metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Effects of d-orbital occupancy on the geometry of the trigonal–bipyramidal complexes [MIICl3(Hdabco)(dabco)]n, where M is Mn, Co, Ni or Cu and dabco is 1,4-di­aza­bi­cyclo­[2.2.2]octane

aSchool of Chemistry, Faraday Building, Sackville Street, University of Manchester, Manchester M60 1QD, England
*Correspondence e-mail: robin.pritchard@manchester.ac.uk

(Received 23 August 2006; accepted 14 September 2006; online 14 October 2006)

Geometric data from (1-aza-4-azoniabicyclo­[2.2.2]octane-κN1)(1,4-diaza­bicyclo­[2.2.2]octane-κN1)trichloro­manganese(II), [MnCl3(C6H13N2)(C6H12N2)] or [MnCl3(Hdabco)(dabco)] (dabco is 1,4-diaza­bicyclo­[2.2.2]octane), and the cobalt(II) analogue, [CoCl3(C6H13N2)(C6H12N2)], have been combined with previously reported data for the Ni and Cu analogues to show that bond-length trends across the isotypal series are consistent with a high-spin trigonal–bipyramidal system. As each transition metal is positioned on a D3 site in the space group R32 (No. 155), two bond lengths fully define each trigonal–bipyramidal coordination geometry [Mn—Cl = 2.3903 (7) Å and Mn—N = 2.367 (2) Å, and Co—Cl = 2.3080 (8) Å and Co—N = 2.269 (3) Å].

Comment

Comparison of bond lengths in transition metal compounds shows that imperfect shielding of metal nuclei by d electrons leads to a general contraction across a series. This trend is reversed at points where d orbitals that coincide with bonds are occupied. The above effects were noted for octa­hedral metal oxides by van Santen & van Wieringen (1952[Wieringen, J. S. van & van Santen, J. H. (1952). Recl Trav. Chim. Pays-Bas, 71, 420-430.]) and demonstrated more recently for a series of octa­hedral complexes by Cotton et al. (1984[Cotton, F. A., Lewis, G. E., Murillo, C. A., Schwotzer, W. & Valle, G. (1984). Inorg. Chem. 23, 4038-4041.], 1993[Cotton, F. A., Daniels, L. M., Murillo, C. A. & Quesada, J. F. (1993). Inorg. Chem. 32, 4861-4867.]). The latter compounds also show evidence of Jahn–Teller distortion. Chemists usually describe the above effects in terms of crystal- or ligand-field theories, which attempt to quantify the energy cost of placing an electron in a bonding d orbital (e.g. for an octa­hedral complex, the d orbitals divide into high-energy dx2-y2 and dx2, directed along the bonds, and lower-energy dxy, dxz and dyz, projecting between the bonds). Importantly, the energy gap between the two sets of orbitals determines whether it is energetically favourable to pair electrons in the lowest-energy orbitals or to semi-fill all five d orbitals before starting to pair electrons (i.e. low-spin versus high-spin configurations).

[Scheme 1]

The same rationale can be used for analysing the title trigonal–bipyramidal (tbp) structures, [MIICl3(Hdabco)(dabco)n, where M is Mn, Co, Ni or Cu and dabco is 1,4-diazabicyclo­[2.2.2]octane. The Mn and Co structures, (I)[link] and (II)[link], from the current study (Fig. 1[link]) form an isotypal series with the previously reported Ni (Petrusenko et al., 1997[Petrusenko, S. R., Sieler, J. & Kokozay, V. N. (1997). Z. Naturforsch. Teil B, 52, 331-336.]) and Cu analogues (Karan et al., 1999[Karan, N. K., Sen, S., Saha, M. K., Mitra, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 203-204.]; Viossat et al., 1988[Viossat, B., Khodadad, P., Rodier, N. & Dung, N. H. (1988). Acta Cryst. C44, 263-265.]). In the tbp geometry, the five d orbitals divide into three subsets, viz. low-energy dxz and dyz, medium-energy dxy and dx2-y2, lying in the same plane as the three equatorial M—Cl bonds, and high-energy dz2, pointing directly along the axial M—N bonds. When the crystallographically determined M—Cl and M—N bond lengths are plotted against d-electron configuration (Fig. 2[link]), the curves diverge at NiII. This is as expected for a high-spin tbp system. All bonds contract as electrons fill non-bonding dxz and dyz orbitals in the d5 to d7 configurations, but occupation of equatorial dxy and dx2-y2 in d8 and d9 causes the M—Cl bonds to lengthen, whilst allowing the M—N bonds to continue contracting. The M—N bonds would not be expected to expand until all five d orbitals are fully occupied. Support for the high-spin assignment is obtained from the tbp compounds [MIICl3(dabcoH)2] (M = Mn, Fe, Ni and Cu), which were previously classified as high-spin based on spectroscopic studies (Vallarino et al., 1972[Vallarino, L. M., Goedken, V. L. & Quagliano, J. V. (1972). Inorg. Chem. 11, 1466-1469.]).

It is likely that Jahn–Teller distortion of the Ni—Cl bonds has been masked by the crystallographic threefold axis. Previous structural studies of [MIICl3(CH3dabco)2]ClO4 (M = Ni and Cu; Rozell & Wood 1977[Rozell, W. J. & Wood, J. S. (1977). Inorg. Chem. 16, 1827-1833.]), where all the bonds are crystallographically independent, showed a small but significant deformation in the d8 Ni complex. The dabco dimensions in the title Mn and Co structures show good agreement and are as expected (Tables 1[link] and 2[link]). Inter­estingly, the M—N bonds are aligned with the crystal c axis in the current structures so that variations in unit-cell dimensions mirror changes in bond lengths. This suggests that spectroscopic excitation of d electrons may well have a macroscopic effect and that these materials should be investigated for opto-mechanical uses.

[Figure 1]
Figure 1
A view of [CoIICl3(Hdabco)(dabco)]n (50% probability displacement ellipsoids). Most H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A plot of M—Cl and M—N bond lengths (Å) versus d-electron configuration in [MIICl3(Hdabco)(dabco)]n, where M is Mn and Co (current work), Ni (Petrusenko et al., 1997[Petrusenko, S. R., Sieler, J. & Kokozay, V. N. (1997). Z. Naturforsch. Teil B, 52, 331-336.]), and Cu (Viossat et al., 1988[Viossat, B., Khodadad, P., Rodier, N. & Dung, N. H. (1988). Acta Cryst. C44, 263-265.]; Karan et al., 1999[Karan, N. K., Sen, S., Saha, M. K., Mitra, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 203-204.]). The M—Cl and M—N s.u. values are in the ranges 0.0007–0.002 and 0.002–0.006 Å, respectively.

Experimental

Crystals of the title Mn and Co compounds were prepared by mixing equal volumes of 0.2 M methanol solutions of dabco and MCl2. Long needles, suitable for crystallographic investigation, formed when these solutions were subjected to vapour diffusion using diethyl ether as the anti-solvent.

Compound (I)[link]

Crystal data
  • [MnCl3(C6H13N2)(C6H12N2)]

  • Mr = 386.65

  • Hexagonal, R 32

  • a = 10.601 (2) Å

  • c = 12.484 (2) Å

  • V = 1215.0 (4) Å3

  • Z = 3

  • Dx = 1.585 Mg m−3

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 223 (2) K

  • Needle, colourless

  • 0.3 × 0.1 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Non-profiled ω/2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.696, Tmax = 0.881

  • 1514 measured reflections

  • 487 independent reflections

  • 480 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 25.0°

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.037

  • S = 1.07

  • 487 reflections

  • 50 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0248P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0011 (4)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 201 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Mn1—N1 2.367 (2)
Mn1—Cl1 2.3903 (7)
N1—C2 1.4717 (18)
C2—C3 1.537 (2)
C3—N4 1.4806 (16)
C2—N1—C2i 108.23 (10)
N1—C2—C3 110.77 (13)
N4—C3—C2 108.96 (12)
C3—N4—C3i 108.97 (9)
Symmetry code: (i) -y+2, x-y+1, z.

Compound (II)[link]

Crystal data
  • [CoCl3(C6H13N2)(C6H12N2)]

  • Mr = 390.64

  • Trigonal, R 32

  • a = 10.5409 (10) Å

  • c = 12.303 (2) Å

  • V = 1183.9 (2) Å3

  • Z = 3

  • Dx = 1.644 Mg m−3

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 223 (2) K

  • Needle, blue

  • 0.25 × 0.1 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Non-profiled ω/2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.692, Tmax = 0.925

  • 1463 measured reflections

  • 470 independent reflections

  • 457 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 25.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.041

  • S = 1.1

  • 470 reflections

  • 50 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0197P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0006 (3)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 194 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Co1—N1 2.269 (3) 
Co1—Cl1 2.3080 (8)
N1—C2 1.472 (3)
C2—C3 1.528 (3)
C3—N4 1.482 (3)
C2—N1—C2i 107.60 (16)
N1—C2—C3 111.3 (2)
N4—C3—C2 109.0 (2)
C3—N4—C3i 108.62 (14)
Symmetry code: (i) -y, x-y, z.

Final refinements of both structures were carried out in the space group R32 (No. 155) with all non-H atoms anisotropic and H atoms isotropic, except for amine atom H4, whose Uiso(H) value was fixed at 0.028 (Mn) or 0.025 Å2 (Co) due to the close proximity of a disordered symmetry-related position. In this space group, a disordered amine H atom semi-populates two sites on the threefold axis between adjacent N atoms. As previous refinements of the Cu analogue were carried out in both R32 and R3 (No. 146), which gave an improved description of the amine H atom, refinements of the current structures were also attempted in R3. However, as the amine H atoms remained disordered, the R3 refinements were discontinued. The choice of space group made negligible difference to the M—Cl and M—N bond lengths.

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985[Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.]) for (I) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]) for (II); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Comparison of bond lengths in transition metal compounds shows that imperfect shielding of metal nuclei by d electrons leads to a general contraction across a series. This trend is reversed at points where d orbitals that coincide with bonds are occupied. The above effects were noted for octahedral metal oxides by van Santen & van Wieringen (1952) and demonstrated more recently for a series of octahedral complexes by Cotton et al. (1984, 1993). The latter compounds also show evidence of Jahn–Teller distortion. Chemists usually describe the above effects in terms of crystal- or ligand-field theories, which attempt to quantify the energy cost of placing an electron in a bonding d orbital (e.g. for an octahedral complex the d orbitals divide into high energy dx2 − y2 and dz2, directed along the bonds, and lower energy dxy, dxz and dyz projecting between the bonds). Importantly, the energy gap between the two sets of orbitals determines whether it is energetically favourable to pair electrons in the lowest energy orbitals or to semi-fill all five d orbitals before starting to pair electrons (i.e. low-spin versus high-spin configurations).

The same rationale can be used for analysing the title trigonal–bipyramidal (tbp) structures, [MII(Hdabco)(dabco)Cl3]n, where M = Mn, Co, Ni or Cu and dabco = 1,4-diazabicyclo[2.2.2]octane. The Mn and Co structures from the current study (Fig. 1) form an isotypal series with the previously reported Ni (Petrusenko et al., 1997) and Cu analogues (Karan et al., 1999; Viossat et al., 1988). In the tbp geometry, the five d orbitals divide into three sub-sets, viz. low-energy dxz and dyz, medium-energy dxy and dx2 − y2 lying in the same plane as the three equatorial M—Cl bonds, and high-energy dz2, pointing directly along the axial M—N bonds. When the crystallographically determined M—Cl and M—N bond lengths are plotted against d electron configuration (Fig. 2), the curves diverge at NiII. This is as expected for a high-spin tbp system. All bonds contract as electrons fill non-bonding dxz and dyz orbitals in the d5 to d7 configurations, but occupation of equatorial dxy and dx2 − y2 in d8 and d9 cause the M—Cl bonds to lengthen, whilst allowing the M—N bonds to continue contracting. The M—N bonds would not be expected to expand until all five d orbitals are fully occupied. Support for the high-spin assignment is obtained from the tbp compounds, [MIICl3(dabcoH)2] (M = Mn, Fe, Ni and Cu), which were previously classified as high-spin based on spectroscopic studies (Vallarino et al., 1972).

It is likely that Jahn–Teller distortion of the Ni—Cl bonds has been masked by the crystallographic threefold axis. Previous structural studies of [MII(CH3dabco)2Cl3]ClO4 (M = Ni and Cu; Rozell & Wood 1977), where all the bonds are crystallographically independent, showed a small but significant deformation in the d8 Ni complex. The dabco dimensions in the title Mn and Co structures show good agreement and are as expected (Table 2). Interestingly, the M—N bonds are aligned with the crystal c axis in the current structures so that variations in unit-cell dimensions mirror changes in bond lengths. This suggests that spectroscopic excitation of d electrons may well have a macroscopic effect and that these materials should be investigated for opto-mechanical uses.

Experimental top

Crystals of the title Mn and Co compounds were prepared by mixing equal volumes of 0.02 M methanol solutions of dabco and MCl2. Long needles, suitable for crystallographic investigation, formed when these solutions were subjected to vapour diffusion using diethyl ether as the anti-solvent.

Refinement top

Final refinements of both structures were carried out in space group R32 (No. 155) with all non-H atoms anisotropic and H atoms isotropic, except for atom H4, whose Uiso(H) value was fixed at 0.028 Å2 (Mn) or 0.025 Å2 (Co) due to the close proximity of a disordered, symmetry-related ghost. In this space group, a disordered amine H atom semi-populates two sites on the threefold axis between adjacent N atoms. As previous refinements of the Cu analogue were carried out in both R32 and R3 (No. 146), which gave an improved description of the amine H atom, refinements of the current structures were also attempted in R3. However, as the amine H atoms remained disordered, the R3 refinements were discontinued. The choice of space group made negligible difference to the M—Cl and M—N bond lengths.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986) for (I); SHELXS97 (Sheldrick, 1997) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of [CoII(Hdabco)(dabco)Cl3]n, (50% probability displacement ellipsoids). Most H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A plot of M—Cl and M—N bond lengths (Å) versus d-electron configuration in [MII(Hdabco)(dabco)Cl3]n, where M is Mn and Co (current work), Ni (Petrusenko et al., 1997), and Cu (Viossat et al., 1988; Karan et al., 1999). The M—Cl and M—N s.u. values are in the ranges 0.0007–0.002, and 0.002–0.006 Å, respectively.
(I) (1-aza-4-azoniabicyclo[2.2.2]octane-κN1) (1,4-diazabicyclo[2.2.2]octane-κN1)trichloromanganese(II) top
Crystal data top
[MnCl3(C6H13N2)(C6H12N2)]Dx = 1.585 Mg m3
Mr = 386.65Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R32Cell parameters from 25 reflections
Hall symbol: R 3 2"θ = 12.6–15.4°
a = 10.601 (2) ŵ = 1.31 mm1
c = 12.484 (2) ÅT = 223 K
V = 1215.0 (4) Å3Needle, colourless
Z = 30.3 × 0.1 × 0.1 mm
F(000) = 603
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.019
non–profiled ω/2θ scansθmax = 25.0°, θmin = 3.8°
Absorption correction: ψ scan
North et al., 1968
h = 1210
Tmin = 0.696, Tmax = 0.881k = 012
1514 measured reflectionsl = 1414
487 independent reflections3 standard reflections every 60 min
480 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.015Δρmax = 0.16 e Å3
wR(F2) = 0.037Δρmin = 0.13 e Å3
S = 1.07Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
487 reflectionsExtinction coefficient: 0.0011 (4)
50 parametersAbsolute structure: Flack (1983), 201 Friedel pairs
0 restraintsAbsolute structure parameter: 0.01 (2)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[MnCl3(C6H13N2)(C6H12N2)]Z = 3
Mr = 386.65Mo Kα radiation
Hexagonal, R32µ = 1.31 mm1
a = 10.601 (2) ÅT = 223 K
c = 12.484 (2) Å0.3 × 0.1 × 0.1 mm
V = 1215.0 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
480 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.019
Tmin = 0.696, Tmax = 0.8813 standard reflections every 60 min
1514 measured reflections intensity decay: 2%
487 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.037Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.13 e Å3
487 reflectionsAbsolute structure: Flack (1983), 201 Friedel pairs
50 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn11100.01470 (17)
Cl10.77452 (5)100.02454 (18)
N1110.18956 (16)0.0168 (4)
C20.86318 (18)0.8784 (2)0.23120 (13)0.0229 (4)
C30.85547 (15)0.88817 (17)0.35364 (13)0.0198 (4)
N4110.39414 (15)0.0173 (4)
H2A0.784 (2)0.874 (2)0.198 (2)0.042 (5)*
H2B0.861 (2)0.793 (2)0.2143 (16)0.033 (5)*
H3A0.7894 (18)0.9161 (15)0.3741 (12)0.015 (4)*
H3B0.8348 (17)0.800 (2)0.3875 (13)0.021 (4)*
H4110.482 (6)0.028*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0160 (2)0.0160 (2)0.0122 (3)0.00798 (11)00
Cl10.0219 (2)0.0362 (3)0.0203 (3)0.01812 (17)0.00005 (10)0.0001 (2)
N10.0184 (6)0.0184 (6)0.0136 (9)0.0092 (3)00
C20.0205 (8)0.0234 (8)0.0152 (8)0.0037 (7)0.0008 (6)0.0007 (6)
C30.0199 (9)0.0216 (8)0.0154 (7)0.0086 (7)0.0018 (6)0.0017 (5)
N40.0192 (7)0.0192 (7)0.0137 (11)0.0096 (3)00
Geometric parameters (Å, º) top
Mn1—N1i2.367 (2)C2—H2A0.91 (2)
Mn1—N12.367 (2)C2—H2B0.92 (2)
Mn1—Cl1ii2.3903 (7)C3—N41.4806 (16)
Mn1—Cl12.3903 (7)C3—H3A0.923 (18)
Mn1—Cl1iii2.3903 (7)C3—H3B0.95 (2)
N1—C2ii1.4717 (18)N4—C3ii1.4806 (16)
N1—C21.4717 (18)N4—C3iii1.4806 (16)
N1—C2iii1.4717 (18)N4—H41.09 (7)
C2—C31.537 (2)
N1i—Mn1—N1180N1—C2—H2A111.2 (14)
N1i—Mn1—Cl1ii90C3—C2—H2A111.9 (14)
N1—Mn1—Cl1ii90N1—C2—H2B108.0 (13)
N1i—Mn1—Cl190C3—C2—H2B108.5 (13)
N1—Mn1—Cl190H2A—C2—H2B106.3 (17)
Cl1ii—Mn1—Cl1120N4—C3—C2108.96 (12)
N1i—Mn1—Cl1iii90N4—C3—H3A107.2 (9)
N1—Mn1—Cl1iii90C2—C3—H3A111.8 (9)
Cl1ii—Mn1—Cl1iii120N4—C3—H3B106.0 (10)
Cl1—Mn1—Cl1iii120C2—C3—H3B111.7 (11)
C2ii—N1—C2108.23 (10)H3A—C3—H3B110.9 (13)
C2ii—N1—C2iii108.23 (10)C3—N4—C3ii108.97 (9)
C2—N1—C2iii108.23 (10)C3—N4—C3iii108.97 (9)
C2ii—N1—Mn1110.68 (10)C3ii—N4—C3iii108.97 (9)
C2—N1—Mn1110.68 (10)C3—N4—H4109.97 (10)
C2iii—N1—Mn1110.68 (10)C3ii—N4—H4109.97 (9)
N1—C2—C3110.77 (13)C3iii—N4—H4109.97 (9)
Cl1ii—Mn1—N1—C2ii54.17 (8)Cl1iii—Mn1—N1—C2iii54.17 (8)
Cl1—Mn1—N1—C2ii65.83 (8)C2ii—N1—C2—C352.13 (16)
Cl1iii—Mn1—N1—C2ii174.17 (8)C2iii—N1—C2—C364.96 (14)
Cl1ii—Mn1—N1—C2174.17 (8)Mn1—N1—C2—C3173.58 (10)
Cl1—Mn1—N1—C254.17 (8)N1—C2—C3—N410.99 (17)
Cl1iii—Mn1—N1—C265.83 (8)C2—C3—N4—C3ii65.67 (15)
Cl1ii—Mn1—N1—C2iii65.83 (8)C2—C3—N4—C3iii53.12 (15)
Cl1—Mn1—N1—C2iii174.17 (8)
Symmetry codes: (i) xy+1, y+2, z; (ii) x+y+1, x+2, z; (iii) y+2, xy+1, z.
(II) (1-aza-4-azoniabicyclo[2.2.2]octane-κN1) (1,4-diazabicyclo[2.2.2]octane-κN1)trichlorocobalt(II) top
Crystal data top
[CoCl3(C6H13N2)(C6H12N2)]Dx = 1.644 Mg m3
Mr = 390.64Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 25 reflections
Hall symbol: R 3 2"θ = 6.1–9.2°
a = 10.5409 (10) ŵ = 1.59 mm1
c = 12.303 (2) ÅT = 223 K
V = 1183.9 (2) Å3Prism, blue
Z = 30.25 × 0.1 × 0.05 mm
F(000) = 609
Data collection top
Enraf–Nonius CAD-4
diffractometer
457 reflections with I > 2σ(I)
non–profiled ω/2θ scansRint = 0.029
Absorption correction: ψ scan
North et al., 1968
θmax = 25.0°, θmin = 3.9°
Tmin = 0.692, Tmax = 0.925h = 012
1463 measured reflectionsk = 1210
470 independent reflectionsl = 1414
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0197P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.020Δρmax = 0.15 e Å3
wR(F2) = 0.041Δρmin = 0.16 e Å3
S = 1.1Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
470 reflectionsExtinction coefficient: 0.0006 (3)
50 parametersAbsolute structure: Flack (1983), 194 Friedel pairs
0 restraintsAbsolute structure parameter: 0.00 (2)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[CoCl3(C6H13N2)(C6H12N2)]Z = 3
Mr = 390.64Mo Kα radiation
Trigonal, R32µ = 1.59 mm1
a = 10.5409 (10) ÅT = 223 K
c = 12.303 (2) Å0.25 × 0.1 × 0.05 mm
V = 1183.9 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
470 independent reflections
Absorption correction: ψ scan
North et al., 1968
457 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.925Rint = 0.029
1463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.15 e Å3
S = 1.1Δρmin = 0.16 e Å3
470 reflectionsAbsolute structure: Flack (1983), 194 Friedel pairs
50 parametersAbsolute structure parameter: 0.00 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10010.0158 (2)
Cl10.21896 (8)010.0238 (2)
N1000.8155 (2)0.0163 (6)
C20.1356 (3)0.1238 (3)0.7721 (2)0.0235 (6)
C30.1450 (3)0.1127 (3)0.6488 (2)0.0211 (6)
N4000.6070 (2)0.0168 (6)
H2A0.213 (3)0.126 (3)0.806 (2)0.037 (8)*
H2B0.141 (3)0.208 (3)0.789 (2)0.020 (7)*
H3A0.206 (3)0.082 (2)0.6304 (18)0.019 (7)*
H3B0.172 (2)0.198 (3)0.6132 (19)0.025 (6)*
H4000.527 (6)0.025*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0158 (3)0.0158 (3)0.0158 (4)0.00792 (15)00
Cl10.0204 (4)0.0356 (5)0.0205 (5)0.0178 (3)0.00067 (17)0.0013 (3)
N10.0167 (9)0.0167 (9)0.0155 (15)0.0083 (4)00
C20.0217 (14)0.0222 (14)0.0185 (13)0.0049 (11)0.0019 (10)0.0003 (11)
C30.0195 (16)0.0240 (14)0.0182 (11)0.0097 (11)0.0028 (10)0.0028 (9)
N40.0186 (10)0.0186 (10)0.0134 (16)0.0093 (5)00
Geometric parameters (Å, º) top
Co1—N1i2.269 (3)C2—H2A0.91 (3)
Co1—N12.269 (3)C2—H2B0.89 (3)
Co1—Cl1ii2.3080 (9)C3—N41.482 (3)
Co1—Cl12.3080 (8)C3—H3A0.88 (3)
Co1—Cl1iii2.3080 (8)C3—H3B0.91 (3)
N1—C21.472 (3)N4—C3iii1.482 (3)
N1—C2ii1.472 (3)N4—C3ii1.482 (3)
N1—C2iii1.472 (3)N4—H40.98 (7)
C2—C31.528 (3)
N1i—Co1—N1180N1—C2—H2A108.3 (18)
N1i—Co1—Cl1ii90.0000 (10)C3—C2—H2A111.7 (17)
N1—Co1—Cl1ii90.0000 (10)N1—C2—H2B110.7 (18)
N1i—Co1—Cl190C3—C2—H2B109.6 (17)
N1—Co1—Cl190H2A—C2—H2B105 (2)
Cl1ii—Co1—Cl1120N4—C3—C2109.0 (2)
N1i—Co1—Cl1iii90N4—C3—H3A105.3 (14)
N1—Co1—Cl1iii90C2—C3—H3A111.8 (15)
Cl1ii—Co1—Cl1iii120N4—C3—H3B108.0 (14)
Cl1—Co1—Cl1iii120C2—C3—H3B113.8 (17)
C2—N1—C2ii107.60 (16)H3A—C3—H3B109 (2)
C2—N1—C2iii107.60 (16)C3—N4—C3iii108.62 (14)
C2ii—N1—C2iii107.60 (16)C3—N4—C3ii108.62 (14)
C2—N1—Co1111.29 (15)C3iii—N4—C3ii108.62 (14)
C2ii—N1—Co1111.29 (15)C3—N4—H4110.31 (14)
C2iii—N1—Co1111.29 (15)C3iii—N4—H4110.31 (14)
N1—C2—C3111.3 (2)C3ii—N4—H4110.31 (14)
Cl1ii—Co1—N1—C2175.50 (14)Cl1iii—Co1—N1—C2iii55.50 (14)
Cl1—Co1—N1—C255.50 (14)C2ii—N1—C2—C350.3 (3)
Cl1iii—Co1—N1—C264.50 (14)C2iii—N1—C2—C365.4 (2)
Cl1ii—Co1—N1—C2ii55.50 (14)Co1—N1—C2—C3172.43 (17)
Cl1—Co1—N1—C2ii64.50 (14)N1—C2—C3—N413.0 (3)
Cl1iii—Co1—N1—C2ii175.50 (14)C2—C3—N4—C3iii51.6 (2)
Cl1ii—Co1—N1—C2iii64.50 (14)C2—C3—N4—C3ii66.3 (2)
Cl1—Co1—N1—C2iii175.50 (14)
Symmetry codes: (i) xy, y, z+2; (ii) x+y, x, z; (iii) y, xy, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[MnCl3(C6H13N2)(C6H12N2)][CoCl3(C6H13N2)(C6H12N2)]
Mr386.65390.64
Crystal system, space groupHexagonal, R32Trigonal, R32
Temperature (K)223223
a, b, c (Å)10.601 (2), 10.601 (2), 12.484 (2)10.5409 (10), 10.5409 (10), 12.303 (2)
α, β, γ (°)90, 90, 12090, 90, 120
V3)1215.0 (4)1183.9 (2)
Z33
Radiation typeMo KαMo Kα
µ (mm1)1.311.59
Crystal size (mm)0.3 × 0.1 × 0.10.25 × 0.1 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al., 1968
ψ scan
North et al., 1968
Tmin, Tmax0.696, 0.8810.692, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
1514, 487, 480 1463, 470, 457
Rint0.0190.029
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.07 0.020, 0.041, 1.1
No. of reflections487470
No. of parameters5050
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.130.15, 0.16
Absolute structureFlack (1983), 201 Friedel pairsFlack (1983), 194 Friedel pairs
Absolute structure parameter0.01 (2)0.00 (2)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 1986), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Mn1—N12.367 (2)C2—C31.537 (2)
Mn1—Cl12.3903 (7)C3—N41.4806 (16)
N1—C21.4717 (18)
C2—N1—C2i108.23 (10)N4—C3—C2108.96 (12)
N1—C2—C3110.77 (13)C3—N4—C3i108.97 (9)
Symmetry code: (i) y+2, xy+1, z.
Selected geometric parameters (Å, º) for (II) top
Co1—N12.269 (3)C2—C31.528 (3)
Co1—Cl12.3080 (8)C3—N41.482 (3)
N1—C21.472 (3)
C2—N1—C2i107.60 (16)N4—C3—C2109.0 (2)
N1—C2—C3111.3 (2)C3—N4—C3i108.62 (14)
Symmetry code: (i) y, xy, z.
 

Acknowledgements

The authors acknowledge the use of the EPSRC's Chemical Database Service (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]; Allen et al., 1983[Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.]) at Daresbury and EPSRC support for the purchase of equipment.

References

First citationAllen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146–153.  CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Daniels, L. M., Murillo, C. A. & Quesada, J. F. (1993). Inorg. Chem. 32, 4861–4867.  CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Lewis, G. E., Murillo, C. A., Schwotzer, W. & Valle, G. (1984). Inorg. Chem. 23, 4038–4041.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaran, N. K., Sen, S., Saha, M. K., Mitra, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 203–204.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPetrusenko, S. R., Sieler, J. & Kokozay, V. N. (1997). Z. Naturforsch. Teil B, 52, 331–336.  CAS Google Scholar
First citationRozell, W. J. & Wood, J. S. (1977). Inorg. Chem. 16, 1827–1833.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationVallarino, L. M., Goedken, V. L. & Quagliano, J. V. (1972). Inorg. Chem. 11, 1466–1469.  CrossRef CAS Web of Science Google Scholar
First citationViossat, B., Khodadad, P., Rodier, N. & Dung, N. H. (1988). Acta Cryst. C44, 263–265.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWieringen, J. S. van & van Santen, J. H. (1952). Recl Trav. Chim. Pays-Bas, 71, 420–430.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds