metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Comparison of copper imine and amine podates: geometric consequences of podand size and donor type

CROSSMARK_Color_square_no_text.svg

aChemistry Department, The Open University, Milton Keynes MK7 6AA, England, and bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 11 August 2006; accepted 28 August 2006; online 12 September 2006)

The imine podands tris[­(2-nitro­benzyl­idene)­amino­ethyl]­amine and tris[­(2-nitro­benzyl­idene)­amino­propyl]­amine both stabilize copper(I), forming {tris[­(2-nitro­benzyl­idene)­amino­ethyl]­amine-κ4N}copper(I) perchlorate aceto­nitrile disolvate, [Cu(C27H27N7O6)]ClO4·2CH3CN, (II)[link], and {tris[­(2-nitro­benzyl­idene)­amino­propyl]­amine-κ4N}copper(I) perchlorate, [Cu(C30H33N7O6)]ClO4, (VI)[link], respectively. The larger propyl-based ligand is a poorer fit for the CuI ion. The reduced amine podand tris[­(2-nitro­benzyl)­amino­ethyl]­amine binds CuII and the resulting compound, chloro­{tris­[(2-nitro­benzyl)­amino­ethyl]­amine-κ4N}copper(II) chloride ethanol solvate, [Cu(C27H33N7O6)Cl]Cl·C2H5OH, (IV)[link], shows both intra- and inter­molecular hydrogen bonding, which gives rise to RRS or SSR conformations in the podand strands rather than the expected pseudo-threefold symmetry.

Comment

We have had a long-standing inter­est in the chemistry of both imine and amine cryptates derived from tris­(amino­ethyl)­amine (tren) and tris­(3-amino­isopropyl)­amine (trpn) [see, for example, McKee et al. (2003[McKee, V., Nelson, J. & Town, R. M. (2003). Chem. Soc. Rev. 32, 309-325.]) and Nelson et al. (1998[Nelson, J., McKee, V. & Morgan, G. G. (1998). Prog. Inorg. Chem. 47, 167-316.])]. We have investigated some simple podate complexes derived from the same amines in order to clarify the geometric requirements associated with each (Coyle, 1999[Coyle, J. L. (1999). PhD thesis, Open University, Milton Keynes, England.]). A search of the Cambridge Structural Database (Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) showed that, although many tris­(amino­ethyl)­amine/salicylate complexes have been investigated, surprisingly few simple podates with other substituted benz­aldehyde derivatives have been structurally characterized to date. In this paper, we compare the structures of two CuI podates, one derived from tris­(amino­ethyl)­amine (tren) and one from tris­(amino­propyl)­amine (trpn), with the CuII amine analogue of the smaller tren-based podate.

In podate and cryptate complexes with potential threefold symmetry, imine donors typically stabilize CuI and are easily hydrolysed by CuII (Harding et al., 1995[Harding, C. J., Lu, Q., Malone, J. F., Marrs, D. J., Martin, N., McKee, V. & Nelson, J. (1995). J. Chem. Soc. Dalton Trans. pp. 1739-1747.]; Arthurs et al., 2001[Arthurs, M., McKee, V., Nelson, J. & Town, R. M. (2001). J. Chem. Educ. 78, 1269-1272.]). Reduction of the imine donors to the corresponding amines generates a site in which CuI is activated to reaction with dioxygen, as shown elegantly by Suzuki, Schindler and their co-workers (Komiyama et al., 2004[Komiyama, K., Furutachi, H., Nagatomo, S., Hashimoto, A., Hayashi, H., Fujinami, S., Suzuki, M. & Kitagawa, T. (2004). Bull. Chem. Soc. Jpn, 77, 59-72.]; Schatz et al., 2001[Schatz, M., Becker, M., Walter, O., Liehr, G. & Schindler, S. (2001). Inorg. Chim. Acta, 324, 173-179.]). However, CuII binds readily to the reduced ligands.

[Scheme 1]

The structure of the imine podand tris­[(2-nitro­benzyl­idene)­amino­ethyl]­amine, (I), was reported recently (McKee et al., 2006[McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.]). Reaction of (I) with Cu(CH3CN)4ClO4 in acetonitrile gave the CuI complex [Cu(I)]ClO4·2CH3CN, (II)[link], as dark-brown crystals (Fig. 1[link]). The CuI ion is coordinated to all four N atoms in an approximately trigonal–pyramidal geometry (Table 1[link]), although the bonds to the imine N atoms [average 2.003 (2) Å] are significantly shorter than that to the bridgehead amine [Cu1—N1 = 2.196 (1) Å], and the CuI ion is 0.172 (1) Å out of the mean plane of the imine N atoms in the opposite direction to the bridgehead. The nitro groups are not involved in the coordination of the metal and the three strands are arranged fairly tightly about the approximate threefold axis. There are two important factors controlling this geometry, namely the essentially planar geometry at the imine N atoms [angle sums 359.9 (2), 359.9 (2) and 359.8 (2)° for atoms N11, N21 and N31, respectively] and the steric demands imposed by coordination of all four N donors of the ligand. These result in the C—N=C plane being tilted with respect to the `default' orientation (parallel to the pseudo-threefold axis and perpendicular to the plane of the three sp2-hybridized imine donors); the inter­planar angles are 71.6 (1), 73.5 (1) and 74.1 (1)° for the N11, N21 and N31 strands, respectively. In other words, the orientation of the conjugated nitro­benzyl­idene strands is determined by the orientation of the imine lone pairs. It is therefore not surprising that this geometry is common for tren-based imine podands in the absence of additional intra- or inter­molecular inter­actions. There are no significant inter­actions between the cation and perchlorate anion or solvent mol­ecules. The anion is disordered and was modelled with approximately 10% occupancy of the minor orientation (Fig. 1[link]).

The amine podand, tris[­(2-nitro­benzyl)­amino­ethyl]­amine, (III), was obtained by reduction of (I) with NaBH4, which reduced the imine groups but not the nitro substituents. Reaction of ligand (III) with CuCl2 in ethanol yielded the amine complex [Cu(III)Cl]Cl·C2H5OH, (IV)[link], as green crystals. The formula unit of (IV)[link] is shown in Fig. 2[link]. The geometry at the CuI ion is approximately trigonal–bipyramidal (Table 2[link]), with the bridghead tertiary amine and the coordinated Cl ion as apical donors. The coordination geometry is similar to that observed for the analogous CuII podate derived from benzaldehyde [tris­(benzyl­amino­ethyl)­amine; Komiyama et al., 2004[Komiyama, K., Furutachi, H., Nagatomo, S., Hashimoto, A., Hayashi, H., Fujinami, S., Suzuki, M. & Kitagawa, T. (2004). Bull. Chem. Soc. Jpn, 77, 59-72.]; Schatz et al., 2001[Schatz, M., Becker, M., Walter, O., Liehr, G. & Schindler, S. (2001). Inorg. Chim. Acta, 324, 173-179.]).

Two of the nitro groups of (IV)[link] are hydrogen bonded to the adjacent secondary amines (Table 3[link]), but the third strand is different, with the amine (N31) hydrogen bonded to the ethanol solvent molecule. Consequently, the configuration at N31 is opposite to that at N11 and N21 (SRR in Fig. 2[link], although, since the structure is centrosymmetric, the RSS configuration is also present). This difference breaks the pseudo-threefold symmetry of the cation. The non-coordinated Cl ion Cl2 makes a relatively short hydrogen bond to the ethanol solvent molecule [3.105 (4) Å] and shows further inter­actions with N21 and with N11 of an adjacent mol­ecule. The latter two inter­actions are long for hydrogen bonds to Cl, at 3.302 (4) and 3.474 (4) Å, respectively (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). However, both are bifurcated and involve coordinated amines. The resulting hydrogen-bond pattern links the structure in chains running parallel to the b axis (Fig. 3[link]). The most notable inter­action between these chains is a ππ inter­action between the C24–C29 ring and its symmetry equivalent by inversion under (1 − x, −y, 1 − z); the rings are necessarily parallel, the inter­planar distance is 3.393 (4) Å and centroid-to-centroid distance is 3.710 (4) Å.

Complex (VI)[link], namely {tris­[(2-nitro­benzyl­idene)­amino­propyl]­amine}­copper(I) perchlorate, is analogous to complex (II)[link], except that the longer tripodal amine tris­(amino­propyl)­amine (trpn) is used in place of tren. As for (II)[link], the Cu ion is stabliized in the +1 state and has trigonal–pyramidal geometry (Fig. 4[link] and Table 4[link]). However, the CuI ion is displaced from the imine plane by 0.167 (1) Å towards the bridgehead [i.e. in the opposite sense from complex (II)[link]]. As observed for complex (II)[link], the requirement to coordinate the CuI ion to all four N-atom donors results in tilting of the C—N=C planes relative to the plane of the three sp2-hybridized imine donors. In complex (VI)[link], however, this effect is much more pronounced [inter­planar angles 34.9 (2), 36.3 (2) and 39.4 (2)° for atoms N11, N21 and N31, respectively].

The three-dimensional `podand bite' in the two CuI complexes, (II)[link] and (VI)[link], can be compared by considering the dimensions of the trigonal pyramid formed by the four N-atom donors, with the tertiary amine (N1) at the apex and the imine atoms N11, N21 and N31 in the basal plane. As mentioned above, the CuI ion is outside the pyramid in complex (II)[link] and inside for (VI)[link]. However, the Cu—N1 distances are identical [2.196 (2) Å] and the Cu—N(imine) bonds are only marginally different [mean values 2.003 (2) Å for (II)[link] and 2.018 (2) Å for (VI)]. The mean imine–imine distances in the basal plane are similar [3.456 and 3.483 Å for (II)[link] and (VI)[link], respectively], but the mean base–apex edges are significantly different [2.842 (2) Å for (II)[link] and 3.103 (2) for (VI)]. An indication of steric strain in complex (VI)[link] is given by the N—C—C and C—C—C angles in the saturated chain between N1 and the imine N atoms; the average angle is 114.4 (3)°, compared with 110.5 (2)° for complex (II)[link].

We have observed similar patterns in the geometry of Cu ions in cryptand hosts derived from tren and trpn [see, for example, Farrar et al. (1995[Farrar, J. A., McKee, V., Al-Obaidi, A. H. R., McGarvey, J. J., Nelson, J. & Thomson, A. J. (1995). Inorg. Chem. 34, 1302-1303.]) and Nelson et al. (1998[Nelson, J., McKee, V. & Morgan, G. G. (1998). Prog. Inorg. Chem. 47, 167-316.])], supporting the suggestion that steric constraints mean that the larger podand has more difficulty accommodating bonding between the CuI ion and all four donors than the smaller analogue. These results also go some way to explaining the initially counter­intuitive finding that, in the dinuclear imino­cryptate series, the shortest inter­nuclear distances between cationic guests are found for the larger hosts (Drew et al., 2000[Drew, M. G. B., Farrell, D., Morgan, G. G., McKee, V. & Nelson, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1513-1519.]; Farrar et al., 1995[Farrar, J. A., McKee, V., Al-Obaidi, A. H. R., McGarvey, J. J., Nelson, J. & Thomson, A. J. (1995). Inorg. Chem. 34, 1302-1303.]; Nelson et al., 1998[Nelson, J., McKee, V. & Morgan, G. G. (1998). Prog. Inorg. Chem. 47, 167-316.]). In the case of the cryptand ligands, the twist imposed on each strand by the coordination of the imine donors shortens the distance between the two metal binding sites.

[Figure 1]
Figure 1
The structure of complex (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. The minor component of the disordered ClO4 ion is indicated by open bonds.
[Figure 2]
Figure 2
The structure of complex (IV)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A packing plot for complex (IV)[link], viewed down the b axis. Hydrogen bonds are shown as dashed lines and the ππ inter­actions are indicated by open bonds linking ring centroids. Key: Cl atoms are shown cross-hatched, Cu atoms are shaded top left to bottom right, N atoms are dotted, and O atoms are shaded bottom left to upper right.
[Figure 4]
Figure 4
The structure of complex (VI)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.

Experimental

For the preparation of [CuI(I)]ClO4·2CH3CN, (II)[link], tris­[(2-nitro­benzyl­idene)­amino­ethyl]­amine, (I) (0.93 g, 1.7 mmol), was dissolved in dry deoxygenated acetonitrile (30 ml) and a solution of Cu(CH3CN)4ClO4 (0.55 g, 1.7 mmol) in deoxy­genated acetonitrile (20 ml) was added slowly with stirring. The red–brown solution was stirred for 30 min at 313 K and then cooled, during which time an orange crystalline product precipitated. This was filtered off and dried under nitro­gen, losing the acetonitrile solvent in the process (yield 0.70 g, 52%). Analytical results (available in the archived CIF ) are consistent with the stated composition for all compounds reported here.

The amine podand tris[(2-nitro­benzyl)­amino­ethyl]amine, (III), was prepared by reduction of the imine analogue (Liu et al., 1992[Liu, S., Gelmini, G., Rettig, S. J., Thompson, R. C. & Orvig, C. (1992). J. Am. Chem. Soc. 114, 6081-6087.]). The imine (I) (2.15 g, 3.9 mmol) was dissolved in methanol (60 ml). Na2B4O7 (0.81 g, 4.0 mmol) was added, followed by NaBH4 (0.65 g, 17.2 mmol) in small portions over a period of 30 min. The solution was stirred for 2 h and then the solvent was removed on a rotary evaporator. NH4Cl (4 g, 76 mmol) in water (40 ml) was added and the mixture was extracted with CHCl3 (3 × 60 ml). The CHCl3 solution was washed with water, dried over MgSO4 and filtered. Finally, the solvent was removed under reduced pressure to yield the amine as a pale-yellow oil (yield ca 88%). The IR spectrum of the oil confirmed that the ligand had been successfully reduced. The imine stretch at ca 1630 cm−1 was no longer present, but symmetric and anti­symmetric stretches of the nitro group at 1347 and 1526 cm−1, respectively, confirmed that the substituent remained unchanged. The amine was used in the next step without further purification.

For the preparation of [CuII(III)Cl]Cl·C2H5OH, (IV)[link], the amine ligand (III) (0.05 g, 0.09 mmol) was dissolved in ethanol (1.5 ml), forming a pale-orange solution. On addition of a solution containing CuCl2 (0.013 g, 0.09 mmol) in ethanol (1 ml), a turquoise solution was formed. Green crystals of (IV)[link] were obtained on allowing the solution to stand (yield 0.03 g, 48%).

Ligand (V) was prepared by the dropwise addition of tris­(3-amino­iso­propyl)­amine (0.32 g, 1.7 mmol) in methanol (20 ml) with stirring to nitro­benzaldehyde (0.77 g, 5.1 mmol) in methanol (20 ml). The resulting solution was stirred at 313 K for 30 min and the volume was then reduced to yield a yellow oil, viz. (V). The oil was dissolved in de­oxygenated aceto­nitrile (30 ml) and Cu(CH3CN)4·ClO4 (0.55 g, 1.7 mmol) was added. A brown solution formed and dark-red crystals of [CuI(V)]ClO4, (VI)[link], were obtained on allowing the solution to stand (yield 0.69 g, 54%).

Compound (II)[link]

Crystal data
  • [Cu(C27H27N7O6)]ClO4·2C2H3N

  • Mr = 790.65

  • Triclinic, [P \overline 1]

  • a = 11.1178 (7) Å

  • b = 13.3595 (9) Å

  • c = 13.7998 (9) Å

  • α = 111.627 (1)°

  • β = 102.995 (1)°

  • γ = 103.648 (1)°

  • V = 1737.8 (2) Å3

  • Z = 2

  • Dx = 1.511 Mg m−3

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 150 (2) K

  • Tablet, brown

  • 0.37 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 0.941

  • 15023 measured reflections

  • 7856 independent reflections

  • 6372 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 28.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.02

  • 7856 reflections

  • 488 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0079P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.025

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °) for (II)[link]

Cu1—N31 1.9974 (15)
Cu1—N21 1.9981 (15)
Cu1—N11 2.0127 (16)
Cu1—N1 2.1965 (15)
N31—Cu1—N21 120.56 (6) 
N31—Cu1—N11 118.99 (6)
N21—Cu1—N11 118.25 (6)
N31—Cu1—N1 85.48 (6)
N21—Cu1—N1 84.85 (6)
N11—Cu1—N1 84.86 (6)

Compound (IV)[link]

Crystal data
  • [Cu(C27H33N7O6)Cl]Cl·C2H6O

  • Mr = 732.11

  • Monoclinic, P 21 /c

  • a = 13.183 (5) Å

  • b = 14.485 (6) Å

  • c = 16.914 (7) Å

  • β = 95.319 (7)°

  • V = 3216 (2) Å3

  • Z = 4

  • Dx = 1.512 Mg m−3

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 150 (2) K

  • Plate, green

  • 0.23 × 0.21 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.940

  • 22643 measured reflections

  • 5657 independent reflections

  • 3256 reflections with I > 2σ(I)

  • Rint = 0.103

  • θmax = 25.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 0.98

  • 5657 reflections

  • 416 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0768P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.76 e Å−3

Table 2
Selected geometric parameters (Å, °) for (IV)[link]

Cu1—N1 2.038 (4)
Cu1—N31 2.081 (4)
Cu1—N11 2.105 (4)
Cu1—N21 2.107 (4)
Cu1—Cl1 2.2547 (16)
N1—Cu1—N31 84.44 (16)
N1—Cu1—N11 83.97 (16)
N31—Cu1—N11 127.92 (16)
N1—Cu1—N21 84.35 (15)
N31—Cu1—N21 121.43 (16)
N11—Cu1—N21 107.62 (15)
N1—Cu1—Cl1 176.50 (12)
N31—Cu1—Cl1 92.13 (12)
N11—Cu1—Cl1 97.66 (11)
N21—Cu1—Cl1 98.07 (11)

Table 3
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N31—H31N⋯O41 0.93 2.13 2.998 (6) 154
N11—H11N⋯O12 0.93 2.29 2.882 (6) 121
N11—H11N⋯Cl2i 0.93 2.63 3.474 (4) 152
N21—H21N⋯O22 0.93 2.46 3.023 (6) 119
N21—H21N⋯Cl2 0.93 2.48 3.302 (4) 147
O41—H41⋯Cl2 0.84 2.28 3.105 (5) 170
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Compound (VI)[link]

Crystal data
  • [Cu(C30H33N7O6)]ClO4

  • Mr = 750.62

  • Monoclinic, P 21 /c

  • a = 9.5361 (7) Å

  • b = 18.6870 (13) Å

  • c = 19.2367 (13) Å

  • β = 104.044 (1)°

  • V = 3325.5 (4) Å3

  • Z = 4

  • Dx = 1.499 Mg m−3

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 150 (2) K

  • Lath, red

  • 0.47 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.704, Tmax = 0.903

  • 28475 measured reflections

  • 7892 independent reflections

  • 5773 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 28.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.00

  • 7892 reflections

  • 455 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0534P)2 + 2.0893P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

Table 4
Selected geometric parameters (Å, °) for (VI)[link]

Cu1—N21 2.0124 (19)
Cu1—N11 2.0093 (18)
Cu1—N31 2.0326 (17)
Cu1—N1 2.1965 (19)
N21—Cu1—N11 121.49 (8) 
N21—Cu1—N31 119.13 (7)
N11—Cu1—N31 117.34 (7)
N21—Cu1—N1 94.59 (8)
N11—Cu1—N1 94.67 (7)
N31—Cu1—N1 95.00 (7)

For all three compounds, H atoms were inserted in calculated positions and refined using a riding model. The constrained distances were 0.95, 0.99, 0.98, 0.93 and 0.84 Å for aryl, methylene, methyl, amine and alcohol H atoms, respectively. They were refined with Uiso(H) = 1.2Ueq(carrier atom). The value of Rint for complex (IV)[link] is high (0.103) due to poor crystal quality resulting in broad diffraction peaks.

For all compounds, data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.28). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.28). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have had a long-standing interest in the chemistry of both imine and amine cryptates derived from tris(aminoethyl)amine (tren) and tris(3-aminoisopropyl)amine (trpn) [see, for example, McKee et al. (2003) and Nelson et al. (1998)]. We have investigated some simple podate complexes derived from the same amines in order to clarify the geometric requirements associated with each. A search of the Cambridge Structural Database (Version?; Allen, 2002; Fletcher et al., 1996) showed that, although many tris(aminoethyl)amine/salicylate complexes have been investigated, surprisingly few simple podates with other substituted benzaldehyde derivatives have been structurally characterized to date. In this paper, we compare the structures of two CuI podates, one derived from tris(aminoethyl)amine (tren) and one from tris(aminopropyl)amine (trpn), with the CuII amine analogue of the smaller tren-based podate.

In podate and cryptate complexes with potential threefold symmetry, imine donors typically stabilize CuI and are easily hydrolysed by CuII (Harding et al., 1995; Arthurs et al., 2001). Reduction of the imine donors to the corresponding amines generates a site in which CuI is activated to reaction with dioxygen, as shown elegantly by Suzuki, Schindler and their co-workers (Komiyama et al., 2004; Schindler, 2001). However, CuII binds readily to the reduced ligands.

The structure of the imine podand tris(N-2-nitrobenzylideneaminoethyl)amine, (I), was reported recently (McKee et al., 2006). Reaction of (I) with Cu(CH3CN)4ClO4 in acetonitrile gave the CuI complex [Cu(I)]ClO4·2CH3CN, (II), as dark-brown crystals (Fig. 1). The CuI ion is coordinated to all four N atoms in an approximately trigonal–pyramidal geometry (Table 1), although the bonds to the imine N atoms [average 2.003 (2) Å] are significantly shorter than that to the bridgehead amine [Cu1—N1 = 2.196 (1) Å], and the CuI ion is 0.172 (1) Å out of the mean plane of the imine N atoms, in the opposite direction to the bridgehead. The nitro groups are not involved in the coordination of the metal and the three strands are arranged fairly tightly about the approximate threefold axis. There are two important factors controlling this geometry, namely the essentially planar geometry at the imine N atoms [angle sums 359.9 (2), 359.9 (2) and 359.8 (2)° for atoms N11, N21 and N31, respectively] and the steric demands imposed by coordination of all four N donors of the ligand. These result in the C—NC plane being tilted with respect to the `default' orientation (parallel to the pseudo-threefold axis and perpendicular to the plane of the three sp2-hybridized imine donors); the interplanar angles are 71.6 (1), 73.5 (1) and 74.1 (1)° for the N11, N21 and N31 strands, respectively. In other words, the orientation of the conjugated nitrobenzylidene strands is determined by the orientation of the imine lone pairs. It is therefore not surprising that this geometry is common for tren-based imine podands in the absence of additional intra- or intermolecular interactions. There are no significant interactions between the cation and perchlorate anion or solvent molecules. The anion is disordered and was modelled with approximately 10% occupancy of the minor orientation (Fig. 1).

The amine podand, tris(N-2-nitrobenzylaminoethyl)amine, (III), was obtained by reduction of (I) with NaBH4, which reduced the imine groups but not the nitro substituents. Reaction of ligand (III) with CuCl2 in ethanol yielded the amine complex [Cu(III)Cl]Cl·C2H5OH, (IV), as green crystals. The formula unit of (IV) is shown in Fig. 2. The geometry at the CuI ion is approximately trigonal–bipyramidal (Table 2), with the bridghead tertiary amine and the coordinated Cl ion as apical donors. The coordination geometry is similar to that observed for the analogous CuII podate derived from benzaldehyde [tris(N-benzylaminoethyl)amine; Komiyama et al., 2004; Schatz et al., 2001).

Two of the nitro groups of (IV) are hydrogen-bonded to the adjacent secondary amines (Table 3) but the third strand is different, with the amine (N31) hydrogen-bonded to the ethanol solvate. Consequently the configuration at N31 is opposite to that at N11 and N21 (SRR in Fig. 2, although, since the structure is centrosymmetric, the RSS configuration is also present). This difference breaks the pseudo-threefold symmetry of the cation. The non-coordinated Cl ion Cl2 makes a relatively short hydrogen bond to the ethanol solvate [3.105 (4) Å] and shows further interactions with N21 and with N11 of an adjacent molecule. The latter two interactions are long for hydrogen bonds to Cl, at 3.302 (4) and 3.474 (4) Å, respectively (Steiner, 2002). However, both are bifurcated and involve coordinated amines. The resulting hydrogen-bond pattern links the structure in chains running parallel to the b axis (Fig. 3). The most notable interaction between these chains is a ππ interaction between the C24–C29 ring and its symmetry equivalent by inversion under (1 − x, −y, 1 − z): the rings are necessarily parallel, the interplanar distance is 3.393 (4) Å and centroid-to-centroid distance is 3.710 (4) Å.

Complex (VI), tris(N-2-nitrobenzylideneaminopropyl)aminecopper(I) perchlorate, is analogous to complex (II), except that the longer tripodal amine tris(aminopropyl)amine (trpn) is used in place of tren. As for (II), the Cu ion is stabliized in the +1 state and has trigonal–pyramidal geometry (Fig. 4 and Table 4). However, the CuI ion is displaced from the imine plane by 0.167 (1) Å towards the bridgehead [i.e. in the opposite sense from complex (II)]. As observed for complex (II), the requirement to coordinate the CuI ion to all four N donors results in tilting of the C—NC planes relative to the plane of the three sp2-hybridized imine donors. In complex (VI), however, this effect is much more pronounced [interplanar angles 34.9 (2), 36.3 (2) and 39.4 (2)° for atoms N11, N21 and N31, respectively].

The three-dimensional `podand bite' in the two CuI complexes, (II) and (VI), can be compared by considering the dimensions of the trigonal pyramid formed by the four N donors, with the tertiary amine (N1) at the apex and the imine atoms N11, N21 and N31 in the basal plane. As mentioned above, the CuI ion is outside the pyramid in complex (II) and inside for (VI). However, the Cu—N1 distances are identical [2.196 (2) Å] and the Cu—N(imine) bonds are only marginally different [mean values 2.003 (2) Å for (II) and 2.018 (2) Å for (VI)]. The mean imine–imine distances in the basal plane are similar [3.456 and 3.483 Å for (II) and (VI), respectively], but the mean base–apex edges are significantly different [2.842 (2) Å for (II) and 3.103 (2) for (VI)]. An indication of steric strain in complex (VI) is given by the N—C—C and C—C—C angles in the saturated chain between N1 and the imine N atoms; the average angle is 114.4 (3)°, compared with 110.5 (2)° for complex (II).

We have observed similar patterns in the geometry of Cu ions in cryptand hosts derived from tren and trpn [see, for example, Farrar et al. (1995) and Nelson et al. (1998)], supporting the suggestion that steric constraints mean that the larger podand has more difficulty accommodating bonding between the CuI ion and all four donors than the smaller analogue. These results also go some way to explaining the initially counterintuitive finding that, in the dinuclear iminocryptate series, the shortest internuclear distances between cationic guests are found for the larger hosts (Drew et al., 2000; Farrar et al., 1995; Nelson et al., 1998). In the case of the cryptand ligands, the twist imposed on each strand by the coordination of the imine donors shortens the distance between the two metal binding sites.

Experimental top

For the preparation of [CuI(I)]ClO4·2CH3CN, (II), ligand (I) [tris(N-2-nitrobenzylideneaminoethyl)amine] (0.93 g, 1.7 mmol) was dissolved in dry deoxygenated acetonitrile (30 ml) and a solution of Cu(CH3CN)4ClO4 (0.55 g, 1.7 mmol) in deoxygenated acetonitrile (20 ml) was added slowly with stirring. The red–brown solution was stirred for 30 min at 313 K and then cooled, during which time an orange crystalline product precipitated. This was filtered off and dried under nitrogen, losing the acetonitrile solvent in the process (yield 0.70 g, 52%). Analytical results (provided in the archived CIF) are consistent with the stated composition for all compounds reported here.

The amine podand, tris(N-2-nitrobenzylaminoethyl)amine, (III), was prepared by reduction of the imine analogue (Liu et al., 1992). The imine (I) (2.15 g, 3.9 mmol) was dissolved in methanol (60 ml). Na2B4O7 (0.81 g, 4.0 mmol) was added, followed by NaBH4 (0.65 g, 17.2 mmol) in small portions over a period of 30 min. The solution was stirred for 2 h and then the solvent was removed on a rotary evaporator. NH4Cl (4 g, 76 mmol) in water (40 ml) was added and the mixture was extracted with CHCl3 (3 × 60 ml). The CHCl3 solution was washed with water, dried over MgSO4 and filtered. Finally, the solvent was removed under reduced pressure to yield the amine as a pale-yellow oil (yield ca 88%). The IR spectrum of the oil confirmed that the ligand had been successfully reduced. The imine stretch at ca 1630 cm−1 was no longer present, but symmetric and antisymmetric stretches of the nitro group at 1347 and 1526 cm−1, respectively, confirmed that the substituent remained unchanged. The amine was used in the next step without further purification.

For the preparation of [CuII(III)Cl]Cl·C2H5OH, (IV), the amine ligand (III) (0.05 g, 0.09 mmol) was dissolved in ethanol (1.5 ml), forming a pale-orange solution. On addition of a solution containing CuCl2 (0.013 g, 0.09 mmol) in ethanol (1 ml), a turquoise solution was formed. Green crystals of [Cu(II)Cl]Cl·C2H5OH, (IV), were obtained on allowing the solution to stand (yield 0.03 g, 48%).

Ligand (V) was prepared by the dropwise addition of tris(3-aminoisopropyl)amine (0.32 g, 1.7 mmol) in methanol (20 ml) with stirring to nitrobenzaldehyde (0.77 g, 5.1 mmol) in methanol (20 ml). The solution was stirred at 313 K for 30 min and the volume was then reduced to yield a yellow oil, (V). The oil was dissolved in deoxygenated acetonitrile (30 ml) and Cu(CH3CN)4·ClO4 (0.55 g, 1.7 mmol) was added. A brown solution formed and dark-red crystals of [CuI(V)]ClO4, (VI), were obtained on allowing the solution to stand (yield 0.69 g, 54%).

Refinement top

For all three compounds, H atoms were inserted in calculated positions and refined using a riding model. The constrained distances were 0.95, 0.99, 0.98, 0.93 and 0.84 Å for aryl, methylene, methyl, amine and alcohol H atoms, respectively. They were refined with Uiso(H) = 1.2Ueq(carrier atom). The value of Rint for complex (IV) is high (0.103), due to poor crystal quality resulting in broad diffraction peaks.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of complex (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. The minor component of the disordered ClO4 ion is indicated by open bonds.
[Figure 2] Fig. 2. The structure of complex (IV), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A packing plot for complex (IV), viewed down the b axis. Hydrogen bonds are shown as dashed lines and the ππ interaction is indicated by open bonds linking ring centroids. Cl atoms are shown cross-hatched, Cu atoms are shaded top left to bottom right, N atoms are dotted, and O atoms are shaded bottom left to upper right.
[Figure 4] Fig. 4. The structure of complex (VI), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
(II) [tris(2-nitrobenzylideneaminoethyl)amine-κ4N]copper(I) perchlorate acetonitrile trisolvate top
Crystal data top
[Cu(C27H27N7O6)]ClO4·2C2H3NZ = 2
Mr = 790.65F(000) = 816
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1178 (7) ÅCell parameters from 6794 reflections
b = 13.3595 (9) Åθ = 2.7–23.3°
c = 13.7998 (9) ŵ = 0.78 mm1
α = 111.627 (1)°T = 150 K
β = 102.995 (1)°Tablet, brown
γ = 103.648 (1)°0.37 × 0.19 × 0.08 mm
V = 1737.8 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7856 independent reflections
Radiation source: normal-focus sealed tube6372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.762, Tmax = 0.941k = 1717
15023 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0079P]
where P = (Fo2 + 2Fc2)/3
7856 reflections(Δ/σ)max = 0.025
488 parametersΔρmax = 0.35 e Å3
10 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C27H27N7O6)]ClO4·2C2H3Nγ = 103.648 (1)°
Mr = 790.65V = 1737.8 (2) Å3
Triclinic, P1Z = 2
a = 11.1178 (7) ÅMo Kα radiation
b = 13.3595 (9) ŵ = 0.78 mm1
c = 13.7998 (9) ÅT = 150 K
α = 111.627 (1)°0.37 × 0.19 × 0.08 mm
β = 102.995 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7856 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6372 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.941Rint = 0.019
15023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
7856 reflectionsΔρmin = 0.45 e Å3
488 parameters
Special details top

Experimental. Analysis for [CuI(I)]ClO4·2CH3CN: calculated for [C27H27N7O6Cu]ClO4·2CH3CN: C 43.6, H 4.2, N 13.2%; found C 42.9, H 3.9, N 13.9%. NMR (CD3CN, p.p.m., 1H): 3.00(t, 6, CH2), 3.75(t, 6, CH2), 8.49(s, 3, imine), 7.91(d, 3, aromatic), 6.99(d, 3, aromatic), 7.35(t, 3, aromatic), 7.40(t, 3, aromatic). Mass spectrum (FAB): m/e 608, [CuI(I)]+. IR (KBr, cm−1) inter alia: 1636(m, imine), 1522(s, NO2), 1348(m, NO2), 1089(s, ClO4), 622(m, ClO4).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.84793 (2)0.266571 (19)0.100555 (18)0.01969 (7)
N10.89898 (15)0.34676 (13)0.28179 (13)0.0220 (3)
C110.8893 (2)0.25018 (17)0.31090 (16)0.0273 (4)
H11A0.87270.26990.38200.033*
H11B0.97350.23560.32040.033*
N110.79556 (15)0.11701 (13)0.11093 (13)0.0221 (3)
C130.77203 (18)0.01231 (16)0.04674 (16)0.0236 (4)
H130.73970.04540.06860.028*
C120.7769 (2)0.14202 (17)0.21900 (16)0.0269 (4)
H12A0.77490.07600.23600.032*
H12B0.69150.15360.21530.032*
C140.79366 (18)0.02199 (16)0.06110 (16)0.0229 (4)
C150.9006 (2)0.04735 (17)0.07126 (17)0.0271 (4)
H150.95600.11880.00970.033*
C160.9280 (2)0.01443 (18)0.16903 (18)0.0306 (4)
H161.00120.06350.17390.037*
C170.8489 (2)0.08987 (18)0.25998 (17)0.0301 (4)
H170.86740.11180.32720.036*
C180.7430 (2)0.16191 (17)0.25245 (17)0.0280 (4)
H180.68870.23390.31390.034*
C190.71792 (19)0.12735 (16)0.15418 (16)0.0242 (4)
N120.60017 (17)0.20368 (15)0.15175 (14)0.0300 (4)
O110.53494 (15)0.15857 (14)0.10091 (13)0.0379 (4)
O120.57293 (17)0.30771 (12)0.20192 (13)0.0410 (4)
C210.79875 (19)0.39911 (17)0.30149 (16)0.0252 (4)
H21A0.83550.46490.37650.030*
H21B0.72140.34180.29880.030*
C220.7549 (2)0.44077 (16)0.21513 (15)0.0248 (4)
H22A0.67760.46330.22260.030*
H22B0.82700.50930.22830.030*
N210.71998 (15)0.34950 (13)0.10146 (12)0.0203 (3)
C230.61804 (18)0.33684 (16)0.02728 (16)0.0224 (4)
H230.56640.38330.04660.027*
C240.57998 (17)0.24997 (16)0.08869 (15)0.0218 (4)
C250.5744 (2)0.13817 (17)0.11202 (17)0.0280 (4)
H250.59390.11790.05260.034*
C260.5413 (2)0.05579 (18)0.21959 (18)0.0326 (5)
H260.53900.01980.23320.039*
C270.5114 (2)0.08298 (19)0.30792 (17)0.0328 (5)
H270.49110.02680.38160.039*
C280.5112 (2)0.19226 (18)0.28816 (17)0.0289 (4)
H280.48750.21110.34810.035*
C290.54587 (18)0.27333 (16)0.18018 (16)0.0224 (4)
N220.55437 (17)0.39003 (15)0.16267 (15)0.0291 (4)
O210.62750 (16)0.47051 (13)0.07206 (14)0.0401 (4)
O220.49043 (19)0.40332 (15)0.23847 (14)0.0488 (4)
C311.03322 (19)0.43013 (17)0.32290 (16)0.0267 (4)
H31A1.07880.44600.40020.032*
H31B1.02880.50330.32290.032*
C321.11152 (19)0.38375 (17)0.24995 (16)0.0263 (4)
H32A1.19810.44410.27400.032*
H32B1.12740.31710.25850.032*
N311.03786 (15)0.34801 (13)0.13175 (13)0.0214 (3)
C331.10587 (18)0.36714 (16)0.07316 (16)0.0230 (4)
H331.19920.40090.10640.028*
C341.04401 (18)0.33836 (15)0.04505 (16)0.0216 (4)
C350.92335 (19)0.35076 (17)0.08239 (17)0.0276 (4)
H350.87790.37350.03220.033*
C360.8688 (2)0.33042 (18)0.19157 (18)0.0306 (4)
H360.78620.33870.21530.037*
C370.9334 (2)0.29810 (17)0.26663 (17)0.0284 (4)
H370.89470.28330.34160.034*
C381.05460 (19)0.28758 (16)0.23165 (16)0.0253 (4)
H381.10090.26700.28160.030*
C391.10698 (18)0.30755 (15)0.12256 (16)0.0221 (4)
N321.23234 (16)0.28968 (15)0.09099 (14)0.0286 (4)
O311.24753 (15)0.24577 (13)0.02714 (13)0.0373 (4)
O321.31394 (15)0.31923 (16)0.13048 (14)0.0445 (4)
Cl10.60725 (5)0.25292 (4)0.47922 (4)0.02898 (11)0.906 (7)
O10.4861 (2)0.1771 (3)0.47097 (17)0.0418 (6)0.906 (7)
O20.7002 (2)0.19480 (18)0.4679 (2)0.0531 (8)0.906 (7)
O30.5799 (2)0.2862 (3)0.3919 (3)0.0624 (9)0.906 (7)
O40.6611 (2)0.3515 (2)0.5855 (2)0.0591 (8)0.906 (7)
Cl1'0.60725 (5)0.25292 (4)0.47922 (4)0.02898 (11)0.094 (7)
O1'0.4742 (14)0.2210 (19)0.4840 (17)0.029 (5)*0.094 (7)
O2'0.6685 (17)0.1858 (13)0.5140 (16)0.032 (5)*0.094 (7)
O3'0.5919 (16)0.2298 (16)0.3660 (10)0.023 (4)*0.094 (7)
O4'0.6706 (18)0.3738 (11)0.5475 (16)0.035 (5)*0.094 (7)
N410.8262 (3)0.7161 (2)0.4619 (2)0.0572 (6)
C420.7360 (3)0.6508 (2)0.45784 (19)0.0411 (6)
C430.6212 (3)0.5665 (2)0.4522 (2)0.0438 (6)
H43A0.58740.49850.38020.066*
H43B0.55260.60010.46100.066*
H43C0.64630.54410.51180.066*
N510.8632 (2)0.9497 (2)0.3214 (2)0.0575 (6)
C520.8368 (2)0.9683 (2)0.3993 (2)0.0415 (6)
C530.8037 (3)0.9915 (2)0.4999 (2)0.0462 (6)
H53A0.74640.91970.49380.069*
H53B0.75771.04670.50930.069*
H53C0.88471.02360.56430.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01986 (12)0.01953 (12)0.01861 (12)0.00579 (9)0.00692 (9)0.00792 (9)
N10.0240 (8)0.0215 (8)0.0203 (8)0.0073 (7)0.0077 (7)0.0095 (7)
C110.0333 (11)0.0296 (10)0.0226 (10)0.0119 (9)0.0102 (9)0.0146 (9)
N110.0212 (8)0.0226 (8)0.0221 (8)0.0064 (6)0.0065 (6)0.0110 (7)
C130.0227 (9)0.0200 (9)0.0268 (10)0.0057 (8)0.0064 (8)0.0114 (8)
C120.0327 (11)0.0269 (10)0.0263 (10)0.0094 (9)0.0136 (9)0.0160 (9)
C140.0239 (9)0.0199 (9)0.0266 (10)0.0104 (8)0.0072 (8)0.0114 (8)
C150.0266 (10)0.0210 (9)0.0304 (11)0.0073 (8)0.0088 (8)0.0094 (9)
C160.0285 (11)0.0281 (11)0.0377 (12)0.0108 (9)0.0149 (9)0.0147 (10)
C170.0365 (12)0.0311 (11)0.0269 (10)0.0164 (9)0.0137 (9)0.0128 (9)
C180.0305 (11)0.0231 (10)0.0245 (10)0.0102 (8)0.0036 (8)0.0074 (8)
C190.0228 (9)0.0195 (9)0.0286 (10)0.0069 (8)0.0048 (8)0.0118 (8)
N120.0279 (9)0.0281 (9)0.0271 (9)0.0028 (7)0.0009 (7)0.0144 (8)
O110.0275 (8)0.0412 (9)0.0430 (9)0.0060 (7)0.0130 (7)0.0199 (8)
O120.0489 (10)0.0213 (8)0.0349 (9)0.0016 (7)0.0018 (7)0.0099 (7)
C210.0288 (10)0.0267 (10)0.0201 (9)0.0106 (8)0.0115 (8)0.0082 (8)
C220.0278 (10)0.0215 (9)0.0221 (10)0.0093 (8)0.0089 (8)0.0060 (8)
N210.0221 (8)0.0198 (8)0.0189 (8)0.0059 (6)0.0085 (6)0.0085 (6)
C230.0207 (9)0.0223 (9)0.0255 (10)0.0076 (7)0.0095 (8)0.0113 (8)
C240.0149 (8)0.0266 (10)0.0222 (9)0.0065 (7)0.0055 (7)0.0100 (8)
C250.0266 (10)0.0284 (10)0.0275 (10)0.0112 (8)0.0043 (8)0.0128 (9)
C260.0326 (11)0.0261 (11)0.0315 (11)0.0111 (9)0.0051 (9)0.0080 (9)
C270.0310 (11)0.0345 (12)0.0230 (10)0.0090 (9)0.0063 (9)0.0060 (9)
C280.0254 (10)0.0355 (11)0.0240 (10)0.0061 (9)0.0080 (8)0.0146 (9)
C290.0165 (9)0.0251 (10)0.0272 (10)0.0063 (7)0.0085 (8)0.0133 (8)
N220.0296 (9)0.0321 (9)0.0345 (10)0.0106 (8)0.0167 (8)0.0208 (8)
O210.0432 (9)0.0259 (8)0.0410 (9)0.0018 (7)0.0097 (8)0.0134 (7)
O220.0717 (12)0.0480 (10)0.0411 (10)0.0298 (9)0.0170 (9)0.0307 (9)
C310.0264 (10)0.0262 (10)0.0187 (9)0.0047 (8)0.0036 (8)0.0064 (8)
C320.0210 (9)0.0278 (10)0.0229 (10)0.0042 (8)0.0027 (8)0.0095 (8)
N310.0215 (8)0.0182 (8)0.0211 (8)0.0056 (6)0.0063 (6)0.0066 (7)
C330.0186 (9)0.0206 (9)0.0266 (10)0.0050 (7)0.0074 (8)0.0087 (8)
C340.0197 (9)0.0176 (9)0.0255 (10)0.0023 (7)0.0084 (8)0.0099 (8)
C350.0216 (10)0.0314 (11)0.0349 (11)0.0087 (8)0.0155 (9)0.0170 (9)
C360.0219 (10)0.0367 (12)0.0380 (12)0.0104 (9)0.0096 (9)0.0220 (10)
C370.0290 (10)0.0274 (10)0.0267 (10)0.0060 (8)0.0065 (8)0.0141 (9)
C380.0276 (10)0.0211 (9)0.0275 (10)0.0071 (8)0.0124 (8)0.0102 (8)
C390.0189 (9)0.0173 (9)0.0291 (10)0.0054 (7)0.0079 (8)0.0101 (8)
N320.0257 (9)0.0268 (9)0.0283 (9)0.0111 (7)0.0088 (7)0.0064 (8)
O310.0397 (9)0.0342 (8)0.0369 (9)0.0193 (7)0.0060 (7)0.0151 (7)
O320.0270 (8)0.0642 (11)0.0448 (10)0.0191 (8)0.0216 (7)0.0194 (9)
Cl10.0298 (3)0.0302 (3)0.0290 (3)0.0106 (2)0.0102 (2)0.0152 (2)
O10.0418 (11)0.0419 (14)0.0323 (11)0.0007 (10)0.0137 (9)0.0157 (10)
O20.0462 (12)0.0542 (13)0.0614 (16)0.0303 (10)0.0170 (11)0.0214 (11)
O30.0495 (13)0.095 (2)0.0781 (18)0.0258 (13)0.0245 (12)0.0731 (18)
O40.0510 (13)0.0387 (12)0.0521 (15)0.0040 (10)0.0094 (11)0.0044 (11)
Cl1'0.0298 (3)0.0302 (3)0.0290 (3)0.0106 (2)0.0102 (2)0.0152 (2)
N410.0588 (15)0.0448 (13)0.0511 (14)0.0133 (12)0.0112 (12)0.0113 (11)
C420.0524 (15)0.0377 (13)0.0286 (12)0.0245 (12)0.0098 (11)0.0072 (10)
C430.0533 (15)0.0462 (14)0.0373 (13)0.0252 (12)0.0191 (12)0.0173 (12)
N510.0610 (15)0.0634 (16)0.0708 (17)0.0353 (13)0.0331 (14)0.0390 (14)
C520.0363 (13)0.0377 (13)0.0528 (16)0.0177 (11)0.0095 (12)0.0231 (12)
C530.0425 (14)0.0468 (15)0.0425 (14)0.0182 (12)0.0040 (11)0.0177 (12)
Geometric parameters (Å, º) top
Cu1—N311.9974 (15)C27—C281.384 (3)
Cu1—N211.9981 (15)C27—H270.9500
Cu1—N112.0127 (16)C28—C291.377 (3)
Cu1—N12.1965 (15)C28—H280.9500
N1—C311.469 (2)C29—N221.463 (2)
N1—C211.473 (2)N22—O221.222 (2)
N1—C111.474 (2)N22—O211.233 (2)
C11—C121.531 (3)C31—C321.531 (3)
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
N11—C131.273 (2)C32—N311.483 (2)
N11—C121.478 (2)C32—H32A0.9900
C13—C141.481 (3)C32—H32B0.9900
C13—H130.9500N31—C331.275 (2)
C12—H12A0.9900C33—C341.480 (3)
C12—H12B0.9900C33—H330.9500
C14—C151.394 (3)C34—C351.396 (3)
C14—C191.401 (3)C34—C391.397 (3)
C15—C161.384 (3)C35—C361.386 (3)
C15—H150.9500C35—H350.9500
C16—C171.388 (3)C36—C371.388 (3)
C16—H160.9500C36—H360.9500
C17—C181.384 (3)C37—C381.383 (3)
C17—H170.9500C37—H370.9500
C18—C191.378 (3)C38—C391.383 (3)
C18—H180.9500C38—H380.9500
C19—N121.473 (2)C39—N321.466 (2)
N12—O121.225 (2)N32—O321.220 (2)
N12—O111.227 (2)N32—O311.229 (2)
C21—C221.524 (3)Cl1—O31.4273 (19)
C21—H21A0.9900Cl1—O11.4333 (18)
C21—H21B0.9900Cl1—O41.433 (2)
C22—N211.480 (2)Cl1—O21.434 (2)
C22—H22A0.9900N41—C421.139 (3)
C22—H22B0.9900C42—C431.455 (4)
N21—C231.273 (2)C43—H43A0.9800
C23—C241.477 (3)C43—H43B0.9800
C23—H230.9500C43—H43C0.9800
C24—C251.390 (3)N51—C521.132 (3)
C24—C291.402 (3)C52—C531.459 (4)
C25—C261.382 (3)C53—H53A0.9800
C25—H250.9500C53—H53B0.9800
C26—C271.389 (3)C53—H53C0.9800
C26—H260.9500
N31—Cu1—N21120.56 (6)C25—C26—C27120.3 (2)
N31—Cu1—N11118.99 (6)C25—C26—H26119.8
N21—Cu1—N11118.25 (6)C27—C26—H26119.8
N31—Cu1—N185.48 (6)C28—C27—C26119.72 (19)
N21—Cu1—N184.85 (6)C28—C27—H27120.1
N11—Cu1—N184.86 (6)C26—C27—H27120.1
C31—N1—C21114.30 (15)C29—C28—C27118.90 (19)
C31—N1—C11114.64 (15)C29—C28—H28120.6
C21—N1—C11113.39 (15)C27—C28—H28120.6
C31—N1—Cu1103.81 (11)C28—C29—C24123.00 (18)
C21—N1—Cu1104.77 (11)C28—C29—N22116.97 (17)
C11—N1—Cu1104.33 (11)C24—C29—N22119.92 (17)
N1—C11—C12109.82 (15)O22—N22—O21123.21 (18)
N1—C11—H11A109.7O22—N22—C29118.77 (18)
C12—C11—H11A109.7O21—N22—C29118.02 (17)
N1—C11—H11B109.7N1—C31—C32110.75 (15)
C12—C11—H11B109.7N1—C31—H31A109.5
H11A—C11—H11B108.2C32—C31—H31A109.5
C13—N11—C12117.14 (16)N1—C31—H31B109.5
C13—N11—Cu1135.24 (14)C32—C31—H31B109.5
C12—N11—Cu1107.56 (11)H31A—C31—H31B108.1
N11—C13—C14121.72 (17)N31—C32—C31110.29 (15)
N11—C13—H13119.1N31—C32—H32A109.6
C14—C13—H13119.1C31—C32—H32A109.6
N11—C12—C11110.07 (15)N31—C32—H32B109.6
N11—C12—H12A109.6C31—C32—H32B109.6
C11—C12—H12A109.6H32A—C32—H32B108.1
N11—C12—H12B109.6C33—N31—C32116.77 (16)
C11—C12—H12B109.6C33—N31—Cu1134.94 (14)
H12A—C12—H12B108.2C32—N31—Cu1108.08 (11)
C15—C14—C19116.25 (18)N31—C33—C34122.07 (17)
C15—C14—C13120.13 (17)N31—C33—H33119.0
C19—C14—C13123.40 (17)C34—C33—H33119.0
C16—C15—C14121.51 (19)C35—C34—C39116.43 (18)
C16—C15—H15119.2C35—C34—C33120.85 (17)
C14—C15—H15119.2C39—C34—C33122.49 (17)
C15—C16—C17120.34 (19)C36—C35—C34121.06 (18)
C15—C16—H16119.8C36—C35—H35119.5
C17—C16—H16119.8C34—C35—H35119.5
C18—C17—C16119.80 (19)C35—C36—C37120.79 (19)
C18—C17—H17120.1C35—C36—H36119.6
C16—C17—H17120.1C37—C36—H36119.6
C19—C18—C17118.78 (19)C38—C37—C36119.60 (19)
C19—C18—H18120.6C38—C37—H37120.2
C17—C18—H18120.6C36—C37—H37120.2
C18—C19—C14123.29 (18)C39—C38—C37118.72 (18)
C18—C19—N12116.97 (17)C39—C38—H38120.6
C14—C19—N12119.63 (17)C37—C38—H38120.6
O12—N12—O11124.47 (18)C38—C39—C34123.38 (17)
O12—N12—C19117.88 (18)C38—C39—N32116.65 (17)
O11—N12—C19117.64 (16)C34—C39—N32119.91 (17)
N1—C21—C22111.36 (15)O32—N32—O31124.73 (18)
N1—C21—H21A109.4O32—N32—C39117.45 (17)
C22—C21—H21A109.4O31—N32—C39117.82 (16)
N1—C21—H21B109.4O3—Cl1—O1108.19 (14)
C22—C21—H21B109.4O3—Cl1—O4110.78 (17)
H21A—C21—H21B108.0O1—Cl1—O4109.42 (14)
N21—C22—C21110.80 (15)O3—Cl1—O2109.57 (15)
N21—C22—H22A109.5O1—Cl1—O2109.88 (15)
C21—C22—H22A109.5O4—Cl1—O2109.00 (13)
N21—C22—H22B109.5N41—C42—C43179.5 (3)
C21—C22—H22B109.5C42—C43—H43A109.5
H22A—C22—H22B108.1C42—C43—H43B109.5
C23—N21—C22117.28 (16)H43A—C43—H43B109.5
C23—N21—Cu1133.34 (13)C42—C43—H43C109.5
C22—N21—Cu1109.35 (11)H43A—C43—H43C109.5
N21—C23—C24120.13 (17)H43B—C43—H43C109.5
N21—C23—H23119.9N51—C52—C53179.3 (3)
C24—C23—H23119.9C52—C53—H53A109.5
C25—C24—C29116.45 (18)C52—C53—H53B109.5
C25—C24—C23120.35 (17)H53A—C53—H53B109.5
C29—C24—C23123.19 (17)C52—C53—H53C109.5
C26—C25—C24121.52 (19)H53A—C53—H53C109.5
C26—C25—H25119.2H53B—C53—H53C109.5
C24—C25—H25119.2
N31—Cu1—N1—C3110.20 (12)N1—Cu1—N21—C2216.47 (12)
N21—Cu1—N1—C31111.07 (12)C22—N21—C23—C24177.98 (16)
N11—Cu1—N1—C31129.89 (12)Cu1—N21—C23—C244.3 (3)
N31—Cu1—N1—C21130.40 (12)N21—C23—C24—C2548.3 (3)
N21—Cu1—N1—C219.13 (11)N21—C23—C24—C29132.75 (19)
N11—Cu1—N1—C21109.91 (12)C29—C24—C25—C262.1 (3)
N31—Cu1—N1—C11110.18 (12)C23—C24—C25—C26178.89 (18)
N21—Cu1—N1—C11128.54 (12)C24—C25—C26—C270.5 (3)
N11—Cu1—N1—C119.50 (12)C25—C26—C27—C281.8 (3)
C31—N1—C11—C12148.04 (16)C26—C27—C28—C292.5 (3)
C21—N1—C11—C1278.21 (19)C27—C28—C29—C240.9 (3)
Cu1—N1—C11—C1235.20 (17)C27—C28—C29—N22175.30 (18)
N31—Cu1—N11—C1382.4 (2)C25—C24—C29—C281.4 (3)
N21—Cu1—N11—C13114.32 (19)C23—C24—C29—C28179.61 (17)
N1—Cu1—N11—C13164.35 (19)C25—C24—C29—N22177.46 (17)
N31—Cu1—N11—C12100.63 (12)C23—C24—C29—N223.6 (3)
N21—Cu1—N11—C1262.63 (13)C28—C29—N22—O2224.8 (3)
N1—Cu1—N11—C1218.70 (12)C24—C29—N22—O22158.90 (18)
C12—N11—C13—C14176.99 (17)C28—C29—N22—O21154.27 (18)
Cu1—N11—C13—C146.3 (3)C24—C29—N22—O2122.0 (3)
C13—N11—C12—C11138.31 (18)C21—N1—C31—C32148.52 (16)
Cu1—N11—C12—C1144.11 (17)C11—N1—C31—C3278.1 (2)
N1—C11—C12—N1155.0 (2)Cu1—N1—C31—C3235.00 (17)
N11—C13—C14—C1537.0 (3)N1—C31—C32—N3153.3 (2)
N11—C13—C14—C19148.68 (19)C31—C32—N31—C33143.03 (17)
C19—C14—C15—C161.4 (3)C31—C32—N31—Cu141.54 (17)
C13—C14—C15—C16176.15 (18)N21—Cu1—N31—C3387.46 (19)
C14—C15—C16—C170.3 (3)N11—Cu1—N31—C33109.68 (19)
C15—C16—C17—C180.7 (3)N1—Cu1—N31—C33168.75 (19)
C16—C17—C18—C190.6 (3)N21—Cu1—N31—C3298.31 (12)
C17—C18—C19—C140.6 (3)N11—Cu1—N31—C3264.55 (13)
C17—C18—C19—N12176.77 (17)N1—Cu1—N31—C3217.01 (12)
C15—C14—C19—C181.6 (3)C32—N31—C33—C34178.37 (16)
C13—C14—C19—C18176.11 (18)Cu1—N31—C33—C347.8 (3)
C15—C14—C19—N12177.65 (17)N31—C33—C34—C3536.1 (3)
C13—C14—C19—N127.8 (3)N31—C33—C34—C39149.65 (18)
C18—C19—N12—O1237.8 (3)C39—C34—C35—C361.6 (3)
C14—C19—N12—O12145.90 (18)C33—C34—C35—C36176.17 (18)
C18—C19—N12—O11141.16 (19)C34—C35—C36—C370.6 (3)
C14—C19—N12—O1135.2 (3)C35—C36—C37—C380.9 (3)
C31—N1—C21—C2280.34 (19)C36—C37—C38—C391.3 (3)
C11—N1—C21—C22145.74 (16)C37—C38—C39—C340.2 (3)
Cu1—N1—C21—C2232.61 (17)C37—C38—C39—N32177.02 (17)
N1—C21—C22—N2149.7 (2)C35—C34—C39—C381.2 (3)
C21—C22—N21—C23138.70 (17)C33—C34—C39—C38175.68 (17)
C21—C22—N21—Cu139.54 (18)C35—C34—C39—N32178.33 (17)
N31—Cu1—N21—C23116.97 (17)C33—C34—C39—N327.2 (3)
N11—Cu1—N21—C2380.04 (18)C38—C39—N32—O3238.4 (2)
N1—Cu1—N21—C23161.38 (18)C34—C39—N32—O32144.24 (18)
N31—Cu1—N21—C2265.18 (13)C38—C39—N32—O31141.33 (18)
N11—Cu1—N21—C2297.81 (12)C34—C39—N32—O3136.0 (3)
(IV) chloro[tris(2-nitrobenzylaminoethyl)amine-κ4N]copper(II) chloride ethanol solvate top
Crystal data top
[Cu(C27H33N7O6)Cl]Cl·C2H6OF(000) = 1524
Mr = 732.11Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2629 reflections
a = 13.183 (5) Åθ = 2.3–22.7°
b = 14.485 (6) ŵ = 0.90 mm1
c = 16.914 (7) ÅT = 150 K
β = 95.319 (7)°Plate, green
V = 3216 (2) Å30.23 × 0.21 × 0.07 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5657 independent reflections
Radiation source: normal-focus sealed tube3256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.819, Tmax = 0.940k = 1617
22643 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0768P)2]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max < 0.001
416 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu(C27H33N7O6)Cl]Cl·C2H6OV = 3216 (2) Å3
Mr = 732.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.183 (5) ŵ = 0.90 mm1
b = 14.485 (6) ÅT = 150 K
c = 16.914 (7) Å0.23 × 0.21 × 0.07 mm
β = 95.319 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3256 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.940Rint = 0.103
22643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.98Δρmax = 0.63 e Å3
5657 reflectionsΔρmin = 0.76 e Å3
416 parameters
Special details top

Experimental. Analysis for [CuII(II)Cl]Cl·C2H5OH: calculated for [Cu(C27H33N7O6)Cl]Cl·C2H5OH: C 47.6, H 5.4, N 13.4%; found C 47.5, H 5.3, N 13.3%. IR (KBr, cm−1) inter alia: 1524(s, NO2), 1342(m, NO2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28727 (5)0.04347 (4)0.77698 (4)0.0234 (2)
Cl10.17505 (10)0.06292 (9)0.66933 (8)0.0327 (4)
N10.3832 (3)0.0309 (3)0.8781 (2)0.0211 (9)
C110.3957 (4)0.0687 (3)0.8989 (3)0.0251 (12)
H11A0.41180.07530.95690.030*
H11B0.45300.09490.87220.030*
C120.2997 (4)0.1200 (4)0.8731 (3)0.0253 (12)
H12A0.31040.18720.88110.030*
H12B0.24440.10010.90510.030*
N110.2714 (3)0.1004 (3)0.7882 (2)0.0217 (10)
H11N0.32060.12770.75990.026*
C130.1721 (4)0.1397 (4)0.7575 (3)0.0289 (13)
H13A0.15610.11890.70200.035*
H13B0.11880.11470.78920.035*
C140.1672 (4)0.2433 (4)0.7595 (3)0.0249 (12)
C150.2134 (4)0.3037 (4)0.7103 (3)0.0259 (12)
C160.2059 (4)0.3983 (4)0.7175 (3)0.0307 (13)
H160.23990.43790.68380.037*
C170.1479 (5)0.4354 (4)0.7748 (3)0.0404 (15)
H170.14190.50040.78000.048*
C180.1007 (5)0.3789 (4)0.8224 (3)0.0396 (15)
H180.06050.40420.86080.048*
C190.1100 (4)0.2847 (4)0.8159 (3)0.0327 (14)
H190.07670.24630.85100.039*
N120.2671 (3)0.2704 (4)0.6425 (3)0.0339 (12)
O110.2921 (3)0.3284 (3)0.5952 (2)0.0538 (12)
O120.2802 (3)0.1880 (3)0.6360 (2)0.0396 (10)
C210.4826 (4)0.0718 (3)0.8621 (3)0.0235 (12)
H21A0.53660.04990.90230.028*
H21B0.47890.14000.86570.028*
C220.5080 (4)0.0439 (4)0.7797 (3)0.0237 (12)
H22A0.57020.07640.76630.028*
H22B0.52090.02340.77810.028*
N210.4219 (3)0.0682 (3)0.7223 (2)0.0182 (9)
H21N0.42560.13100.71160.022*
C230.4236 (4)0.0170 (3)0.6459 (3)0.0242 (12)
H23A0.36410.03630.60970.029*
H23B0.41640.04980.65630.029*
C240.5194 (4)0.0321 (3)0.6046 (3)0.0223 (11)
C250.5449 (4)0.1101 (4)0.5632 (3)0.0250 (12)
C260.6342 (4)0.1173 (4)0.5266 (3)0.0365 (15)
H260.64920.17200.49890.044*
C270.7000 (4)0.0448 (5)0.5309 (3)0.0405 (16)
H270.76110.04850.50540.049*
C280.6787 (4)0.0341 (4)0.5722 (3)0.0379 (15)
H280.72520.08430.57530.045*
C290.5900 (4)0.0397 (4)0.6087 (3)0.0274 (12)
H290.57650.09400.63750.033*
N220.4741 (4)0.1895 (3)0.5504 (3)0.0327 (11)
O210.5031 (4)0.2567 (3)0.5156 (3)0.0583 (13)
O220.3899 (3)0.1842 (3)0.5735 (2)0.0458 (11)
C310.3380 (4)0.0819 (4)0.9417 (3)0.0258 (12)
H31A0.39160.09630.98490.031*
H31B0.28580.04310.96400.031*
C320.2901 (4)0.1698 (4)0.9097 (3)0.0291 (13)
H32A0.25260.20010.95060.035*
H32B0.34330.21280.89440.035*
N310.2191 (3)0.1467 (3)0.8393 (2)0.0242 (10)
H31N0.21420.19870.80690.029*
C330.1151 (4)0.1251 (4)0.8597 (3)0.0290 (13)
H33A0.11930.07460.89930.035*
H33B0.07450.10230.81150.035*
C340.0591 (4)0.2070 (4)0.8932 (3)0.0260 (12)
C350.0190 (4)0.1988 (4)0.9428 (3)0.0279 (13)
C360.0674 (4)0.2740 (4)0.9718 (3)0.0367 (15)
H360.12090.26531.00510.044*
C370.0385 (4)0.3616 (4)0.9527 (3)0.0392 (15)
H370.07080.41390.97310.047*
C380.0374 (4)0.3721 (4)0.9039 (4)0.0382 (15)
H380.05730.43250.88970.046*
C390.0858 (4)0.2963 (4)0.8747 (3)0.0324 (14)
H390.13880.30580.84120.039*
N320.0568 (4)0.1097 (4)0.9645 (3)0.0387 (13)
O310.0953 (3)0.1025 (3)1.0282 (3)0.0626 (14)
O320.0505 (3)0.0436 (3)0.9195 (3)0.0441 (11)
Cl20.50809 (11)0.28124 (9)0.74712 (8)0.0341 (4)
O410.2750 (3)0.3124 (3)0.7463 (2)0.0465 (11)
H410.33770.30140.75270.06 (2)*
C420.2477 (6)0.3371 (5)0.6668 (4)0.065 (2)
H42A0.28500.29780.63130.078*
H42B0.26700.40220.65820.078*
C430.1383 (6)0.3259 (5)0.6474 (5)0.085 (3)
H43A0.12010.34430.59220.127*
H43B0.10150.36470.68270.127*
H43C0.11970.26100.65430.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0236 (4)0.0272 (4)0.0193 (3)0.0020 (3)0.0020 (3)0.0025 (3)
Cl10.0319 (8)0.0368 (9)0.0280 (8)0.0061 (6)0.0047 (6)0.0011 (6)
N10.023 (2)0.022 (2)0.019 (2)0.0011 (19)0.0062 (18)0.0009 (19)
C110.031 (3)0.027 (3)0.018 (3)0.005 (2)0.005 (2)0.001 (2)
C120.025 (3)0.031 (3)0.021 (3)0.003 (2)0.007 (2)0.002 (2)
N110.018 (2)0.029 (3)0.018 (2)0.0024 (19)0.0018 (18)0.0008 (19)
C130.026 (3)0.032 (3)0.029 (3)0.005 (3)0.003 (2)0.002 (3)
C140.014 (3)0.033 (3)0.026 (3)0.009 (2)0.004 (2)0.000 (2)
C150.025 (3)0.034 (3)0.019 (3)0.007 (3)0.001 (2)0.001 (2)
C160.029 (3)0.034 (3)0.029 (3)0.007 (3)0.002 (3)0.005 (3)
C170.050 (4)0.030 (4)0.040 (4)0.010 (3)0.002 (3)0.003 (3)
C180.047 (4)0.043 (4)0.030 (3)0.010 (3)0.007 (3)0.004 (3)
C190.032 (3)0.036 (4)0.030 (3)0.003 (3)0.005 (3)0.004 (3)
N120.030 (3)0.048 (3)0.023 (3)0.000 (3)0.002 (2)0.001 (2)
O110.067 (3)0.055 (3)0.043 (3)0.006 (2)0.026 (2)0.012 (2)
O120.046 (3)0.042 (3)0.032 (2)0.012 (2)0.0091 (19)0.002 (2)
C210.022 (3)0.024 (3)0.025 (3)0.004 (2)0.004 (2)0.002 (2)
C220.022 (3)0.027 (3)0.023 (3)0.003 (2)0.004 (2)0.001 (2)
N210.025 (2)0.017 (2)0.013 (2)0.0018 (18)0.0024 (18)0.0003 (17)
C230.028 (3)0.022 (3)0.024 (3)0.001 (2)0.007 (2)0.003 (2)
C240.024 (3)0.023 (3)0.020 (3)0.009 (2)0.003 (2)0.004 (2)
C250.031 (3)0.028 (3)0.016 (3)0.002 (3)0.002 (2)0.004 (2)
C260.037 (4)0.049 (4)0.023 (3)0.014 (3)0.000 (3)0.003 (3)
C270.025 (3)0.065 (5)0.032 (3)0.010 (3)0.011 (3)0.016 (3)
C280.029 (3)0.050 (4)0.034 (3)0.011 (3)0.001 (3)0.008 (3)
C290.032 (3)0.031 (3)0.019 (3)0.005 (3)0.004 (2)0.003 (2)
N220.048 (3)0.027 (3)0.021 (3)0.000 (2)0.006 (2)0.002 (2)
O210.077 (4)0.034 (3)0.064 (3)0.006 (2)0.007 (3)0.022 (2)
O220.046 (3)0.038 (3)0.054 (3)0.014 (2)0.008 (2)0.003 (2)
C310.021 (3)0.034 (3)0.023 (3)0.008 (2)0.004 (2)0.005 (2)
C320.023 (3)0.035 (3)0.029 (3)0.005 (3)0.000 (2)0.008 (3)
N310.021 (2)0.025 (2)0.027 (2)0.0025 (19)0.0018 (19)0.003 (2)
C330.022 (3)0.038 (3)0.027 (3)0.004 (3)0.006 (2)0.004 (3)
C340.020 (3)0.033 (3)0.024 (3)0.003 (2)0.000 (2)0.003 (2)
C350.025 (3)0.034 (3)0.024 (3)0.000 (3)0.001 (2)0.010 (3)
C360.029 (3)0.056 (4)0.026 (3)0.010 (3)0.009 (3)0.004 (3)
C370.034 (3)0.045 (4)0.040 (4)0.013 (3)0.010 (3)0.004 (3)
C380.034 (3)0.030 (3)0.052 (4)0.003 (3)0.010 (3)0.002 (3)
C390.024 (3)0.037 (4)0.038 (3)0.002 (3)0.013 (3)0.002 (3)
N320.030 (3)0.048 (3)0.039 (3)0.011 (3)0.010 (2)0.007 (3)
O310.061 (3)0.068 (3)0.066 (3)0.016 (3)0.041 (3)0.026 (3)
O320.040 (2)0.040 (3)0.052 (3)0.007 (2)0.000 (2)0.008 (2)
Cl20.0379 (8)0.0259 (8)0.0390 (8)0.0060 (6)0.0059 (6)0.0003 (6)
O410.039 (3)0.065 (3)0.035 (3)0.010 (2)0.003 (2)0.006 (2)
C420.070 (5)0.065 (5)0.060 (5)0.033 (4)0.006 (4)0.009 (4)
C430.092 (7)0.071 (6)0.085 (6)0.013 (5)0.027 (5)0.000 (5)
Geometric parameters (Å, º) top
Cu1—N12.038 (4)C24—C291.394 (7)
Cu1—N312.081 (4)C25—C261.384 (7)
Cu1—N112.105 (4)C25—N221.484 (7)
Cu1—N212.107 (4)C26—C271.360 (8)
Cu1—Cl12.2547 (16)C26—H260.9500
N1—C311.476 (6)C27—C281.382 (8)
N1—C211.486 (6)C27—H270.9500
N1—C111.490 (6)C28—C291.375 (7)
C11—C121.498 (7)C28—H280.9500
C11—H11A0.9900C29—H290.9500
C11—H11B0.9900N22—O221.213 (6)
C12—N111.478 (6)N22—O211.216 (6)
C12—H12A0.9900C31—C321.501 (7)
C12—H12B0.9900C31—H31A0.9900
N11—C131.477 (6)C31—H31B0.9900
N11—H11N0.9300C32—N311.483 (6)
C13—C141.502 (7)C32—H32A0.9900
C13—H13A0.9900C32—H32B0.9900
C13—H13B0.9900N31—C331.478 (6)
C14—C151.387 (7)N31—H31N0.9300
C14—C191.405 (7)C33—C341.533 (7)
C15—C161.380 (7)C33—H33A0.9900
C15—N121.483 (6)C33—H33B0.9900
C16—C171.395 (7)C34—C391.384 (7)
C16—H160.9500C34—C351.393 (7)
C17—C181.341 (8)C35—C361.376 (7)
C17—H170.9500C35—N321.443 (7)
C18—C191.375 (8)C36—C371.372 (8)
C18—H180.9500C36—H360.9500
C19—H190.9500C37—C381.363 (8)
N12—O121.212 (6)C37—H370.9500
N12—O111.226 (6)C38—C391.385 (7)
C21—C221.519 (6)C38—H380.9500
C21—H21A0.9900C39—H390.9500
C21—H21B0.9900N32—O321.231 (6)
C22—N211.467 (6)N32—O311.237 (6)
C22—H22A0.9900O41—C421.406 (8)
C22—H22B0.9900O41—H410.8400
N21—C231.491 (6)C42—C431.458 (10)
N21—H21N0.9300C42—H42A0.9900
C23—C241.514 (7)C42—H42B0.9900
C23—H23A0.9900C43—H43A0.9800
C23—H23B0.9900C43—H43B0.9800
C24—C251.386 (7)C43—H43C0.9800
N1—Cu1—N3184.44 (16)N21—C23—H23B108.7
N1—Cu1—N1183.97 (16)C24—C23—H23B108.7
N31—Cu1—N11127.92 (16)H23A—C23—H23B107.6
N1—Cu1—N2184.35 (15)C25—C24—C29116.2 (5)
N31—Cu1—N21121.43 (16)C25—C24—C23127.0 (5)
N11—Cu1—N21107.62 (15)C29—C24—C23116.8 (5)
N1—Cu1—Cl1176.50 (12)C26—C25—C24123.0 (5)
N31—Cu1—Cl192.13 (12)C26—C25—N22115.1 (5)
N11—Cu1—Cl197.66 (11)C24—C25—N22121.8 (5)
N21—Cu1—Cl198.07 (11)C27—C26—C25118.8 (5)
C31—N1—C21110.8 (4)C27—C26—H26120.6
C31—N1—C11110.9 (4)C25—C26—H26120.6
C21—N1—C11110.4 (4)C26—C27—C28120.5 (5)
C31—N1—Cu1107.8 (3)C26—C27—H27119.8
C21—N1—Cu1107.5 (3)C28—C27—H27119.8
C11—N1—Cu1109.3 (3)C29—C28—C27119.9 (5)
N1—C11—C12109.9 (4)C29—C28—H28120.1
N1—C11—H11A109.7C27—C28—H28120.1
C12—C11—H11A109.7C28—C29—C24121.6 (5)
N1—C11—H11B109.7C28—C29—H29119.2
C12—C11—H11B109.7C24—C29—H29119.2
H11A—C11—H11B108.2O22—N22—O21122.9 (5)
N11—C12—C11108.5 (4)O22—N22—C25119.0 (5)
N11—C12—H12A110.0O21—N22—C25118.0 (5)
C11—C12—H12A110.0N1—C31—C32110.2 (4)
N11—C12—H12B110.0N1—C31—H31A109.6
C11—C12—H12B110.0C32—C31—H31A109.6
H12A—C12—H12B108.4N1—C31—H31B109.6
C13—N11—C12113.8 (4)C32—C31—H31B109.6
C13—N11—Cu1116.3 (3)H31A—C31—H31B108.1
C12—N11—Cu1105.1 (3)N31—C32—C31108.2 (4)
C13—N11—H11N107.1N31—C32—H32A110.1
C12—N11—H11N107.1C31—C32—H32A110.1
Cu1—N11—H11N107.1N31—C32—H32B110.1
N11—C13—C14114.6 (4)C31—C32—H32B110.1
N11—C13—H13A108.6H32A—C32—H32B108.4
C14—C13—H13A108.6C33—N31—C32112.9 (4)
N11—C13—H13B108.6C33—N31—Cu1114.8 (3)
C14—C13—H13B108.6C32—N31—Cu1107.4 (3)
H13A—C13—H13B107.6C33—N31—H31N107.1
C15—C14—C19115.5 (5)C32—N31—H31N107.1
C15—C14—C13126.5 (5)Cu1—N31—H31N107.1
C19—C14—C13117.9 (5)N31—C33—C34114.3 (4)
C16—C15—C14122.3 (5)N31—C33—H33A108.7
C16—C15—N12115.8 (5)C34—C33—H33A108.7
C14—C15—N12121.7 (5)N31—C33—H33B108.7
C15—C16—C17119.5 (5)C34—C33—H33B108.7
C15—C16—H16120.2H33A—C33—H33B107.6
C17—C16—H16120.2C39—C34—C35115.7 (5)
C18—C17—C16119.7 (5)C39—C34—C33119.9 (5)
C18—C17—H17120.1C35—C34—C33124.4 (5)
C16—C17—H17120.1C36—C35—C34122.7 (5)
C17—C18—C19120.5 (6)C36—C35—N32115.8 (5)
C17—C18—H18119.7C34—C35—N32121.4 (5)
C19—C18—H18119.7C37—C36—C35120.0 (5)
C18—C19—C14122.4 (5)C37—C36—H36120.0
C18—C19—H19118.8C35—C36—H36120.0
C14—C19—H19118.8C38—C37—C36118.8 (6)
O12—N12—O11124.5 (5)C38—C37—H37120.6
O12—N12—C15118.2 (5)C36—C37—H37120.6
O11—N12—C15117.2 (5)C37—C38—C39121.0 (6)
N1—C21—C22109.5 (4)C37—C38—H38119.5
N1—C21—H21A109.8C39—C38—H38119.5
C22—C21—H21A109.8C34—C39—C38121.7 (5)
N1—C21—H21B109.8C34—C39—H39119.1
C22—C21—H21B109.8C38—C39—H39119.1
H21A—C21—H21B108.2O32—N32—O31122.0 (5)
N21—C22—C21108.7 (4)O32—N32—C35119.5 (5)
N21—C22—H22A109.9O31—N32—C35118.4 (5)
C21—C22—H22A109.9C42—O41—H41109.5
N21—C22—H22B109.9O41—C42—C43110.2 (7)
C21—C22—H22B109.9O41—C42—H42A109.6
H22A—C22—H22B108.3C43—C42—H42A109.6
C22—N21—C23112.5 (4)O41—C42—H42B109.6
C22—N21—Cu1107.5 (3)C43—C42—H42B109.6
C23—N21—Cu1112.2 (3)H42A—C42—H42B108.1
C22—N21—H21N108.2C42—C43—H43A109.5
C23—N21—H21N108.2C42—C43—H43B109.5
Cu1—N21—H21N108.2H43A—C43—H43B109.5
N21—C23—C24114.1 (4)C42—C43—H43C109.5
N21—C23—H23A108.7H43A—C43—H43C109.5
C24—C23—H23A108.7H43B—C43—H43C109.5
N31—Cu1—N1—C3113.4 (3)N11—Cu1—N21—C2354.1 (3)
N11—Cu1—N1—C31115.8 (3)Cl1—Cu1—N21—C2346.7 (3)
N21—Cu1—N1—C31135.8 (3)C22—N21—C23—C2458.3 (5)
N31—Cu1—N1—C21106.1 (3)Cu1—N21—C23—C24179.6 (3)
N11—Cu1—N1—C21124.7 (3)N21—C23—C24—C2574.9 (6)
N21—Cu1—N1—C2116.3 (3)N21—C23—C24—C29104.7 (5)
N31—Cu1—N1—C11134.0 (3)C29—C24—C25—C261.0 (7)
N11—Cu1—N1—C114.8 (3)C23—C24—C25—C26179.4 (5)
N21—Cu1—N1—C11103.6 (3)C29—C24—C25—N22176.5 (4)
C31—N1—C11—C1286.9 (5)C23—C24—C25—N223.8 (8)
C21—N1—C11—C12150.0 (4)C24—C25—C26—C270.2 (8)
Cu1—N1—C11—C1231.9 (4)N22—C25—C26—C27175.6 (5)
N1—C11—C12—N1153.1 (5)C25—C26—C27—C281.0 (8)
C11—C12—N11—C13174.2 (4)C26—C27—C28—C290.4 (8)
C11—C12—N11—Cu145.9 (4)C27—C28—C29—C240.8 (8)
N1—Cu1—N11—C13149.4 (3)C25—C24—C29—C281.5 (7)
N31—Cu1—N11—C1371.2 (4)C23—C24—C29—C28178.9 (5)
N21—Cu1—N11—C13128.5 (3)C26—C25—N22—O22172.4 (5)
Cl1—Cu1—N11—C1327.5 (3)C24—C25—N22—O223.5 (7)
N1—Cu1—N11—C1222.6 (3)C26—C25—N22—O216.3 (7)
N31—Cu1—N11—C1255.5 (3)C24—C25—N22—O21177.8 (5)
N21—Cu1—N11—C12104.7 (3)C21—N1—C31—C3278.3 (5)
Cl1—Cu1—N11—C12154.3 (3)C11—N1—C31—C32158.8 (4)
C12—N11—C13—C1463.3 (6)Cu1—N1—C31—C3239.1 (5)
Cu1—N11—C13—C14174.4 (3)N1—C31—C32—N3152.8 (5)
N11—C13—C14—C1572.7 (7)C31—C32—N31—C3388.9 (5)
N11—C13—C14—C19107.7 (5)C31—C32—N31—Cu138.7 (5)
C19—C14—C15—C161.5 (7)N1—Cu1—N31—C33112.2 (3)
C13—C14—C15—C16178.8 (5)N11—Cu1—N31—C3334.3 (4)
C19—C14—C15—N12173.5 (4)N21—Cu1—N31—C33167.9 (3)
C13—C14—C15—N126.1 (8)Cl1—Cu1—N31—C3367.1 (3)
C14—C15—C16—C171.7 (8)N1—Cu1—N31—C3214.3 (3)
N12—C15—C16—C17173.7 (5)N11—Cu1—N31—C3292.1 (3)
C15—C16—C17—C180.4 (9)N21—Cu1—N31—C3265.6 (4)
C16—C17—C18—C190.9 (9)Cl1—Cu1—N31—C32166.4 (3)
C17—C18—C19—C141.0 (9)C32—N31—C33—C3466.0 (6)
C15—C14—C19—C180.2 (8)Cu1—N31—C33—C34170.4 (3)
C13—C14—C19—C18179.9 (5)N31—C33—C34—C3924.8 (7)
C16—C15—N12—O12176.2 (5)N31—C33—C34—C35154.8 (5)
C14—C15—N12—O128.4 (7)C39—C34—C35—C360.3 (8)
C16—C15—N12—O116.1 (7)C33—C34—C35—C36179.9 (5)
C14—C15—N12—O11169.2 (5)C39—C34—C35—N32177.8 (5)
C31—N1—C21—C22159.0 (4)C33—C34—C35—N322.6 (8)
C11—N1—C21—C2277.8 (5)C34—C35—C36—C370.7 (9)
Cu1—N1—C21—C2241.4 (4)N32—C35—C36—C37178.3 (5)
N1—C21—C22—N2153.4 (5)C35—C36—C37—C381.0 (9)
C21—C22—N21—C23161.0 (4)C36—C37—C38—C390.9 (9)
C21—C22—N21—Cu137.0 (4)C35—C34—C39—C380.2 (8)
N1—Cu1—N21—C2211.8 (3)C33—C34—C39—C38179.8 (5)
N31—Cu1—N21—C2291.7 (3)C37—C38—C39—C340.5 (9)
N11—Cu1—N21—C2270.0 (3)C36—C35—N32—O32150.6 (5)
Cl1—Cu1—N21—C22170.8 (3)C34—C35—N32—O3227.1 (8)
N1—Cu1—N21—C23135.9 (3)C36—C35—N32—O3129.1 (7)
N31—Cu1—N21—C23144.2 (3)C34—C35—N32—O31153.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31N···O410.932.132.998 (6)154
N11—H11N···O120.932.292.882 (6)121
N11—H11N···Cl2i0.932.633.474 (4)152
N21—H21N···O220.932.463.023 (6)119
N21—H21N···Cl20.932.483.302 (4)147
O41—H41···Cl20.842.283.105 (5)170
Symmetry code: (i) x+1, y1/2, z+3/2.
(VI) [tris(2-nitrobenzylideneaminopropyl)amine-κ4N]copper(I) perchlorate top
Crystal data top
[Cu(C30H33N7O6)]ClO4F(000) = 1552
Mr = 750.62Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9345 reflections
a = 9.5361 (7) Åθ = 2.2–27.6°
b = 18.6870 (13) ŵ = 0.80 mm1
c = 19.2367 (13) ÅT = 150 K
β = 104.044 (1)°Lath, red
V = 3325.5 (4) Å30.47 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7892 independent reflections
Radiation source: normal-focus sealed tube5773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.704, Tmax = 0.903k = 2423
28475 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0534P)2 + 2.0893P]
where P = (Fo2 + 2Fc2)/3
7892 reflections(Δ/σ)max = 0.001
455 parametersΔρmax = 0.50 e Å3
62 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C30H33N7O6)]ClO4V = 3325.5 (4) Å3
Mr = 750.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5361 (7) ŵ = 0.80 mm1
b = 18.6870 (13) ÅT = 150 K
c = 19.2367 (13) Å0.47 × 0.17 × 0.13 mm
β = 104.044 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7892 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5773 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.903Rint = 0.028
28475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04062 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
7892 reflectionsΔρmin = 0.33 e Å3
455 parameters
Special details top

Experimental. Analysis for [CuI(V)]ClO4: calculated for [C30H33N7O6Cu]ClO4: C 48.0, H 4.4, N 13.1%; found C 47.2, H 4.3, N 12.8%. NMR (CDCl3, p.p.m., 1H): 1.95(m, 6, CH2), 2.70(t, 6, CH2), 3.10(t, 6, CH2), 8.30(s, 3, imine), 8.05(d, 3, aromatic), 8.1(d, 3, aromatic), 7.6(t, 3, aromatic), 8.4(t, 3, aromatic). Mass spectrum (FAB): m/e 651, [CuI(V)]+. IR (KBr, cm−1) inter alia: 1636(m, imine), 1524(s, NO2), 1343(m, NO2), 1090(s, ClO4), 622(m, ClO4).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.02157 (3)0.223560 (14)0.910299 (13)0.02903 (9)
N10.1161 (2)0.15678 (11)0.96041 (10)0.0389 (5)
C110.0686 (3)0.16289 (17)1.03977 (13)0.0497 (7)
H11A0.12620.12881.06090.060*
H11B0.09230.21171.05350.060*
C120.0901 (3)0.14910 (16)1.07336 (13)0.0505 (7)
H12A0.11500.10111.05810.061*
H12B0.10420.14791.12610.061*
C130.1955 (3)0.20316 (15)1.05538 (12)0.0429 (6)
H13A0.16280.25221.06300.051*
H13B0.29210.19601.08800.051*
N110.2066 (2)0.19578 (10)0.98013 (10)0.0326 (4)
C140.3129 (2)0.15948 (12)0.97089 (13)0.0369 (5)
H140.37670.13851.01140.044*
C150.3412 (2)0.14859 (13)0.89963 (13)0.0372 (5)
C160.3357 (3)0.20614 (14)0.85352 (14)0.0424 (6)
H160.30700.25180.86690.051*
C170.3713 (3)0.19835 (19)0.78834 (16)0.0623 (9)
H170.36520.23810.75700.075*
C180.4155 (3)0.1325 (2)0.7690 (2)0.0759 (12)
H180.44060.12740.72430.091*
C190.4238 (3)0.0745 (2)0.8136 (2)0.0693 (10)
H190.45480.02930.80030.083*
C200.3865 (3)0.08298 (15)0.87755 (16)0.0502 (7)
N120.3846 (3)0.01910 (13)0.92271 (16)0.0681 (8)
O110.2900 (3)0.01515 (13)0.95421 (15)0.0798 (8)
O120.4765 (3)0.02615 (13)0.92152 (15)0.1085 (11)
C210.2703 (3)0.17882 (16)0.93795 (15)0.0492 (6)
H21A0.32460.15260.96780.059*
H21B0.30920.16360.88770.059*
C220.2999 (3)0.25835 (16)0.94312 (15)0.0478 (6)
H22A0.40590.26560.93250.057*
H22B0.25910.27400.99310.057*
C230.2391 (3)0.30596 (15)0.89354 (13)0.0437 (6)
H23A0.25920.28420.84520.052*
H23B0.28720.35330.88940.052*
N210.0814 (2)0.31535 (10)0.92116 (9)0.0331 (4)
C240.0449 (3)0.37267 (13)0.95633 (12)0.0398 (5)
H240.11940.40500.96040.048*
C250.1052 (3)0.39227 (12)0.99124 (12)0.0403 (6)
C260.2140 (3)0.38701 (14)0.95509 (14)0.0479 (6)
H260.19250.36730.90820.058*
C270.3534 (4)0.40983 (18)0.98594 (17)0.0646 (8)
H270.42660.40470.96050.078*
C280.3864 (4)0.43999 (18)1.05364 (18)0.0712 (10)
H280.48210.45561.07460.085*
C290.2800 (4)0.44736 (16)1.09061 (16)0.0645 (9)
H290.30090.46911.13660.077*
C300.1432 (4)0.42269 (14)1.05965 (14)0.0512 (7)
N220.0358 (4)0.42517 (15)1.10307 (13)0.0671 (8)
O210.0603 (3)0.38050 (14)1.09181 (12)0.0779 (7)
O220.0495 (4)0.47159 (16)1.14926 (13)0.1033 (10)
C310.1053 (3)0.08058 (13)0.93970 (15)0.0483 (6)
H31A0.17500.05240.95920.058*
H31B0.00730.06310.96330.058*
C320.1328 (3)0.06489 (13)0.86035 (14)0.0456 (6)
H32A0.22760.08550.83610.055*
H32B0.13970.01240.85360.055*
C330.0198 (3)0.09314 (12)0.82358 (13)0.0374 (5)
H33A0.07770.08020.85240.045*
H33B0.03360.07030.77600.045*
N310.02942 (19)0.17141 (9)0.81474 (9)0.0300 (4)
C340.0817 (2)0.19367 (12)0.75154 (11)0.0334 (5)
H340.10730.16010.71340.040*
C350.1036 (2)0.27078 (12)0.73611 (11)0.0315 (5)
C360.0049 (3)0.31971 (13)0.76432 (12)0.0360 (5)
H360.09550.30260.79150.043*
C370.0154 (3)0.39285 (14)0.75396 (12)0.0406 (5)
H370.06080.42520.77360.049*
C380.1463 (3)0.41817 (14)0.71510 (14)0.0456 (6)
H380.16220.46830.71000.055*
C390.2544 (3)0.37147 (14)0.68358 (13)0.0434 (6)
H390.34350.38900.65510.052*
C400.2322 (2)0.29902 (13)0.69361 (11)0.0344 (5)
N320.3508 (2)0.25103 (13)0.65973 (12)0.0447 (5)
O310.3632 (2)0.19473 (12)0.68929 (12)0.0647 (6)
O320.4299 (2)0.26989 (12)0.60247 (12)0.0665 (6)
Cl10.40434 (14)0.42079 (12)0.77914 (7)0.0409 (4)0.727 (6)
O10.5533 (2)0.43696 (13)0.79311 (13)0.0719 (6)0.727 (6)
O20.3833 (3)0.36790 (12)0.82863 (13)0.0839 (8)0.727 (6)
O30.3536 (6)0.3974 (3)0.70869 (18)0.125 (2)0.727 (6)
O40.3304 (4)0.4854 (2)0.7881 (2)0.0979 (16)0.727 (6)
O1'0.5533 (2)0.43696 (13)0.79311 (13)0.0719 (6)0.273 (6)
O2'0.3833 (3)0.36790 (12)0.82863 (13)0.0839 (8)0.273 (6)
Cl1'0.4221 (3)0.3989 (2)0.76720 (19)0.0342 (8)*0.273 (6)
O3'0.4398 (9)0.3488 (4)0.7175 (4)0.056 (2)*0.273 (6)
O4'0.3141 (9)0.4512 (5)0.7380 (5)0.068 (3)*0.273 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02987 (14)0.03104 (14)0.02508 (13)0.00160 (11)0.00455 (10)0.00186 (10)
N10.0372 (11)0.0431 (11)0.0366 (10)0.0068 (9)0.0096 (9)0.0055 (9)
C110.0507 (15)0.0668 (18)0.0345 (13)0.0101 (13)0.0159 (11)0.0105 (12)
C120.0573 (16)0.0645 (18)0.0284 (12)0.0032 (14)0.0080 (11)0.0141 (12)
C130.0427 (13)0.0570 (16)0.0248 (11)0.0017 (11)0.0001 (10)0.0034 (10)
N110.0304 (9)0.0350 (10)0.0295 (9)0.0047 (8)0.0016 (8)0.0020 (8)
C140.0298 (11)0.0356 (12)0.0396 (12)0.0057 (9)0.0030 (9)0.0033 (10)
C150.0212 (10)0.0413 (13)0.0467 (13)0.0060 (9)0.0036 (9)0.0070 (11)
C160.0332 (12)0.0487 (14)0.0476 (14)0.0106 (11)0.0144 (11)0.0060 (11)
C170.0607 (18)0.079 (2)0.0553 (17)0.0341 (16)0.0297 (15)0.0147 (16)
C180.061 (2)0.101 (3)0.080 (2)0.0427 (19)0.0445 (18)0.054 (2)
C190.0364 (15)0.071 (2)0.103 (3)0.0168 (14)0.0221 (16)0.049 (2)
C200.0291 (12)0.0470 (15)0.0686 (18)0.0063 (11)0.0005 (12)0.0233 (14)
N120.0596 (16)0.0357 (13)0.082 (2)0.0038 (12)0.0350 (15)0.0195 (13)
O110.0775 (17)0.0524 (14)0.0935 (19)0.0160 (13)0.0101 (15)0.0199 (13)
O120.112 (2)0.0635 (15)0.109 (2)0.0413 (15)0.0540 (17)0.0451 (15)
C210.0331 (13)0.0598 (17)0.0558 (16)0.0126 (12)0.0127 (12)0.0007 (13)
C220.0302 (12)0.0634 (18)0.0508 (15)0.0018 (12)0.0118 (11)0.0059 (13)
C230.0364 (13)0.0522 (15)0.0399 (13)0.0101 (11)0.0042 (10)0.0007 (11)
N210.0370 (10)0.0360 (10)0.0259 (9)0.0033 (8)0.0071 (8)0.0018 (8)
C240.0543 (15)0.0367 (13)0.0312 (11)0.0066 (11)0.0156 (11)0.0025 (10)
C250.0626 (16)0.0282 (11)0.0293 (11)0.0064 (11)0.0096 (11)0.0014 (9)
C260.0584 (16)0.0479 (15)0.0371 (13)0.0150 (13)0.0107 (12)0.0069 (11)
C270.0641 (19)0.070 (2)0.0579 (18)0.0260 (16)0.0124 (15)0.0059 (16)
C280.078 (2)0.066 (2)0.0579 (19)0.0324 (18)0.0064 (17)0.0040 (16)
C290.097 (3)0.0477 (17)0.0400 (15)0.0187 (17)0.0008 (16)0.0052 (13)
C300.082 (2)0.0358 (13)0.0342 (13)0.0058 (13)0.0113 (13)0.0034 (11)
N220.110 (2)0.0592 (16)0.0355 (12)0.0014 (16)0.0247 (14)0.0087 (12)
O210.115 (2)0.0789 (17)0.0520 (13)0.0152 (15)0.0436 (13)0.0069 (12)
O220.158 (3)0.097 (2)0.0623 (15)0.0051 (19)0.0406 (17)0.0410 (15)
C310.0553 (16)0.0373 (13)0.0528 (15)0.0116 (12)0.0143 (13)0.0115 (12)
C320.0471 (15)0.0317 (12)0.0536 (15)0.0090 (11)0.0034 (12)0.0023 (11)
C330.0414 (13)0.0274 (11)0.0388 (12)0.0011 (10)0.0007 (10)0.0035 (9)
N310.0305 (9)0.0279 (9)0.0294 (9)0.0002 (7)0.0030 (7)0.0014 (7)
C340.0357 (12)0.0370 (12)0.0265 (10)0.0011 (10)0.0056 (9)0.0043 (9)
C350.0388 (12)0.0356 (12)0.0222 (9)0.0026 (9)0.0110 (9)0.0027 (9)
C360.0405 (13)0.0381 (12)0.0281 (11)0.0028 (10)0.0058 (9)0.0028 (9)
C370.0491 (14)0.0410 (13)0.0320 (12)0.0032 (11)0.0103 (11)0.0018 (10)
C380.0580 (16)0.0373 (13)0.0416 (13)0.0044 (12)0.0124 (12)0.0084 (11)
C390.0441 (14)0.0467 (14)0.0377 (13)0.0098 (12)0.0068 (11)0.0122 (11)
C400.0361 (12)0.0430 (13)0.0247 (10)0.0007 (10)0.0085 (9)0.0047 (9)
N320.0362 (11)0.0532 (13)0.0434 (12)0.0016 (10)0.0070 (9)0.0039 (10)
O310.0543 (12)0.0640 (13)0.0710 (14)0.0212 (10)0.0059 (10)0.0180 (11)
O320.0519 (12)0.0741 (15)0.0588 (13)0.0025 (10)0.0151 (10)0.0065 (11)
Cl10.0379 (5)0.0469 (8)0.0359 (5)0.0129 (5)0.0050 (4)0.0023 (5)
O10.0490 (12)0.0745 (15)0.0832 (16)0.0188 (11)0.0015 (11)0.0127 (12)
O20.120 (2)0.0602 (14)0.0898 (17)0.0138 (14)0.0616 (16)0.0163 (13)
O30.134 (4)0.174 (5)0.044 (2)0.029 (4)0.022 (2)0.034 (2)
O40.101 (3)0.080 (3)0.110 (3)0.033 (2)0.019 (2)0.014 (2)
O1'0.0490 (12)0.0745 (15)0.0832 (16)0.0188 (11)0.0015 (11)0.0127 (12)
O2'0.120 (2)0.0602 (14)0.0898 (17)0.0138 (14)0.0616 (16)0.0163 (13)
Geometric parameters (Å, º) top
Cu1—N212.0124 (19)C25—C261.386 (4)
Cu1—N112.0093 (18)C25—C301.398 (3)
Cu1—N312.0326 (17)C26—C271.385 (4)
Cu1—N12.1965 (19)C26—H260.9500
N1—C111.488 (3)C27—C281.383 (4)
N1—C211.487 (3)C27—H270.9500
N1—C311.489 (3)C28—C291.380 (5)
C11—C121.516 (4)C28—H280.9500
C11—H11A0.9900C29—C301.376 (4)
C11—H11B0.9900C29—H290.9500
C12—C131.523 (4)C30—N221.471 (4)
C12—H12A0.9900N22—O211.219 (4)
C12—H12B0.9900N22—O221.226 (3)
C13—N111.483 (3)C31—C321.513 (4)
C13—H13A0.9900C31—H31A0.9900
C13—H13B0.9900C31—H31B0.9900
N11—C141.267 (3)C32—C331.520 (4)
C14—C151.474 (3)C32—H32A0.9900
C14—H140.9500C32—H32B0.9900
C15—C161.387 (4)C33—N311.473 (3)
C15—C201.400 (3)C33—H33A0.9900
C16—C171.384 (4)C33—H33B0.9900
C16—H160.9500N31—C341.267 (3)
C17—C181.380 (5)C34—C351.476 (3)
C17—H170.9500C34—H340.9500
C18—C191.373 (5)C35—C361.389 (3)
C18—H180.9500C35—C401.401 (3)
C19—C201.371 (4)C36—C371.388 (3)
C19—H190.9500C36—H360.9500
C20—N121.479 (4)C37—C381.374 (4)
N12—O111.205 (4)C37—H370.9500
N12—O121.222 (3)C38—C391.374 (4)
C21—C221.521 (4)C38—H380.9500
C21—H21A0.9900C39—C401.377 (3)
C21—H21B0.9900C39—H390.9500
C22—C231.519 (4)C40—N321.466 (3)
C22—H22A0.9900N32—O311.215 (3)
C22—H22B0.9900N32—O321.226 (3)
C23—N211.479 (3)Cl1—O31.394 (4)
C23—H23A0.9900Cl1—O11.413 (2)
C23—H23B0.9900Cl1—O21.420 (2)
N21—C241.270 (3)Cl1—O41.430 (4)
C24—C251.472 (4)Cl1'—O3'1.378 (7)
C24—H240.9500Cl1'—O4'1.432 (8)
N21—Cu1—N11121.49 (8)C23—N21—Cu1109.94 (15)
N21—Cu1—N31119.13 (7)N21—C24—C25124.3 (2)
N11—Cu1—N31117.34 (7)N21—C24—H24117.9
N21—Cu1—N194.59 (8)C25—C24—H24117.9
N11—Cu1—N194.67 (7)C26—C25—C30116.5 (3)
N31—Cu1—N195.00 (7)C26—C25—C24121.1 (2)
C11—N1—C21108.1 (2)C30—C25—C24122.1 (2)
C11—N1—C31108.9 (2)C27—C26—C25121.4 (3)
C21—N1—C31108.3 (2)C27—C26—H26119.3
C11—N1—Cu1109.95 (15)C25—C26—H26119.3
C21—N1—Cu1111.68 (15)C28—C27—C26120.3 (3)
C31—N1—Cu1109.79 (15)C28—C27—H27119.9
N1—C11—C12116.6 (2)C26—C27—H27119.9
N1—C11—H11A108.1C29—C28—C27119.9 (3)
C12—C11—H11A108.1C29—C28—H28120.1
N1—C11—H11B108.1C27—C28—H28120.1
C12—C11—H11B108.1C28—C29—C30118.8 (3)
H11A—C11—H11B107.3C28—C29—H29120.6
C11—C12—C13115.8 (2)C30—C29—H29120.6
C11—C12—H12A108.3C29—C30—C25123.1 (3)
C13—C12—H12A108.3C29—C30—N22117.5 (3)
C11—C12—H12B108.3C25—C30—N22119.3 (3)
C13—C12—H12B108.3O21—N22—O22123.8 (3)
H12A—C12—H12B107.4O21—N22—C30118.3 (2)
N11—C13—C12111.6 (2)O22—N22—C30117.9 (3)
N11—C13—H13A109.3N1—C31—C32116.7 (2)
C12—C13—H13A109.3N1—C31—H31A108.1
N11—C13—H13B109.3C32—C31—H31A108.1
C12—C13—H13B109.3N1—C31—H31B108.1
H13A—C13—H13B108.0C32—C31—H31B108.1
C14—N11—C13115.8 (2)H31A—C31—H31B107.3
C14—N11—Cu1130.32 (16)C31—C32—C33115.7 (2)
C13—N11—Cu1111.66 (15)C31—C32—H32A108.4
N11—C14—C15122.5 (2)C33—C32—H32A108.4
N11—C14—H14118.7C31—C32—H32B108.4
C15—C14—H14118.7C33—C32—H32B108.4
C16—C15—C20116.9 (2)H32A—C32—H32B107.4
C16—C15—C14120.1 (2)N31—C33—C32111.56 (19)
C20—C15—C14122.9 (2)N31—C33—H33A109.3
C17—C16—C15121.2 (3)C32—C33—H33A109.3
C17—C16—H16119.4N31—C33—H33B109.3
C15—C16—H16119.4C32—C33—H33B109.3
C18—C17—C16119.8 (3)H33A—C33—H33B108.0
C18—C17—H17120.1C34—N31—C33115.83 (19)
C16—C17—H17120.1C34—N31—Cu1131.49 (16)
C17—C18—C19120.6 (3)C33—N31—Cu1112.16 (13)
C17—C18—H18119.7N31—C34—C35121.1 (2)
C19—C18—H18119.7N31—C34—H34119.4
C20—C19—C18118.8 (3)C35—C34—H34119.4
C20—C19—H19120.6C36—C35—C40116.3 (2)
C18—C19—H19120.6C36—C35—C34120.6 (2)
C19—C20—C15122.7 (3)C40—C35—C34123.1 (2)
C19—C20—N12118.5 (3)C37—C36—C35121.9 (2)
C15—C20—N12118.7 (3)C37—C36—H36119.1
O11—N12—O12126.5 (4)C35—C36—H36119.1
O11—N12—C20117.5 (2)C38—C37—C36119.6 (2)
O12—N12—C20115.9 (4)C38—C37—H37120.2
N1—C21—C22116.0 (2)C36—C37—H37120.2
N1—C21—H21A108.3C37—C38—C39120.4 (2)
C22—C21—H21A108.3C37—C38—H38119.8
N1—C21—H21B108.3C39—C38—H38119.8
C22—C21—H21B108.3C38—C39—C40119.3 (2)
H21A—C21—H21B107.4C38—C39—H39120.3
C23—C22—C21115.2 (2)C40—C39—H39120.3
C23—C22—H22A108.5C39—C40—C35122.3 (2)
C21—C22—H22A108.5C39—C40—N32117.6 (2)
C23—C22—H22B108.5C35—C40—N32120.0 (2)
C21—C22—H22B108.5O31—N32—O32124.1 (2)
H22A—C22—H22B107.5O31—N32—C40118.3 (2)
N21—C23—C22110.7 (2)O32—N32—C40117.6 (2)
N21—C23—H23A109.5O3—Cl1—O1110.3 (3)
C22—C23—H23A109.5O3—Cl1—O2111.2 (3)
N21—C23—H23B109.5O1—Cl1—O2108.70 (17)
C22—C23—H23B109.5O3—Cl1—O4108.5 (3)
H23A—C23—H23B108.1O1—Cl1—O4107.4 (2)
C24—N21—C23114.5 (2)O2—Cl1—O4110.6 (2)
C24—N21—Cu1134.18 (17)O3'—Cl1'—O4'112.9 (6)
N21—Cu1—N1—C1179.89 (17)N1—Cu1—N21—C2350.09 (15)
N11—Cu1—N1—C1142.27 (18)C23—N21—C24—C25177.6 (2)
N31—Cu1—N1—C11160.29 (17)Cu1—N21—C24—C2512.7 (4)
N21—Cu1—N1—C2140.08 (17)N21—C24—C25—C2647.6 (4)
N11—Cu1—N1—C21162.25 (17)N21—C24—C25—C30138.0 (3)
N31—Cu1—N1—C2179.74 (17)C30—C25—C26—C271.0 (4)
N21—Cu1—N1—C31160.29 (16)C24—C25—C26—C27175.6 (3)
N11—Cu1—N1—C3177.55 (16)C25—C26—C27—C281.3 (5)
N31—Cu1—N1—C3140.47 (16)C26—C27—C28—C290.0 (5)
C21—N1—C11—C12174.7 (2)C27—C28—C29—C301.6 (5)
C31—N1—C11—C1267.7 (3)C28—C29—C30—C252.0 (5)
Cu1—N1—C11—C1252.6 (3)C28—C29—C30—N22174.4 (3)
N1—C11—C12—C1366.2 (3)C26—C25—C30—C290.7 (4)
C11—C12—C13—N1171.9 (3)C24—C25—C30—C29173.9 (3)
C12—C13—N11—C1497.6 (3)C26—C25—C30—N22175.6 (2)
C12—C13—N11—Cu167.3 (2)C24—C25—C30—N229.7 (4)
N21—Cu1—N11—C14149.4 (2)C29—C30—N22—O21150.6 (3)
N31—Cu1—N11—C1414.2 (2)C25—C30—N22—O2126.0 (4)
N1—Cu1—N11—C14112.3 (2)C29—C30—N22—O2228.4 (4)
N21—Cu1—N11—C1348.45 (18)C25—C30—N22—O22155.0 (3)
N31—Cu1—N11—C13147.92 (15)C11—N1—C31—C32173.2 (2)
N1—Cu1—N11—C1349.84 (16)C21—N1—C31—C3269.5 (3)
C13—N11—C14—C15178.5 (2)Cu1—N1—C31—C3252.7 (3)
Cu1—N11—C14—C1520.0 (3)N1—C31—C32—C3368.2 (3)
N11—C14—C15—C1646.6 (3)C31—C32—C33—N3173.0 (3)
N11—C14—C15—C20139.1 (2)C32—C33—N31—C34106.8 (2)
C20—C15—C16—C171.0 (4)C32—C33—N31—Cu165.9 (2)
C14—C15—C16—C17175.6 (2)N21—Cu1—N31—C3425.4 (2)
C15—C16—C17—C181.2 (4)N11—Cu1—N31—C34138.6 (2)
C16—C17—C18—C190.4 (5)N1—Cu1—N31—C34123.5 (2)
C17—C18—C19—C200.4 (5)N21—Cu1—N31—C33145.80 (14)
C18—C19—C20—C150.5 (4)N11—Cu1—N31—C3350.17 (17)
C18—C19—C20—N12175.3 (3)N1—Cu1—N31—C3347.72 (15)
C16—C15—C20—C190.2 (4)C33—N31—C34—C35177.0 (2)
C14—C15—C20—C19174.6 (2)Cu1—N31—C34—C356.1 (3)
C16—C15—C20—N12176.0 (2)N31—C34—C35—C3646.8 (3)
C14—C15—C20—N129.6 (3)N31—C34—C35—C40132.7 (2)
C19—C20—N12—O11141.9 (3)C40—C35—C36—C373.1 (3)
C15—C20—N12—O1134.1 (3)C34—C35—C36—C37176.5 (2)
C19—C20—N12—O1234.9 (3)C35—C36—C37—C380.4 (4)
C15—C20—N12—O12149.2 (2)C36—C37—C38—C393.3 (4)
C11—N1—C21—C2272.1 (3)C37—C38—C39—C402.5 (4)
C31—N1—C21—C22170.0 (2)C38—C39—C40—C351.2 (4)
Cu1—N1—C21—C2249.0 (3)C38—C39—C40—N32179.3 (2)
N1—C21—C22—C2365.0 (3)C36—C35—C40—C393.9 (3)
C21—C22—C23—N2176.3 (3)C34—C35—C40—C39175.7 (2)
C22—C23—N21—C2497.4 (3)C36—C35—C40—N32178.01 (19)
C22—C23—N21—Cu171.1 (2)C34—C35—C40—N322.5 (3)
N11—Cu1—N21—C2417.0 (2)C39—C40—N32—O31148.9 (2)
N31—Cu1—N21—C24146.4 (2)C35—C40—N32—O3129.3 (3)
N1—Cu1—N21—C24115.3 (2)C39—C40—N32—O3232.3 (3)
N11—Cu1—N21—C23148.42 (14)C35—C40—N32—O32149.5 (2)
N31—Cu1—N21—C2348.23 (16)

Experimental details

(II)(IV)(VI)
Crystal data
Chemical formula[Cu(C27H27N7O6)]ClO4·2C2H3N[Cu(C27H33N7O6)Cl]Cl·C2H6O[Cu(C30H33N7O6)]ClO4
Mr790.65732.11750.62
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/c
Temperature (K)150150150
a, b, c (Å)11.1178 (7), 13.3595 (9), 13.7998 (9)13.183 (5), 14.485 (6), 16.914 (7)9.5361 (7), 18.6870 (13), 19.2367 (13)
α, β, γ (°)111.627 (1), 102.995 (1), 103.648 (1)90, 95.319 (7), 9090, 104.044 (1), 90
V3)1737.8 (2)3216 (2)3325.5 (4)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.780.900.80
Crystal size (mm)0.37 × 0.19 × 0.080.23 × 0.21 × 0.070.47 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.762, 0.9410.819, 0.9400.704, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
15023, 7856, 6372 22643, 5657, 3256 28475, 7892, 5773
Rint0.0190.1030.028
(sin θ/λ)max1)0.6780.5950.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.02 0.055, 0.153, 0.98 0.040, 0.112, 1.00
No. of reflections785656577892
No. of parameters488416455
No. of restraints10062
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.450.63, 0.760.50, 0.33

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) for (II) top
Cu1—N311.9974 (15)Cu1—N112.0127 (16)
Cu1—N211.9981 (15)Cu1—N12.1965 (15)
N31—Cu1—N21120.56 (6)N31—Cu1—N185.48 (6)
N31—Cu1—N11118.99 (6)N21—Cu1—N184.85 (6)
N21—Cu1—N11118.25 (6)N11—Cu1—N184.86 (6)
Selected geometric parameters (Å, º) for (IV) top
Cu1—N12.038 (4)Cu1—N212.107 (4)
Cu1—N312.081 (4)Cu1—Cl12.2547 (16)
Cu1—N112.105 (4)
N1—Cu1—N3184.44 (16)N11—Cu1—N21107.62 (15)
N1—Cu1—N1183.97 (16)N1—Cu1—Cl1176.50 (12)
N31—Cu1—N11127.92 (16)N31—Cu1—Cl192.13 (12)
N1—Cu1—N2184.35 (15)N11—Cu1—Cl197.66 (11)
N31—Cu1—N21121.43 (16)N21—Cu1—Cl198.07 (11)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N31—H31N···O410.932.132.998 (6)154.0
N11—H11N···O120.932.292.882 (6)121.3
N11—H11N···Cl2i0.932.633.474 (4)151.7
N21—H21N···O220.932.463.023 (6)118.8
N21—H21N···Cl20.932.483.302 (4)147.2
O41—H41···Cl20.842.283.105 (5)169.6
Symmetry code: (i) x+1, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (VI) top
Cu1—N212.0124 (19)Cu1—N312.0326 (17)
Cu1—N112.0093 (18)Cu1—N12.1965 (19)
N21—Cu1—N11121.49 (8)N21—Cu1—N194.59 (8)
N21—Cu1—N31119.13 (7)N11—Cu1—N194.67 (7)
N11—Cu1—N31117.34 (7)N31—Cu1—N195.00 (7)
 

Acknowledgements

The authors thank the Leverhulme Foundation, Unilever Research and Development and the Open University for support. They also acknowledge the use of the EPSRC Chemical Database Service at Daresbury.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArthurs, M., McKee, V., Nelson, J. & Town, R. M. (2001). J. Chem. Educ. 78, 1269–1272.  CAS Google Scholar
First citationBruker (1998). SMART (Version 5.625) and SAINT (Version 6.28). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoyle, J. L. (1999). PhD thesis, Open University, Milton Keynes, England.  Google Scholar
First citationDrew, M. G. B., Farrell, D., Morgan, G. G., McKee, V. & Nelson, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1513–1519.  CrossRef Google Scholar
First citationFarrar, J. A., McKee, V., Al-Obaidi, A. H. R., McGarvey, J. J., Nelson, J. & Thomson, A. J. (1995). Inorg. Chem. 34, 1302–1303.  CSD CrossRef CAS Web of Science Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHarding, C. J., Lu, Q., Malone, J. F., Marrs, D. J., Martin, N., McKee, V. & Nelson, J. (1995). J. Chem. Soc. Dalton Trans. pp. 1739–1747.  CSD CrossRef Web of Science Google Scholar
First citationKomiyama, K., Furutachi, H., Nagatomo, S., Hashimoto, A., Hayashi, H., Fujinami, S., Suzuki, M. & Kitagawa, T. (2004). Bull. Chem. Soc. Jpn, 77, 59–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S., Gelmini, G., Rettig, S. J., Thompson, R. C. & Orvig, C. (1992). J. Am. Chem. Soc. 114, 6081–6087.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747–o3749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKee, V., Nelson, J. & Town, R. M. (2003). Chem. Soc. Rev. 32, 309–325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNelson, J., McKee, V. & Morgan, G. G. (1998). Prog. Inorg. Chem. 47, 167–316.  CrossRef CAS Google Scholar
First citationSchatz, M., Becker, M., Walter, O., Liehr, G. & Schindler, S. (2001). Inorg. Chim. Acta, 324, 173–179.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds