organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three substituted (E)-3-aryl-2-(thienyl)acrylo­nitriles: isolated mol­ecules, simple hydrogen-bonded chains and hydrogen-bonded sheets

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 22 June 2006; accepted 11 July 2006; online 11 August 2006)

The structure of (E)-2-(2-thienyl)-3-(3,4,5-trimethoxy­phenyl)­acrylonitrile, C16H15NO3S, contains no direction-specific inter­molecular inter­actions. The mol­ecules of (E)-3-(4-bromo­phenyl)-2-(2-thienyl)acrylonitrile, C13H8BrNS, exhibit orientational disorder of the thienyl fragment, and the mol­ecules are linked into simple C(5) chains by a single C—H⋯N hydrogen bond. In (E)-3-phenyl-2-(3-thienyl)acrylo­nitrile, C13H9NS, the mol­ecules are linked into sheets by a combination of one C—H⋯N hydrogen bond and one C—H⋯π(arene) hydrogen bond.

Comment

We report here the structures of three substituted (E)-3-aryl-2-(thienyl)acrylonitriles, namely (E)-2-(2-thienyl)-3-(3,4,5-trimethoxy­phenyl)acrylonitrile, (I)[link] (Fig. 1[link]), (E)-3-(4-bromo­phenyl)-2-(2-thienyl)acrylonitrile, (II)[link] (Fig. 2[link]), and (E)-3-phenyl-2-(3-thienyl)acrylonitrile, (III)[link] (Fig. 3[link]), which have been synthesized for use as potential inter­mediates in the synthesis of new fused heterocyclic systems. The structure of the analogous (E)-3-(4-chloro­phenyl)-2-(2-thienyl)acrylo­nitrile, (IV)[link], was reported recently (Cobo et al., 2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.]).

For compound (I)[link], the key torsion angles (Table 1[link]) show that the non-H atoms are very nearly coplanar, with the sole exception of atom C141 of the 4-methoxy group. The exocyclic angles at the methoxy substituents in (I)[link] show the usual patterns of behaviour, with markedly different C—C—O angles for the 3- and 5-methoxy substituents, which are effectively coplanar with the aryl ring, and rather similar angles for the 4-methoxy substituent, where the methyl C atom is displaced from the plane of the aryl ring by 1.261 (2) Å.

Compound (II)[link] is isomorphous and isostructural with the chloro analogue, viz. (IV)[link] (Cobo et al., 2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.]). In (II)[link], there is a significant rotation of the aryl group around the

[Scheme 1]
C11—C17 bond, so that this fragment is not coplanar with the rest of the mol­ecule (Table 2[link]). There is no obvious reason for this conformational difference between compounds (I)[link] and (II)[link], as the aryl ring in (II)[link] is not involved in any hydrogen bonding. In the isostructural pair (II)[link] and (IV)[link], although not in compound (I)[link], the 2-thienyl group exhibits orientational disorder over two sets of sites corresponding to a 180° rotation about the C2—C27 bond. The populations of the major and minor conformers in compounds (II)[link] and (IV)[link] are experimentally indistinguishable: 0.798 (3) and 0.202 (3) in (II)[link], and 0.802 (3) and 0.198 (3) in (IV).

The mol­ecules of compound (III)[link] are almost planar, as shown by the key torsion angles (Table 4[link]). In (I)[link]–(III)[link], the nitrile components exhibit quite long C—C bonds and very short C—N bonds. The remaining bond distances in (I)[link]–(III)[link] show no unusual features.

There are no direction-specific inter­molecular inter­actions in the structure of compound (I)[link]. In particular, C—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are all absent, so that the structure consists of effectively isolated mol­ecules.

By contrast, the mol­ecules of compound (II)[link] are linked by a single C—H⋯N hydrogen bond (Table 3[link]), exactly as in compound (IV)[link]. Alkene atom C17 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom N27 in the mol­ecule at (−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z), so forming a C(5) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [[\overline{1}]01] direction and generated by the n-glide plane at y = [{1 \over 4}] (Fig. 4[link]). Two chains of this type, which are related to one another by inversion and hence are anti­parallel, and generated by the n-glide planes at y = [{1 \over 4}] and y = [{3 \over 4}], pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

In the structure of compound (III)[link], the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 5[link]). Atom C2 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom N37 in the mol­ecule at (1 − x, −y, 1 − z), so generating by inversion an R22(12) dimer centred at ([{1 \over 2}], 0, [{1 \over 2}]) (Fig. 5[link]). In addition, atoms C13 in the mol­ecules at (x, y, z) and (1 − x, −y, 1 − z), which form a dimer centred at ([{1 \over 2}], 0, [{1 \over 2}]), act as hydrogen-bond donors to the aryl rings of the mol­ecules at (2 − x, −[{1\over 2}] + y, [{3\over 2}] − z) and (−1 + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively, which themselves are components of dimers centred at ([{3 \over 2}], −[{1 \over 2}], 1) and (−[{1 \over 2}], [{1 \over 2}], 0), respectively. Similarly, the aryl rings at (x, y, z) and (1 − x, −y, 1 − z) accept hydrogen bonds from atom C13 in the mol­ecules at (2 − x, [{1\over 2}] + y, [{3\over 2}] − z) and (−1 + x, −[{1\over 2}] − y, −[{1\over 2}] + z), themselves parts of dimers centred at ([{3 \over 2}], [{1 \over 2}], 1) and (−[{1 \over 2}], −[{1 \over 2}], 0), respectively. Propagation of this inter­action then links the R22(12) dimers into a sheet parallel to (10[\overline{2}]) (Fig. 6[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
The mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown.
[Figure 4]
Figure 4
Part of the crystal structure of compound (II)[link], showing the formation of a C(5) chain along [[\overline{1}]01]. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown, and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash symbol (#) are at the symmetry positions (−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) and ([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of compound (III)[link], showing the formation of an R22(12) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded sheet parallel to (10[\overline{2}]). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Compounds (I)[link]–(III)[link] were prepared using procedures similar to that employed for the synthesis of compound (IV)[link] (Cobo et al., 2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.]). A solution of 2-thio­phene­acetonitrile [for (I)[link] and (II)[link]] or 3-thio­phene­acetonitrile [for (III)[link]] (1 mmol) and potassium tert-butoxide (1 mmol) in anhydrous ethanol (3 ml) was stirred at room temperature for 15 min. A solution of the appropriate benzaldehyde (1 mmol) in anhydrous ethanol (3 ml) was then added, and the overall mixtures were then heated under reflux for 2–3 h. The resulting solid products were collected by filtration, washed with ethanol, dried, and finally crystallized from dimethyl­formamide to give yellow crystals suitable for single-crystal X-ray diffraction. Compound (I)[link]: m.p. 391–392 K, yield 70%; MS EI (30 eV) m/z (%): 302 (21), 301 (100, M+), 286 (39 M+ − CH3), 226 (16). Compound (II)[link]: m.p. 368–370 K, yield 68%; MS EI (30 eV) m/z (%): 292 (17), 291/289 (100/98, M+), 290 (22), 211 (16), 210 (81), 209 (89), 208 (91), 183 (16), 177 (35), 166 (19) 139 (16), 154 (17), 127 (10), 45 (14). Compound (III)[link]: m.p. 348–349 K [literature m.p. 348 K (Stuart et al., 1986[Stuart, J. G., Quast, M. J., Martin, G. E., Lynch, V. M., Simonsen, S. H., Lee, M. L., Castle, R. N., Dallas, J. L., John, B. K. & Johnson, L. F. (1986). J. Heterocycl. Chem. 23, 1215-1234.])], yield 60%.

Compound (I)[link]

Crystal data
  • C16H15NO3S

  • Mr = 301.36

  • Monoclinic, P 21 /c

  • a = 22.5423 (6) Å

  • b = 8.4647 (3) Å

  • c = 7.4243 (2) Å

  • β = 91.510 (2)°

  • V = 1416.17 (7) Å3

  • Z = 4

  • Dx = 1.413 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.977

  • 17457 measured reflections

  • 3228 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.12

  • 3228 reflections

  • 193 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0444P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C27—C271 1.443 (2) 
C271—N27 1.145 (2)
O13—C13—C12 124.05 (14)
O13—C13—C14 115.33 (13)
O14—C14—C13 120.47 (14)
O14—C14—C15 119.86 (13)
O15—C15—C14 115.80 (12)
O15—C15—C16 124.47 (14)
S1—C2—C27—C17 −9.0 (2)
C2—C27—C17—C11 174.72 (15)
C27—C17—C11—C12 −5.5 (3)
C12—C13—O13—C131 7.9 (2)
C13—C14—O14—C141 75.54 (17)
C16—C15—O15—C151 2.2 (2)

Compound (II)[link]

Crystal data
  • C13H8BrNS

  • Mr = 290.17

  • Monoclinic, P 21 /n

  • a = 3.8557 (2) Å

  • b = 24.0484 (7) Å

  • c = 12.5466 (4) Å

  • β = 96.877 (2)°

  • V = 1154.99 (8) Å3

  • Z = 4

  • Dx = 1.669 Mg m−3

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.38 × 0.04 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.333, Tmax = 0.897

  • 12766 measured reflections

  • 2598 independent reflections

  • 1983 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.081

  • S = 1.09

  • 2598 reflections

  • 147 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.032P)2 + 0.6935P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.76 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.0211 (12)

Table 2
Selected geometric parameters (Å, °) for (II)[link]

C27—C271 1.446 (4)
C271—N27 1.143 (4)
S1—C2—C27—C17 5.2 (4)
C2—C27—C17—C11 −178.1 (3)
C27—C17—C11—C12 38.7 (4)

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N27i 0.95 2.55 3.450 (4) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Compound (III)[link]

Crystal data
  • C13H9NS

  • Mr = 211.27

  • Monoclinic, P 21 /c

  • a = 9.6280 (11) Å

  • b = 5.7190 (3) Å

  • c = 19.247 (2) Å

  • β = 103.129 (7)°

  • V = 1032.09 (17) Å3

  • Z = 4

  • Dx = 1.360 Mg m−3

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.49 × 0.31 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan [SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) and EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.])] Tmin = 0.878, Tmax = 0.947

  • 24963 measured reflections

  • 2368 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.206

  • S = 1.07

  • 2368 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1146P)2 + 1.443P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.67 e Å−3

Table 4
Selected geometric parameters (Å, °) for (III)[link]

C37—C371 1.444 (4)
C371—N37 1.146 (4)
C2—C3—C37—C17 179.0 (3)
C3—C37—C17—C11 −178.1 (2)
C37—C17—C11—C12 −1.7 (5)

Table 5
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N37i 0.95 2.59 3.324 (5) 135
C13—H13⋯Cgii 0.95 2.86 3.566 (4) 132
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The space groups P21/c, P21/n and P21/c for compounds (I)[link], (II)[link] and (III)[link], respectively, were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C), or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. In compound (II)[link], the disorder of the thienyl group was modelled using a common set of sites for atoms C2, C4 and C5 in the two orientations and individual sites for the remaining atoms of this unit, denoted S1 and C3 for the major orientation, and S3 and C1 for the minor orientation. The refined site occupancies for the two orientations were 0.798 (3) and 0.202 (3).

For all compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]). Cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT for (I)[link] and (II)[link]; DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]) for (III)[link]. Data reduction: DENZO and COLLECT for (I)[link] and (II)[link]; EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) for (III)[link]. For all compounds, program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of three substituted (E)-3-aryl-2-(thienyl)acrylonitriles, namely (E)-2-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile, (I) (Fig. 1), (E)-3-(4-bromophenyl)-2-(2-thienyl) acrylonitrile, (II) (Fig. 2), and (E)-3-phenyl-2-(3-thienyl) acrylonitrile, (III) (Fig. 3), which have been synthesized for use as potential intermediates in the synthesis of new fused heterocyclic systems. The structure of the analogous (E)-3-(4-chlorophenyl)-2-(2-thienyl) acrylonitrile, (IV), was reported recently (Cobo et al., 2005).

For compound (I), the key torsion angles (Table 1) show that the non-H atoms are very nearly coplanar, with the sole exception of atom C141 in the 4-methoxy group. The exocyclic angles at the methoxy substituents in (I) show the usual patterns of behaviour, with markedly different C—C—O angles for the 3- and 5-methoxy substituents, which are effectively coplanar with the aryl ring, and rather similar angles for the 4-methoxy substituent, where the methyl C atom is displaced from the plane of the aryl ring by 1.261 (2) Å.

Compound (II) is isomorphous and isostructural with the chloro analogue, compound (IV) (Cobo et al., 2005). In (II), there is a significant rotation of the aryl group around the C11—C17 bond, so that this fragment is not coplanar with the rest of the molecule (Table 2). There is no obvious reason for this conformational difference between compounds (I) and (II), as the aryl ring in (II) is not involved in any hydrogen bonding. In the isostructural pair, compounds (II) and (IV), although not in compound (I), the 2-thienyl group exhibits orientational disorder over two sets of sites corresponding to a 180° rotation about the C2—C27 bond. The populations of the major and minor conformers in compounds (II) and (IV) are experimentally indistinguishable: 0.798 (3) and 0.202 (3) in (II), and 0.802 (3) and 0.198 (3) in (IV).

The molecules of compound (III) are almost planar, as shown by the key torsion angles (Table 4). In compounds (I)-(III), the nitrile components exhibit quite long C—C bonds and very short C—N bonds. The remaining bond distances in compounds (I)–(III) show no unusual features.

There are no direction-specific intermolecular interactions in the structure of compound (I). In particular, C—H···N, C—H···O and C—H..π(arene) hydrogen bonds and aromatic ππ stacking interactions are all absent, so that the structure consists of effectively isolated molecules.

By contrast, the molecules of compound (II) are linked by a single C—H···N hydrogen bond (Table 3), exactly as in compound (IV). Alkene atom C17 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom N27 in the molecule at (-1/2 + x, 1/2 - y, 1/2 + z), so forming a C(5) chain (Bernstein et al., 1995) running parallel to the [101] direction and generated by the n-glide plane at y = 1/4 (Fig. 4). Two chains of this type, which are related to one another by inversion and hence are antiparallel, and generated by the n-glide planes at y = 1/4 and y = 3/4, respectively, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

In the structure of compound (III), the molecules are linked into sheets by a combination of C—H···N and C—H···π(arene) hydrogen bonds (Table 5). Atom C2 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom N37 in the molecule at (1 - x, -y, 1 - z), so generating by inversion an R22(12) dimer centred at (1/2, 0, 1/2) (Fig. 5). In addition, atoms C13 in the molecules at (x, y, z) and (1 - x, -y, 1 - z), which form a dimer centred at (1/2, 0, 1/2), act as hydrogen-bond donors to the aryl rings of the molecules at (2 - x, -1/2 + y, 3/2 - z) and (-1 + x, 1/2 - y, -1/2 + z), respectively, which themselves are components of the dimers centred at (3/2, -1/2, 1) and (-1/2, 1/2, 0), respectively. Similarly, the aryl rings at (x, y, z) and (1 - x, -y, 1 - z) accept hydrogen bonds from atom C13 in the molecules at (2 - x, 1/2 + y, 3/2 - z) and (-1 + x, -1/2 - y, -1/2 + z), themselves parts of dimers centred at (3/2, 1/2, 1) and (-1/2, -1/2, 0), respectively. Propagation of this interaction then links the R22(12) dimers into a sheet parallel to (102) (Fig. 6).

Experimental top

Compounds (I)–(III) were prepared using procedures similar to that employed for the synthesis of compound (IV) (Cobo et al., 2005). A solution of 2-thiopheneacetonitrile [for compounds (I) and (II)] or 3-thiopheneacetonitrile [for compound (III)] (1 mmol) and potassium tert-butoxide (1 mmol) in anhydrous ethanol (3 ml) was stirred at room temperature for 15 min. A solution of the appropriate benzaldehyde (1 mmol) in anhydrous ethanol (3 ml) was then added, and the overall mixtures were then heated under reflux for 2–3 h. The resulting solid products were collected by filtration, washed with ethanol, dried, and finally crystallized from dimethylformamide to give yellow crystals suitable for single-crystal X-ray diffraction. Compound (I): m.p. 391–392 K, yield 70%; MS EI (30 eV) m/z (%) 302 (21), 301 (100, M+), 286 (39 M+ - CH3), 226 (16). Compound (II): m.p. 368–370 K, yield 68%; MS EI (30 eV) m/z (%) 292 (17), 291/289 (100/98, M+), 290 (22), 211 (16), 210 (81), 209 (89), 208 (91), 183 (16), 177 (35), 166 (19) 139 (16), 154 (17), 127 (10), 45 (14). Compound (III): m.p. 348–349 K [literature m.p. 348 K (Stuart et al., 1986)], yield 60%.

Refinement top

The space groups P21/c, P21/n and P21/c for compounds (I), (II) and (III), respectively, were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C), or 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. In compound (II), the disorder of the thienyl group was modelled using a common set of sites for atoms C2, C4 and C5 in the two orientations and individual sites for the remaining atoms of this unit, denoted S1 and C3 for the major orientation, and S3 and C1 for the minor orientation. The refined site occupancies for the two orientations were 0.798 (3) and 0.202 (3).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999). Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT for (I), (II); DIRAX/LSQ (Duisenberg et al., 2000) for (III). Data reduction: DENZO and COLLECT for (I), (II); EVALCCD (Duisenberg et al., 2003) for (III). For all compounds, program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown.
[Figure 4] Fig. 4. Part of the crystal structure of compound (II), showing the formation of a C(5) chain along [101]. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown, and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1/2 + x, 1/2 - y, 1/2 + z) and (1/2 + x, 1/2 - y, -1/2 + z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of compound (III), showing the formation of an R22(12) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, 1 - z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded sheet parallel to (102). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) (E)-2-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile top
Crystal data top
C16H15NO3SF(000) = 632
Mr = 301.36Dx = 1.413 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3228 reflections
a = 22.5423 (6) Åθ = 3.6–27.5°
b = 8.4647 (3) ŵ = 0.24 mm1
c = 7.4243 (2) ÅT = 120 K
β = 91.510 (2)°Block, colourless
V = 1416.17 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3228 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
φ and ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.920, Tmax = 0.977l = 99
17457 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0444P]
where P = (Fo2 + 2Fc2)/3
3228 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C16H15NO3SV = 1416.17 (7) Å3
Mr = 301.36Z = 4
MonoclinicP21/cMo Kα radiation
a = 22.5423 (6) ŵ = 0.24 mm1
b = 8.4647 (3) ÅT = 120 K
c = 7.4243 (2) Å0.30 × 0.20 × 0.10 mm
β = 91.510 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2538 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.977Rint = 0.041
17457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.12Δρmax = 0.40 e Å3
3228 reflectionsΔρmin = 0.43 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.365337 (18)0.03283 (5)0.35486 (6)0.02416 (15)
C30.43017 (7)0.1966 (2)0.2500 (2)0.0224 (4)
C40.46269 (7)0.0567 (2)0.2213 (2)0.0273 (4)
C50.43338 (7)0.0758 (2)0.2709 (2)0.0275 (4)
C20.37542 (7)0.16707 (19)0.3227 (2)0.0191 (3)
C270.33118 (7)0.28406 (18)0.3742 (2)0.0182 (3)
C2710.35150 (7)0.4454 (2)0.3625 (2)0.0205 (4)
N270.36949 (6)0.57108 (17)0.3475 (2)0.0285 (4)
C170.27596 (7)0.24530 (19)0.4285 (2)0.0184 (3)
C110.22779 (6)0.34124 (19)0.49727 (19)0.0174 (3)
C120.23237 (7)0.5027 (2)0.5352 (2)0.0187 (3)
C130.18419 (7)0.58327 (18)0.6037 (2)0.0176 (3)
O130.18495 (5)0.73973 (13)0.64863 (15)0.0215 (3)
C1310.23604 (7)0.8279 (2)0.6012 (2)0.0233 (4)
C140.13091 (7)0.50422 (19)0.6354 (2)0.0166 (3)
O140.08350 (5)0.58386 (12)0.70614 (14)0.0195 (3)
C1410.05347 (7)0.6835 (2)0.5761 (2)0.0245 (4)
C150.12678 (6)0.34192 (19)0.6026 (2)0.0168 (3)
O150.07431 (4)0.27269 (13)0.64579 (15)0.0206 (3)
C1510.07015 (7)0.10541 (19)0.6219 (2)0.0236 (4)
C160.17474 (7)0.26185 (18)0.5325 (2)0.0173 (3)
H30.44430.29930.22260.027*
H40.50120.05540.17220.033*
H50.44880.17970.26020.033*
H170.26710.13580.42010.022*
H120.26840.55730.51410.022*
H13A0.27150.78020.65770.035*
H13B0.23200.93700.64310.035*
H13C0.23980.82710.46990.035*
H14A0.08240.75220.51860.037*
H14C0.02400.74840.63670.037*
H14B0.03350.61770.48440.037*
H15A0.07550.07930.49470.035*
H15B0.03100.06900.65880.035*
H15C0.10100.05320.69570.035*
H160.17160.15190.50820.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0187 (2)0.0200 (2)0.0340 (3)0.00169 (16)0.00617 (18)0.00149 (17)
C30.0173 (8)0.0215 (9)0.0285 (9)0.0005 (6)0.0027 (7)0.0024 (7)
C40.0155 (9)0.0281 (10)0.0385 (11)0.0004 (7)0.0062 (7)0.0056 (8)
C50.0191 (9)0.0234 (9)0.0402 (11)0.0049 (7)0.0037 (7)0.0030 (8)
C20.0166 (8)0.0193 (8)0.0213 (8)0.0007 (6)0.0011 (6)0.0017 (6)
C270.0179 (8)0.0178 (8)0.0190 (8)0.0003 (6)0.0001 (6)0.0005 (6)
C2710.0155 (8)0.0248 (10)0.0214 (9)0.0035 (6)0.0045 (6)0.0006 (7)
N270.0247 (8)0.0226 (9)0.0386 (9)0.0001 (6)0.0077 (7)0.0028 (6)
C170.0180 (8)0.0170 (8)0.0202 (8)0.0001 (6)0.0011 (6)0.0016 (6)
C110.0178 (8)0.0188 (8)0.0158 (8)0.0018 (6)0.0010 (6)0.0005 (6)
C120.0164 (8)0.0200 (8)0.0199 (8)0.0014 (6)0.0021 (6)0.0003 (6)
C130.0202 (8)0.0156 (8)0.0169 (8)0.0016 (6)0.0001 (6)0.0003 (6)
O130.0200 (6)0.0166 (6)0.0282 (6)0.0010 (4)0.0056 (5)0.0038 (5)
C1310.0267 (9)0.0172 (8)0.0262 (9)0.0046 (7)0.0028 (7)0.0019 (7)
C140.0165 (8)0.0176 (8)0.0156 (8)0.0033 (6)0.0020 (6)0.0002 (6)
O140.0185 (6)0.0186 (6)0.0218 (6)0.0062 (4)0.0066 (5)0.0021 (5)
C1410.0213 (8)0.0228 (9)0.0296 (9)0.0059 (7)0.0023 (7)0.0050 (7)
C150.0149 (7)0.0197 (8)0.0158 (7)0.0009 (6)0.0008 (6)0.0016 (6)
O150.0153 (6)0.0181 (6)0.0287 (6)0.0016 (4)0.0057 (5)0.0018 (5)
C1510.0211 (9)0.0197 (9)0.0303 (9)0.0049 (7)0.0054 (7)0.0016 (7)
C160.0195 (8)0.0150 (8)0.0174 (8)0.0011 (6)0.0004 (6)0.0015 (6)
Geometric parameters (Å, º) top
S1—C51.7100 (17)C13—C141.400 (2)
S1—C21.7248 (17)O13—C1311.4243 (17)
C3—C21.383 (2)C131—H13A0.98
C3—C41.412 (2)C131—H13B0.98
C3—H30.95C131—H13C0.98
C4—C51.357 (2)C14—O141.3792 (17)
C4—H40.95C14—C151.398 (2)
C5—H50.95O14—C1411.4377 (19)
C2—C271.463 (2)C141—H14A0.98
C27—C171.359 (2)C141—H14C0.98
C27—C2711.443 (2)C141—H14B0.98
C271—N271.145 (2)C15—O151.3655 (17)
C17—C111.459 (2)C15—C161.389 (2)
C17—H170.95O15—C1511.4299 (19)
C11—C121.399 (2)C151—H15A0.98
C11—C161.402 (2)C151—H15B0.98
C12—C131.390 (2)C151—H15C0.98
C12—H120.95C16—H160.95
C13—O131.3658 (18)
C5—S1—C292.03 (8)O13—C131—H13A109.5
C2—C3—C4112.32 (15)O13—C131—H13B109.5
C2—C3—H3123.8H13A—C131—H13B109.5
C4—C3—H3123.8O13—C131—H13C109.5
C5—C4—C3113.16 (15)H13A—C131—H13C109.5
C5—C4—H4123.4H13B—C131—H13C109.5
C3—C4—H4123.4O14—C14—C13120.47 (14)
C4—C5—S1111.79 (13)O14—C14—C15119.86 (13)
C4—C5—H5124.1C15—C14—C13119.60 (13)
S1—C5—H5124.1C14—O14—C141112.76 (11)
C3—C2—C27126.95 (15)O14—C141—H14A109.5
C3—C2—S1110.71 (12)O14—C141—H14C109.5
C27—C2—S1122.31 (11)H14A—C141—H14C109.5
C17—C27—C271122.75 (14)O14—C141—H14B109.5
C17—C27—C2123.37 (15)H14A—C141—H14B109.5
C271—C27—C2113.88 (13)H14C—C141—H14B109.5
N27—C271—C27176.82 (17)O15—C15—C14115.80 (12)
C27—C17—C11131.72 (15)O15—C15—C16124.47 (14)
C27—C17—H17114.1C16—C15—C14119.72 (13)
C11—C17—H17114.1C15—O15—C151116.76 (12)
C12—C11—C16119.31 (13)O15—C151—H15A109.5
C12—C11—C17124.24 (14)O15—C151—H15B109.5
C16—C11—C17116.41 (14)H15A—C151—H15B109.5
C13—C12—C11119.90 (14)O15—C151—H15C109.5
C13—C12—H12120.1H15A—C151—H15C109.5
C11—C12—H12120.1H15B—C151—H15C109.5
O13—C13—C12124.05 (14)C15—C16—C11120.81 (15)
O13—C13—C14115.33 (13)C15—C16—H16119.6
C12—C13—C14120.61 (15)C11—C16—H16119.6
C13—O13—C131116.92 (12)
C2—C3—C4—C50.0 (2)C12—C13—O13—C1317.9 (2)
C3—C4—C5—S10.2 (2)C14—C13—O13—C131173.66 (13)
C2—S1—C5—C40.32 (15)O13—C13—C14—O140.4 (2)
C4—C3—C2—C27178.10 (15)C12—C13—C14—O14178.93 (13)
C4—C3—C2—S10.26 (18)O13—C13—C14—C15176.66 (13)
C5—S1—C2—C30.33 (13)C12—C13—C14—C151.8 (2)
C5—S1—C2—C27178.29 (14)C15—C14—O14—C141107.39 (16)
C3—C2—C27—C17173.35 (16)C13—C14—O14—C14175.54 (17)
S1—C2—C27—C179.0 (2)O14—C14—C15—O150.3 (2)
C3—C2—C27—C2716.7 (2)C13—C14—C15—O15176.77 (13)
S1—C2—C27—C271170.92 (12)O14—C14—C15—C16179.56 (13)
C271—C27—C17—C115.2 (3)C13—C14—C15—C162.5 (2)
C2—C27—C17—C11174.72 (15)C16—C15—O15—C1512.2 (2)
C27—C17—C11—C125.5 (3)C14—C15—O15—C151176.98 (13)
C27—C17—C11—C16176.90 (16)O15—C15—C16—C11177.93 (13)
C16—C11—C12—C131.3 (2)C14—C15—C16—C111.2 (2)
C17—C11—C12—C13178.78 (14)C12—C11—C16—C150.6 (2)
C11—C12—C13—O13178.39 (14)C17—C11—C16—C15178.35 (13)
C11—C12—C13—C140.0 (2)
(II) (E)-3-(4-bromophenyl)-2-(2-thienyl)acrylonitrile top
Crystal data top
C13H8BrNSF(000) = 576
Mr = 290.17Dx = 1.669 Mg m3
MonoclinicP21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2598 reflections
a = 3.8557 (2) Åθ = 2.4–27.5°
b = 24.0484 (7) ŵ = 3.71 mm1
c = 12.5466 (4) ÅT = 120 K
β = 96.877 (2)°Needle, colourless
V = 1154.99 (8) Å30.38 × 0.04 × 0.03 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2598 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 45
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3130
Tmin = 0.333, Tmax = 0.897l = 1616
12766 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.032P)2 + 0.6935P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2598 reflectionsΔρmax = 0.54 e Å3
147 parametersΔρmin = 0.76 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0211 (12)
Crystal data top
C13H8BrNSV = 1154.99 (8) Å3
Mr = 290.17Z = 4
MonoclinicP21/nMo Kα radiation
a = 3.8557 (2) ŵ = 3.71 mm1
b = 24.0484 (7) ÅT = 120 K
c = 12.5466 (4) Å0.38 × 0.04 × 0.03 mm
β = 96.877 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2598 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1983 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.897Rint = 0.059
12766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.09Δρmax = 0.54 e Å3
2598 reflectionsΔρmin = 0.76 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.2321 (3)0.14823 (4)0.54665 (9)0.0221 (3)0.798 (3)
C10.264 (6)0.13968 (19)0.5189 (9)0.025*0.202 (3)
C20.3661 (7)0.16218 (11)0.4236 (2)0.0207 (6)
C30.4157 (13)0.11210 (18)0.3703 (4)0.0246 (6)0.798 (3)
S30.4109 (14)0.10914 (14)0.3378 (3)0.025*0.202 (3)
C40.3362 (8)0.06369 (12)0.4311 (2)0.0246 (6)
C50.2416 (8)0.07953 (13)0.5257 (3)0.0287 (7)
C270.4262 (7)0.21857 (12)0.3872 (2)0.0190 (6)
C2710.5318 (7)0.22230 (12)0.2807 (2)0.0220 (7)
N270.6257 (7)0.22288 (11)0.1977 (2)0.0321 (7)
C170.4092 (7)0.26435 (12)0.4483 (2)0.0217 (6)
C110.4573 (7)0.32203 (12)0.4150 (2)0.0196 (6)
C120.3298 (7)0.34148 (12)0.3129 (2)0.0213 (6)
C130.3837 (7)0.39590 (12)0.2839 (2)0.0211 (6)
C140.5699 (7)0.43113 (12)0.3564 (2)0.0219 (7)
Br140.66118 (7)0.504938 (12)0.31339 (3)0.02715 (14)
C150.6937 (7)0.41383 (12)0.4589 (3)0.0251 (7)
C160.6312 (8)0.35932 (12)0.4881 (2)0.0249 (7)
H10.21220.16290.57620.030*0.202 (3)
H30.49350.11020.30140.029*0.798 (3)
H40.34910.02630.40760.029*
H50.18360.05350.57760.034*
H170.36130.25870.52000.026*
H120.20460.31700.26280.026*
H130.29330.40900.21470.025*
H150.81870.43870.50840.030*
H160.70830.34720.55910.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0225 (5)0.0252 (5)0.0195 (6)0.0007 (4)0.0058 (4)0.0004 (4)
C20.0172 (14)0.0268 (15)0.0179 (16)0.0008 (11)0.0013 (12)0.0009 (13)
C30.0257 (13)0.0286 (13)0.0185 (15)0.0005 (10)0.0009 (11)0.0006 (11)
C40.0257 (13)0.0286 (13)0.0185 (15)0.0005 (10)0.0009 (11)0.0006 (11)
C50.0211 (15)0.0374 (18)0.0268 (19)0.0053 (13)0.0005 (13)0.0072 (15)
C270.0148 (13)0.0295 (15)0.0126 (15)0.0007 (11)0.0009 (11)0.0026 (13)
C2710.0231 (15)0.0223 (15)0.0202 (18)0.0027 (12)0.0012 (13)0.0028 (13)
N270.0411 (16)0.0348 (15)0.0222 (16)0.0014 (13)0.0107 (13)0.0009 (13)
C170.0188 (14)0.0299 (16)0.0167 (16)0.0002 (12)0.0035 (12)0.0009 (13)
C110.0168 (14)0.0272 (15)0.0157 (16)0.0003 (12)0.0055 (12)0.0010 (13)
C120.0176 (14)0.0268 (16)0.0195 (17)0.0016 (12)0.0024 (12)0.0034 (13)
C130.0167 (14)0.0280 (15)0.0188 (17)0.0019 (12)0.0024 (12)0.0012 (13)
C140.0158 (14)0.0244 (15)0.0263 (18)0.0000 (11)0.0068 (12)0.0014 (14)
Br140.02422 (18)0.02505 (19)0.0323 (2)0.00274 (12)0.00387 (13)0.00046 (14)
C150.0217 (15)0.0301 (16)0.0232 (18)0.0013 (13)0.0016 (13)0.0073 (14)
C160.0243 (15)0.0325 (17)0.0177 (17)0.0040 (13)0.0014 (12)0.0003 (14)
Geometric parameters (Å, º) top
S1—C51.674 (3)C27—C2711.446 (4)
S1—C21.718 (3)C271—N271.143 (4)
C1—C21.411 (3)C17—C111.467 (4)
C1—C51.452 (3)C17—H170.95
C1—H10.95C11—C161.396 (4)
C2—C31.402 (5)C11—C121.397 (4)
C2—C271.458 (4)C12—C131.381 (4)
C2—S31.691 (3)C12—H120.95
C3—C41.445 (5)C13—C141.380 (4)
C3—H30.95C13—H130.95
S3—C41.652 (3)C14—C151.382 (4)
C4—C51.338 (4)C14—Br141.900 (3)
C4—H40.95C15—C161.390 (4)
C5—H50.95C15—H150.95
C27—C171.347 (4)C16—H160.95
C5—S1—C292.13 (15)C17—C27—C271120.9 (3)
C2—C1—C5117.2 (4)C17—C27—C2124.2 (3)
C2—C1—H1121.4C271—C27—C2114.8 (2)
C5—C1—H1121.4N27—C271—C27176.5 (3)
C3—C2—C198.2 (4)C27—C17—C11126.5 (3)
C3—C2—C27127.9 (3)C27—C17—H17116.7
C1—C2—C27133.9 (3)C11—C17—H17116.7
C1—C2—S3108.1 (3)C16—C11—C12118.4 (3)
C27—C2—S3118.0 (2)C16—C11—C17119.2 (3)
C3—C2—S1109.5 (3)C12—C11—C17122.4 (3)
C27—C2—S1122.6 (2)C13—C12—C11120.8 (3)
S3—C2—S1119.3 (2)C13—C12—H12119.6
C2—C3—C4113.0 (4)C11—C12—H12119.6
C2—C3—H3123.5C14—C13—C12119.4 (3)
C4—C3—H3123.5C14—C13—H13120.3
C4—S3—C290.5 (2)C12—C13—H13120.3
C5—C4—C3109.7 (3)C13—C14—C15121.5 (3)
C5—C4—S3122.0 (3)C13—C14—Br14119.1 (2)
C5—C4—H4125.2C15—C14—Br14119.4 (2)
C3—C4—H4125.2C14—C15—C16118.5 (3)
S3—C4—H4112.7C14—C15—H15120.7
C4—C5—C1102.0 (3)C16—C15—H15120.7
C4—C5—S1115.7 (2)C15—C16—C11121.2 (3)
C4—C5—H5122.1C15—C16—H16119.4
C1—C5—H5135.9C11—C16—H16119.4
S1—C5—H5122.1
C5—C1—C2—C31.3 (18)C2—C1—C5—S1177 (6)
C5—C1—C2—C27178.3 (7)C2—S1—C5—C40.6 (3)
C5—C1—C2—S34 (2)C2—S1—C5—C12 (4)
C5—C1—C2—S1176 (7)C3—C2—C27—C17172.3 (4)
C5—S1—C2—C30.3 (3)C1—C2—C27—C174.0 (15)
C5—S1—C2—C13 (5)S1—C2—C27—C175.2 (4)
C5—S1—C2—C27178.2 (2)S3—C2—C27—C17178.0 (3)
C5—S1—C2—S35.0 (3)C3—C2—C27—C2713.6 (5)
C1—C2—C3—C41.6 (11)C1—C2—C27—C271179.8 (15)
C27—C2—C3—C4178.9 (3)S3—C2—C27—C2712.1 (4)
S3—C2—C3—C4154 (2)S1—C2—C27—C271178.9 (2)
S1—C2—C3—C41.1 (4)C271—C27—C17—C116.2 (5)
C3—C2—S3—C421.0 (16)C2—C27—C17—C11178.1 (3)
C1—C2—S3—C45.0 (11)C27—C17—C11—C16142.4 (3)
C27—C2—S3—C4176.5 (2)C27—C17—C11—C1238.7 (4)
S1—C2—S3—C46.6 (4)C16—C11—C12—C131.9 (4)
C2—C3—C4—C51.5 (5)C17—C11—C12—C13179.2 (2)
C2—C3—C4—S3157.8 (18)C11—C12—C13—C140.9 (4)
C2—S3—C4—C56.4 (4)C12—C13—C14—C152.4 (4)
C2—S3—C4—C316.7 (13)C12—C13—C14—Br14177.1 (2)
C3—C4—C5—C10.6 (11)C13—C14—C15—C160.9 (4)
S3—C4—C5—C14.9 (11)Br14—C14—C15—C16178.5 (2)
C3—C4—C5—S11.2 (4)C14—C15—C16—C112.0 (4)
S3—C4—C5—S14.2 (4)C12—C11—C16—C153.4 (4)
C2—C1—C5—C40.5 (19)C17—C11—C16—C15177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N27i0.952.553.450 (4)159
Symmetry code: (i) x1/2, y+1/2, z+1/2.
(III) (E)-3-phenyl-2-(3-thienyl)acrylonitrile top
Crystal data top
C13H9NSF(000) = 440
Mr = 211.27Dx = 1.360 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2368 reflections
a = 9.6280 (11) Åθ = 5.3–27.5°
b = 5.7190 (3) ŵ = 0.27 mm1
c = 19.247 (2) ÅT = 120 K
β = 103.129 (7)°Block, yellow
V = 1032.09 (17) Å30.49 × 0.31 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1788 reflections with I > 2σ(I)
Radiation source: Bruker Nonius FR591 rotating anodeRint = 0.036
φ and ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
h = 1212
Tmin = 0.878, Tmax = 0.947k = 77
24963 measured reflectionsl = 2425
2368 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1146P)2 + 1.443P]
where P = (Fo2 + 2Fc2)/3
2368 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C13H9NSV = 1032.09 (17) Å3
Mr = 211.27Z = 4
MonoclinicP21/cMo Kα radiation
a = 9.6280 (11) ŵ = 0.27 mm1
b = 5.7190 (3) ÅT = 120 K
c = 19.247 (2) Å0.49 × 0.31 × 0.20 mm
β = 103.129 (7)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2368 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
1788 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.947Rint = 0.036
24963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
2368 reflectionsΔρmin = 0.67 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18654 (8)0.46218 (15)0.47177 (4)0.0376 (3)
C20.3419 (3)0.3547 (5)0.52137 (15)0.0319 (6)
C30.3987 (3)0.4916 (5)0.57933 (14)0.0269 (6)
C40.3108 (3)0.6931 (5)0.58268 (14)0.0283 (6)
C50.1886 (3)0.7005 (5)0.52663 (13)0.0285 (6)
C370.5316 (3)0.4330 (5)0.63047 (14)0.0259 (6)
C3710.5959 (3)0.2150 (5)0.61653 (14)0.0302 (6)
N370.6417 (3)0.0398 (4)0.60331 (14)0.0381 (6)
C170.5907 (3)0.5662 (5)0.68726 (14)0.0270 (6)
C110.7234 (3)0.5391 (4)0.74236 (13)0.0243 (5)
C120.8195 (3)0.3550 (5)0.74831 (15)0.0302 (6)
C130.9417 (3)0.3504 (5)0.80161 (15)0.0314 (6)
C140.9721 (3)0.5248 (5)0.85060 (13)0.0278 (6)
C150.8791 (3)0.7136 (5)0.84729 (14)0.0279 (6)
C160.7549 (3)0.7200 (5)0.79274 (14)0.0271 (6)
H20.38490.21440.51020.038*
H40.33300.80870.61890.034*
H50.11770.81920.52000.034*
H170.53720.70180.69270.032*
H120.80040.23010.71500.036*
H131.00590.22300.80420.038*
H141.05690.51820.88720.033*
H150.89960.83590.88150.033*
H160.69120.84840.78980.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0342 (4)0.0468 (5)0.0295 (4)0.0054 (3)0.0021 (3)0.0012 (3)
C20.0313 (13)0.0355 (15)0.0304 (13)0.0022 (12)0.0101 (11)0.0026 (11)
C30.0229 (12)0.0362 (14)0.0229 (12)0.0037 (10)0.0078 (10)0.0043 (10)
C40.0282 (13)0.0327 (14)0.0240 (12)0.0011 (10)0.0057 (10)0.0002 (10)
C50.0311 (13)0.0344 (14)0.0215 (12)0.0061 (11)0.0090 (10)0.0027 (10)
C370.0246 (12)0.0292 (13)0.0247 (12)0.0032 (10)0.0075 (10)0.0007 (10)
C3710.0295 (13)0.0306 (14)0.0304 (13)0.0038 (11)0.0068 (11)0.0034 (11)
N370.0415 (14)0.0319 (13)0.0397 (14)0.0010 (11)0.0065 (11)0.0073 (11)
C170.0254 (12)0.0290 (13)0.0283 (13)0.0003 (10)0.0098 (10)0.0022 (10)
C110.0243 (12)0.0283 (13)0.0212 (12)0.0050 (9)0.0070 (9)0.0007 (9)
C120.0332 (14)0.0268 (13)0.0320 (13)0.0003 (11)0.0103 (11)0.0051 (11)
C130.0295 (13)0.0318 (14)0.0352 (14)0.0048 (11)0.0121 (11)0.0027 (11)
C140.0192 (11)0.0433 (16)0.0195 (11)0.0022 (10)0.0016 (9)0.0050 (10)
C150.0304 (13)0.0304 (13)0.0231 (12)0.0042 (10)0.0067 (10)0.0059 (10)
C160.0245 (12)0.0298 (13)0.0273 (12)0.0005 (10)0.0066 (10)0.0031 (10)
Geometric parameters (Å, º) top
S1—C21.696 (3)C17—H170.95
S1—C51.722 (3)C11—C121.389 (4)
C2—C31.371 (4)C11—C161.403 (4)
C2—H20.95C12—C131.374 (4)
C3—C41.440 (4)C12—H120.95
C3—C371.464 (4)C13—C141.358 (4)
C4—C51.405 (4)C13—H130.95
C4—H40.95C14—C151.395 (4)
C5—H50.95C14—H140.95
C37—C171.348 (4)C15—C161.401 (4)
C37—C3711.444 (4)C15—H150.95
C371—N371.146 (4)C16—H160.95
C17—C111.471 (4)
C2—S1—C593.22 (14)C11—C17—H17114.2
C3—C2—S1112.9 (2)C12—C11—C16117.8 (2)
C3—C2—H2123.6C12—C11—C17126.3 (2)
S1—C2—H2123.6C16—C11—C17115.9 (2)
C2—C3—C4111.3 (2)C13—C12—C11121.2 (2)
C2—C3—C37122.9 (3)C13—C12—H12119.4
C4—C3—C37125.8 (2)C11—C12—H12119.4
C5—C4—C3112.9 (2)C14—C13—C12121.2 (3)
C5—C4—H4123.6C14—C13—H13119.4
C3—C4—H4123.6C12—C13—H13119.4
C4—C5—S1109.7 (2)C13—C14—C15120.1 (2)
C4—C5—H5125.1C13—C14—H14119.9
S1—C5—H5125.1C15—C14—H14119.9
C17—C37—C371121.2 (3)C14—C15—C16119.0 (2)
C17—C37—C3124.0 (3)C14—C15—H15120.5
C371—C37—C3114.7 (2)C16—C15—H15120.5
N37—C371—C37177.1 (3)C15—C16—C11120.8 (2)
C37—C17—C11131.5 (3)C15—C16—H16119.6
C37—C17—H17114.2C11—C16—H16119.6
C5—S1—C2—C30.0 (2)C3—C37—C17—C11178.1 (2)
S1—C2—C3—C40.2 (3)C37—C17—C11—C121.7 (5)
S1—C2—C3—C37179.25 (19)C37—C17—C11—C16177.4 (3)
C2—C3—C4—C50.4 (3)C16—C11—C12—C130.2 (4)
C37—C3—C4—C5179.1 (2)C17—C11—C12—C13178.9 (2)
C3—C4—C5—S10.4 (3)C11—C12—C13—C140.5 (4)
C2—S1—C5—C40.2 (2)C12—C13—C14—C150.3 (4)
C2—C3—C37—C17179.0 (3)C13—C14—C15—C160.2 (4)
C4—C3—C37—C171.6 (4)C14—C15—C16—C110.5 (4)
C2—C3—C37—C3712.0 (4)C12—C11—C16—C150.3 (4)
C4—C3—C37—C371177.3 (2)C17—C11—C16—C15179.5 (2)
C371—C37—C17—C112.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N37i0.952.593.324 (5)135
C13—H13···Cgii0.952.863.566 (4)132
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC16H15NO3SC13H8BrNSC13H9NS
Mr301.36290.17211.27
Crystal system, space groupMonoclinicP21/cMonoclinicP21/nMonoclinicP21/c
Temperature (K)120120120
a, b, c (Å)22.5423 (6), 8.4647 (3), 7.4243 (2)3.8557 (2), 24.0484 (7), 12.5466 (4)9.6280 (11), 5.7190 (3), 19.247 (2)
β (°) 91.510 (2) 96.877 (2) 103.129 (7)
V3)1416.17 (7)1154.99 (8)1032.09 (17)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.243.710.27
Crystal size (mm)0.30 × 0.20 × 0.100.38 × 0.04 × 0.030.49 × 0.31 × 0.20
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
Tmin, Tmax0.920, 0.9770.333, 0.8970.878, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
17457, 3228, 2538 12766, 2598, 1983 24963, 2368, 1788
Rint0.0410.0590.036
(sin θ/λ)max1)0.6490.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.12 0.040, 0.081, 1.09 0.067, 0.206, 1.07
No. of reflections322825982368
No. of parameters193147136
No. of restraints040
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.430.54, 0.760.57, 0.67

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DIRAX/LSQ (Duisenberg et al., 2000), DENZO and COLLECT, EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
C27—C2711.443 (2)C271—N271.145 (2)
O13—C13—C12124.05 (14)O14—C14—C15119.86 (13)
O13—C13—C14115.33 (13)O15—C15—C14115.80 (12)
O14—C14—C13120.47 (14)O15—C15—C16124.47 (14)
S1—C2—C27—C179.0 (2)C12—C13—O13—C1317.9 (2)
C2—C27—C17—C11174.72 (15)C13—C14—O14—C14175.54 (17)
C27—C17—C11—C125.5 (3)C16—C15—O15—C1512.2 (2)
Selected geometric parameters (Å, º) for (II) top
C27—C2711.446 (4)C271—N271.143 (4)
S1—C2—C27—C175.2 (4)C27—C17—C11—C1238.7 (4)
C2—C27—C17—C11178.1 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N27i0.952.553.450 (4)159
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (III) top
C37—C3711.444 (4)C371—N371.146 (4)
C2—C3—C37—C17179.0 (3)C37—C17—C11—C121.7 (5)
C3—C37—C17—C11178.1 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N37i0.952.593.324 (5)135
C13—H13···Cgii0.952.863.566 (4)132
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC National X-ray Crystallography Service. JQ and DC thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639–o3641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStuart, J. G., Quast, M. J., Martin, G. E., Lynch, V. M., Simonsen, S. H., Lee, M. L., Castle, R. N., Dallas, J. L., John, B. K. & Johnson, L. F. (1986). J. Heterocycl. Chem. 23, 1215–1234.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds