metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Di­chloro­(4,10-di­methyl-1,4,7,10-tetra­azabi­cyclo­[5.5.2]tetra­decane)­iron(III) hexa­fluoro­phosphate

aDepartment of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA, and bDepartment of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, England
*Correspondence e-mail: s.j.archibald@hull.ac.uk, tim.hubin@swosu.edu

(Received 8 September 2006; accepted 3 October 2006; online 31 October 2006)

The title compound, [FeCl2(C12H26N4)]PF6, is the first mononuclear Fe3+ complex of an ethyl­ene cross-bridged tetra­aza-macrocycle to be structurally characterized. Comparison with the mononuclear Fe2+ complex of the same ligand shows that the smaller Fe3+ ion is more fully encapsulated by the cavity of the bicyclic ligand. Comparison with the μ-oxo dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,10-dimethyl-1,4,7,10-tetra­azabicyclo­[5.5.2]tetra­decane prevent dimerization upon oxidation of the metal centre. Nax—Fe3+—Nax bond angles (ax is axial), and thus the degree of encapsulation by the ligand, are quite different between the mononuclear and dinuclear μ-oxo species, which is probably the consequence of steric considerations.

Comment

The tendency for iron complexes to form rust limits the utility, especially in aqueous media, of functional catalysts based on common ligands (Ortiz de Montellano, 1986[Ortiz de Montellano, P. R. (1986). In Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Plenum Press.]). Even so, iron is one of the predominant metal ions found in biological catalytic systems (Jang et al., 1991[Jang, H. G., Cox, D. D. & Que, L. Jr (1991). J. Am. Chem. Soc. 113, 9200-9204.]; Wallar & Lipscomb, 1996[Wallar, B. J. & Lipscomb, J. D. (1996). Chem. Rev. 96, 2625-2657.]; Boyington et al., 1993[Boyington, J. C., Gaffney, B. J. & Amzel, L. M. (1993). Science, 260, 1482-1486.]). A major feature of numerous synthetic catalysts having familiar nitro­gen donors and vacant coordination sites is their propensity to form dimers in which higher-valent metal ions are present. One of us has produced iron(II) (Hubin et al., 2000[Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512-2522.]) and iron(III) (Hubin et al., 2001[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435-444.]) complexes of ethyl­ene cross-bridged tetra­aza-macrocyclic ligands that are remarkably resistant to oxidative hydrolysis while still having available sites for binding of the metal ion to either a terminal oxidant or a substrate. The ability of the complex to remain mononuclear, and thus catalytically useful, appears to hinge on the substitution pattern of the non-bridgehead N atoms of the bicyclic ligands (Hubin et al., 2001[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435-444.]). Methyl or benzyl substitution results only in mononuclear complexes, even in the M3+ (Hubin et al., 2001[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435-444.], 2003[Hubin, T. J., McCormick, J. M., Collinson, S. R., Alcock, N. W., Clase, H. J. & Busch, D. H. (2003). Inorg. Chim. Acta, 346, 76-86.]) or M4+ (Yin et al., 2006[Yin, G., Buchalova, M., Danby, A. M., Perkins, C. M., Kitko, D., Carter, J. D., Scheper, W. M. & Busch, D. H. (2006). Inorg. Chem. 45, 3467-3474.]) oxidation state, while oxidation of the unsubstituted ligand complexes results in μ-oxo iron(III) dimers (Hubin et al., 2003[Hubin, T. J., McCormick, J. M., Collinson, S. R., Alcock, N. W., Clase, H. J. & Busch, D. H. (2003). Inorg. Chim. Acta, 346, 76-86.]).

[Scheme 1]

Structural characterization of an Fe3+ mononuclear complex has not been achieved prior to the present study, which (i) demonstrates that even upon oxidation the methyl-substituted ligand does not allow dimerization to occur and (ii) provides a structure for comparison to the lower valent analogue and to the unsubstituted analogue's iron(III) μ-oxo dimer. Comparison of the Fe3+ 4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­decane dichloride complex, (I)[link] (Fig. 1[link] and Table 1[link]), with the Fe2+ 4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­decane dichloride complex primarily demonstrates the reduction in ionic radius of the iron ion upon oxidation. The Nax—Fe3+—Nax angle (ax is axial) is 153.20 (9)° in (I)[link], while the Nax—Fe2+—Nax angle is 146.91 (7)° in the reduced complex (Hubin et al., 2000[Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512-2522.]). The smaller Fe3+ ion is pulled further into the ligand cavity as the favored octa­hedral geometry is approached. Inter­estingly, the two methyl substituents are almost exactly eclipsed when viewed down the Nax—Fe2+—Nax axis, as might be expected from the symmetry of the complex (Fig. 2[link]). However, they are more skewed in the Fe3+ structure. Perhaps the ligand must twist to accommodate the Fe3+ ion further into the ligand cavity. The Fe—N bond lengths are also affected, having an average of 2.26 Å in the Fe2+ complex and 2.17 Å in the Fe3+ complex.

Comparison of the Fe3+ monomer with the μ-oxo dimer complex is also informative. The secondary amine–Fe3+ bond lengths in the dimer are similar to the tertiary amine–Fe3+ bond lengths; the Fe—N(secondary) distances average 2.17 Å, with one longer Fe—N(tertiary) bond of 2.258 (5) Å (see Table 2[link]). This may be associated with the asymmetric accommodation of a longer Fe—Cl bond and a shorter Fe—O bond. In the monomer, with all tertiary amines, the average Fe—N bond distance is 2.17 Å, matching the shorter Fe—N bonds in the dimer. The Nax—Fe—Nax bond angle averages 147.6 (2)° in the dimer, while this value is 153.20 (9)° in the monomer. Clearly, dimerization and its associated steric consequences push the Fe3+ ion further out of the ligand cavity than it is in the Fe3+ monomer. In fact, the dimer Nax—Fe—Nax bond angle is much closer to that of the Fe2+ monomer [146.91 (7)°] than that of the Fe3+ monomer [153.20 (9)°; Table 2[link]]. This steric consequence is consistent with the observation that the more sterically demanding methyl-substituted ligand prevents dimerization altogether. This is supported by a comparison of all three structures viewed along the Nax—Fe—Nax axis, where a skewing of the methyl groups and a twist in the macrocyclic backbone are observed for the Fe3+ monomer relative to the other two structures (Fig. 2[link]).

[Figure 1]
Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Comparison of the Fe3+ monomeric complex (a) from this work with (b) the equivalent Fe2+ complex and (c) the Fe3+ dimer formed with the unsubstituted ligand. All views are oriented to look down the Nax—Fe—Nax axis. The methyl groups in the Fe3+ complex are skewed, whereas they are eclipsed in the Fe2+ complex. For the sake of clarity, H atoms have been omitted.

Experimental

The title complex was prepared by a procedure slightly modified from those described by Hubin et al. (2000[Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512-2522.], 2001[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435-444.]). In an inert atmosphere glove-box, 4,10-dimethyl-1,4,7,10-tetra­azabicyclo­[5.5.2]tetra­decane (0.226 g, 0.001 mol) [prepared according to the procedure described by Wong et al. (2000[Wong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561-10572.])] was dissolved in acetonitrile (20 ml) in a 50 ml Erlenmeyer flask. Anhydrous iron(II) chloride (0.127 g, 0.001 mol) was added to the stirring ligand solution. The reaction was stirred at room temperature overnight. Dimethyl­formamide (12 ml) was added to dissolve a purple solid that had formed, and the reaction was then stirred for an additional 3 h, during which time the solid dissolved to give a light-brown solution. The solution was then filtered through filter paper and the solvent was removed under vacuum to give a brown solid, viz. the iron(II) dichloride complex of 4,10-dimethyl-1,4,7,10-tetra­azabicyclo­[5.5.2]tetra­decane. In the glove-box, the divalent iron complex was dissolved in methanol (20 ml) in a round-bottomed flask. Five equivalents of NH4PF6 (0.005 mol, 0.815 g) were dissolved in the solution. The flask was stoppered to protect it from air before being removed from the glove-box. In a fume-hood, a stream of nitro­gen gas was directed over the surface of the solution. Br2 (4–6 drops) was added and the reaction was stirred for 15 min. A bright-yellow precipitate formed immediately. The nitro­gen gas was allowed to bubble through the solution for 15 min to remove excess Br2. The flask was then stoppered and placed in a freezer for 30 min to complete the precipitation. The yellow solid product was collected by vacuum filtration on a glass frit and washed successively with methanol and ether. The product was analytically pure as calculated with one-third molar equivalents of water of crystallization. X-ray quality crystals were grown from ether diffusion into an acetonitrile solution.

Crystal data
  • [FeCl2(C12H26N4)]PF6

  • Mr = 498.09

  • Monoclinic, P 21 /c

  • a = 8.3437 (12) Å

  • b = 19.848 (2) Å

  • c = 14.028 (2) Å

  • β = 120.685 (10)°

  • V = 1997.8 (5) Å3

  • Z = 4

  • Dx = 1.656 Mg m−3

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 150 (2) K

  • Block, orange

  • 0.49 × 0.38 × 0.26 mm

Data collection
  • Stoe IPDS-II image plate diffractometer

  • ω scans

  • 13147 measured reflections

  • 5655 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 30°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 0.97

  • 5655 reflections

  • 236 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0692P)2] where P = (F<o2 + 2Fc22)/3

  • (Δ/σ)max = 0.026

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.73 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0022 (5)

Table 1
Selected geometric parameters (Å, °)

Fe1—Cl1 2.2853 (8)
Fe1—Cl2 2.2911 (7)
N4—Fe1—N3 81.26 (9)
N2—Fe1—N1 81.74 (8)
N4—Fe1—N1 77.85 (8)
N3—Fe1—N1 78.62 (8)
N2—Fe1—Cl1 100.39 (7)
N4—Fe1—Cl1 97.62 (6)
N3—Fe1—Cl1 170.88 (6)
N1—Fe1—Cl1 92.29 (6)
N2—Fe1—Cl2 96.51 (6)
N4—Fe1—Cl2 101.50 (6)
N3—Fe1—Cl2 93.99 (6)
N1—Fe1—Cl2 172.60 (6)
Cl1—Fe1—Cl2 95.10 (3)

Table 2
Comparative geometrical parameters (Å, °) for the macrocyclic cavity in Fe2+ and Fe3+ complexes

Parametera Fe3+Me2Lb Fe2+Me2Lc Fe3+H2L dimerd
Fe—N1 2.179 (2) 2.240 (2) 2.162 (6)
Fe—N2 2.158 (2) 2.270 (2) 2.169 (5)
Fe—N3 2.171 (2) 2.246 (2) 2.186 (5)
Fe—N4 2.163 (2) 2.263 (2) 2.258 (5)
N2ax—Fe—N4ax 153.20 (9) 146.91 (7) 147.6 (2)
N1eq—Fe—N3eq  77.81 (9)  77.15 (7)  77.7 (2)
Notes: (a) where there are two independent molecules in the asymmetric unit, an average value is given; (b) this work; (c) Hubin et al. (2003[Hubin, T. J., McCormick, J. M., Collinson, S. R., Alcock, N. W., Clase, H. J. & Busch, D. H. (2003). Inorg. Chim. Acta, 346, 76-86.]); (d) Hubin et al. (2000[Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512-2522.]).

H atoms were placed in idealized positions and refined using a riding model, with C—H distances of 0.96 and 0.97 Å for CH3 and CH2 H atoms, respectively, and with Uiso(H) values of, respectively, 1.5 and 1.2 times Ueq of the carrier atom.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The tendency for iron complexes to form rust limits the utility, especially in aqueous media, of functional catalysts based on common ligands (Ortiz de Montellano, 1986). Even so, iron is one of the predominant metal ions found in biological catalytic systems (Jang et al., 1991; Wallar & Lipscomb, 1996; Boyington et al., 1993). A major feature of numerous synthetic catalysts having familiar nitrogen donors and vacant coordination sites is their propensity to form dimers in which higher valent metal ions are present. One of us has produced iron(II) (Hubin et al., 2000) and iron(III) (Hubin et al., 2001) complexes of ethylene cross-bridged tetraazamacrocyclic ligands that are remarkably resistant to oxidative hydrolysis while still having available sites for binding of the metal ion to either a terminal oxidant or a substrate. The ability of the complex to remain mononuclear, and thus catalytically useful, appears to hinge on the substitution pattern of the non-bridgehead N atoms of the bicyclic ligands (Hubin et al., 2001). Methyl or benzyl substitution results only in mononuclear complexes, even in the M3+ (Hubin et al., 2001, 2003) or M4+ (Yin et al., 2006) oxidation state, while oxidation of the unsubstituted ligand complexes results in µ-oxo iron(III) dimers (Hubin et al., 2003).

Structural characterization of an Fe3+ mononuclear complex has not been achieved prior to the present study, which (1) demonstrates that even upon oxidation the methyl-substituted ligand does not allow dimerization to occur and (2) provides a structure for comparison to the lower valent analogue and to the unsubstituted analogue's iron(III) µ-oxo dimer. Comparison of the Fe3+ 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane dichloride complex, (I) (Fig. 1), to that of the Fe2+ 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane dichloride complex primarily demonstrates the reduction in ionic radius of the iron ion upon oxidation. The Nax—Fe3+—Nax angle is 153.20 (9)° in our new structure, while the Nax—Fe2+—Nax angle is 146.91 (7)° in the reduced complex (Hubin et al., 2000). The smaller Fe3+ ion is pulled further into the ligand cavity as the favored octahedral geometry is approached. Interestingly, the two methyl substituents are almost exactly eclipsed when viewed down the Nax—Fe2+—Nax axis, as might be expected from the symmetry of the complex (Fig. 2). However, they are more skewed in the Fe3+ structure. Perhaps the ligand must twist to accommodate the Fe3+ ion further into the ligand cavity. Fe—N bond lengths are also affected, having an average of 2.26 Å in the Fe2+ complex and 2.17 Å in the Fe3+ complex.

Comparison of the Fe3+ monomer with the µ-oxo dimer complex is also informative. The secondary amine/Fe3+ bond lengths in the dimer are similar to the tertiary amine/Fe3+ bond lengths: Fe—N(secondary) averages 2.17 Å with one longer Fe—N(tertiary) bond at 2.258 (5) Å (see Table 2). This may be associated with the asymmetric accommodation of a longer Fe—Cl and a shorter Fe—O bond. In the monomer, with all tertiary amines, the average Fe—N bond distance is 2.17 Å, matching the shorter Fe—N bonds in the dimer. The Nax—Fe—Nax bond angle averages 147.6 (2)° in the dimer, while this value is 153.20 (9)° in the monomer. Clearly, dimerization, and its associated steric consequences, pushes the Fe3+ ion further out of the ligand cavity than it is in the Fe3+ monomer. In fact, the dimer Nax—Fe—Nax bond angle is much closer to that of the Fe2+ monomer (145.78°) than that of the Fe3+ monomer (153.30°; Table 2). This steric consequence is consistent with the observation that the more sterically demanding methyl-substituted ligand prevents dimerization altogether. This is supported by a comparison of all three structures viewed along the Nax—Fe—Nax skewing of the methyl groups and a twist in the macrocyclic backbone is observed for the Fe3+ monomer relative to the other two structures (Fig. 2).

Experimental top

The title complex was prepared by a procedure slightly modified from those described by Hubin et al. (2000, 2001). In an inert atmosphere glovebox, 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (0.226 g, 0.001 mol)[prepared according to the procedure descrbed by Wong et al. (2000)] was dissolved in acetonitrile (20 ml) in a 50 ml Erlenmeyer flask. Anhydrous iron(II) chloride (0.127 g, 0.001 mol) was added to the stirring ligand solution. The reaction was allowed to stir at room temperature overnight. Dimethylformamide (12 ml) was then added to dissolve a purple solid that had formed, and the reaction was then stirred for an additional 3 h, during which the solid dissolved to give a light-brown solution. The solution was then filtered through filter paper and the solvent was removed under vacuum to give a brown solid, the iron(II) dichloride complex of 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane. In the glovebox, the divalent iron complex was dissolved in 20 ml of methanol in a round-bottomed flask. Five equivalents (0.005 mol, 0.815 g) of NH4PF6 were dissolved in the solution. The flask was stoppered to protect it from air before being removed from the glovebox. In a fume hood, a stream of nitrogen gas was directed over the surface of the solution. Four to six drops of Br2 were added and the reaction was stirred for 15 minutes. A bright-yellow precipitate formed immediately. The nitrogen gas was then allowed to bubble through the solution for 15 minutes to remove excess Br2. The flask was then stoppered and placed in a freezer for 30 minutes to complete the precipitation. The yellow solid product was collected by vacuum filtration on a glass frit, and washed with methanol and then ether. The product was analytically pure as calculated with one-third molar equivalents of water of crystallization. X-ray quality crystals were grown from ether diffusion into an acetonitrile solution.

Refinement top

H atoms were placed in idealized positions and refined using a riding model with C—H distances of 0.96 and 0.97 Å for CH3 and CH2 H atoms, respectively, and with Uiso(H) values of, respectively, 1.2 and 1.5 times Ueq of the carrier atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson, 1965; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. Structure of

(I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Comparison of the Fe3+ monomeric complex (a) from this work with the equivalent Fe2+ complex (b) and the Fe3+ dimer formed with the unsubstituted ligand (c). All views are oriented to look down the Nax—Fe—Nax axis. The methyl groups in the Fe2+ complex are skewed, whereas they are eclipsed in the Fe3+ complex. For the sake of clarity, H atoms have been omitted.
Dichloro(4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane)iron(III) hexafluorophosphate top
Crystal data top
[FeCl2(C12H26N4)](F6P)F(000) = 1020
Mr = 498.09Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 468 reflections
a = 8.3437 (12) Åθ = 7.6–64.2°
b = 19.848 (2) ŵ = 1.16 mm1
c = 14.028 (2) ÅT = 150 K
β = 120.685 (10)°Block, orange
V = 1997.8 (5) Å30.49 × 0.38 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS-II image plate
diffractometer
Rint = 0.039
69 frames at 1° intervals, exposure time 1.5 minutes scansθmax = 30°, θmin = 2.7°
13147 measured reflectionsh = 1011
5655 independent reflectionsk = 2327
3799 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.026
wR(F2) = 0.117Δρmax = 0.75 e Å3
S = 0.97Δρmin = 0.73 e Å3
5655 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
236 parametersExtinction coefficient: 0.0022 (5)
0 restraints
Crystal data top
[FeCl2(C12H26N4)](F6P)V = 1997.8 (5) Å3
Mr = 498.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3437 (12) ŵ = 1.16 mm1
b = 19.848 (2) ÅT = 150 K
c = 14.028 (2) Å0.49 × 0.38 × 0.26 mm
β = 120.685 (10)°
Data collection top
Stoe IPDS-II image plate
diffractometer
3799 reflections with I > 2σ(I)
13147 measured reflectionsRint = 0.039
5655 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.97Δρmax = 0.75 e Å3
5655 reflectionsΔρmin = 0.73 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2500 (4)0.25173 (14)0.2334 (2)0.0297 (5)
H1A0.31120.23030.30570.036*
H1B0.33470.2510.20530.036*
C20.0722 (4)0.21412 (15)0.1549 (3)0.0322 (6)
H2A0.02170.23180.08050.039*
H2B0.10070.16680.15380.039*
C30.2654 (4)0.22994 (16)0.0912 (2)0.0372 (7)
H3A0.35120.2030.10260.045*
H3B0.26830.21310.02550.045*
C40.3333 (4)0.30333 (16)0.0707 (2)0.0353 (6)
H4A0.39970.31240.00830.042*
H4B0.41910.310.09730.042*
C50.2303 (4)0.41718 (15)0.1510 (2)0.0336 (6)
H5A0.30770.41080.18340.04*
H5B0.30120.44230.08260.04*
C60.0550 (4)0.45567 (14)0.2307 (2)0.0323 (6)
H6A0.0120.46790.19360.039*
H6B0.0890.49690.25330.039*
C70.2734 (4)0.42108 (15)0.3671 (2)0.0303 (5)
H7A0.34570.42710.44690.036*
H7B0.28810.46140.33320.036*
C80.3529 (3)0.36058 (14)0.3357 (2)0.0287 (5)
H8A0.43980.37650.31410.034*
H8B0.420.33120.39940.034*
C90.1330 (3)0.36015 (14)0.1374 (2)0.0274 (5)
H9A0.1890.34110.09750.033*
H9B0.17290.40670.15440.033*
C100.0793 (4)0.35802 (15)0.0631 (2)0.0302 (6)
H10A0.12140.39910.01950.036*
H10B0.11360.32040.01210.036*
C110.0675 (5)0.15854 (16)0.2508 (3)0.0413 (7)
H11A0.15830.16230.27320.062*
H11B0.05430.15340.31510.062*
H11C0.09560.120.20340.062*
C120.0426 (4)0.43620 (16)0.4241 (2)0.0365 (6)
H12A0.12150.41030.48940.055*
H12B0.08520.42970.40320.055*
H12C0.07390.48310.43910.055*
F10.4619 (3)0.02017 (10)0.2303 (2)0.0542 (5)
F20.5085 (3)0.04114 (13)0.37704 (17)0.0592 (6)
F30.5588 (3)0.13320 (10)0.3039 (2)0.0558 (6)
F40.5120 (3)0.07167 (14)0.15620 (17)0.0609 (6)
F50.7276 (2)0.04016 (10)0.32689 (17)0.0472 (5)
F60.2913 (2)0.07235 (11)0.20510 (18)0.0515 (5)
Fe10.00519 (4)0.308922 (18)0.29295 (3)0.02128 (10)
N10.2006 (3)0.32239 (11)0.24284 (17)0.0244 (4)
N20.0719 (3)0.22085 (12)0.18921 (19)0.0294 (5)
N30.1752 (3)0.35094 (12)0.12797 (17)0.0271 (4)
N40.0701 (3)0.41384 (11)0.33213 (18)0.0264 (4)
P10.50957 (9)0.05673 (4)0.26630 (6)0.02762 (15)
Cl10.21124 (8)0.26485 (4)0.46060 (5)0.03195 (16)
Cl20.24930 (8)0.29978 (3)0.32333 (5)0.02870 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (12)0.0316 (13)0.0361 (14)0.0059 (10)0.0214 (11)0.0013 (11)
C20.0341 (13)0.0301 (13)0.0404 (15)0.0011 (11)0.0248 (12)0.0051 (11)
C30.0295 (13)0.0473 (18)0.0337 (14)0.0145 (12)0.0153 (12)0.0141 (12)
C40.0215 (11)0.0511 (18)0.0259 (12)0.0063 (11)0.0068 (10)0.0016 (12)
C50.0292 (12)0.0358 (15)0.0331 (13)0.0119 (11)0.0139 (11)0.0084 (11)
C60.0382 (14)0.0266 (13)0.0354 (14)0.0066 (11)0.0212 (12)0.0036 (11)
C70.0284 (12)0.0360 (14)0.0280 (12)0.0068 (10)0.0155 (10)0.0057 (10)
C80.0204 (11)0.0375 (14)0.0275 (12)0.0020 (9)0.0117 (10)0.0002 (10)
C90.0295 (12)0.0330 (13)0.0251 (11)0.0004 (10)0.0180 (10)0.0013 (10)
C100.0289 (12)0.0397 (15)0.0202 (11)0.0014 (10)0.0111 (10)0.0018 (10)
C110.0510 (17)0.0280 (15)0.0534 (18)0.0069 (13)0.0327 (15)0.0002 (13)
C120.0393 (15)0.0407 (17)0.0345 (14)0.0031 (12)0.0225 (12)0.0115 (12)
F10.0515 (11)0.0354 (10)0.0833 (16)0.0113 (8)0.0399 (11)0.0194 (10)
F20.0617 (13)0.0832 (16)0.0382 (10)0.0088 (11)0.0295 (10)0.0011 (10)
F30.0541 (12)0.0339 (10)0.0797 (15)0.0052 (9)0.0342 (11)0.0134 (10)
F40.0561 (12)0.0888 (17)0.0365 (10)0.0125 (11)0.0228 (9)0.0052 (11)
F50.0276 (8)0.0492 (11)0.0557 (12)0.0018 (7)0.0147 (8)0.0068 (9)
F60.0293 (9)0.0560 (12)0.0599 (12)0.0058 (8)0.0160 (8)0.0002 (10)
Fe10.01848 (15)0.02585 (18)0.02013 (16)0.00082 (12)0.01030 (12)0.00073 (13)
N10.0209 (9)0.0290 (11)0.0233 (10)0.0013 (7)0.0114 (8)0.0007 (8)
N20.0292 (10)0.0298 (11)0.0327 (11)0.0051 (9)0.0184 (9)0.0046 (9)
N30.0223 (9)0.0339 (12)0.0226 (10)0.0025 (8)0.0097 (8)0.0021 (8)
N40.0266 (10)0.0290 (11)0.0255 (10)0.0010 (8)0.0148 (9)0.0024 (8)
P10.0260 (3)0.0271 (3)0.0283 (3)0.0009 (2)0.0128 (3)0.0019 (3)
Cl10.0265 (3)0.0455 (4)0.0248 (3)0.0074 (2)0.0137 (2)0.0111 (3)
Cl20.0215 (3)0.0396 (4)0.0304 (3)0.0006 (2)0.0171 (2)0.0015 (2)
Geometric parameters (Å, º) top
C1—N11.486 (3)C9—N11.488 (3)
C1—C21.518 (4)C9—C101.530 (3)
C1—H1A0.97C9—H9A0.97
C1—H1B0.97C9—H9B0.97
C2—N21.513 (4)C10—N31.495 (3)
C2—H2A0.97C10—H10A0.97
C2—H2B0.97C10—H10B0.97
C3—N21.504 (4)C11—N21.498 (4)
C3—C41.536 (5)C11—H11A0.96
C3—H3A0.97C11—H11B0.96
C3—H3B0.97C11—H11C0.96
C4—N31.482 (3)C12—N41.489 (3)
C4—H4A0.97C12—H12A0.96
C4—H4B0.97C12—H12B0.96
C5—N31.482 (4)C12—H12C0.96
C5—C61.518 (4)F1—P11.593 (2)
C5—H5A0.97F2—P11.588 (2)
C5—H5B0.97F3—P11.590 (2)
C6—N41.512 (3)F4—P11.583 (2)
C6—H6A0.97F5—P11.6008 (18)
C6—H6B0.97F6—P11.5982 (19)
C7—N41.513 (3)Fe1—N22.158 (2)
C7—C81.542 (4)Fe1—N42.163 (2)
C7—H7A0.97Fe1—N32.171 (2)
C7—H7B0.97Fe1—N12.179 (2)
C8—N11.482 (3)Fe1—Cl12.2853 (8)
C8—H8A0.97Fe1—Cl22.2911 (7)
C8—H8B0.97
N1—C1—C2108.4 (2)N2—C11—H11C109.5
N1—C1—H1A110H11A—C11—H11C109.5
C2—C1—H1A110H11B—C11—H11C109.5
N1—C1—H1B110N4—C12—H12A109.5
C2—C1—H1B110N4—C12—H12B109.5
H1A—C1—H1B108.4H12A—C12—H12B109.5
N2—C2—C1111.5 (2)N4—C12—H12C109.5
N2—C2—H2A109.3H12A—C12—H12C109.5
C1—C2—H2A109.3H12B—C12—H12C109.5
N2—C2—H2B109.3N2—Fe1—N4153.20 (9)
C1—C2—H2B109.3N2—Fe1—N377.81 (9)
H2A—C2—H2B108N4—Fe1—N381.26 (9)
N2—C3—C4113.9 (2)N2—Fe1—N181.74 (8)
N2—C3—H3A108.8N4—Fe1—N177.85 (8)
C4—C3—H3A108.8N3—Fe1—N178.62 (8)
N2—C3—H3B108.8N2—Fe1—Cl1100.39 (7)
C4—C3—H3B108.8N4—Fe1—Cl197.62 (6)
H3A—C3—H3B107.7N3—Fe1—Cl1170.88 (6)
N3—C4—C3111.2 (2)N1—Fe1—Cl192.29 (6)
N3—C4—H4A109.4N2—Fe1—Cl296.51 (6)
C3—C4—H4A109.4N4—Fe1—Cl2101.50 (6)
N3—C4—H4B109.4N3—Fe1—Cl293.99 (6)
C3—C4—H4B109.4N1—Fe1—Cl2172.60 (6)
H4A—C4—H4B108Cl1—Fe1—Cl295.10 (3)
N3—C5—C6108.5 (2)C8—N1—C1114.1 (2)
N3—C5—H5A110C8—N1—C9109.6 (2)
C6—C5—H5A110C1—N1—C9111.6 (2)
N3—C5—H5B110C8—N1—Fe1104.05 (16)
C6—C5—H5B110C1—N1—Fe1102.27 (15)
H5A—C5—H5B108.4C9—N1—Fe1114.88 (14)
N4—C6—C5111.1 (2)C11—N2—C3109.0 (2)
N4—C6—H6A109.4C11—N2—C2108.7 (2)
C5—C6—H6A109.4C3—N2—C2112.1 (2)
N4—C6—H6B109.4C11—N2—Fe1110.98 (19)
C5—C6—H6B109.4C3—N2—Fe1107.84 (17)
H6A—C6—H6B108C2—N2—Fe1108.23 (16)
N4—C7—C8114.1 (2)C5—N3—C4113.2 (2)
N4—C7—H7A108.7C5—N3—C10111.8 (2)
C8—C7—H7A108.7C4—N3—C10109.6 (2)
N4—C7—H7B108.7C5—N3—Fe1102.42 (16)
C8—C7—H7B108.7C4—N3—Fe1104.43 (17)
H7A—C7—H7B107.6C10—N3—Fe1115.09 (15)
N1—C8—C7110.4 (2)C12—N4—C6108.3 (2)
N1—C8—H8A109.6C12—N4—C7109.5 (2)
C7—C8—H8A109.6C6—N4—C7112.0 (2)
N1—C8—H8B109.6C12—N4—Fe1110.74 (17)
C7—C8—H8B109.6C6—N4—Fe1108.55 (16)
H8A—C8—H8B108.1C7—N4—Fe1107.82 (16)
N1—C9—C10112.6 (2)F4—P1—F2179.43 (15)
N1—C9—H9A109.1F4—P1—F390.85 (14)
C10—C9—H9A109.1F2—P1—F389.49 (13)
N1—C9—H9B109.1F4—P1—F189.77 (14)
C10—C9—H9B109.1F2—P1—F189.88 (13)
H9A—C9—H9B107.8F3—P1—F1179.24 (14)
N3—C10—C9112.4 (2)F4—P1—F691.04 (12)
N3—C10—H10A109.1F2—P1—F689.40 (12)
C9—C10—H10A109.1F3—P1—F691.35 (11)
N3—C10—H10B109.1F1—P1—F689.08 (11)
C9—C10—H10B109.1F4—P1—F588.82 (12)
H10A—C10—H10B107.9F2—P1—F590.73 (12)
N2—C11—H11A109.5F3—P1—F589.36 (11)
N2—C11—H11B109.5F1—P1—F590.21 (11)
H11A—C11—H11B109.5F6—P1—F5179.28 (12)
N1—C1—C2—N253.2 (3)Cl1—Fe1—N2—C283.76 (17)
N2—C3—C4—N318.3 (4)Cl2—Fe1—N2—C2179.82 (17)
N3—C5—C6—N452.5 (3)C6—C5—N3—C4167.7 (2)
N4—C7—C8—N122.1 (3)C6—C5—N3—C1068.0 (3)
N1—C9—C10—N328.7 (3)C6—C5—N3—Fe155.8 (2)
C7—C8—N1—C1158.7 (2)C3—C4—N3—C5156.2 (2)
C7—C8—N1—C975.2 (3)C3—C4—N3—C1078.2 (3)
C7—C8—N1—Fe148.1 (2)C3—C4—N3—Fe145.6 (3)
C2—C1—N1—C8166.6 (2)C9—C10—N3—C594.4 (3)
C2—C1—N1—C968.4 (3)C9—C10—N3—C4139.2 (2)
C2—C1—N1—Fe155.0 (2)C9—C10—N3—Fe121.9 (3)
C10—C9—N1—C8139.3 (2)N2—Fe1—N3—C5162.25 (18)
C10—C9—N1—C193.2 (3)N4—Fe1—N3—C534.59 (16)
C10—C9—N1—Fe122.6 (3)N1—Fe1—N3—C5113.85 (17)
N2—Fe1—N1—C8152.59 (16)Cl2—Fe1—N3—C566.44 (16)
N4—Fe1—N1—C844.88 (15)N2—Fe1—N3—C443.96 (17)
N3—Fe1—N1—C8128.26 (16)N4—Fe1—N3—C4152.88 (18)
Cl1—Fe1—N1—C852.42 (15)N1—Fe1—N3—C4127.86 (18)
N2—Fe1—N1—C133.56 (16)Cl2—Fe1—N3—C451.84 (17)
N4—Fe1—N1—C1163.91 (17)N2—Fe1—N3—C1076.20 (19)
N3—Fe1—N1—C1112.70 (16)N4—Fe1—N3—C1086.95 (19)
Cl1—Fe1—N1—C166.61 (15)N1—Fe1—N3—C107.69 (18)
N2—Fe1—N1—C987.56 (18)Cl2—Fe1—N3—C10172.01 (18)
N4—Fe1—N1—C974.97 (17)C5—C6—N4—C12100.4 (3)
N3—Fe1—N1—C98.42 (17)C5—C6—N4—C7138.8 (2)
Cl1—Fe1—N1—C9172.27 (16)C5—C6—N4—Fe119.9 (3)
C4—C3—N2—C11139.5 (3)C8—C7—N4—C12136.4 (2)
C4—C3—N2—C2100.1 (3)C8—C7—N4—C6103.4 (3)
C4—C3—N2—Fe119.0 (3)C8—C7—N4—Fe115.9 (3)
C1—C2—N2—C1199.3 (3)N2—Fe1—N4—C12166.01 (19)
C1—C2—N2—C3140.2 (2)N3—Fe1—N4—C12127.09 (18)
C1—C2—N2—Fe121.4 (3)N1—Fe1—N4—C12152.76 (18)
N4—Fe1—N2—C11166.92 (19)Cl1—Fe1—N4—C1262.04 (17)
N3—Fe1—N2—C11153.65 (19)Cl2—Fe1—N4—C1234.77 (17)
N1—Fe1—N2—C11126.30 (19)N2—Fe1—N4—C647.2 (3)
Cl1—Fe1—N2—C1135.47 (18)N3—Fe1—N4—C68.33 (16)
Cl2—Fe1—N2—C1160.96 (18)N1—Fe1—N4—C688.47 (17)
N4—Fe1—N2—C373.8 (3)Cl1—Fe1—N4—C6179.19 (16)
N3—Fe1—N2—C334.37 (18)Cl2—Fe1—N4—C683.99 (16)
N1—Fe1—N2—C3114.42 (19)N2—Fe1—N4—C774.3 (2)
Cl1—Fe1—N2—C3154.75 (17)N3—Fe1—N4—C7113.18 (17)
Cl2—Fe1—N2—C358.33 (18)N1—Fe1—N4—C733.03 (16)
N4—Fe1—N2—C247.7 (3)Cl1—Fe1—N4—C757.68 (16)
N3—Fe1—N2—C287.13 (18)Cl2—Fe1—N4—C7154.50 (15)
N1—Fe1—N2—C27.07 (17)

Experimental details

Crystal data
Chemical formula[FeCl2(C12H26N4)](F6P)
Mr498.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.3437 (12), 19.848 (2), 14.028 (2)
β (°) 120.685 (10)
V3)1997.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.49 × 0.38 × 0.26
Data collection
DiffractometerStoe IPDS-II image plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13147, 5655, 3799
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 0.97
No. of reflections5655
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.73

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson, 1965; Farrugia, 1997), SHELXL97 and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Fe1—N22.158 (2)Fe1—N12.179 (2)
Fe1—N42.163 (2)Fe1—Cl12.2853 (8)
Fe1—N32.171 (2)Fe1—Cl22.2911 (7)
N2—Fe1—N4153.20 (9)N3—Fe1—Cl1170.88 (6)
N2—Fe1—N377.81 (9)N1—Fe1—Cl192.29 (6)
N4—Fe1—N381.26 (9)N2—Fe1—Cl296.51 (6)
N2—Fe1—N181.74 (8)N4—Fe1—Cl2101.50 (6)
N4—Fe1—N177.85 (8)N3—Fe1—Cl293.99 (6)
N3—Fe1—N178.62 (8)N1—Fe1—Cl2172.60 (6)
N2—Fe1—Cl1100.39 (7)Cl1—Fe1—Cl295.10 (3)
N4—Fe1—Cl197.62 (6)
Table 2. Comparative geometrical parameters (Å, °) for the macrocyclic cavity in Fe2+ and Fe3+ complexes top
ParameteraFe3+Me2LbFe2+Me2LcFe3+H2L dimerd
Fe-N12.179 (2)2.240 (2)2.162 (6)
Fe-N22.158 (2)2.270 (2)2.169 (5)
Fe-N32.171 (2)2.246 (2)2.186 (5)
Fe-N42.163 (2)2.263 (2)2.258 (5)
N2(ax)-Fe-N4(ax)153.20 (9)146.91 (7)147.6 (2)
N1(eq)-Fe-N3(eq)77.81 (9)77.15 (7)77.7 (2)
Notes: (a) where there are two independent molecules in the asymmetric unit an average value is given; (b) this work; (c) Hubin et al. (2003) (d) Hubin et al. (2000).
 

Acknowledgements

We thank the Chemistry Department of Southwestern Oklahoma State University for its support of this work, which was carried in the Spring 2006 Inorganic Chemistry Lab course CHEM 3234. The X-ray data were collected at the University of Hull using a diffractometer purchased with funds from the EPSRC. We acknowledge the EPSRC's Chemical Database Service at Daresbury, England (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationBoyington, J. C., Gaffney, B. J. & Amzel, L. M. (1993). Science, 260, 1482–1486.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435–444.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHubin, T. J., McCormick, J. M., Collinson, S. R., Alcock, N. W., Clase, H. J. & Busch, D. H. (2003). Inorg. Chim. Acta, 346, 76–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationHubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationJang, H. G., Cox, D. D. & Que, L. Jr (1991). J. Am. Chem. Soc. 113, 9200–9204.  CSD CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOrtiz de Montellano, P. R. (1986). In Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Plenum Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWallar, B. J. & Lipscomb, J. D. (1996). Chem. Rev. 96, 2625–2657.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561–10572.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, G., Buchalova, M., Danby, A. M., Perkins, C. M., Kitko, D., Carter, J. D., Scheper, W. M. & Busch, D. H. (2006). Inorg. Chem. 45, 3467–3474.  CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds