organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

5-(2-Hydr­­oxy-4,4-di­methyl-6-oxo­cyclo­hex-1-en­yl)-3-methyl-2-(methyl­sulfan­yl)-6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-one monohydrate: complex sheets generated by multiple hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria, Torobajo, AA 1175, Pasto, Colombia, bGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 14 July 2006; accepted 17 July 2006; online 11 August 2006)

In the title compound, C22H23N3O3S·H2O, the non-aromatic carbocyclic ring adopts a half-chair conformation. The mol­ecules are linked into complex sheets by a combination of one N—H⋯O hydrogen bond and three O—H⋯O hydrogen bonds.

Comment

We have recently reported the preparation of new fused heterocyclic pyrimidine derivatives, such as pyrimido[4,5-b]quinolines, by multicomponent reactions between 6-amino­pyrimidine derivatives, 5,5-dimethyl­cyclo­hexane-1,3-dione (dimedone) and aryl aldehydes (Quiroga et al., 2006[Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27-30.]). The extension of this method, with replacement of the aldehyde component by a glyoxal derivative (see scheme[link]), has now provided the title pyrrolo[2,3-d]pyrimidine compound, (I)[link] (Fig. 1[link]), whose mol­ecular and supra­molecular structures are reported here.

The bond distances (Table 1[link]) show evidence for strong bond fixation, both within the heterocyclic rings and in the non-aromatic carbocyclic ring; for the atom sequence C51–C56 within this ring, the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are θ = 52.2 (3)° and φ = 154.4 (4)°. These parameters are very close to the ideal values for the half-chair conformation, viz. θ = 50.8° and φ = (60n + 30)°. Atoms C5, C51, C52, C55 and C56 are almost coplanar, but atoms C53 and C54 deviate from this plane by 0.345 (2) and 0.352 (2) Å, respectively, on opposite sides of the reference plane. The aryl ring makes a dihedral angle of 16.0 (2)° with the pyrrole ring, while methyl atom C21 is almost coplanar with the adjacent pyrimidine ring.

[Scheme 1]

Within the selected asymmetric unit (Fig. 1[link]), the mol­ecular components are linked by an O—H⋯O hydrogen bond. These two-component aggregates are linked into complex sheets by a combination of two further O—H⋯O hydrogen bonds and one N—H⋯O hydrogen bond (Table 2[link]), each of which, considered in isolation, links pairs of aggregates into centrosymmetric motifs. Each pairwise combination of two such motifs generates a chain of edge-fused rings, and the combination of all three chains generates a complex sheet.

We analyse, firstly, the formation of the three finite zero-dimensional substructures, and then their combinations to form three one-dimensional substructures. Water atom O1 at (x, y, z) acts as a hydrogen-bond donor, via H1B, to carbonyl atom O52 at (1 − x, 1 − y, 1 − z), so generating by inversion an R44(20) (Bernstein et al., 1995[Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at ([1\over2], [1\over2], [1\over2]), which we denote motif A. Hydroxy atom O56 at (x, y, z) acts as a hydrogen-bond donor to water atom O1 at (−x, 1 − y, 1 − z), so generating by inversion a second and distinct R44(20) motif, this time centred at (0, [1\over2], [1\over2]), which we denote motif B. Finally, pyrrole atom N7 at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O52 at (−x, 1 − y, −z), so generating by inversion an R22(14) motif centred at (0, [1\over2], 0), denoted motif C.

The combination of motifs A and B generates a chain of edge-fused rings, containing two types of R44(20) ring, running parallel to the [100] direction (Fig. 2[link]). The combination of motifs B and C generates a chain of alternating R22(14) and R44(20) rings running parallel to the [001] direction (Fig. 3[link]). Finally, the combination of motifs A and C generates a second chain of R22(14) and R44(20) rings, this time running parallel to the [101] direction (Fig. 4[link]). The combination of any two of the [100], [101] and [001] chains suffices to generate a sheet parallel to (010). There are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The independent mol­ecular components of (I)[link], showing the atom-labelling scheme and the O—H⋯O hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I)[link], showing the formation of a chain of R44(20) rings along [100] and built from O—H⋯O hydrogen bonds only. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I)[link], showing the formation of a chain of alternating R22(14) and R44(20) rings along [001] and built from O—H⋯O and N—H⋯O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I)[link], showing the formation of a chain of alternating R22(14) and R44(20) rings along [101] and built from O—H⋯O and N—H⋯O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

Equimolar quantities (1 mmol of each component) of 6-amino-3-methyl-2-(methyl­sulfan­yl)pyrimidin-4(3H)-one, 5,5-dimethyl­cyclo­hexane-1,3-dione and phenyl­glyoxal hydrate were mixed, and the mixture was then placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 5 min at 600 W. The product mixture was extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol to give crystals of (I)[link] suitable for single-crystal X-ray diffraction (m.p. 565–567 K, yield 45%). MS (EI 70 eV) m/z (%): 410 (27), 409 (M+, 100), 395 (19), 394 (75), 311 (27), 284 (43), 264 (13), 236 (9), 88 (19).

Crystal data
  • C22H23N3O3S·H2O

  • Mr = 427.51

  • Triclinic, [P \overline 1]

  • a = 9.11880 (12) Å

  • b = 11.3095 (2) Å

  • c = 11.6526 (2) Å

  • α = 97.5471 (10)°

  • β = 110.5868 (10)°

  • γ = 104.4677 (11)°

  • V = 1056.98 (3) Å3

  • Z = 2

  • Dx = 1.343 Mg m−3

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 (2) K

  • Lath, colourless

  • 0.22 × 0.14 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.982

  • 26102 measured reflections

  • 4836 independent reflections

  • 3874 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.144

  • S = 1.01

  • 4836 reflections

  • 272 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0637P)2 + 0.7123P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

N1—C2 1.302 (3)
C2—N3 1.381 (3)
N3—C4 1.414 (3)
C4—C4a 1.422 (3)
C4a—C5 1.427 (3)
C5—C6 1.382 (2)
C6—N7 1.395 (2)
N7—C7a 1.353 (2)
C7a—N1 1.365 (2)
C4a—C7a 1.386 (2)
C2—S2 1.762 (2)
S2—C21 1.786 (3)
C51—C52 1.446 (2)
C52—C53 1.511 (2)
C53—C54 1.534 (3)
C54—C55 1.532 (3)
C55—C56 1.494 (2)
C56—C51 1.362 (2)
C52—O52 1.236 (2)
C56—O56 1.328 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.98 1.76 2.688 (3) 157
O1—H1B⋯O52i 0.98 1.90 2.762 (3) 145
N7—H7⋯O52ii 0.86 2.24 2.974 (2) 143
O56—H56⋯O1iii 0.82 1.78 2.560 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1.

Crystals of (I)[link] are triclinic; the space group P[\overline{1}] was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2), and O—H distances of 0.82 (hydroxy) or 0.98 Å (water), and with Uiso(H) = kUeq(C,O), where k = 1.5 for O-bound and methyl H atoms, and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We have recently reported the preparation of new fused heterocyclic pyrimidine derivatives, such as pyrimido[4,5-b]quinolines, by multicomponent reactions between 6-aminopyrimidine derivatives, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and aryl aldehydes (Quiroga et al., 2006). The extension of this method, with replacement of the aldehyde component by a glyoxal derivative (see scheme), has now provided the title pyrrolo[2,3-d]pyrimidine compound, (I) (Fig. 1), whose molecular and supramolecular structures are reported here.

The bond distances (Table 1) show evidence for strong bond fixation, both within the heterocyclic rings and in the non-aromatic carbocyclic ring; for the atom sequence C51–C56 within this ring, the ring-puckering parameters (Cremer & Pople, 1975) are θ = 52.2 (3)° and φ = 154.4 (4)°. These parameters are very close to the ideal values for the half-chair conformation, θ = 50.8° and φ = (60n + 30)°. Atoms C5, C51, C52, C55 and C56 are almost coplanar, but atoms C53 and C54 deviate from this plane by 0.345 (2) Å and 0.352 (2) Å, respectively, on opposite sides of the reference plane. The aryl ring makes a dihedral angle of 16.0 (2)° with the pyrrole ring, while the methyl atom C21 is almost coplanar with the adjacent pyrimidine ring.

Within the selected asymmetric unit (Fig. 1) the molecular components are linked by an O—H···O hydrogen bond. These two-component aggregates are linked into complex sheets by a combination of two further O—H···O hydrogen bonds and one N—H···O hydrogen bond (Table 2), each of which, considered in isolation, links pairs of aggregates into centrosymmetric motifs. Each pairwise combination of two such motifs generates a chain of edge-fused rings, and the combination of all three chains generates a complex sheet.

We analyse, firstly, the formation of the three finite, zero-dimensional substructures, and then their combinations to form three one-dimensional substructures. Water atom O1 at (x, y, z) acts as a hydrogen-bond donor, via H1B, to carbonyl atom O52 at (1 - x, 1 - y, 1 - z), so generating by inversion an R44(20) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2), which we denote motif A. Hydroxy atom O56 at (x, y, z) acts as a hydrogen-bond donor to water atom O1 at (-x, 1 - y, 1 - z), so generating by inversion a second and distinct R44(20) motif, this time centred at (0, 1/2, 1/2), which we denote motif B. Finally, pyrrole atom N7 at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O52 at (-x, 1 - y, -z), so generating by inversion an R22(14) motif centred at (0, 1/2, 0), denoted motif C.

The combination of motifs A and B generates a chain of edge-fused rings, containing two types of R44(20) ring, running parallel to the [100] direction (Fig. 2). The combination of motifs Band C generates a chain of alternating R22(14) and R44(20) rings running parallel to the [001] direction (Fig. 3). Finally, the combination of motifs A and C generates a second chain of R22(14) and R44(20) rings, this time running parallel to the [101] direction (Fig. 4). The combination of any two of the [100], [101] and [001] chains suffices to generate a sheet parallel to (010). There are no direction-specific interactions between adjacent sheets.

Experimental top

Equimolar quantities (1 mmol of each component) of 6-amino-3-methyl-2-(methylsulfanyl)pyrimidin-4(3H)-one, 5,5-dimethylcyclohexane-1,3-dione and phenylglyoxal hydrate were mixed, and the mixture was then placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 5 min at 600 W. The product mixture was extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol to give crystals of (I) suitable for single-crystal X-ray diffraction (m. p. 565–567 K, yield 45%). MS (EI 70 eV) m/z (%) 410?(27), 409 (M+, 100), 395?(19), 394?(75), 311?(27), 284?(43), 264 ?(13), 236?(9), 88?(19).

Refinement top

Crystals of (I) are triclinic; space group P1 was selected, and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2) and O—H distances of 0.82 (hydroxy) or 0.98 Å (water), and with Uiso(H) = kUeq(C,O), where k = 1.5 for O-bound and methyl H atoms, and 1.2 for all other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components of (I), showing the atom-labelling scheme and the O—H···O hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a chain of R44(20) rings along [100] and built from O—H···O hydrogen bonds only. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of alternating R22(14) and R44(20) rings along [001] and built from O—H···O and N—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a chain of alternating R22(14) and R44(20) rings along [101] and built from O—H···O and N—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted.
5-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)-3-methyl-2-(methylsulfanyl)- 6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-one monohydrate top
Crystal data top
C22H23N3O3S·H2OZ = 2
Mr = 427.51F(000) = 452
TriclinicP1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.11880 (12) ÅCell parameters from 4836 reflections
b = 11.3095 (2) Åθ = 3.6–27.5°
c = 11.6526 (2) ŵ = 0.19 mm1
α = 97.5471 (10)°T = 298 K
β = 110.5868 (10)°Lath, colourless
γ = 104.4677 (11)°0.22 × 0.14 × 0.10 mm
V = 1056.98 (3) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4836 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.949, Tmax = 0.982l = 1515
26102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.7123P]
where P = (Fo2 + 2Fc2)/3
4836 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C22H23N3O3S·H2Oγ = 104.4677 (11)°
Mr = 427.51V = 1056.98 (3) Å3
TriclinicP1Z = 2
a = 9.11880 (12) ÅMo Kα radiation
b = 11.3095 (2) ŵ = 0.19 mm1
c = 11.6526 (2) ÅT = 298 K
α = 97.5471 (10)°0.22 × 0.14 × 0.10 mm
β = 110.5868 (10)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4836 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3874 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.982Rint = 0.049
26102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.71 e Å3
4836 reflectionsΔρmin = 0.59 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1189 (2)0.81065 (15)0.11953 (16)0.0356 (4)
C20.2635 (3)0.86395 (19)0.2121 (2)0.0376 (4)
S20.37205 (8)1.02277 (6)0.23139 (7)0.0575 (2)
C210.2266 (4)1.0633 (2)0.1072 (3)0.0620 (7)
N30.3391 (2)0.80628 (16)0.30260 (16)0.0380 (4)
C310.5122 (3)0.8652 (2)0.3939 (2)0.0544 (6)
C40.2596 (2)0.6850 (2)0.31056 (18)0.0345 (4)
O40.33147 (19)0.64058 (16)0.39625 (14)0.0490 (4)
C4A0.0998 (2)0.62665 (18)0.21189 (17)0.0294 (4)
C50.0234 (2)0.50737 (18)0.17936 (17)0.0281 (4)
C510.0167 (2)0.41820 (17)0.26267 (17)0.0287 (4)
C520.1147 (2)0.36266 (17)0.29283 (17)0.0287 (4)
O520.20445 (16)0.36641 (14)0.23397 (13)0.0382 (3)
C530.1429 (2)0.30061 (19)0.40243 (19)0.0347 (4)
C540.0187 (2)0.22362 (18)0.40657 (19)0.0330 (4)
C5410.1082 (3)0.1113 (2)0.2922 (2)0.0529 (6)
C5420.0184 (3)0.1774 (2)0.5281 (2)0.0505 (6)
C550.1254 (2)0.30910 (19)0.40595 (19)0.0341 (4)
C560.1262 (2)0.39428 (17)0.31816 (17)0.0296 (4)
O560.24067 (18)0.45137 (15)0.29545 (14)0.0431 (4)
C60.1488 (2)0.50179 (17)0.06727 (17)0.0285 (4)
C610.3104 (2)0.40672 (17)0.00802 (17)0.0287 (4)
C620.3469 (3)0.2851 (2)0.0104 (2)0.0399 (5)
C630.5036 (3)0.1991 (2)0.0531 (2)0.0485 (5)
C640.6270 (3)0.2314 (2)0.1374 (2)0.0501 (6)
C650.5923 (3)0.3491 (2)0.1607 (2)0.0479 (5)
C660.4359 (2)0.43556 (19)0.0971 (2)0.0383 (5)
N70.10567 (18)0.61512 (14)0.03326 (14)0.0296 (3)
C7A0.0434 (2)0.69055 (18)0.12059 (17)0.0294 (4)
O10.4787 (2)0.6388 (3)0.64016 (18)0.0838 (8)
H21A0.27171.14970.10740.093*
H21B0.12611.05180.12010.093*
H21C0.20381.01020.02760.093*
H31C0.57350.80820.38930.082*
H31B0.51560.88450.47770.082*
H31A0.56030.94130.37410.082*
H53A0.20630.36500.48070.042*
H53B0.20760.24570.39620.042*
H54A0.13130.14070.21620.079*
H54B0.21010.06360.29420.079*
H54C0.03970.05880.29430.079*
H54D0.07490.24830.59980.076*
H54E0.08680.12480.53040.076*
H54F0.08330.13000.53050.076*
H55A0.23810.25670.38310.041*
H55B0.08620.36020.49100.041*
H560.29870.42950.33390.065*
H620.26430.26150.06650.048*
H630.52560.11890.03870.058*
H640.73320.17410.17830.060*
H650.67440.37050.21960.057*
H660.41420.51470.11420.046*
H70.16460.63410.03290.036*
H1A0.44340.62740.54860.126*
H1B0.56930.60290.66110.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0341 (9)0.0334 (9)0.0373 (9)0.0087 (7)0.0118 (7)0.0135 (7)
C20.0364 (10)0.0356 (10)0.0388 (11)0.0089 (8)0.0141 (9)0.0100 (9)
S20.0515 (4)0.0375 (3)0.0631 (4)0.0010 (3)0.0090 (3)0.0105 (3)
C210.0691 (17)0.0419 (13)0.0693 (17)0.0129 (12)0.0215 (14)0.0221 (12)
N30.0319 (8)0.0402 (9)0.0338 (9)0.0079 (7)0.0071 (7)0.0067 (7)
C310.0378 (12)0.0564 (15)0.0457 (13)0.0042 (11)0.0003 (10)0.0041 (11)
C40.0327 (10)0.0443 (11)0.0278 (9)0.0133 (9)0.0120 (8)0.0115 (8)
O40.0433 (8)0.0625 (10)0.0339 (8)0.0164 (8)0.0039 (7)0.0216 (7)
C4A0.0283 (9)0.0367 (10)0.0285 (9)0.0130 (8)0.0135 (7)0.0139 (8)
C50.0260 (8)0.0362 (10)0.0296 (9)0.0146 (7)0.0141 (7)0.0144 (8)
C510.0271 (9)0.0344 (9)0.0289 (9)0.0129 (7)0.0113 (7)0.0155 (8)
C520.0242 (8)0.0326 (9)0.0296 (9)0.0094 (7)0.0091 (7)0.0121 (7)
O520.0319 (7)0.0566 (9)0.0381 (8)0.0231 (6)0.0177 (6)0.0220 (7)
C530.0286 (9)0.0424 (11)0.0375 (10)0.0157 (8)0.0112 (8)0.0209 (9)
C540.0314 (9)0.0306 (9)0.0380 (10)0.0092 (8)0.0124 (8)0.0168 (8)
C5410.0554 (14)0.0361 (12)0.0583 (15)0.0087 (10)0.0180 (12)0.0070 (11)
C5420.0508 (13)0.0543 (14)0.0556 (14)0.0198 (11)0.0213 (11)0.0375 (12)
C550.0330 (9)0.0398 (10)0.0367 (10)0.0130 (8)0.0181 (8)0.0187 (9)
C560.0276 (9)0.0332 (9)0.0303 (9)0.0122 (7)0.0113 (7)0.0116 (8)
O560.0430 (8)0.0574 (9)0.0561 (9)0.0322 (7)0.0327 (7)0.0345 (8)
C60.0278 (9)0.0344 (9)0.0299 (9)0.0140 (8)0.0140 (7)0.0147 (8)
C610.0285 (9)0.0339 (9)0.0279 (9)0.0129 (8)0.0130 (7)0.0100 (7)
C620.0400 (11)0.0385 (11)0.0394 (11)0.0145 (9)0.0102 (9)0.0157 (9)
C630.0506 (13)0.0340 (11)0.0529 (13)0.0064 (10)0.0155 (11)0.0128 (10)
C640.0357 (11)0.0410 (12)0.0565 (14)0.0031 (9)0.0084 (10)0.0030 (10)
C650.0357 (11)0.0434 (12)0.0502 (13)0.0145 (9)0.0006 (9)0.0075 (10)
C660.0343 (10)0.0344 (10)0.0412 (11)0.0121 (8)0.0074 (9)0.0130 (9)
N70.0269 (7)0.0350 (8)0.0283 (8)0.0117 (6)0.0085 (6)0.0153 (6)
C7A0.0273 (9)0.0351 (10)0.0291 (9)0.0118 (7)0.0121 (7)0.0125 (8)
O10.0399 (9)0.183 (2)0.0625 (12)0.0545 (13)0.0307 (9)0.0738 (14)
Geometric parameters (Å, º) top
N1—C21.302 (3)C53—H53A0.97
C2—N31.381 (3)C53—H53B0.97
N3—C41.414 (3)C54—C5411.526 (3)
C4—C4A1.422 (3)C54—C5421.530 (3)
C4A—C51.427 (3)C541—H54A0.96
C5—C61.382 (2)C541—H54B0.96
C6—N71.395 (2)C541—H54C0.96
N7—C7A1.353 (2)C542—H54D0.96
C7A—N11.365 (2)C542—H54E0.96
C4A—C7A1.386 (2)C542—H54F0.96
C2—S21.762 (2)C55—H55A0.97
S2—C211.786 (3)C55—H55B0.97
C21—H21A0.96O56—H560.82
C21—H21B0.96C6—C611.466 (3)
C21—H21C0.96C61—C661.391 (3)
N3—C311.475 (3)C61—C621.396 (3)
C31—H31C0.96C62—C631.381 (3)
C31—H31B0.96C62—H620.93
C31—H31A0.96C63—C641.374 (3)
C4—O41.231 (2)C63—H630.93
C5—C511.486 (2)C64—C651.375 (3)
C51—C521.446 (2)C64—H640.93
C52—C531.511 (2)C65—C661.382 (3)
C53—C541.534 (3)C65—H650.93
C54—C551.532 (3)C66—H660.93
C55—C561.494 (2)N7—H70.86
C56—C511.362 (2)O1—H1A0.9799
C52—O521.236 (2)O1—H1B0.9798
C56—O561.328 (2)
C2—N1—C7A113.72 (17)H54A—C541—H54B109.5
N1—C2—N3124.66 (18)C54—C541—H54C109.5
N1—C2—S2119.72 (16)H54A—C541—H54C109.5
N3—C2—S2115.58 (15)H54B—C541—H54C109.5
C2—S2—C21101.03 (11)C54—C542—H54D109.5
S2—C21—H21A109.5C54—C542—H54E109.5
S2—C21—H21B109.5H54D—C542—H54E109.5
H21A—C21—H21B109.5C54—C542—H54F109.5
S2—C21—H21C109.5H54D—C542—H54F109.5
H21A—C21—H21C109.5H54E—C542—H54F109.5
H21B—C21—H21C109.5C56—C55—C54114.89 (15)
C2—N3—C4122.69 (17)C56—C55—H55A108.5
C2—N3—C31121.82 (18)C54—C55—H55A108.5
C4—N3—C31115.43 (17)C56—C55—H55B108.5
N3—C31—H31C109.5C54—C55—H55B108.5
N3—C31—H31B109.5H55A—C55—H55B107.5
H31C—C31—H31B109.5O56—C56—C51118.66 (16)
N3—C31—H31A109.5O56—C56—C55116.90 (15)
H31C—C31—H31A109.5C51—C56—C55124.43 (16)
H31B—C31—H31A109.5C56—O56—H56109.5
O4—C4—N3119.56 (18)C5—C6—N7108.05 (16)
O4—C4—C4A127.26 (19)C5—C6—C61131.68 (16)
N3—C4—C4A113.17 (16)N7—C6—C61120.09 (15)
C7A—C4A—C4118.42 (17)C66—C61—C62117.25 (17)
C7A—C4A—C5107.83 (16)C66—C61—C6121.31 (17)
C4—C4A—C5133.70 (17)C62—C61—C6121.39 (16)
C6—C5—C4A106.47 (15)C63—C62—C61121.15 (19)
C6—C5—C51129.57 (17)C63—C62—H62119.4
C4A—C5—C51123.63 (16)C61—C62—H62119.4
C56—C51—C52119.12 (16)C64—C63—C62120.4 (2)
C56—C51—C5120.88 (16)C64—C63—H63119.8
C52—C51—C5119.86 (15)C62—C63—H63119.8
O52—C52—C51122.41 (16)C63—C64—C65119.4 (2)
O52—C52—C53119.86 (16)C63—C64—H64120.3
C51—C52—C53117.72 (15)C65—C64—H64120.3
C52—C53—C54112.82 (15)C64—C65—C66120.4 (2)
C52—C53—H53A109.0C64—C65—H65119.8
C54—C53—H53A109.0C66—C65—H65119.8
C52—C53—H53B109.0C65—C66—C61121.31 (19)
C54—C53—H53B109.0C65—C66—H66119.3
H53A—C53—H53B107.8C61—C66—H66119.3
C541—C54—C542109.74 (18)C7A—N7—C6109.42 (14)
C541—C54—C55110.70 (17)C7A—N7—H7125.3
C542—C54—C55108.64 (17)C6—N7—H7125.3
C541—C54—C53109.43 (18)N7—C7A—N1124.78 (16)
C542—C54—C53109.92 (16)N7—C7A—C4A108.20 (16)
C55—C54—C53108.39 (15)N1—C7A—C4A126.96 (17)
C54—C541—H54A109.5H1A—O1—H1B101.7
C54—C541—H54B109.5
C7A—N1—C2—N31.6 (3)C542—C54—C55—C56160.74 (17)
C7A—N1—C2—S2175.66 (14)C53—C54—C55—C5641.3 (2)
N1—C2—S2—C212.6 (2)C52—C51—C56—O56176.22 (17)
N3—C2—S2—C21174.90 (17)C5—C51—C56—O560.6 (3)
N1—C2—N3—C45.8 (3)C52—C51—C56—C552.6 (3)
S2—C2—N3—C4171.58 (15)C5—C51—C56—C55178.16 (18)
N1—C2—N3—C31171.1 (2)C54—C55—C56—O56167.00 (17)
S2—C2—N3—C3111.5 (3)C54—C55—C56—C5114.2 (3)
C2—N3—C4—O4177.36 (19)C4A—C5—C6—N71.2 (2)
C31—N3—C4—O45.5 (3)C51—C5—C6—N7172.33 (17)
C2—N3—C4—C4A3.7 (3)C4A—C5—C6—C61176.16 (18)
C31—N3—C4—C4A173.37 (18)C51—C5—C6—C612.6 (3)
O4—C4—C4A—C7A177.1 (2)C5—C6—C61—C66161.0 (2)
N3—C4—C4A—C7A1.7 (3)N7—C6—C61—C6613.5 (3)
O4—C4—C4A—C50.1 (4)C5—C6—C61—C6216.3 (3)
N3—C4—C4A—C5178.89 (19)N7—C6—C61—C62169.26 (17)
C7A—C4A—C5—C61.5 (2)C66—C61—C62—C632.9 (3)
C4—C4A—C5—C6175.9 (2)C6—C61—C62—C63174.44 (19)
C7A—C4A—C5—C51172.47 (16)C61—C62—C63—C640.7 (4)
C4—C4A—C5—C5110.1 (3)C62—C63—C64—C651.8 (4)
C6—C5—C51—C5661.4 (3)C63—C64—C65—C662.0 (4)
C4A—C5—C51—C56111.2 (2)C64—C65—C66—C610.3 (4)
C6—C5—C51—C52123.1 (2)C62—C61—C66—C652.7 (3)
C4A—C5—C51—C5264.4 (2)C6—C61—C66—C65174.7 (2)
C56—C51—C52—O52170.12 (18)C5—C6—N7—C7A0.4 (2)
C5—C51—C52—O5214.3 (3)C61—C6—N7—C7A176.08 (16)
C56—C51—C52—C5311.1 (3)C6—N7—C7A—N1176.78 (17)
C5—C51—C52—C53164.49 (17)C6—N7—C7A—C4A0.6 (2)
O52—C52—C53—C54140.24 (19)C2—N1—C7A—N7178.74 (18)
C51—C52—C53—C5441.0 (2)C2—N1—C7A—C4A4.4 (3)
C52—C53—C54—C54166.4 (2)C4—C4A—C7A—N7176.59 (16)
C52—C53—C54—C542172.99 (18)C5—C4A—C7A—N71.3 (2)
C52—C53—C54—C5554.4 (2)C4—C4A—C7A—N16.1 (3)
C541—C54—C55—C5678.7 (2)C5—C4A—C7A—N1175.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.981.762.688 (3)157
O1—H1B···O52i0.981.902.762 (3)145
N7—H7···O52ii0.862.242.974 (2)143
O56—H56···O1iii0.821.782.560 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H23N3O3S·H2O
Mr427.51
Crystal system, space groupTriclinicP1
Temperature (K)298
a, b, c (Å)9.11880 (12), 11.3095 (2), 11.6526 (2)
α, β, γ (°)97.5471 (10), 110.5868 (10), 104.4677 (11)
V3)1056.98 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.22 × 0.14 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.949, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
26102, 4836, 3874
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.01
No. of reflections4836
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.59

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
N1—C21.302 (3)C2—S21.762 (2)
C2—N31.381 (3)S2—C211.786 (3)
N3—C41.414 (3)C51—C521.446 (2)
C4—C4A1.422 (3)C52—C531.511 (2)
C4A—C51.427 (3)C53—C541.534 (3)
C5—C61.382 (2)C54—C551.532 (3)
C6—N71.395 (2)C55—C561.494 (2)
N7—C7A1.353 (2)C56—C511.362 (2)
C7A—N11.365 (2)C52—O521.236 (2)
C4A—C7A1.386 (2)C56—O561.328 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.981.762.688 (3)157
O1—H1B···O52i0.981.902.762 (3)145
N7—H7···O52ii0.862.242.974 (2)143
O56—H56···O1iii0.821.782.560 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. The authors thank the staff for all their help and advice. JC and JMT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), and the Universidad de Jaén for financial support; JMT also thanks the Universidad de Jaén for a scholarship grant supporting a short stay at the EPSRC National X-ray Crystallography Service. JQ and SC thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and UDENAR (Universidad de Nariño, Colombia) for financial support.

References

First citationBernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27–30.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds