 (4) | −0.0127 (4) | −0.0014 (4) | −0.0005 (4) |
Mg2 | 0.0254 (6) | 0.0216 (5) | 0.0179 (4) | −0.0110 (4) | −0.0022 (4) | −0.0020 (4) |
Na1 | 0.0513 (8) | 0.0300 (7) | 0.0285 (6) | −0.0160 (6) | 0.0043 (6) | −0.0018 (5) |
Na2 | 0.0462 (8) | 0.0372 (7) | 0.0290 (6) | −0.0224 (6) | −0.0047 (6) | −0.0012 (5) |
N1 | 0.0285 (15) | 0.0285 (13) | 0.0236 (12) | −0.0121 (12) | −0.0035 (11) | −0.0059 (10) |
N2 | 0.0217 (13) | 0.0236 (13) | 0.0204 (11) | −0.0099 (11) | −0.0006 (10) | 0.0006 (10) |
N3 | 0.0216 (13) | 0.0243 (13) | 0.0223 (12) | −0.0093 (11) | −0.0010 (10) | 0.0027 (10) |
N4 | 0.0238 (13) | 0.0216 (12) | 0.0251 (12) | −0.0085 (11) | −0.0019 (10) | −0.0058 (10) |
C1 | 0.037 (2) | 0.0406 (19) | 0.0309 (16) | −0.0176 (16) | −0.0108 (14) | −0.0046 (14) |
C2 | 0.041 (2) | 0.0326 (17) | 0.0233 (15) | −0.0186 (15) | −0.0043 (14) | −0.0051 (13) |
C3 | 0.050 (2) | 0.042 (2) | 0.054 (2) | −0.0208 (18) | −0.0126 (18) | −0.0139 (17) |
C4 | 0.049 (2) | 0.045 (2) | 0.0384 (18) | −0.0253 (18) | 0.0143 (16) | −0.0109 (16) |
C5 | 0.036 (2) | 0.0362 (18) | 0.0271 (16) | −0.0146 (16) | 0.0054 (14) | −0.0114 (14) |
C6 | 0.034 (2) | 0.063 (3) | 0.047 (2) | −0.009 (2) | 0.0029 (19) | −0.002 (2) |
C7 | 0.031 (2) | 0.0361 (19) | 0.0361 (19) | −0.0196 (16) | 0.0031 (16) | −0.0096 (16) |
C8 | 0.0308 (18) | 0.0267 (16) | 0.0247 (14) | −0.0158 (14) | 0.0024 (13) | −0.0041 (12) |
C9 | 0.0280 (19) | 0.0382 (19) | 0.058 (2) | −0.0176 (16) | −0.0099 (16) | 0.0084 (16) |
C10 | 0.0279 (19) | 0.0270 (18) | 0.0354 (18) | −0.0095 (15) | −0.0077 (15) | 0.0002 (15) |
C11 | 0.0327 (18) | 0.0255 (16) | 0.0316 (16) | −0.0134 (14) | −0.0076 (14) | 0.0046 (13) |
C12 | 0.042 (2) | 0.064 (2) | 0.0301 (17) | −0.0221 (19) | −0.0112 (15) | 0.0179 (16) |
C13 | 0.030 (2) | 0.055 (2) | 0.0304 (18) | −0.0161 (18) | 0.0040 (16) | 0.0044 (18) |
C14 | 0.0297 (18) | 0.0364 (18) | 0.0215 (14) | −0.0117 (15) | 0.0011 (13) | 0.0052 (13) |
C15 | 0.046 (2) | 0.053 (2) | 0.0295 (17) | −0.0197 (18) | 0.0104 (15) | −0.0104 (16) |
C16 | 0.0349 (19) | 0.0285 (17) | 0.0374 (17) | −0.0104 (15) | −0.0057 (15) | 0.0032 (14) |
C17 | 0.0299 (18) | 0.0264 (16) | 0.0248 (14) | −0.0108 (14) | −0.0058 (13) | 0.0024 (12) |
C18 | 0.0245 (18) | 0.0328 (18) | 0.0511 (19) | −0.0084 (15) | −0.0028 (15) | 0.0012 (15) |
C19 | 0.0248 (19) | 0.0332 (19) | 0.0392 (19) | −0.0146 (15) | −0.0065 (15) | 0.0013 (15) |
C20 | 0.0295 (18) | 0.0222 (15) | 0.0372 (16) | −0.0111 (14) | −0.0071 (14) | −0.0077 (13) |
C21 | 0.037 (2) | 0.061 (2) | 0.0368 (18) | −0.0116 (18) | −0.0102 (16) | −0.0173 (17) |
C22 | 0.034 (2) | 0.0257 (19) | 0.070 (3) | −0.0071 (17) | 0.003 (2) | −0.0075 (18) |
C23 | 0.0306 (18) | 0.0266 (16) | 0.0286 (15) | −0.0099 (14) | −0.0028 (13) | −0.0061 (13) |
C24 | 0.0282 (19) | 0.0343 (19) | 0.069 (2) | −0.0091 (15) | 0.0086 (17) | −0.0178 (17) |
Mg1—N1 | 2.051 (2) | C6—H6B | 0.92 (4) |
Mg2—N3i | 2.051 (2) | C6—H6C | 0.97 (4) |
Mg1—N2 | 2.078 (2) | C7—C8 | 1.531 (4) |
Mg2—N4 | 2.062 (2) | C7—Na1iii | 3.014 (3) |
Mg1—H1H | 1.92 (2) | C7—H7A | 1.00 (4) |
Mg1—H1Hii | 1.91 (2) | C7—H7B | 0.98 (3) |
Mg2—H2H | 1.94 (2) | C7—H7C | 0.94 (3) |
Mg2—H2Hi | 1.91 (2) | C8—C9 | 1.521 (4) |
Na1—N2 | 2.397 (2) | C8—H8 | 1.0000 |
Na2—N4 | 2.399 (2) | C9—H9A | 0.9800 |
Na1—N1ii | 2.405 (2) | C9—H9B | 0.9800 |
Na2—N3 | 2.407 (2) | C9—H9C | 0.9800 |
Na1—C7iii | 3.014 (3) | C10—C11 | 1.524 (4) |
Na1—C6ii | 3.072 (5) | C10—H10A | 0.97 (3) |
Na1—C10 | 3.089 (3) | C10—H10B | 0.96 (3) |
Na2—C13 | 2.962 (4) | C10—H10C | 1.00 (3) |
Na2—C19 | 2.980 (4) | C11—C12 | 1.532 (4) |
Na2—C20 | 3.124 (3) | C11—H11 | 1.0000 |
Na2—C22iv | 3.125 (4) | C12—H12A | 0.9800 |
Mg1—Mg1ii | 2.9462 (16) | C12—H12B | 0.9800 |
Mg1—Na1 | 3.0866 (14) | C12—H12C | 0.9800 |
Mg1—Na1ii | 3.0881 (14) | C13—C14 | 1.512 (4) |
Mg2—Mg2i | 2.9509 (16) | C13—H13A | 0.92 (3) |
Mg2—Na2 | 3.0652 (13) | C13—H13B | 1.00 (3) |
Mg2—Na2i | 3.0713 (14) | C13—H13C | 0.95 (3) |
Na1—Mg1ii | 3.0881 (14) | C14—C15 | 1.530 (4) |
Na1—H1H | 2.60 (2) | C14—H14 | 1.0000 |
Na1—H10C | 2.57 (3) | C15—H15A | 0.9800 |
Na2—Mg2i | 3.0713 (14) | C15—H15B | 0.9800 |
Na2—H2H | 2.56 (2) | C15—H15C | 0.9800 |
Na2—H13B | 2.52 (3) | C16—C17 | 1.532 (4) |
Na2—H19A | 2.45 (3) | C16—H16A | 0.9800 |
N1—C2 | 1.477 (3) | C16—H16B | 0.9800 |
N1—C5 | 1.483 (4) | C16—H16C | 0.9800 |
N1—Na1ii | 2.405 (2) | C17—C18 | 1.525 (4) |
N2—C11 | 1.475 (3) | C17—H17 | 1.0000 |
N2—C8 | 1.486 (3) | C18—H18A | 0.9800 |
N3—C17 | 1.468 (3) | C18—H18B | 0.9800 |
N3—C14 | 1.480 (3) | C18—H18C | 0.9800 |
N3—Mg2i | 2.051 (2) | C19—C20 | 1.521 (4) |
N4—C23 | 1.471 (3) | C19—H19A | 1.02 (3) |
N4—C20 | 1.481 (3) | C19—H19B | 0.95 (3) |
C1—C2 | 1.519 (4) | C19—H19C | 0.98 (3) |
C1—H1A | 0.9800 | C20—C21 | 1.531 (4) |
C1—H1B | 0.9800 | C20—H20 | 1.0000 |
C1—H1C | 0.9800 | C21—H21A | 0.9800 |
C2—C3 | 1.531 (4) | C21—H21B | 0.9800 |
C2—H2 | 1.0000 | C21—H21C | 0.9800 |
C3—H3A | 0.9800 | C22—C23 | 1.524 (4) |
C3—H3B | 0.9800 | C22—Na2iv | 3.125 (4) |
C3—H3C | 0.9800 | C22—H22A | 0.97 (3) |
C4—C5 | 1.525 (4) | C22—H22B | 0.97 (4) |
C4—H4A | 0.9800 | C22—H22C | 1.00 (4) |
C4—H4B | 0.9800 | C23—C24 | 1.516 (4) |
C4—H4C | 0.9800 | C23—H23 | 1.0000 |
C5—C6 | 1.518 (5) | C24—H24A | 0.9800 |
C5—H5 | 0.97 (3) | C24—H24B | 0.9800 |
C6—Na1ii | 3.072 (5) | C24—H24C | 0.9800 |
C6—H6A | 1.02 (3) | ||
N1—Mg1—N2 | 136.48 (9) | H3A—C3—H3B | 109.5 |
N1—Mg1—Mg1ii | 112.02 (8) | C2—C3—H3C | 109.5 |
N2—Mg1—Mg1ii | 111.43 (7) | H3A—C3—H3C | 109.5 |
N1—Mg1—Na1 | 170.60 (8) | H3B—C3—H3C | 109.5 |
N2—Mg1—Na1 | 50.84 (6) | C5—C4—H4A | 109.5 |
Mg1ii—Mg1—Na1 | 61.53 (4) | C5—C4—H4B | 109.5 |
N1—Mg1—Na1ii | 51.07 (7) | H4A—C4—H4B | 109.5 |
N2—Mg1—Na1ii | 168.43 (8) | C5—C4—H4C | 109.5 |
Mg1ii—Mg1—Na1ii | 61.48 (4) | H4A—C4—H4C | 109.5 |
Na1—Mg1—Na1ii | 123.00 (3) | H4B—C4—H4C | 109.5 |
N1—Mg1—H1H | 113.5 (7) | N1—C5—C6 | 111.5 (3) |
N2—Mg1—H1H | 101.4 (7) | N1—C5—C4 | 112.8 (3) |
Mg1ii—Mg1—H1H | 39.6 (7) | C6—C5—C4 | 110.1 (3) |
Na1—Mg1—H1H | 57.1 (7) | N1—C5—H5 | 109.1 (18) |
Na1ii—Mg1—H1H | 78.9 (7) | C6—C5—H5 | 106.6 (18) |
N3i—Mg2—N4 | 137.00 (10) | C4—C5—H5 | 106.5 (17) |
N3i—Mg2—Mg2i | 111.61 (8) | C5—C6—Na1ii | 80.1 (2) |
N4—Mg2—Mg2i | 111.36 (7) | C5—C6—H6A | 113.0 (19) |
N3i—Mg2—Na2 | 168.08 (8) | Na1ii—C6—H6A | 48.2 (19) |
N4—Mg2—Na2 | 51.38 (6) | C5—C6—H6B | 111 (2) |
Mg2i—Mg2—Na2 | 61.36 (3) | Na1ii—C6—H6B | 157 (2) |
N3i—Mg2—Na2i | 51.49 (7) | H6A—C6—H6B | 109 (3) |
N4—Mg2—Na2i | 166.64 (8) | C5—C6—H6C | 114 (2) |
Mg2i—Mg2—Na2i | 61.15 (4) | Na1ii—C6—H6C | 85 (2) |
Na2—Mg2—Na2i | 122.52 (3) | H6A—C6—H6C | 102 (3) |
N3i—Mg2—H2H | 111.9 (7) | H6B—C6—H6C | 107 (3) |
N4—Mg2—H2H | 102.0 (7) | C8—C7—Na1iii | 161.6 (2) |
Mg2i—Mg2—H2H | 39.5 (8) | C8—C7—H7A | 111 (2) |
Na2—Mg2—H2H | 56.3 (7) | Na1iii—C7—H7A | 59.1 (19) |
Na2i—Mg2—H2H | 79.2 (7) | C8—C7—H7B | 110.7 (18) |
N2—Na1—N1ii | 137.51 (9) | Na1iii—C7—H7B | 87.6 (17) |
N2—Na1—C7iii | 99.04 (9) | H7A—C7—H7B | 107 (3) |
N1ii—Na1—C7iii | 122.40 (9) | C8—C7—H7C | 107.9 (17) |
N2—Na1—C6ii | 140.23 (11) | Na1iii—C7—H7C | 66.8 (16) |
N1ii—Na1—C6ii | 52.14 (10) | H7A—C7—H7C | 114 (3) |
C7iii—Na1—C6ii | 94.62 (12) | H7B—C7—H7C | 106 (2) |
N2—Na1—Mg1 | 42.25 (6) | N2—C8—C9 | 109.9 (2) |
N1ii—Na1—Mg1 | 98.16 (7) | N2—C8—C7 | 114.6 (2) |
C7iii—Na1—Mg1 | 139.29 (8) | C9—C8—C7 | 108.3 (3) |
C6ii—Na1—Mg1 | 109.38 (10) | N2—C8—H8 | 108.0 |
N2—Na1—Mg1ii | 98.52 (6) | C9—C8—H8 | 108.0 |
N1ii—Na1—Mg1ii | 41.56 (6) | C7—C8—H8 | 108.0 |
C7iii—Na1—Mg1ii | 161.86 (8) | C8—C9—H9A | 109.5 |
C6ii—Na1—Mg1ii | 68.73 (9) | C8—C9—H9B | 109.5 |
Mg1—Na1—Mg1ii | 57.00 (3) | H9A—C9—H9B | 109.5 |
N2—Na1—C10 | 51.78 (8) | C8—C9—H9C | 109.5 |
N1ii—Na1—C10 | 137.67 (9) | H9A—C9—H9C | 109.5 |
C7iii—Na1—C10 | 80.40 (10) | H9B—C9—H9C | 109.5 |
C6ii—Na1—C10 | 94.71 (10) | C11—C10—Na1 | 78.14 (16) |
Mg1—Na1—C10 | 65.68 (7) | C11—C10—H10A | 113.3 (15) |
Mg1ii—Na1—C10 | 107.26 (7) | Na1—C10—H10A | 90.5 (15) |
N2—Na1—H1H | 76.4 (5) | C11—C10—H10B | 111.2 (18) |
N1ii—Na1—H1H | 74.6 (5) | Na1—C10—H10B | 153.0 (18) |
C7iii—Na1—H1H | 144.7 (6) | H10A—C10—H10B | 107 (2) |
C6ii—Na1—H1H | 71.0 (5) | C11—C10—H10C | 111.3 (17) |
Mg1—Na1—H1H | 38.3 (5) | Na1—C10—H10C | 50.5 (17) |
Mg1ii—Na1—H1H | 38.0 (5) | H10A—C10—H10C | 110 (2) |
C10—Na1—H1H | 69.3 (5) | H10B—C10—H10C | 103 (2) |
N2—Na1—H10C | 67.4 (7) | N2—C11—C10 | 111.2 (2) |
N1ii—Na1—H10C | 133.9 (7) | N2—C11—C12 | 113.8 (2) |
C7iii—Na1—H10C | 67.7 (7) | C10—C11—C12 | 109.6 (2) |
C6ii—Na1—H10C | 84.0 (7) | N2—C11—H11 | 107.3 |
Mg1—Na1—H10C | 82.3 (7) | C10—C11—H11 | 107.3 |
Mg1ii—Na1—H10C | 115.6 (7) | C12—C11—H11 | 107.3 |
C10—Na1—H10C | 17.4 (7) | C11—C12—H12A | 109.5 |
H1H—Na1—H10C | 78.6 (9) | C11—C12—H12B | 109.5 |
N4—Na2—N3 | 136.06 (9) | H12A—C12—H12B | 109.5 |
N4—Na2—C13 | 144.25 (10) | C11—C12—H12C | 109.5 |
N3—Na2—C13 | 53.43 (9) | H12A—C12—H12C | 109.5 |
N4—Na2—C19 | 53.52 (8) | H12B—C12—H12C | 109.5 |
N3—Na2—C19 | 142.84 (10) | C14—C13—Na2 | 82.24 (18) |
C13—Na2—C19 | 97.98 (10) | C14—C13—H13A | 113 (2) |
N4—Na2—Mg2 | 42.18 (6) | Na2—C13—H13A | 158 (2) |
N3—Na2—Mg2 | 98.49 (6) | C14—C13—H13B | 113.3 (18) |
C13—Na2—Mg2 | 111.87 (8) | Na2—C13—H13B | 54.6 (18) |
C19—Na2—Mg2 | 68.18 (7) | H13A—C13—H13B | 104 (3) |
N4—Na2—Mg2i | 98.60 (6) | C14—C13—H13C | 112.5 (18) |
N3—Na2—Mg2i | 41.80 (5) | Na2—C13—H13C | 79.2 (17) |
C13—Na2—Mg2i | 69.55 (8) | H13A—C13—H13C | 107 (3) |
C19—Na2—Mg2i | 110.96 (8) | H13B—C13—H13C | 106 (2) |
Mg2—Na2—Mg2i | 57.48 (3) | N3—C14—C13 | 110.9 (2) |
N4—Na2—C20 | 27.29 (7) | N3—C14—C15 | 112.7 (2) |
N3—Na2—C20 | 156.43 (8) | C13—C14—C15 | 111.3 (3) |
C13—Na2—C20 | 126.55 (9) | N3—C14—H14 | 107.2 |
C19—Na2—C20 | 28.73 (8) | C13—C14—H14 | 107.2 |
Mg2—Na2—C20 | 58.54 (6) | C15—C14—H14 | 107.2 |
Mg2i—Na2—C20 | 114.63 (6) | C14—C15—H15A | 109.5 |
N4—Na2—C22iv | 102.50 (11) | C14—C15—H15B | 109.5 |
N3—Na2—C22iv | 117.60 (10) | H15A—C15—H15B | 109.5 |
C13—Na2—C22iv | 94.05 (12) | C14—C15—H15C | 109.5 |
C19—Na2—C22iv | 83.88 (11) | H15A—C15—H15C | 109.5 |
Mg2—Na2—C22iv | 143.68 (9) | H15B—C15—H15C | 109.5 |
Mg2i—Na2—C22iv | 158.77 (9) | C17—C16—H16A | 109.5 |
C20—Na2—C22iv | 85.78 (10) | C17—C16—H16B | 109.5 |
N4—Na2—H2H | 77.5 (5) | H16A—C16—H16B | 109.5 |
N3—Na2—H2H | 75.8 (6) | C17—C16—H16C | 109.5 |
C13—Na2—H2H | 72.9 (5) | H16A—C16—H16C | 109.5 |
C19—Na2—H2H | 72.7 (6) | H16B—C16—H16C | 109.5 |
Mg2—Na2—H2H | 39.0 (5) | N3—C17—C18 | 111.9 (2) |
Mg2i—Na2—H2H | 38.3 (6) | N3—C17—C16 | 111.9 (2) |
C20—Na2—H2H | 81.9 (5) | C18—C17—C16 | 108.4 (2) |
C22iv—Na2—H2H | 150.9 (6) | N3—C17—H17 | 108.2 |
N4—Na2—H13B | 142.3 (7) | C18—C17—H17 | 108.2 |
N3—Na2—H13B | 69.1 (8) | C16—C17—H17 | 108.2 |
C13—Na2—H13B | 18.9 (7) | C17—C18—H18A | 109.5 |
C19—Na2—H13B | 89.3 (7) | C17—C18—H18B | 109.5 |
Mg2—Na2—H13B | 123.9 (7) | H18A—C18—H18B | 109.5 |
Mg2i—Na2—H13B | 88.3 (8) | C17—C18—H18C | 109.5 |
C20—Na2—H13B | 117.4 (7) | H18A—C18—H18C | 109.5 |
C22iv—Na2—H13B | 76.4 (8) | H18B—C18—H18C | 109.5 |
H2H—Na2—H13B | 86.0 (9) | C20—C19—Na2 | 80.90 (17) |
N4—Na2—H19A | 69.7 (7) | C20—C19—H19A | 112.2 (16) |
N3—Na2—H19A | 139.6 (7) | Na2—C19—H19A | 49.8 (16) |
C13—Na2—H19A | 87.5 (7) | C20—C19—H19B | 111.7 (18) |
C19—Na2—H19A | 18.6 (7) | Na2—C19—H19B | 157.4 (18) |
Mg2—Na2—H19A | 86.3 (7) | H19A—C19—H19B | 108 (2) |
Mg2i—Na2—H19A | 121.3 (7) | C20—C19—H19C | 111.3 (17) |
C20—Na2—H19A | 42.8 (7) | Na2—C19—H19C | 86.9 (17) |
C22iv—Na2—H19A | 69.2 (7) | H19A—C19—H19C | 109 (2) |
H2H—Na2—H19A | 84.0 (9) | H19B—C19—H19C | 105 (2) |
H13B—Na2—H19A | 75.0 (10) | N4—C20—C19 | 111.2 (2) |
C2—N1—C5 | 109.5 (2) | N4—C20—C21 | 113.2 (2) |
C2—N1—Mg1 | 121.68 (18) | C19—C20—C21 | 110.0 (3) |
C5—N1—Mg1 | 118.25 (18) | N4—C20—Na2 | 47.97 (12) |
C2—N1—Na1ii | 108.68 (16) | C19—C20—Na2 | 70.37 (16) |
C5—N1—Na1ii | 107.59 (17) | C21—C20—Na2 | 153.6 (2) |
Mg1—N1—Na1ii | 87.37 (8) | N4—C20—H20 | 107.4 |
C11—N2—C8 | 111.5 (2) | C19—C20—H20 | 107.4 |
C11—N2—Mg1 | 116.29 (17) | C21—C20—H20 | 107.4 |
C8—N2—Mg1 | 115.46 (16) | Na2—C20—H20 | 97.1 |
C11—N2—Na1 | 106.50 (16) | C20—C21—H21A | 109.5 |
C8—N2—Na1 | 117.98 (16) | C20—C21—H21B | 109.5 |
Mg1—N2—Na1 | 86.91 (8) | H21A—C21—H21B | 109.5 |
C17—N3—C14 | 109.8 (2) | C20—C21—H21C | 109.5 |
C17—N3—Mg2i | 122.74 (17) | H21A—C21—H21C | 109.5 |
C14—N3—Mg2i | 117.80 (17) | H21B—C21—H21C | 109.5 |
C17—N3—Na2 | 110.23 (16) | C23—C22—Na2iv | 158.7 (3) |
C14—N3—Na2 | 105.17 (16) | C23—C22—H22A | 108 (2) |
Mg2i—N3—Na2 | 86.71 (8) | Na2iv—C22—H22A | 87.2 (19) |
C23—N4—C20 | 110.3 (2) | C23—C22—H22B | 111 (2) |
C23—N4—Mg2 | 119.50 (17) | Na2iv—C22—H22B | 76 (2) |
C20—N4—Mg2 | 116.36 (17) | H22A—C22—H22B | 107 (3) |
C23—N4—Na2 | 116.66 (16) | C23—C22—H22C | 112 (2) |
C20—N4—Na2 | 104.74 (16) | Na2iv—C22—H22C | 47 (2) |
Mg2—N4—Na2 | 86.44 (8) | H22A—C22—H22C | 110 (3) |
C2—C1—H1A | 109.5 | H22B—C22—H22C | 108 (3) |
C2—C1—H1B | 109.5 | N4—C23—C24 | 111.6 (2) |
H1A—C1—H1B | 109.5 | N4—C23—C22 | 113.0 (3) |
C2—C1—H1C | 109.5 | C24—C23—C22 | 108.5 (3) |
H1A—C1—H1C | 109.5 | N4—C23—H23 | 107.8 |
H1B—C1—H1C | 109.5 | C24—C23—H23 | 107.8 |
N1—C2—C1 | 111.9 (2) | C22—C23—H23 | 107.8 |
N1—C2—C3 | 112.8 (2) | C23—C24—H24A | 109.5 |
C1—C2—C3 | 108.8 (3) | C23—C24—H24B | 109.5 |
N1—C2—H2 | 107.7 | H24A—C24—H24B | 109.5 |
C1—C2—H2 | 107.7 | C23—C24—H24C | 109.5 |
C3—C2—H2 | 107.7 | H24A—C24—H24C | 109.5 |
C2—C3—H3A | 109.5 | H24B—C24—H24C | 109.5 |
C2—C3—H3B | 109.5 | ||
N2—Mg1—N1—C2 | −81.6 (2) | Na1—N2—C8—C7 | −72.3 (3) |
N2—Mg1—N1—C5 | 59.4 (2) | Na1iii—C7—C8—N2 | −12.2 (8) |
N2—Mg1—N1—Na1ii | 168.02 (12) | Na1iii—C7—C8—C9 | −135.2 (7) |
N1—Mg1—N2—C11 | 65.1 (2) | N2—Na1—C10—C11 | −20.34 (15) |
N1—Mg1—N2—C8 | −68.4 (2) | N1ii—Na1—C10—C11 | −142.29 (17) |
N1—Mg1—N2—Na1 | 171.95 (12) | C7iii—Na1—C10—C11 | 89.30 (18) |
N1ii—Na1—N2—C11 | 143.74 (17) | C6ii—Na1—C10—C11 | −176.80 (19) |
C7iii—Na1—N2—C11 | −48.60 (18) | C8—N2—C11—C10 | −168.8 (2) |
C6ii—Na1—N2—C11 | 60.0 (2) | Mg1—N2—C11—C10 | 56.0 (3) |
C10—Na1—N2—C11 | 21.51 (16) | Na1—N2—C11—C10 | −38.8 (3) |
N1ii—Na1—N2—C8 | −90.1 (2) | C8—N2—C11—C12 | 66.8 (3) |
C7iii—Na1—N2—C8 | 77.56 (19) | Mg1—N2—C11—C12 | −68.4 (3) |
C6ii—Na1—N2—C8 | −173.85 (19) | Na1—N2—C11—C12 | −163.2 (2) |
C10—Na1—N2—C8 | 147.7 (2) | Na1—C10—C11—N2 | 28.44 (19) |
N1ii—Na1—N2—Mg1 | 27.21 (16) | Na1—C10—C11—C12 | 155.2 (2) |
C7iii—Na1—N2—Mg1 | −165.12 (9) | N4—Na2—C13—C14 | −137.14 (18) |
C6ii—Na1—N2—Mg1 | −56.54 (18) | N3—Na2—C13—C14 | −16.87 (15) |
C10—Na1—N2—Mg1 | −95.02 (11) | C19—Na2—C13—C14 | −170.77 (18) |
N4—Na2—N3—C17 | −90.65 (19) | C20—Na2—C13—C14 | −167.41 (16) |
C13—Na2—N3—C17 | 136.00 (19) | C22iv—Na2—C13—C14 | 104.85 (19) |
C19—Na2—N3—C17 | −177.84 (16) | C17—N3—C14—C13 | −149.4 (3) |
C20—Na2—N3—C17 | −125.2 (2) | Mg2i—N3—C14—C13 | 63.5 (3) |
C22iv—Na2—N3—C17 | 62.78 (19) | Na2—N3—C14—C13 | −30.8 (3) |
N4—Na2—N3—C14 | 151.07 (16) | C17—N3—C14—C15 | 85.1 (3) |
C13—Na2—N3—C14 | 17.72 (16) | Mg2i—N3—C14—C15 | −62.0 (3) |
C19—Na2—N3—C14 | 63.9 (2) | Na2—N3—C14—C15 | −156.3 (2) |
C20—Na2—N3—C14 | 116.6 (2) | Na2—C13—C14—N3 | 23.9 (2) |
C22iv—Na2—N3—C14 | −55.50 (19) | Na2—C13—C14—C15 | 150.2 (2) |
N4—Na2—N3—Mg2i | 33.14 (15) | C14—N3—C17—C18 | −156.8 (2) |
C13—Na2—N3—Mg2i | −100.21 (12) | Mg2i—N3—C17—C18 | −11.7 (3) |
C19—Na2—N3—Mg2i | −54.05 (17) | Na2—N3—C17—C18 | 87.7 (2) |
C20—Na2—N3—Mg2i | −1.4 (3) | C14—N3—C17—C16 | 81.3 (3) |
C22iv—Na2—N3—Mg2i | −173.43 (10) | Mg2i—N3—C17—C16 | −133.5 (2) |
N3i—Mg2—N4—C23 | 72.8 (2) | Na2—N3—C17—C16 | −34.1 (3) |
N3i—Mg2—N4—C20 | −63.7 (2) | N4—Na2—C19—C20 | 18.10 (14) |
Mg2i—Mg2—N4—C20 | 118.47 (17) | N3—Na2—C19—C20 | 138.58 (17) |
N3i—Mg2—N4—Na2 | −168.39 (12) | C13—Na2—C19—C20 | 174.38 (17) |
N3—Na2—N4—C23 | 87.3 (2) | C22iv—Na2—C19—C20 | −92.38 (18) |
C13—Na2—N4—C23 | 175.70 (19) | C23—N4—C20—C19 | 159.7 (2) |
C19—Na2—N4—C23 | −141.3 (2) | Mg2—N4—C20—C19 | −60.0 (3) |
C20—Na2—N4—C23 | −122.3 (3) | Na2—N4—C20—C19 | 33.4 (3) |
C22iv—Na2—N4—C23 | −68.7 (2) | C23—N4—C20—C21 | −75.9 (3) |
N3—Na2—N4—C20 | −150.40 (16) | Mg2—N4—C20—C21 | 64.5 (3) |
C13—Na2—N4—C20 | −62.0 (2) | Na2—N4—C20—C21 | 157.8 (2) |
C19—Na2—N4—C20 | −19.01 (16) | C23—N4—C20—Na2 | 126.3 (2) |
C22iv—Na2—N4—C20 | 53.56 (18) | Mg2—N4—C20—Na2 | −93.37 (15) |
N3—Na2—N4—Mg2 | −34.07 (15) | Na2—C19—C20—N4 | −25.73 (19) |
C13—Na2—N4—Mg2 | 54.31 (19) | Na2—C19—C20—C21 | −151.9 (2) |
C19—Na2—N4—Mg2 | 97.32 (11) | N3—Na2—C20—N4 | 59.0 (3) |
C20—Na2—N4—Mg2 | 116.33 (18) | C13—Na2—C20—N4 | 140.04 (18) |
C22iv—Na2—N4—Mg2 | 169.89 (10) | C19—Na2—C20—N4 | 147.0 (3) |
C5—N1—C2—C1 | −158.0 (2) | C22iv—Na2—C20—N4 | −128.05 (17) |
Mg1—N1—C2—C1 | −14.0 (3) | N4—Na2—C20—C19 | −147.0 (3) |
Na1ii—N1—C2—C1 | 84.7 (2) | N3—Na2—C20—C19 | −88.0 (3) |
C5—N1—C2—C3 | 78.9 (3) | C13—Na2—C20—C19 | −6.9 (2) |
Mg1—N1—C2—C3 | −137.1 (2) | C22iv—Na2—C20—C19 | 84.97 (18) |
Na1ii—N1—C2—C3 | −38.4 (3) | N4—Na2—C20—C21 | −51.3 (4) |
C2—N1—C5—C6 | −150.5 (3) | N3—Na2—C20—C21 | 7.7 (6) |
Mg1—N1—C5—C6 | 64.1 (3) | C13—Na2—C20—C21 | 88.7 (5) |
Na1ii—N1—C5—C6 | −32.5 (3) | C19—Na2—C20—C21 | 95.7 (5) |
C2—N1—C5—C4 | 85.0 (3) | C22iv—Na2—C20—C21 | −179.4 (5) |
Mg1—N1—C5—C4 | −60.4 (3) | C20—N4—C23—C24 | 167.2 (2) |
Na1ii—N1—C5—C4 | −157.0 (2) | Mg2—N4—C23—C24 | 28.3 (3) |
N1—C5—C6—Na1ii | 24.0 (2) | Na2—N4—C23—C24 | −73.5 (3) |
C4—C5—C6—Na1ii | 150.0 (2) | C20—N4—C23—C22 | −70.2 (3) |
C11—N2—C8—C9 | 173.6 (2) | Mg2—N4—C23—C22 | 150.9 (2) |
Mg1—N2—C8—C9 | −50.8 (3) | Na2—N4—C23—C22 | 49.1 (3) |
Na1—N2—C8—C9 | 49.9 (3) | Na2iv—C22—C23—N4 | 64.6 (8) |
C11—N2—C8—C7 | 51.4 (3) | Na2iv—C22—C23—C24 | −171.1 (6) |
Mg1—N2—C8—C7 | −172.9 (2) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z+2; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mg2Na2H2(C6H14N)4] |
Mr | 497.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 8.2448 (4), 10.1118 (5), 20.1990 (9) |
α, β, γ (°) | 82.419 (3), 83.897 (3), 68.916 (2) |
V (Å3) | 1554.36 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.38 × 0.30 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27877, 7078, 3944 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.140, 1.08 |
No. of reflections | 7078 |
No. of parameters | 383 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.35 |
Computer programs: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.
Mg1—N1 | 2.051 (2) | Na1—N1ii | 2.405 (2) |
Mg2—N3i | 2.051 (2) | Na2—N3 | 2.407 (2) |
Mg1—N2 | 2.078 (2) | Na1—C7iii | 3.014 (3) |
Mg2—N4 | 2.062 (2) | Na1—C6ii | 3.072 (5) |
Mg1—H1H | 1.92 (2) | Na1—C10 | 3.089 (3) |
Mg1—H1Hii | 1.91 (2) | Na2—C13 | 2.962 (4) |
Mg2—H2H | 1.94 (2) | Na2—C19 | 2.980 (4) |
Mg2—H2Hi | 1.91 (2) | Na2—C20 | 3.124 (3) |
Na1—N2 | 2.397 (2) | Na2—C22iv | 3.125 (4) |
Na2—N4 | 2.399 (2) | ||
N1—Mg1—N2 | 136.48 (9) | N2—Na1—N1ii | 137.51 (9) |
N3i—Mg2—N4 | 137.00 (10) | N4—Na2—N3 | 136.06 (9) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z+2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the EPSRC (grant award No. GR/T27228/01) for generously sponsoring this research.
References
Andrikopoulos, P. C., Armstrong, D. R., Clegg, W., Gilfillan, C. J., Hevia, E., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Parkinson, J. A. & Tooke, D. M. (2004). J. Am. Chem. Soc. 126, 11612–11620. Web of Science CSD CrossRef PubMed CAS Google Scholar
Andrikopoulos, P. C., Armstrong, D. R., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T. & Rowlings, R. B. (2003). Eur. J. Inorg. Chem. pp. 3354–3362. CSD CrossRef Google Scholar
Clegg, W., Henderson, K. W., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Rowlings, R. B. & Tooke, D. M. (2001). Angew. Chem. Int. Ed. 40, 3902–3905. CrossRef CAS Google Scholar
Fischer, E. O. & Hafner, W. (1955). Z. Naturforsch. Teil B, 10, 665–667. Google Scholar
Gallagher, D. J., Henderson, K. W., Kennedy, A. R., O'Hara, C. T., Mulvey, R. E. & Rowlings, R. B. (2002). Chem. Commun. pp. 376–377. CSD CrossRef Google Scholar
Hevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. (2005). Angew. Chem. Int. Ed. 44, 68–72. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lochmann, L., Pospisil, J. & Lim, D. (1966). Tetrahedron Lett. 7, 257–262. CrossRef Google Scholar
Mokuolu, Q. F., Duckmanton, P. A., Blake, A. J., Wilson, C. & Love, J. B. (2003). Organometallics, 22, 4387–4389. Web of Science CSD CrossRef CAS Google Scholar
Mulvey, R. E. (2001). Chem. Commun. pp. 1049–1056. Web of Science CrossRef Google Scholar
Mulvey, R. E. (2006). Organometallics, 25, 1060–1075. Web of Science CrossRef CAS Google Scholar
Nonius (1988). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Recent work in our group has focused on the special synergic chemistry which can take place when an alkali metal amide is placed within the same molecular environment as its magnesium bis(amide) congener (Mulvey, 2006). A consequence of this work was the development of a new class of compounds which have become known as `inverse crown ethers', due to their inverse topological relationship with conventional crown ether complexes (Mulvey, 2001). Further compounds were subsequently prepared which had a similar cationic `host' ring, but the `guests' were anions which did not contain oxygen. These oxygen-free compounds have become known as `inverse crowns' (Mulvey, 2006).
As part of our study, the reaction of mixed sodium–magnesium tris(diisopropylamide), NaMg(DA)3, with various different substrates was probed. In the presence of ferrocene, ruthenocene or osmocene, a simultaneous regioselective fourfold deprotonation of the metallocene occurred to give a 16-membered inverse crown molecule (Clegg et al., 2001; Andrikopoulos et al., 2004). The title complex, (I), [Na2Mg2(H)2{(C3H7)2N}4]n, was serendipitously prepared by heating to reflux a hydrocarbon solution of NaMg(DA)3 with the arene complex bis(benzene)chromium. The reaction was attempted in order to ascertain whether the arene complex could undergo deprotonation akin to the metallocenes. No deprotonation was detected by X-ray or NMR spectroscopic analyses, and the only compounds to precipitate from solution were (I) and unreacted bis(benzene)chromium. It is now known that bis(benzene)chromium can be selectively monodeprotonated using a different base, [(TMEDA)·Na(µ-Bu)(µ-TMP)Mg(TMP)], where TMP is 2,2,6,6-tetramethylpiperidide (Hevia et al., 2005).
The structure of (I) contains two crystallographically independent molecules, each residing on a centre of symmetry (Fig. 1). The internal geometric parameters of both molecules are essentially identical: Mg1—N2 = 2.078 (2) Å versus Mg2—N4 2.062 (2) Å is the largest difference between the two inverse-crown frames. Key geometric parameters can be found in Table 1. Compound (I) is a polymeric solvent-free variant of the previously prepared compound [Na2Mg2(µ-DA)4(µ-H)2.(toluene)2], (II), which has the same connectivity as (I) but with the addition of a toluene molecule π-bonded to each Na atom (Gallagher et al., 2002). This toluene-to-Na π–π interaction causes a significant difference in the Na—N bond lengths, which are shorter in (I) [2.397 (2)–2.407 (2) Å] than in the solvated (II) [2.481 (2) Å]. The endocyclic N—Na—N angles are also different [136.1 (1)–137.5 (1)° for (I) and 132.1 (1)° for (II)]. The Na atoms of (I) compensate for the loss of bound toluene by forming a range of agostic interactions. Some of these are intramolecular [Na···C 2.962 (4)–3.124 (4) Å], but each Na atom also forms one intermolecular agostic bond [Na···C 3.014 (4) and 3.125 (4) Å], hence propagating one-dimensional polymeric chains along the crystallographic b direction (Fig. 2).
Metal hydrides are of interest as reducing agents, but magnesium hydrides are not as well known as their aluminium counterparts. In fact, in addition to (I) and (II), only two similar molecular magnesium hydrides have been structurally characterized to date, namely the K analogue of (II) (Andrikopoulos et al., 2003) and a TiMg2 species where the hydrides bridge all three metals (Mokuolu et al., 2003). In (I), each hydride forms a slightly asymmetrical bridge between the two Mg atoms of a ring, with Mg—H distances in the range 1.91 (2)–1.94 (2) Å. Comparing small differences in M—H bond distances from X-ray data is of course dangerous. We note, however, that these distances are similar to those found for (II) [1.88 (2) Å] and for the K analogue of (II) [1.94 (2) Å], which has a larger metal amide ring than the Na species. More significance can be attached to the collective difference between these Mg—H distances and the longer ones [2.029 (15)–2.045 (15) Å] found in the µ3-hydrido TiMg2 complex.