organic compounds
5-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)-3-methyl-2-(methylsulfanyl)-6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-one monohydrate: complex sheets generated by multiple hydrogen bonds
aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria, Torobajo, AA 1175, Pasto, Colombia, bGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
In the title compound, C22H23N3O3S·H2O, the non-aromatic carbocyclic ring adopts a half-chair conformation. The molecules are linked into complex sheets by a combination of one N—H⋯O hydrogen bond and three O—H⋯O hydrogen bonds.
Comment
We have recently reported the preparation of new fused heterocyclic pyrimidine derivatives, such as pyrimido[4,5-b]quinolines, by multicomponent reactions between 6-aminopyrimidine derivatives, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and aryl (Quiroga et al., 2006). The extension of this method, with replacement of the aldehyde component by a glyoxal derivative (see scheme), has now provided the title pyrrolo[2,3-d]pyrimidine compound, (I) (Fig. 1), whose molecular and supramolecular structures are reported here.
The bond distances (Table 1) show evidence for strong bond fixation, both within the heterocyclic rings and in the non-aromatic carbocyclic ring; for the atom sequence C51–C56 within this ring, the ring-puckering parameters (Cremer & Pople, 1975) are θ = 52.2 (3)° and φ = 154.4 (4)°. These parameters are very close to the ideal values for the half-chair conformation, viz. θ = 50.8° and φ = (60n + 30)°. Atoms C5, C51, C52, C55 and C56 are almost coplanar, but atoms C53 and C54 deviate from this plane by 0.345 (2) and 0.352 (2) Å, respectively, on opposite sides of the reference plane. The aryl ring makes a dihedral angle of 16.0 (2)° with the pyrrole ring, while methyl atom C21 is almost coplanar with the adjacent pyrimidine ring.
Within the selected ), the molecular components are linked by an O—H⋯O hydrogen bond. These two-component aggregates are linked into complex sheets by a combination of two further O—H⋯O hydrogen bonds and one N—H⋯O hydrogen bond (Table 2), each of which, considered in isolation, links pairs of aggregates into centrosymmetric motifs. Each pairwise combination of two such motifs generates a chain of edge-fused rings, and the combination of all three chains generates a complex sheet.
(Fig. 1We analyse, firstly, the formation of the three finite zero-dimensional substructures, and then their combinations to form three one-dimensional substructures. Water atom O1 at (x, y, z) acts as a hydrogen-bond donor, via H1B, to carbonyl atom O52 at (1 − x, 1 − y, 1 − z), so generating by inversion an R44(20) (Bernstein et al., 1995) ring centred at (, , ), which we denote motif A. Hydroxy atom O56 at (x, y, z) acts as a hydrogen-bond donor to water atom O1 at (−x, 1 − y, 1 − z), so generating by inversion a second and distinct R44(20) motif, this time centred at (0, , ), which we denote motif B. Finally, pyrrole atom N7 at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O52 at (−x, 1 − y, −z), so generating by inversion an R22(14) motif centred at (0, , 0), denoted motif C.
The combination of motifs A and B generates a chain of edge-fused rings, containing two types of R44(20) ring, running parallel to the [100] direction (Fig. 2). The combination of motifs B and C generates a chain of alternating R22(14) and R44(20) rings running parallel to the [001] direction (Fig. 3). Finally, the combination of motifs A and C generates a second chain of R22(14) and R44(20) rings, this time running parallel to the [101] direction (Fig. 4). The combination of any two of the [100], [101] and [001] chains suffices to generate a sheet parallel to (010). There are no direction-specific interactions between adjacent sheets.
Experimental
Equimolar quantities (1 mmol of each component) of 6-amino-3-methyl-2-(methylsulfanyl)pyrimidin-4(3H)-one, 5,5-dimethylcyclohexane-1,3-dione and phenylglyoxal hydrate were mixed, and the mixture was then placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 5 min at 600 W. The product mixture was extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol to give crystals of (I) suitable for single-crystal X-ray diffraction (m.p. 565–567 K, yield 45%). MS (EI 70 eV) m/z (%): 410 (27), 409 (M+, 100), 395 (19), 394 (75), 311 (27), 284 (43), 264 (13), 236 (9), 88 (19).
Crystal data
|
Refinement
|
|
Crystals of (I) are triclinic; the P was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2), and O—H distances of 0.82 (hydroxy) or 0.98 Å (water), and with Uiso(H) = kUeq(C,O), where k = 1.5 for O-bound and methyl H atoms, and 1.2 for all other H atoms.
Data collection: COLLECT (Hooft, 1999); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S0108270106027557/sk3043sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270106027557/sk3043Isup2.hkl
Equimolar quantities (1 mmol of each component) of 6-amino-3-methyl-2-(methylsulfanyl)pyrimidin-4(3H)-one, 5,5-dimethylcyclohexane-1,3-dione and phenylglyoxal hydrate were mixed, and the mixture was then placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 5 min at 600 W. The product mixture was extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol to give crystals of (I) suitable for single-crystal X-ray diffraction (m. p. 565–567 K, yield 45%). MS (EI 70 eV) m/z (%) 410?(27), 409 (M+, 100), 395?(19), 394?(75), 311?(27), 284?(43), 264 ?(13), 236?(9), 88?(19).
Crystals of (I) are triclinic; 1 was selected, and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2) and O—H distances of 0.82 (hydroxy) or 0.98 Å (water), and with Uiso(H) = kUeq(C,O), where k = 1.5 for O-bound and methyl H atoms, and 1.2 for all other H atoms.
PData collection: COLLECT (Hooft, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C22H23N3O3S·H2O | Z = 2 |
Mr = 427.51 | F(000) = 452 |
TriclinicP1 | Dx = 1.343 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.11880 (12) Å | Cell parameters from 4836 reflections |
b = 11.3095 (2) Å | θ = 3.6–27.5° |
c = 11.6526 (2) Å | µ = 0.19 mm−1 |
α = 97.5471 (10)° | T = 298 K |
β = 110.5868 (10)° | Lath, colourless |
γ = 104.4677 (11)° | 0.22 × 0.14 × 0.10 mm |
V = 1056.98 (3) Å3 |
Bruker–Nonius KappaCCD diffractometer | 4836 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 3874 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −14→14 |
Tmin = 0.949, Tmax = 0.982 | l = −15→15 |
26102 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0637P)2 + 0.7123P] where P = (Fo2 + 2Fc2)/3 |
4836 reflections | (Δ/σ)max = 0.002 |
272 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
C22H23N3O3S·H2O | γ = 104.4677 (11)° |
Mr = 427.51 | V = 1056.98 (3) Å3 |
TriclinicP1 | Z = 2 |
a = 9.11880 (12) Å | Mo Kα radiation |
b = 11.3095 (2) Å | µ = 0.19 mm−1 |
c = 11.6526 (2) Å | T = 298 K |
α = 97.5471 (10)° | 0.22 × 0.14 × 0.10 mm |
β = 110.5868 (10)° |
Bruker–Nonius KappaCCD diffractometer | 4836 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3874 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.982 | Rint = 0.049 |
26102 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.71 e Å−3 |
4836 reflections | Δρmin = −0.59 e Å−3 |
272 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1189 (2) | 0.81065 (15) | 0.11953 (16) | 0.0356 (4) | |
C2 | 0.2635 (3) | 0.86395 (19) | 0.2121 (2) | 0.0376 (4) | |
S2 | 0.37205 (8) | 1.02277 (6) | 0.23139 (7) | 0.0575 (2) | |
C21 | 0.2266 (4) | 1.0633 (2) | 0.1072 (3) | 0.0620 (7) | |
N3 | 0.3391 (2) | 0.80628 (16) | 0.30260 (16) | 0.0380 (4) | |
C31 | 0.5122 (3) | 0.8652 (2) | 0.3939 (2) | 0.0544 (6) | |
C4 | 0.2596 (2) | 0.6850 (2) | 0.31056 (18) | 0.0345 (4) | |
O4 | 0.33147 (19) | 0.64058 (16) | 0.39625 (14) | 0.0490 (4) | |
C4A | 0.0998 (2) | 0.62665 (18) | 0.21189 (17) | 0.0294 (4) | |
C5 | −0.0234 (2) | 0.50737 (18) | 0.17936 (17) | 0.0281 (4) | |
C51 | −0.0167 (2) | 0.41820 (17) | 0.26267 (17) | 0.0287 (4) | |
C52 | 0.1147 (2) | 0.36266 (17) | 0.29283 (17) | 0.0287 (4) | |
O52 | 0.20445 (16) | 0.36641 (14) | 0.23397 (13) | 0.0382 (3) | |
C53 | 0.1429 (2) | 0.30061 (19) | 0.40243 (19) | 0.0347 (4) | |
C54 | −0.0187 (2) | 0.22362 (18) | 0.40657 (19) | 0.0330 (4) | |
C541 | −0.1082 (3) | 0.1113 (2) | 0.2922 (2) | 0.0529 (6) | |
C542 | 0.0184 (3) | 0.1774 (2) | 0.5281 (2) | 0.0505 (6) | |
C55 | −0.1254 (2) | 0.30910 (19) | 0.40595 (19) | 0.0341 (4) | |
C56 | −0.1262 (2) | 0.39428 (17) | 0.31816 (17) | 0.0296 (4) | |
O56 | −0.24067 (18) | 0.45137 (15) | 0.29545 (14) | 0.0431 (4) | |
C6 | −0.1488 (2) | 0.50179 (17) | 0.06727 (17) | 0.0285 (4) | |
C61 | −0.3104 (2) | 0.40672 (17) | −0.00802 (17) | 0.0287 (4) | |
C62 | −0.3469 (3) | 0.2851 (2) | 0.0104 (2) | 0.0399 (5) | |
C63 | −0.5036 (3) | 0.1991 (2) | −0.0531 (2) | 0.0485 (5) | |
C64 | −0.6270 (3) | 0.2314 (2) | −0.1374 (2) | 0.0501 (6) | |
C65 | −0.5923 (3) | 0.3491 (2) | −0.1607 (2) | 0.0479 (5) | |
C66 | −0.4359 (2) | 0.43556 (19) | −0.0971 (2) | 0.0383 (5) | |
N7 | −0.10567 (18) | 0.61512 (14) | 0.03326 (14) | 0.0296 (3) | |
C7A | 0.0434 (2) | 0.69055 (18) | 0.12059 (17) | 0.0294 (4) | |
O1 | 0.4787 (2) | 0.6388 (3) | 0.64016 (18) | 0.0838 (8) | |
H21A | 0.2717 | 1.1497 | 0.1074 | 0.093* | |
H21B | 0.1261 | 1.0518 | 0.1201 | 0.093* | |
H21C | 0.2038 | 1.0102 | 0.0276 | 0.093* | |
H31C | 0.5735 | 0.8082 | 0.3893 | 0.082* | |
H31B | 0.5156 | 0.8845 | 0.4777 | 0.082* | |
H31A | 0.5603 | 0.9413 | 0.3741 | 0.082* | |
H53A | 0.2063 | 0.3650 | 0.4807 | 0.042* | |
H53B | 0.2076 | 0.2457 | 0.3962 | 0.042* | |
H54A | −0.1313 | 0.1407 | 0.2162 | 0.079* | |
H54B | −0.2101 | 0.0636 | 0.2942 | 0.079* | |
H54C | −0.0397 | 0.0588 | 0.2943 | 0.079* | |
H54D | 0.0749 | 0.2483 | 0.5998 | 0.076* | |
H54E | 0.0868 | 0.1248 | 0.5304 | 0.076* | |
H54F | −0.0833 | 0.1300 | 0.5305 | 0.076* | |
H55A | −0.2381 | 0.2567 | 0.3831 | 0.041* | |
H55B | −0.0862 | 0.3602 | 0.4910 | 0.041* | |
H56 | −0.2987 | 0.4295 | 0.3339 | 0.065* | |
H62 | −0.2643 | 0.2615 | 0.0665 | 0.048* | |
H63 | −0.5256 | 0.1189 | −0.0387 | 0.058* | |
H64 | −0.7332 | 0.1741 | −0.1783 | 0.060* | |
H65 | −0.6744 | 0.3705 | −0.2196 | 0.057* | |
H66 | −0.4142 | 0.5147 | −0.1142 | 0.046* | |
H7 | −0.1646 | 0.6341 | −0.0329 | 0.036* | |
H1A | 0.4434 | 0.6274 | 0.5486 | 0.126* | |
H1B | 0.5693 | 0.6029 | 0.6611 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0341 (9) | 0.0334 (9) | 0.0373 (9) | 0.0087 (7) | 0.0118 (7) | 0.0135 (7) |
C2 | 0.0364 (10) | 0.0356 (10) | 0.0388 (11) | 0.0089 (8) | 0.0141 (9) | 0.0100 (9) |
S2 | 0.0515 (4) | 0.0375 (3) | 0.0631 (4) | 0.0010 (3) | 0.0090 (3) | 0.0105 (3) |
C21 | 0.0691 (17) | 0.0419 (13) | 0.0693 (17) | 0.0129 (12) | 0.0215 (14) | 0.0221 (12) |
N3 | 0.0319 (8) | 0.0402 (9) | 0.0338 (9) | 0.0079 (7) | 0.0071 (7) | 0.0067 (7) |
C31 | 0.0378 (12) | 0.0564 (15) | 0.0457 (13) | 0.0042 (11) | 0.0003 (10) | 0.0041 (11) |
C4 | 0.0327 (10) | 0.0443 (11) | 0.0278 (9) | 0.0133 (9) | 0.0120 (8) | 0.0115 (8) |
O4 | 0.0433 (8) | 0.0625 (10) | 0.0339 (8) | 0.0164 (8) | 0.0039 (7) | 0.0216 (7) |
C4A | 0.0283 (9) | 0.0367 (10) | 0.0285 (9) | 0.0130 (8) | 0.0135 (7) | 0.0139 (8) |
C5 | 0.0260 (8) | 0.0362 (10) | 0.0296 (9) | 0.0146 (7) | 0.0141 (7) | 0.0144 (8) |
C51 | 0.0271 (9) | 0.0344 (9) | 0.0289 (9) | 0.0129 (7) | 0.0113 (7) | 0.0155 (8) |
C52 | 0.0242 (8) | 0.0326 (9) | 0.0296 (9) | 0.0094 (7) | 0.0091 (7) | 0.0121 (7) |
O52 | 0.0319 (7) | 0.0566 (9) | 0.0381 (8) | 0.0231 (6) | 0.0177 (6) | 0.0220 (7) |
C53 | 0.0286 (9) | 0.0424 (11) | 0.0375 (10) | 0.0157 (8) | 0.0112 (8) | 0.0209 (9) |
C54 | 0.0314 (9) | 0.0306 (9) | 0.0380 (10) | 0.0092 (8) | 0.0124 (8) | 0.0168 (8) |
C541 | 0.0554 (14) | 0.0361 (12) | 0.0583 (15) | 0.0087 (10) | 0.0180 (12) | 0.0070 (11) |
C542 | 0.0508 (13) | 0.0543 (14) | 0.0556 (14) | 0.0198 (11) | 0.0213 (11) | 0.0375 (12) |
C55 | 0.0330 (9) | 0.0398 (10) | 0.0367 (10) | 0.0130 (8) | 0.0181 (8) | 0.0187 (9) |
C56 | 0.0276 (9) | 0.0332 (9) | 0.0303 (9) | 0.0122 (7) | 0.0113 (7) | 0.0116 (8) |
O56 | 0.0430 (8) | 0.0574 (9) | 0.0561 (9) | 0.0322 (7) | 0.0327 (7) | 0.0345 (8) |
C6 | 0.0278 (9) | 0.0344 (9) | 0.0299 (9) | 0.0140 (8) | 0.0140 (7) | 0.0147 (8) |
C61 | 0.0285 (9) | 0.0339 (9) | 0.0279 (9) | 0.0129 (8) | 0.0130 (7) | 0.0100 (7) |
C62 | 0.0400 (11) | 0.0385 (11) | 0.0394 (11) | 0.0145 (9) | 0.0102 (9) | 0.0157 (9) |
C63 | 0.0506 (13) | 0.0340 (11) | 0.0529 (13) | 0.0064 (10) | 0.0155 (11) | 0.0128 (10) |
C64 | 0.0357 (11) | 0.0410 (12) | 0.0565 (14) | 0.0031 (9) | 0.0084 (10) | 0.0030 (10) |
C65 | 0.0357 (11) | 0.0434 (12) | 0.0502 (13) | 0.0145 (9) | 0.0006 (9) | 0.0075 (10) |
C66 | 0.0343 (10) | 0.0344 (10) | 0.0412 (11) | 0.0121 (8) | 0.0074 (9) | 0.0130 (9) |
N7 | 0.0269 (7) | 0.0350 (8) | 0.0283 (8) | 0.0117 (6) | 0.0085 (6) | 0.0153 (6) |
C7A | 0.0273 (9) | 0.0351 (10) | 0.0291 (9) | 0.0118 (7) | 0.0121 (7) | 0.0125 (8) |
O1 | 0.0399 (9) | 0.183 (2) | 0.0625 (12) | 0.0545 (13) | 0.0307 (9) | 0.0738 (14) |
N1—C2 | 1.302 (3) | C53—H53A | 0.97 |
C2—N3 | 1.381 (3) | C53—H53B | 0.97 |
N3—C4 | 1.414 (3) | C54—C541 | 1.526 (3) |
C4—C4A | 1.422 (3) | C54—C542 | 1.530 (3) |
C4A—C5 | 1.427 (3) | C541—H54A | 0.96 |
C5—C6 | 1.382 (2) | C541—H54B | 0.96 |
C6—N7 | 1.395 (2) | C541—H54C | 0.96 |
N7—C7A | 1.353 (2) | C542—H54D | 0.96 |
C7A—N1 | 1.365 (2) | C542—H54E | 0.96 |
C4A—C7A | 1.386 (2) | C542—H54F | 0.96 |
C2—S2 | 1.762 (2) | C55—H55A | 0.97 |
S2—C21 | 1.786 (3) | C55—H55B | 0.97 |
C21—H21A | 0.96 | O56—H56 | 0.82 |
C21—H21B | 0.96 | C6—C61 | 1.466 (3) |
C21—H21C | 0.96 | C61—C66 | 1.391 (3) |
N3—C31 | 1.475 (3) | C61—C62 | 1.396 (3) |
C31—H31C | 0.96 | C62—C63 | 1.381 (3) |
C31—H31B | 0.96 | C62—H62 | 0.93 |
C31—H31A | 0.96 | C63—C64 | 1.374 (3) |
C4—O4 | 1.231 (2) | C63—H63 | 0.93 |
C5—C51 | 1.486 (2) | C64—C65 | 1.375 (3) |
C51—C52 | 1.446 (2) | C64—H64 | 0.93 |
C52—C53 | 1.511 (2) | C65—C66 | 1.382 (3) |
C53—C54 | 1.534 (3) | C65—H65 | 0.93 |
C54—C55 | 1.532 (3) | C66—H66 | 0.93 |
C55—C56 | 1.494 (2) | N7—H7 | 0.86 |
C56—C51 | 1.362 (2) | O1—H1A | 0.9799 |
C52—O52 | 1.236 (2) | O1—H1B | 0.9798 |
C56—O56 | 1.328 (2) | ||
C2—N1—C7A | 113.72 (17) | H54A—C541—H54B | 109.5 |
N1—C2—N3 | 124.66 (18) | C54—C541—H54C | 109.5 |
N1—C2—S2 | 119.72 (16) | H54A—C541—H54C | 109.5 |
N3—C2—S2 | 115.58 (15) | H54B—C541—H54C | 109.5 |
C2—S2—C21 | 101.03 (11) | C54—C542—H54D | 109.5 |
S2—C21—H21A | 109.5 | C54—C542—H54E | 109.5 |
S2—C21—H21B | 109.5 | H54D—C542—H54E | 109.5 |
H21A—C21—H21B | 109.5 | C54—C542—H54F | 109.5 |
S2—C21—H21C | 109.5 | H54D—C542—H54F | 109.5 |
H21A—C21—H21C | 109.5 | H54E—C542—H54F | 109.5 |
H21B—C21—H21C | 109.5 | C56—C55—C54 | 114.89 (15) |
C2—N3—C4 | 122.69 (17) | C56—C55—H55A | 108.5 |
C2—N3—C31 | 121.82 (18) | C54—C55—H55A | 108.5 |
C4—N3—C31 | 115.43 (17) | C56—C55—H55B | 108.5 |
N3—C31—H31C | 109.5 | C54—C55—H55B | 108.5 |
N3—C31—H31B | 109.5 | H55A—C55—H55B | 107.5 |
H31C—C31—H31B | 109.5 | O56—C56—C51 | 118.66 (16) |
N3—C31—H31A | 109.5 | O56—C56—C55 | 116.90 (15) |
H31C—C31—H31A | 109.5 | C51—C56—C55 | 124.43 (16) |
H31B—C31—H31A | 109.5 | C56—O56—H56 | 109.5 |
O4—C4—N3 | 119.56 (18) | C5—C6—N7 | 108.05 (16) |
O4—C4—C4A | 127.26 (19) | C5—C6—C61 | 131.68 (16) |
N3—C4—C4A | 113.17 (16) | N7—C6—C61 | 120.09 (15) |
C7A—C4A—C4 | 118.42 (17) | C66—C61—C62 | 117.25 (17) |
C7A—C4A—C5 | 107.83 (16) | C66—C61—C6 | 121.31 (17) |
C4—C4A—C5 | 133.70 (17) | C62—C61—C6 | 121.39 (16) |
C6—C5—C4A | 106.47 (15) | C63—C62—C61 | 121.15 (19) |
C6—C5—C51 | 129.57 (17) | C63—C62—H62 | 119.4 |
C4A—C5—C51 | 123.63 (16) | C61—C62—H62 | 119.4 |
C56—C51—C52 | 119.12 (16) | C64—C63—C62 | 120.4 (2) |
C56—C51—C5 | 120.88 (16) | C64—C63—H63 | 119.8 |
C52—C51—C5 | 119.86 (15) | C62—C63—H63 | 119.8 |
O52—C52—C51 | 122.41 (16) | C63—C64—C65 | 119.4 (2) |
O52—C52—C53 | 119.86 (16) | C63—C64—H64 | 120.3 |
C51—C52—C53 | 117.72 (15) | C65—C64—H64 | 120.3 |
C52—C53—C54 | 112.82 (15) | C64—C65—C66 | 120.4 (2) |
C52—C53—H53A | 109.0 | C64—C65—H65 | 119.8 |
C54—C53—H53A | 109.0 | C66—C65—H65 | 119.8 |
C52—C53—H53B | 109.0 | C65—C66—C61 | 121.31 (19) |
C54—C53—H53B | 109.0 | C65—C66—H66 | 119.3 |
H53A—C53—H53B | 107.8 | C61—C66—H66 | 119.3 |
C541—C54—C542 | 109.74 (18) | C7A—N7—C6 | 109.42 (14) |
C541—C54—C55 | 110.70 (17) | C7A—N7—H7 | 125.3 |
C542—C54—C55 | 108.64 (17) | C6—N7—H7 | 125.3 |
C541—C54—C53 | 109.43 (18) | N7—C7A—N1 | 124.78 (16) |
C542—C54—C53 | 109.92 (16) | N7—C7A—C4A | 108.20 (16) |
C55—C54—C53 | 108.39 (15) | N1—C7A—C4A | 126.96 (17) |
C54—C541—H54A | 109.5 | H1A—O1—H1B | 101.7 |
C54—C541—H54B | 109.5 | ||
C7A—N1—C2—N3 | 1.6 (3) | C542—C54—C55—C56 | 160.74 (17) |
C7A—N1—C2—S2 | −175.66 (14) | C53—C54—C55—C56 | 41.3 (2) |
N1—C2—S2—C21 | 2.6 (2) | C52—C51—C56—O56 | 176.22 (17) |
N3—C2—S2—C21 | −174.90 (17) | C5—C51—C56—O56 | 0.6 (3) |
N1—C2—N3—C4 | −5.8 (3) | C52—C51—C56—C55 | −2.6 (3) |
S2—C2—N3—C4 | 171.58 (15) | C5—C51—C56—C55 | −178.16 (18) |
N1—C2—N3—C31 | 171.1 (2) | C54—C55—C56—O56 | 167.00 (17) |
S2—C2—N3—C31 | −11.5 (3) | C54—C55—C56—C51 | −14.2 (3) |
C2—N3—C4—O4 | −177.36 (19) | C4A—C5—C6—N7 | −1.2 (2) |
C31—N3—C4—O4 | 5.5 (3) | C51—C5—C6—N7 | 172.33 (17) |
C2—N3—C4—C4A | 3.7 (3) | C4A—C5—C6—C61 | −176.16 (18) |
C31—N3—C4—C4A | −173.37 (18) | C51—C5—C6—C61 | −2.6 (3) |
O4—C4—C4A—C7A | −177.1 (2) | C5—C6—C61—C66 | 161.0 (2) |
N3—C4—C4A—C7A | 1.7 (3) | N7—C6—C61—C66 | −13.5 (3) |
O4—C4—C4A—C5 | 0.1 (4) | C5—C6—C61—C62 | −16.3 (3) |
N3—C4—C4A—C5 | 178.89 (19) | N7—C6—C61—C62 | 169.26 (17) |
C7A—C4A—C5—C6 | 1.5 (2) | C66—C61—C62—C63 | −2.9 (3) |
C4—C4A—C5—C6 | −175.9 (2) | C6—C61—C62—C63 | 174.44 (19) |
C7A—C4A—C5—C51 | −172.47 (16) | C61—C62—C63—C64 | 0.7 (4) |
C4—C4A—C5—C51 | 10.1 (3) | C62—C63—C64—C65 | 1.8 (4) |
C6—C5—C51—C56 | −61.4 (3) | C63—C64—C65—C66 | −2.0 (4) |
C4A—C5—C51—C56 | 111.2 (2) | C64—C65—C66—C61 | −0.3 (4) |
C6—C5—C51—C52 | 123.1 (2) | C62—C61—C66—C65 | 2.7 (3) |
C4A—C5—C51—C52 | −64.4 (2) | C6—C61—C66—C65 | −174.7 (2) |
C56—C51—C52—O52 | 170.12 (18) | C5—C6—N7—C7A | 0.4 (2) |
C5—C51—C52—O52 | −14.3 (3) | C61—C6—N7—C7A | 176.08 (16) |
C56—C51—C52—C53 | −11.1 (3) | C6—N7—C7A—N1 | −176.78 (17) |
C5—C51—C52—C53 | 164.49 (17) | C6—N7—C7A—C4A | 0.6 (2) |
O52—C52—C53—C54 | −140.24 (19) | C2—N1—C7A—N7 | −178.74 (18) |
C51—C52—C53—C54 | 41.0 (2) | C2—N1—C7A—C4A | 4.4 (3) |
C52—C53—C54—C541 | 66.4 (2) | C4—C4A—C7A—N7 | 176.59 (16) |
C52—C53—C54—C542 | −172.99 (18) | C5—C4A—C7A—N7 | −1.3 (2) |
C52—C53—C54—C55 | −54.4 (2) | C4—C4A—C7A—N1 | −6.1 (3) |
C541—C54—C55—C56 | −78.7 (2) | C5—C4A—C7A—N1 | 175.97 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.98 | 1.76 | 2.688 (3) | 157 |
O1—H1B···O52i | 0.98 | 1.90 | 2.762 (3) | 145 |
N7—H7···O52ii | 0.86 | 2.24 | 2.974 (2) | 143 |
O56—H56···O1iii | 0.82 | 1.78 | 2.560 (3) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H23N3O3S·H2O |
Mr | 427.51 |
Crystal system, space group | TriclinicP1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.11880 (12), 11.3095 (2), 11.6526 (2) |
α, β, γ (°) | 97.5471 (10), 110.5868 (10), 104.4677 (11) |
V (Å3) | 1056.98 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.22 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.949, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26102, 4836, 3874 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.144, 1.01 |
No. of reflections | 4836 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.59 |
Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
N1—C2 | 1.302 (3) | C2—S2 | 1.762 (2) |
C2—N3 | 1.381 (3) | S2—C21 | 1.786 (3) |
N3—C4 | 1.414 (3) | C51—C52 | 1.446 (2) |
C4—C4A | 1.422 (3) | C52—C53 | 1.511 (2) |
C4A—C5 | 1.427 (3) | C53—C54 | 1.534 (3) |
C5—C6 | 1.382 (2) | C54—C55 | 1.532 (3) |
C6—N7 | 1.395 (2) | C55—C56 | 1.494 (2) |
N7—C7A | 1.353 (2) | C56—C51 | 1.362 (2) |
C7A—N1 | 1.365 (2) | C52—O52 | 1.236 (2) |
C4A—C7A | 1.386 (2) | C56—O56 | 1.328 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.98 | 1.76 | 2.688 (3) | 157 |
O1—H1B···O52i | 0.98 | 1.90 | 2.762 (3) | 145 |
N7—H7···O52ii | 0.86 | 2.24 | 2.974 (2) | 143 |
O56—H56···O1iii | 0.82 | 1.78 | 2.560 (3) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1. |
Acknowledgements
X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. The authors thank the staff for all their help and advice. JC and JMT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), and the Universidad de Jaén for financial support; JMT also thanks the Universidad de Jaén for a scholarship grant supporting a short stay at the EPSRC National X-ray Crystallography Service. JQ and SC thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and UDENAR (Universidad de Nariño, Colombia) for financial support.
References
Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27–30. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
We have recently reported the preparation of new fused heterocyclic pyrimidine derivatives, such as pyrimido[4,5-b]quinolines, by multicomponent reactions between 6-aminopyrimidine derivatives, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and aryl aldehydes (Quiroga et al., 2006). The extension of this method, with replacement of the aldehyde component by a glyoxal derivative (see scheme), has now provided the title pyrrolo[2,3-d]pyrimidine compound, (I) (Fig. 1), whose molecular and supramolecular structures are reported here.
The bond distances (Table 1) show evidence for strong bond fixation, both within the heterocyclic rings and in the non-aromatic carbocyclic ring; for the atom sequence C51–C56 within this ring, the ring-puckering parameters (Cremer & Pople, 1975) are θ = 52.2 (3)° and φ = 154.4 (4)°. These parameters are very close to the ideal values for the half-chair conformation, θ = 50.8° and φ = (60n + 30)°. Atoms C5, C51, C52, C55 and C56 are almost coplanar, but atoms C53 and C54 deviate from this plane by 0.345 (2) Å and 0.352 (2) Å, respectively, on opposite sides of the reference plane. The aryl ring makes a dihedral angle of 16.0 (2)° with the pyrrole ring, while the methyl atom C21 is almost coplanar with the adjacent pyrimidine ring.
Within the selected asymmetric unit (Fig. 1) the molecular components are linked by an O—H···O hydrogen bond. These two-component aggregates are linked into complex sheets by a combination of two further O—H···O hydrogen bonds and one N—H···O hydrogen bond (Table 2), each of which, considered in isolation, links pairs of aggregates into centrosymmetric motifs. Each pairwise combination of two such motifs generates a chain of edge-fused rings, and the combination of all three chains generates a complex sheet.
We analyse, firstly, the formation of the three finite, zero-dimensional substructures, and then their combinations to form three one-dimensional substructures. Water atom O1 at (x, y, z) acts as a hydrogen-bond donor, via H1B, to carbonyl atom O52 at (1 - x, 1 - y, 1 - z), so generating by inversion an R44(20) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2), which we denote motif A. Hydroxy atom O56 at (x, y, z) acts as a hydrogen-bond donor to water atom O1 at (-x, 1 - y, 1 - z), so generating by inversion a second and distinct R44(20) motif, this time centred at (0, 1/2, 1/2), which we denote motif B. Finally, pyrrole atom N7 at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O52 at (-x, 1 - y, -z), so generating by inversion an R22(14) motif centred at (0, 1/2, 0), denoted motif C.
The combination of motifs A and B generates a chain of edge-fused rings, containing two types of R44(20) ring, running parallel to the [100] direction (Fig. 2). The combination of motifs Band C generates a chain of alternating R22(14) and R44(20) rings running parallel to the [001] direction (Fig. 3). Finally, the combination of motifs A and C generates a second chain of R22(14) and R44(20) rings, this time running parallel to the [101] direction (Fig. 4). The combination of any two of the [100], [101] and [001] chains suffices to generate a sheet parallel to (010). There are no direction-specific interactions between adjacent sheets.