organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3-(4-Meth­oxy­phen­yl)-7,7-di­methyl-1,6,7,8-tetra­hydro­pyrazolo[3,4-b]quinolin-5-one: a chain of centrosymmetric rings built from N—H⋯N and C—H⋯π(arene) hydrogen bonds

aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria, Torobajo, AA 1175 Pasto, Colombia, bGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 30 June 2006; accepted 3 July 2006; online 29 July 2006)

In the title compound, C19H19N3O2, the non-aromatic carbocylic ring adopts an envelope conformation. The mol­ecules are linked by a combination of N—H⋯N and C—H⋯π(arene) hydrogen bonds into a chain of centrosymmetric rings.

Comment

Pyrazolo[3,4-b]quinolines are of inter­est because of their pharmacological applications, e.g. as anti­viral agents (Crenshaw et al., 1976[Crenshaw, R. R., Luke, G. M. & Smirnoff, P. (1976). J. Med. Chem. 19, 262-275.]; Smirnoff & Crenshaw, 1977[Smirnoff, P. & Crenshaw, R. R. (1977). Antimicrob. Agents Chemother. 11, 571-573.]). We have recently reported several efficient methods for the synthesis of compounds of this type, using the reactions between 5-am­ino­pyrazoles, 5,5-dimethyl­cyclo­hexane-1,3-dione (dimed­one) and substituted benzaldehydes, both in solution and under solvent-free conditions, using microwave irradiation (Quiroga, Hormaza et al., 1998[Quiroga, J., Hormaza, A., Insuasty, B., Ortiz, A. J., Sánchez, A. & Nogueras, M. (1998). J. Heterocycl. Chem. 35, 231-233.]; Quiroga, Insuasty et al., 1998[Quiroga, J., Insuasty, B., Hormaza, A., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575-578.]). We report here the mol­ecular and supra­molecular structures of the title compound, (I)[link] (Fig. 1[link]), synthesized using microwave irradiation in the absence of solvent. The structures of several analogous compounds have been reported recently, including those of (II)[link], in both triclinic (Low et al., 2003[Low, J. N., Mera, J., Quiroga, J. & Cobo, J. (2003). Acta Cryst. E59, o1804-o1806.]) and monoclinic polymorphs (Mera et al., 2005[Mera, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o442-o444.]), (III)[link] (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o479-o482.]) and (IV)[link] (Low et al., 2005[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2005). Acta Cryst. E61, o49-o51.]), but in none of compounds (II)[link]–(IV)[link] is there an N—H bond at pyrazole atom N1, as found in compound (I)[link]. Hence, the supra­molecular aggregation in (I)[link] is necessarily different from those found in (II)[link]–(IV)[link].

The bond lengths in (I)[link] (Table 1[link]) show clear evidence for electronic delocalization in the pyridine ring with significant bond fixation in the pyrazole ring. Meth­oxy atom C341 is almost coplanar with the adjacent aryl ring, while the exocyclic bond angles at C34 show the usual difference of ca 10°. The

[Scheme 1]
dihedral angle between the aryl and pyrazole rings is 13.4 (2)°. Within the non-aromatic carbocyclic ring, the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) corresponding to the atom sequence C4a—C5—C6—C7—C8—C8a are θ = 55.1 (4)° and φ = 167.4 (4)°, indicating a conformation close to an envelope form, for which the idealized parameters are θ = 54.7° and φ = (60n)°. The ring is folded across the C6⋯C8 vector.

The mol­ecules of (I)[link] are linked into a chain of rings by a combination of N—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 2[link]). Pyrazole atom N1 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to pyridine atom N9 in the mol­ecule at (2 − x, 1 − y, 1 − z), so generating by inversion an R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at (1, [{1 \over 2}], [{1 \over 2}]). In addition, atom C8 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via axial atom H8B, to the aryl ring C31–C36 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a second cyclic motif, this time centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]). Propagation by inversion of these two hydrogen bonds then generates a chain of rings running parallel to the [100] direction, with R22(8) rings centred at (n, [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) and rings generated by the C—H⋯π(arene) hydrogen bond centred at (n + [{1 \over 2}], [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) (Fig. 2[link]). The formation of this chain is reinforced by a ππ stacking inter­action involving the pyridine rings of the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z). These rings are strictly parallel, with an inter­planar spacing of 3.310 (2) Å. The ring-centroid separation is 3.709 (2) Å, corresponding to a ring offset of 1.674 (2) Å. There are no direction-specific inter­actions between adjacent chains.

We briefly compare here the supra­molecular aggregation in compound (I)[link] with that found in each of compounds (II)[link]–(IV)[link]. In the monoclinic polymorph of compound (II)[link], which crystallizes with Z′ = 1 in the space group P21/n (Mera et al., 2005[Mera, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o442-o444.]), two distinct C—H⋯π hydrogen bonds link the mol­ecules into chains of rings, which are further linked into sheets by ππ stacking inter­actions. By contrast, in the triclinic polymorph of (II)[link], which crystallizes with Z′ = 2 in the space group P[\overline{1}] (Low et al., 2003[Low, J. N., Mera, J., Quiroga, J. & Cobo, J. (2003). Acta Cryst. E59, o1804-o1806.]), each type of mol­ecule forms a distinct chain built from a combination of C—H⋯O and C—H⋯π hydrogen bonds. In compound (III)[link], the mol­ecules are linked by a single C—H⋯N hydrogen bond to form simple C(6) chains (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o479-o482.]), while in compound (IV)[link] the mol­ecules are linked into isolated centrosymmetric dimers by two distinct C—H⋯π hydrogen bonds (Low et al., 2005[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2005). Acta Cryst. E61, o49-o51.]). Thus, no two members of this series show the same pattern of supra­molecular aggregation, confirming that such aggregation is very sensitive to the details of the substituents on the heterocyclic ring system.

[Figure 1]
Figure 1
A mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of centrosymmetric rings along [100]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Equimolar quantities (1 mmol of each component) of 5-amino-3-(4-methoxy­phenyl)pyrazole, 5,5-dimethyl­cyclo­hexane-1,3-dione and formaldehyde (as a 37% aqueous solution) were placed in an open Pyrex glass vessel and irradiated in a domestic microwave oven for 6 min at 600 W. The product mixture was extracted with ethanol and after removal of the solvent, the resulting product, (I)[link], was recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction (m.p. 566–567 K, yield 65%). MS (70 eV) m/z (%): 321 (M+, 66), 306 [(M − CH3)+, 100], 222 (33), 134 (89), 77 (13), 39 (24).

Crystal data
  • C19H19N3O2

  • Mr = 321.37

  • Triclinic, [P \overline 1]

  • a = 7.1510 (6) Å

  • b = 9.7680 (7) Å

  • c = 12.3780 (8) Å

  • α = 72.094 (5)°

  • β = 83.529 (4)°

  • γ = 85.055 (4)°

  • V = 816.28 (10) Å3

  • Z = 2

  • Dx = 1.308 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.20 × 0.10 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.997

  • 17481 measured reflections

  • 3721 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.108

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.160

  • S = 1.03

  • 3721 reflections

  • 218 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.036 (6)

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.366 (3)
N2—C3 1.331 (3)
C3—C3a 1.436 (3)
C3a—C4 1.394 (3)
C4—C4a 1.384 (3)
C4a—C8a 1.425 (3)
C8a—N9 1.342 (3)
N9—C9a 1.343 (3)
C9a—N1 1.352 (3)
C3a—C9a 1.412 (3)
O34—C34—C33 125.0 (2)
O34—C34—C35 115.6 (2)
C34—O34—C341 118.3 (2)
N2—C3—C31—C32 166.7 (2)
C33—C34—O34—C341 3.5 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N9i 0.88 2.01 2.884 (3) 173
C8—H8BCgii 0.99 2.80 3.772 (3) 167
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Crystals of compound (I)[link] are triclinic; the space group P[\overline{1}] was chosen and confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), an N—H distance of 0.88 Å, and Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Pyrazolo[3,4-b]quinolines are of interest because of their pharmacological applications, e.g. as antiviral agents (Crenshaw et al., 1976; Smirnoff & Crenshaw, 1977). We have recently reported several efficient methods for the synthesis of compounds of this type, using the reactions between 5-aminopyrazoles, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and substituted benzaldehydes, both in solution and under solvent-free conditions using microwave irradiation (Quiroga, Hormaza et al., 1998; Quiroga, Insuasty et al., 1998). Here, we report the molecular and supramolecular structure of the title compound, (I) (Fig. 1), synthesized using microwave irradiation in the absence of solvent. The structures of several analogous compounds have been reported recently, including those of (II), in both triclinic (Low et al., 2003) and monoclinic polymorphs (Mera et al., 2005), (III) (Low et al., 2004) and (IV) (Low et al., 2005), but in none of compounds (II)–(IV) is there an N—H bond at the pyrazole atom N1, as found in compound (I). Hence, the supramolecular aggregation in (I) is necessarily different from those found in (II)–(IV).

The bond lengths in (I) (Table 1) show clear evidence for electronic delocalization in the pyridine ring with significant bond fixation in the pyrazole ring. The methoxy atom C341 is almost coplanar with the adjacent aryl ring, while the exocyclic bond angles at C34 show the usual difference of ca 10°. The dihedral angle between the aryl and pyrazole rings is 13.4 (2)°. Within the non-aromatic carbocyclic ring, the ring-puckering parameters (Cremer & Pople, 1975) corresponding to the atom sequence C4a/C5–C8/C8a are θ = 55.1 (4)° and ϕ = 167.4 (4)°, indicating a conformation close to an envelope form, for which the idealized parameters are θ = 54.7° and ϕ = (60n)°. The ring is folded across the C6···C8 vector.

The molecules of (I) are linked into a chain of rings by a combination of N—H···N and C—H···π(arene) hydrogen bonds (Table 2). Pyrazole atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to pyridine atom N9 in the molecule at (2 − x, 1 − y, 1 − z), so generating by inversion an R22(8) (Bernstein et al., 1995) ring centred at (1, 1/2, 1/2). In addition, atom C8 in the molecule at (x, y, z) acts as hydrogen-bond donor, via axial atom H8B, to the aryl ring C31–C36 in the molecule at (1 − x, 1 − y, 1 − z), so forming a second cyclic motif, this time centred at (1/2, 1/2, 1/2). Propagation by inversion of these two hydrogen bonds then generates a chain of rings running parallel to the [100] direction, with R22(8) rings centred at (n, 1/2, 1/2) (n = zero or integer) and rings generated by the C—H···π(arene) hydrogen bond centred at (n + 1/2, 1/2, 1/2) (n = zero or integer) (Fig. 2). The formation of this chain is reinforced by a ππ stacking interaction involving the pyridine rings of the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z). These rings are strictly parallel, with an interplanar spacing of 3.310 (2) Å. The ring-centroid separation is 3.709 (2) Å, corresponding to a ring offset of 1.674 (2) Å. There are no direction-specific interactions between adjacent chains.

We briefly compare here the supramolecular aggregation in compound (I) with that found in each of compounds (II)–(IV). In the monoclinic polymorph of compound (II), which crystallizes with Z' = 1 in space group P21/n (Mera et al., 2005), two distinct C—H···π hydrogen bonds link the molecules into chains of rings, which are further linked into sheets by ππ stacking interactions. By contrast, in the triclinic polymorph of (II), which crystallizes with Z' = 2 in space group P1 (Low et al., 2003), each type of molecule forms a distinct chain built from a combination of C—H···O and C—H···π hydrogen bonds. In compound (III), the molecules are linked by a single C—H···N hydrogen bond to form simple C(6) chains (Low et al., 2004), while in compound (IV) the molecules are linked into isolated centrosymmetric dimers by two distinct C—H···π hydrogen bonds (Low et al., 2005). Thus no two members of this series show the same pattern of supramolecular aggregation, confirming that such aggregation is very sensitive to the details of the substituents on the heterocyclic ring system.

Experimental top

Equimolar quantities (1 mmol of each component) of 5-amino-3-(4-methoxyphenyl)pyrazole, 5,5-dimethylcyclohexane-1,3-dione and formaldehyde (as a 37% aqueous solution) were placed in an open Pyrex glass vessel and irradiated in a domestic microwave oven for 6 min at 600 W. The product mixture was extracted with ethanol and after removal of the solvent, the resulting product, (I), was recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction (m.p. 566–567 K, yield 65%). MS (70 eV) m/z (%), 321 (M+, 66), 306 [(M - CH3)+, 100], 222?(33), 134?(89), 77?(13), 39?(24).

Refinement top

Crystals of compound (I) are triclinic; the space group P1 was chosen, and confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and an N—H distance of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of centrosymmetric rings along [100]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
3-(4-Methoxyphenyl)-7,7-dimethyl-1,6,7,8-tetrahydropyrazolo[3,4-b]quinolin-5-one top
Crystal data top
C19H19N3O2Z = 2
Mr = 321.37F(000) = 340
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1510 (6) ÅCell parameters from 3721 reflections
b = 9.7680 (7) Åθ = 3.5–27.5°
c = 12.3780 (8) ŵ = 0.09 mm1
α = 72.094 (5)°T = 120 K
β = 83.529 (4)°Lath, colourless
γ = 85.055 (4)°0.20 × 0.10 × 0.03 mm
V = 816.28 (10) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3721 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.977, Tmax = 0.997l = 1516
17481 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3721 reflectionsΔρmax = 0.26 e Å3
218 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (6)
Crystal data top
C19H19N3O2γ = 85.055 (4)°
Mr = 321.37V = 816.28 (10) Å3
Triclinic, P1Z = 2
a = 7.1510 (6) ÅMo Kα radiation
b = 9.7680 (7) ŵ = 0.09 mm1
c = 12.3780 (8) ÅT = 120 K
α = 72.094 (5)°0.20 × 0.10 × 0.03 mm
β = 83.529 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3721 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2099 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.997Rint = 0.108
17481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3721 reflectionsΔρmin = 0.18 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8449 (3)0.3499 (2)0.56302 (16)0.0362 (5)
N20.7495 (3)0.2317 (2)0.62560 (16)0.0370 (5)
C30.6037 (3)0.2260 (2)0.56934 (19)0.0325 (6)
C310.4783 (3)0.1064 (2)0.61535 (19)0.0320 (6)
C320.3040 (3)0.1065 (3)0.5758 (2)0.0380 (6)
C330.1874 (4)0.0076 (3)0.6223 (2)0.0406 (6)
C340.2451 (4)0.1255 (3)0.7085 (2)0.0386 (6)
O340.1450 (3)0.24533 (19)0.75828 (16)0.0515 (5)
C3410.0270 (4)0.2543 (3)0.7151 (3)0.0546 (8)
C350.4177 (4)0.1267 (3)0.7502 (2)0.0456 (7)
C360.5311 (4)0.0123 (3)0.7045 (2)0.0406 (6)
C3a0.6023 (3)0.3451 (2)0.46651 (18)0.0311 (5)
C40.4953 (3)0.4027 (2)0.37388 (19)0.0321 (6)
C4a0.5550 (3)0.5250 (2)0.28986 (19)0.0310 (5)
C50.4408 (4)0.5911 (3)0.1919 (2)0.0393 (6)
O50.2986 (3)0.5368 (2)0.18253 (15)0.0582 (6)
C60.5056 (4)0.7290 (3)0.1078 (2)0.0429 (7)
C70.7206 (4)0.7351 (3)0.08807 (19)0.0377 (6)
C710.8045 (4)0.6166 (3)0.0377 (2)0.0549 (8)
C720.7733 (4)0.8819 (3)0.0066 (2)0.0517 (7)
C8a0.7237 (3)0.5885 (2)0.29668 (18)0.0310 (5)
C80.7964 (3)0.7156 (3)0.20328 (19)0.0368 (6)
N90.8268 (3)0.5376 (2)0.38620 (16)0.0325 (5)
C9a0.7617 (3)0.4207 (3)0.46696 (19)0.0314 (6)
H10.94730.37660.58270.043*
H320.26360.18660.51560.046*
H330.06790.00450.59460.049*
H34A0.08300.34550.75840.082*
H34B0.00330.24990.63460.082*
H34C0.11400.17370.72230.082*
H350.45770.20700.81040.055*
H360.64820.01440.73450.049*
H40.38430.35910.36860.038*
H6B0.45330.81060.13540.052*
H6A0.45460.74100.03410.052*
H71A0.77100.52240.09020.082*
H71B0.94200.62080.02620.082*
H71C0.75440.63040.03560.082*
H72A0.71900.95800.03890.077*
H72B0.72390.89580.06700.077*
H72C0.91080.88610.00440.077*
H8A0.93570.70460.19400.044*
H8B0.76210.80380.22610.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0302 (11)0.0403 (12)0.0358 (11)0.0039 (9)0.0101 (9)0.0049 (10)
N20.0361 (12)0.0370 (12)0.0362 (11)0.0001 (9)0.0104 (9)0.0063 (10)
C30.0340 (13)0.0356 (14)0.0289 (12)0.0045 (11)0.0073 (10)0.0114 (11)
C310.0359 (14)0.0315 (13)0.0279 (12)0.0020 (10)0.0037 (10)0.0087 (11)
C320.0419 (15)0.0350 (14)0.0333 (13)0.0006 (11)0.0088 (11)0.0035 (11)
C330.0384 (15)0.0411 (15)0.0414 (14)0.0025 (12)0.0087 (12)0.0091 (13)
C340.0479 (16)0.0322 (14)0.0340 (14)0.0048 (12)0.0015 (12)0.0079 (12)
O340.0570 (12)0.0396 (11)0.0525 (11)0.0119 (9)0.0041 (9)0.0035 (9)
C3410.0459 (17)0.0500 (18)0.068 (2)0.0109 (14)0.0032 (15)0.0196 (16)
C350.0569 (18)0.0360 (15)0.0390 (15)0.0006 (13)0.0135 (13)0.0016 (12)
C360.0452 (15)0.0367 (15)0.0386 (14)0.0013 (12)0.0130 (12)0.0064 (12)
C3a0.0335 (13)0.0334 (13)0.0276 (12)0.0001 (10)0.0052 (10)0.0104 (11)
C40.0345 (13)0.0329 (13)0.0322 (13)0.0013 (10)0.0070 (10)0.0134 (11)
C4a0.0334 (13)0.0330 (13)0.0270 (12)0.0005 (10)0.0077 (10)0.0083 (11)
C50.0423 (15)0.0428 (15)0.0341 (14)0.0052 (12)0.0108 (12)0.0099 (12)
O50.0580 (13)0.0633 (13)0.0503 (12)0.0203 (10)0.0291 (10)0.0001 (10)
C60.0481 (16)0.0424 (15)0.0363 (14)0.0041 (12)0.0158 (12)0.0044 (12)
C70.0449 (15)0.0370 (14)0.0295 (13)0.0040 (11)0.0069 (11)0.0057 (11)
C710.074 (2)0.0538 (18)0.0383 (15)0.0075 (15)0.0022 (14)0.0175 (14)
C720.0618 (19)0.0472 (17)0.0392 (15)0.0104 (14)0.0107 (14)0.0012 (13)
C8a0.0316 (13)0.0336 (13)0.0283 (12)0.0010 (10)0.0047 (10)0.0102 (11)
C80.0378 (14)0.0377 (14)0.0347 (13)0.0027 (11)0.0058 (11)0.0098 (11)
N90.0298 (11)0.0363 (12)0.0306 (11)0.0010 (9)0.0052 (9)0.0082 (9)
C9a0.0289 (13)0.0372 (14)0.0290 (12)0.0029 (10)0.0072 (10)0.0109 (11)
Geometric parameters (Å, º) top
N1—N21.366 (3)C34—O341.365 (3)
N2—C31.331 (3)C34—C351.388 (4)
C3—C3a1.436 (3)O34—C3411.416 (3)
C3a—C41.394 (3)C341—H34A0.98
C4—C4a1.384 (3)C341—H34B0.98
C4a—C8a1.425 (3)C341—H34C0.98
C4a—C51.485 (3)C35—C361.374 (4)
C5—C61.500 (3)C35—H350.95
C6—C71.533 (4)C36—H360.95
C7—C81.534 (3)C4—H40.95
C8—C8a1.497 (3)C5—O51.220 (3)
C8a—N91.342 (3)C6—H6B0.99
N9—C9a1.343 (3)C6—H6A0.99
C9a—N11.352 (3)C7—C711.526 (4)
C3a—C9a1.412 (3)C7—C721.527 (3)
N1—H10.88C71—H71A0.98
C3—C311.467 (3)C71—H71B0.98
C31—C321.389 (3)C71—H71C0.98
C31—C361.392 (3)C72—H72A0.98
C32—C331.388 (3)C72—H72B0.98
C32—H320.95C72—H72C0.98
C33—C341.377 (3)C8—H8A0.99
C33—H330.95C8—H8B0.99
C9a—N1—N2111.21 (18)O5—C5—C4a121.0 (2)
C9a—N1—H1124.4O5—C5—C6122.0 (2)
N2—N1—H1124.4C4a—C5—C6117.0 (2)
C3—N2—N1107.27 (18)C5—C6—C7113.4 (2)
N2—C3—C3a109.9 (2)C5—C6—H6B108.9
N2—C3—C31119.4 (2)C7—C6—H6B108.9
C3a—C3—C31130.7 (2)C5—C6—H6A108.9
C32—C31—C36117.3 (2)C7—C6—H6A108.9
C32—C31—C3123.0 (2)H6B—C6—H6A107.7
C36—C31—C3119.7 (2)C71—C7—C72109.5 (2)
C33—C32—C31121.6 (2)C71—C7—C6110.2 (2)
C33—C32—H32119.2C72—C7—C6109.8 (2)
C31—C32—H32119.2C71—C7—C8110.5 (2)
C34—C33—C32119.9 (2)C72—C7—C8108.9 (2)
C34—C33—H33120.1C6—C7—C8107.95 (19)
C32—C33—H33120.1C7—C71—H71A109.5
O34—C34—C33125.0 (2)C7—C71—H71B109.5
O34—C34—C35115.6 (2)H71A—C71—H71B109.5
C33—C34—C35119.3 (2)C7—C71—H71C109.5
C34—O34—C341118.3 (2)H71A—C71—H71C109.5
O34—C341—H34A109.5H71B—C71—H71C109.5
O34—C341—H34B109.5C7—C72—H72A109.5
H34A—C341—H34B109.5C7—C72—H72B109.5
O34—C341—H34C109.5H72A—C72—H72B109.5
H34A—C341—H34C109.5C7—C72—H72C109.5
H34B—C341—H34C109.5H72A—C72—H72C109.5
C36—C35—C34120.3 (2)H72B—C72—H72C109.5
C36—C35—H35119.9N9—C8a—C4a122.2 (2)
C34—C35—H35119.9N9—C8a—C8116.3 (2)
C35—C36—C31121.6 (2)C4a—C8a—C8121.5 (2)
C35—C36—H36119.2C8a—C8—C7113.87 (19)
C31—C36—H36119.2C8a—C8—H8A108.8
C4—C3a—C9a116.0 (2)C7—C8—H8A108.8
C4—C3a—C3139.6 (2)C8a—C8—H8B108.8
C9a—C3a—C3104.36 (19)C7—C8—H8B108.8
C4a—C4—C3a118.3 (2)H8A—C8—H8B107.7
C4a—C4—H4120.9C8a—N9—C9a115.04 (19)
C3a—C4—H4120.9N9—C9a—N1125.1 (2)
C4—C4a—C8a120.8 (2)N9—C9a—C3a127.6 (2)
C4—C4a—C5119.4 (2)N1—C9a—C3a107.2 (2)
C8a—C4a—C5119.8 (2)
C9a—N1—N2—C30.1 (3)C8a—C4a—C5—O5178.1 (2)
N1—N2—C3—C3a0.4 (2)C4—C4a—C5—C6176.0 (2)
N1—N2—C3—C31178.17 (19)C8a—C4a—C5—C63.7 (3)
N2—C3—C31—C32166.7 (2)O5—C5—C6—C7145.8 (2)
C3a—C3—C31—C3215.1 (4)C4a—C5—C6—C735.9 (3)
N2—C3—C31—C3611.7 (3)C5—C6—C7—C7162.4 (3)
C3a—C3—C31—C36166.5 (2)C5—C6—C7—C72176.9 (2)
C36—C31—C32—C330.6 (4)C5—C6—C7—C858.3 (3)
C3—C31—C32—C33179.1 (2)C4—C4a—C8a—N93.2 (3)
C31—C32—C33—C341.0 (4)C5—C4a—C8a—N9176.5 (2)
C32—C33—C34—O34178.0 (2)C4—C4a—C8a—C8176.3 (2)
C32—C33—C34—C351.8 (4)C5—C4a—C8a—C84.1 (3)
C33—C34—O34—C3413.5 (4)N9—C8a—C8—C7158.8 (2)
C35—C34—O34—C341176.3 (2)C4a—C8a—C8—C720.7 (3)
O34—C34—C35—C36178.9 (2)C71—C7—C8—C8a70.4 (3)
C33—C34—C35—C361.0 (4)C72—C7—C8—C8a169.2 (2)
C34—C35—C36—C310.7 (4)C6—C7—C8—C8a50.1 (3)
C32—C31—C36—C351.5 (4)C4a—C8a—N9—C9a1.6 (3)
C3—C31—C36—C35180.0 (2)C8—C8a—N9—C9a177.88 (19)
N2—C3—C3a—C4179.1 (3)C8a—N9—C9a—N1178.6 (2)
C31—C3—C3a—C42.5 (5)C8a—N9—C9a—C3a1.6 (3)
N2—C3—C3a—C9a0.5 (2)N2—N1—C9a—N9177.3 (2)
C31—C3—C3a—C9a177.8 (2)N2—N1—C9a—C3a0.2 (3)
C9a—C3a—C4—C4a1.5 (3)C4—C3a—C9a—N93.3 (3)
C3—C3a—C4—C4a178.9 (3)C3—C3a—C9a—N9177.0 (2)
C3a—C4—C4a—C8a1.4 (3)C4—C3a—C9a—N1179.33 (19)
C3a—C4—C4a—C5178.3 (2)C3—C3a—C9a—N10.4 (2)
C4—C4a—C5—O52.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N9i0.882.012.884 (3)173
C8—H8B···Cgii0.992.803.772 (3)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H19N3O2
Mr321.37
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.1510 (6), 9.7680 (7), 12.3780 (8)
α, β, γ (°)72.094 (5), 83.529 (4), 85.055 (4)
V3)816.28 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.03
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
17481, 3721, 2099
Rint0.108
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.160, 1.03
No. of reflections3721
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—N21.366 (3)C4a—C8a1.425 (3)
N2—C31.331 (3)C8a—N91.342 (3)
C3—C3a1.436 (3)N9—C9a1.343 (3)
C3a—C41.394 (3)C9a—N11.352 (3)
C4—C4a1.384 (3)C3a—C9a1.412 (3)
O34—C34—C33125.0 (2)C34—O34—C341118.3 (2)
O34—C34—C35115.6 (2)
N2—C3—C31—C32166.7 (2)C33—C34—O34—C3413.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N9i0.882.012.884 (3)173
C8—H8B···Cgii0.992.803.772 (3)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The X-ray data were collected by the EPSRC National X-ray Crystallography Service, University of Southampton, England; the authors thank the staff for all their help and advice. JC and JMT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), and the Universidad de Jaén for financial support. JMT also thanks Universidad de Jaén for a scholarship grant. JQ and SC thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and UDENAR (Universidad de Nariño, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrenshaw, R. R., Luke, G. M. & Smirnoff, P. (1976). J. Med. Chem. 19, 262–275.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o479–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2005). Acta Cryst. E61, o49–o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, J. N., Mera, J., Quiroga, J. & Cobo, J. (2003). Acta Cryst. E59, o1804–o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMera, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o442–o444.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Hormaza, A., Insuasty, B., Ortiz, A. J., Sánchez, A. & Nogueras, M. (1998). J. Heterocycl. Chem. 35, 231–233.  CrossRef CAS Google Scholar
First citationQuiroga, J., Insuasty, B., Hormaza, A., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575–578.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSmirnoff, P. & Crenshaw, R. R. (1977). Antimicrob. Agents Chemother. 11, 571–573.  PubMed Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds