metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two square-planar palladium(II) complexes with P,O-bidentate hybrid ligands

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and bMolecular Profiles, 8 Orchard Place, Nottingham Business Park, Nottingham NG8 6PX, England
*Correspondence e-mail: m.b.smith@lboro.ac.uk

(Received 7 November 2006; accepted 14 November 2006; online 12 December 2006)

In the two square-planar palladium(II) complexes chloro[(diphenyl­phosphinoamino)diphenyl­phosphine oxide]methyl­palladium(II) dimethyl sulfoxide solvate, [Pd(CH3)Cl(C24H21NOP2)]·C2H6OS, (I)[link], and chloro­{[2-(diphenyl­phosphino)phen­yl]dieth­oxymethane}methyl­palladium(II), [Pd(CH3)Cl(C23H25O2P)], (II)[link], a trans disposition of the diphenyl­phosphino and chloro groups is observed. The Pd atom in both complexes displays a distorted square-planar configuration formed by the four unique donor atoms (P, Cl, C and O). In compound (I)[link], the five-membered Pd–P–N–P–O metallacycle is best described as having an envelope conformation, whereas in (II)[link] the six-membered Pd–P–C–C–C–O metallacycle adopts a skewed boat conformation. Furthermore, within the P–N–P–O backbone in (I)[link], the P—N distances are consistent with single-bond character [1.659 (3) and 1.692 (3) Å], whilst the P=O bond shows appreciable double-bond character [1.509 (2) Å].

Comment

Hybrid ligands combining soft (e.g. PIII) and hard donor atoms (e.g. an O atom from a phosphine oxide or ether functional group) continue to receive widespread attention (Braunstein, 2006[Braunstein, P. (2006). Chem. Rev. 106, 134-159.]; Grushin, 2004[Grushin, V. V. (2004). Chem. Rev. 104, 1629-1662.]). Phosphine oxides, mixed phosphine/phosphine oxides and ether-functionalized phosphines are versatile compounds that can display hemilabile properties through the different electronic effects exerted by each donor atom (Gianneschi et al., 2005[Gianneschi, N. C., Masar, M. S. III & Mirkin, C. A. (2005). Acc. Chem. Res. 38, 825-837.]). Accordingly, the P-donor atom is coordinated strongly to a metal centre, whereas the O-donor atom is weakly bound, thereby promoting a vacant site upon dissociation. These ligands have found a range of applications in areas such as organic syntheses, coordination chemistry, catalysis, and industrial processes such as selective metal extraction (Kabat et al., 2001[Kabat, M. M., Garofalo, L. M., Daniewski, A. R., Hutchings, S. D., Liu, W., Okabe, M., Radinov, R. & Zhou, Y. (2001). J. Org. Chem. 66, 6141-6150.]; Yeo et al., 1999[Yeo, J. S. L., Vittal, J. J. & Hor, T. S. A. (1999). Chem. Commun. pp. 1477-1478.]; Nash et al., 2002[Nash, K. L., Lavallette, C., Borkowski, M., Paine, R. T. & Gan, X. (2002). Inorg. Chem. 41, 5849-5858.], and references therein). We present here the structures of two square-planar palladium(II) complexes, (I)[link] and (II)[link], containing two different P,O-bidentate hybrid ligands.

The chemistry of Ph2PNHP(O)Ph2, akin to Ph2PCH2P(O)Ph2, has been studied extensively (Bhattacharyya et al., 1996[Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. & Woollins, J. D. (1996). Inorg. Chem. 35, 3675-3682.]; Smith & Slawin, 2000[Smith, M. B. & Slawin, A. M. Z. (2000). Inorg. Chim. Acta, 299, 172-179.]), while few studies have been reported with ligands such as 2-Ph2PC6H4CH(OR)2 (Bei et al., 1999[Bei, X., Uno, T., Norris, J., Turner, H. W., Weinberg, W. H., Guram, A. S. & Petersen, J. L. (1999). Organometallics, 18, 1840-1853.]). Compound (I)[link] was obtained from the reaction of Pd(CH3)Cl(cod) (cod = cyclo­octa-1,5-diene) and Ph2PNHP(O)Ph2. The P,O-bidentate ligand in (II)[link] was obtained during an unsuccessful attempt to condense 2-(diphenyl­phosphino)benzaldehyde with 2-amino-3-methoxy­benzoic acid in absolute ethanol, followed by complexation with Pd(CH3)Cl(cod). Presumably, solvolysis of 2-(diphenyl­phosphino)benzaldehyde produced the ligand 2-Ph2PC6H4CH(OCH2CH3)2 rather than the intended Schiff base product 2-Ph2PC6H4CH=NC6H4CO2H(3-OCH3).

[Scheme 1]

The structure of (I)[link] (Fig. 1[link] and Table 1[link]) confirms a near square-planar arrangement of ligands around the PdII metal centre. Of the two possible geometric isomers expected for (I)[link], we observe here that the phosphoryl O-donor atom is trans to the methyl ligand. The Pd atom deviates from the least-squares plane through atoms P1/O1/Cl1/C1 by 0.1567 (2) Å. The P- and O-donor atoms form a five-membered metallacycle (containing atoms P1/N1/P2/O1/Pd1) which adopts an envelope conformation, with atom O1, the flap atom, out of the plane by 0.2616 (10) Å. Within the Pd1–P1–N1–P2–O1 ring, the P1—N1, N1—P2 and P2—O1 bond lengths are in good agreement with those of Ph2PNHP(O)Ph2 and other previously reported compounds (Bhattacharyya et al., 1996[Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. & Woollins, J. D. (1996). Inorg. Chem. 35, 3675-3682.]; Smith & Slawin, 2000[Smith, M. B. & Slawin, A. M. Z. (2000). Inorg. Chim. Acta, 299, 172-179.]). Such data are consistent with the absence of double-bond character in the P1—N1 and N1—P2 bonds. In contrast, when amine deprotonation is performed we have previously observed shortening of the P1—N1 and N1—P2 bond lengths and lengthening of the O1—P2 bond, consistent with appreciable double-bond character within the P1–N1–P2–O1 ring. Similar bond-length changes have also been reported in phosphinoenolate chemistry when P,O-chelated to metal centres (Braunstein, 2006[Braunstein, P. (2006). Chem. Rev. 106, 134-159.]). There is one N—H⋯O inter­molecular hydrogen bond in the structure of (I)[link], to a dimethyl sulfoxide (DMSO) solvent mol­ecule (Table 2[link]).

The structure of (II)[link] establishes that the P,O-bidentate hybrid ligand functions in a similar manner to Ph2PNHP(O)Ph2 (Fig. 3 and Table 3[link]). Similar to (I)[link], the geometric isomer observed here places the diphenyl­phosphino group cis to a methyl ligand, as would be expected on the basis of their different trans effects. The Pd1—O1 bond length is similar to (I)[link] and other palladium(II) compounds (Bei et al., 1999[Bei, X., Uno, T., Norris, J., Turner, H. W., Weinberg, W. H., Guram, A. S. & Petersen, J. L. (1999). Organometallics, 18, 1840-1853.]). The Pd atom deviates from the least-squares plane through atoms P1/O1/Cl1/C1 by 0.0151 (7) Å. The P,O-donor substituents form a six-membered metallacycle (containing atoms Pd1/O1/P1/C4/C7/C12), which adopts a skewed-boat conformation, with atom C4 having the largest deviation from coplanarity [0.4789 (13) Å]. The difference in the C4—O1 [1.439 (2) Å] and C4—O2 [1.388 (2) Å] bond lengths confirms that one of the ether groups is coordinated while the other is not. Furthermore, it should be noted the P—Pd—O bite angles in the two complexes are different [86.93 (6)° for (I)[link] and 92.65 (3)° for (II)], which is consistent with the different ring sizes adopted by the P,O-bidentate ligands.

In summary, we have shown that two P,O-bidentate hybrid ligands display envelope [for (I)] and skewed-boat [for (II)] ring conformations when complexed to square-planar palladium(II) bearing ancillary methyl and chloro ligands.

[Figure 1]
Figure 1
A perspective view of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level, and amino and methyl H atoms are shown as small spheres of arbitrary radii. Other H atoms have been omitted. The minor disorder component has been omitted for clarity. The hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
A perspective view of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. CH2 and methyl H atoms are shown as small spheres of arbitrary radii. Other H atoms have been omitted.

Experimental

For the preparation of (I)[link], Ph2PNHP(O)Ph2 (0.072 g, 0.179 mmol) was added to a CH2Cl2 solution (2 ml) of Pd(CH3)Cl(cod) (0.047 g, 0.177 mmol). After ca 1 min, solid (I)[link] was deposited and this mixture was stirred for an additional 15 min. Diethyl ether (10 ml) was added to further the precipitation, and the solid was collected by suction filtration and dried in vacuo (yield 0.097 g, 98%). Selected spectroscopic data: 31P{1H} NMR (DMSO-d6): δ 65.8, 44.5 [2J(PP) = 23 Hz]; 1H NMR (DMSO-d6): δ 8.73 (NH), 7.70–7.51 (aromatic H), 0.50 [3J(PH) = 3 Hz (CH3)]; FT–IR: νNH 2988, νPO 1145 cm−1. Analysis found: C 53.56, H 4.26, N 2.53; C25H24ClNOP2Pd requires: C 53.78, H 4.34, N 2.51%. Colourless block-shaped crystals of (I)[link] were obtained by vapour diffusion of diethyl ether into a CDCl3 solution of (I) containing a few drops of DMSO.

For the preparation of (II)[link], an unsuccessful attempt to synthesize the Schiff base compound 2-Ph2PC6H4CH=NC6H4CO2H(3-OCH3) by refluxing an absolute ethanol solution (10 ml) of 2-Ph2PC6H4CHO (0.184 g, 0.634 mmol) and H2NC6H4(OCH3)(CO2H) (0.109 g, 0.652 mmol) under nitro­gen for ca 7 d gave instead 2-Ph2PC6H4CH(OCH2CH3)2 [δ(P) −17.0 p.p.m. (ca 60% purity by 31P{1H} NMR)]. The ligand 2-Ph2PC6H4CH(OCH2CH3)2 was reacted with Pd(CH3)Cl(cod) in CDCl3 to afford (II)[link]. Selected spectroscopic data: 31P{1H} NMR (CDCl3): δ 28.0; 1H NMR (CDCl3): δ 7.53–7.01 (aromatic H), 5.37 (CH), 4.18 and 3.69 (both CH2), 1.08 (CH3), 0.90 [3J(PH) = 4 Hz (Pd—CH3)]. Analysis found: C 54.57, H 5.30; C24H28ClO2PPd requires: C 55.29, H 5.43%. Yellow block-shaped crystals of (II)[link] were obtained upon slow diffusion of petroleum ether (b.p. 333–353 K) into a CDCl3 solution of the product.

Compound (I)[link]

Crystal data
  • [Pd(CH3)Cl(C24H21NOP2)]·C2H6OS

  • Mr = 636.37

  • Monoclinic, P n

  • a = 11.5432 (6) Å

  • b = 9.5417 (5) Å

  • c = 13.1351 (7) Å

  • β = 101.904 (2)°

  • V = 1415.61 (13) Å3

  • Z = 2

  • Dx = 1.493 Mg m−3

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.42 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.877

  • 10824 measured reflections

  • 5385 independent reflections

  • 5182 reflections with I > 2σ(I)

  • Rint = 0.014

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.04

  • 5385 reflections

  • 327 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4115P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2596 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Pd1—C1 2.023 (4) 
Pd1—P2 2.1880 (8)
Pd1—O1 2.228 (2)
Pd1—Cl1 2.3674 (9)
O1—P1 1.509 (2)
P1—N1 1.659 (3)
N1—P2 1.692 (3)
C1—Pd1—P2 89.77 (11)
C1—Pd1—O1 176.31 (14)
P2—Pd1—O1 86.93 (6)
C1—Pd1—Cl1 89.77 (11)
P2—Pd1—Cl1 176.43 (3)
O1—Pd1—Cl1 93.63 (6)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 1.89 2.757 (4) 167

Compound (II)[link]

Crystal data
  • [Pd(CH3)Cl(C23H25O2P)]

  • Mr = 521.28

  • Orthorhombic, P b c a

  • a = 17.3748 (5) Å

  • b = 14.3919 (4) Å

  • c = 18.3124 (5) Å

  • V = 4579.1 (2) Å3

  • Z = 8

  • Dx = 1.512 Mg m−3

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.22 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.]) Tmin = 0.808, Tmax = 0.871

  • 34078 measured reflections

  • 4504 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.10

  • 4504 reflections

  • 265 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0245P)2 + 3.3794P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Pd1—C1 2.027 (2)
Pd1—O1 2.2112 (13)
Pd1—P1 2.2181 (5)
Pd1—Cl1 2.3663 (5)
O1—C4 1.439 (2)
C4—O2 1.388 (2)
C1—Pd1—O1 177.48 (7) 
C1—Pd1—P1 89.87 (6)
O1—Pd1—P1 92.65 (3)
C1—Pd1—Cl1 90.63 (6)
O1—Pd1—Cl1 86.85 (4)
P1—Pd1—Cl1 178.38 (2)

H atoms were placed in geometric positions, with C—H = 0.95–0.99 Å and N—H = 0.88 Å, and were treated using a riding model, with Uiso(H) = 1.2Ueq(C,N). In (I)[link], the DMSO mol­ecule exhibits disorder, which was modelled with the S atom in two positions [major occupancy 0.671 (3)]. Restraints were applied to the S—O and S—C bond lengths [SADI restraint in SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.])] and to the anisotropic displacement parameters (SIMU and DELU restraints in SHELXTL) of the non-H atoms of the DMSO mol­ecule, and also to those of atoms C2–C13 of the benzene rings. The data sets for both (I)[link] and (II)[link] were truncated at 2θ = 52°; reflections were of insignificant intensity above this value. For (I)[link], the correct orientation of the structure with respect to the polar-axis directions was established by means of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter.

For both compounds, data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Hybrid ligands combining soft (e.g. PIII) and hard donor atoms (e.g. O from a phosphine oxide or ether functional group) continue to receive widespread attention (Braunstein, 2006; Grushin, 2004). Phosphine oxides, mixed phosphine/phosphine oxides and ether-functionalized phosphines are versatile compounds that can display hemilabile properties through the different electronic effects exerted by each donor atom (Gianneschi et al., 2005). Accordingly, the P donor atom is coordinated strongly to a metal centre, whereas the O is weakly bound, thereby promoting a vacant site upon dissociation. These ligands have found a range of applications in areas such as organic syntheses, coordination chemistry, catalysis, and industrial processes such as selective metal extraction (Kabat et al., 2001; Yeo et al., 1999; Nash et al., 2002). We present here the structures of the square-planar palladium(II) complexes, (I) and (II), containing two different κ2-P,O hybrid ligands.

The chemistry of Ph2PNHP(O)Ph2, akin to Ph2PCH2P(O)Ph2, has been studied extensively (Bhattacharyya et al., 1996; Smith & Slawin, 2000), while few studies have been reported with ligands such as 2-Ph2PC6H4CH(OR)2 (Bei et al., 1999). Compound (I) was obtained from the reaction of Pd(CH3)Cl(cod) (cod = cycloocta-1,5-diene) and Ph2PNHP(O)Ph2. The κ2-P,O ligand in (II) was obtained during an unsuccessful attempt to condense 2-(diphenylphosphino)benzaldehyde with 2-amino-3-methoxybenzoic acid in absolute ethanol, followed by complexation with Pd(CH3)Cl(cod). Presumably, solvolysis of 2-diphenylphosphinobenzaldehyde produced the ligand 2-Ph2PC6H4CH(OCH2CH3)2 rather than the intended Schiff base product 2-Ph2PC6H4CHNC6H4CO2H(3-OCH3).

The structure of (I) (Fig. 1, Table 1) confirms a near square-planar arrangement of ligands around the PdII metal centre. Of the two possible geometric isomers expected for (I), we observe here that the phosphoryl O donor atom is trans to the methyl ligand. The Pd atom deviates from the least-squares plane through atoms P1/O1/Cl1/C1 by 0.1567 (2) Å. The κ2-P,O donor atoms form a five-membered metallacycle (containing atoms P1/N1/P2/O1/Pd1) which adopts an envelope conformation, with atom O1, the flap atom, out of the plane by 0.2616 (10) Å. Within the Pd1–P1–N1–P2–O1 ring, the P1—N1, N1—P2 and P2—O1 bond lengths are in good agreement with those of Ph2PNHP(O)Ph2 and other previously reported compounds (Bhattacharyya et al., 1996; Smith & Slawin, 2000). Such data are consistent with the absence of double-bond character in the P1—N1 and N1—P2 bonds. In contrast, when amine deprotonation is performed we have previously observed shortening of the P1—N1 and N1—P2 bond lengths and lengthening of the O1—P2 bond, consistent with appreciable double-bond character within the P1–N1–P2–O1 ring. Similar bond-length changes have also been reported in phosphinoenolate chemistry when κ2-P,O-chelated to metal centres (Braunstein, 2006). There is one N—H···O intermolecular hydrogen-bond in the structure of (I), to a (CH3)2SO solvent molecule (Table 2).

The structure of (II) establishes that the κ2-P,O hybrid ligand functions in a similar manner to Ph2PNHP(O)Ph2 (Fig. 3, Table 3). Similar to (I), the geometric isomer observed here places the diphenylphosphino group cis to a methyl ligand, as would be expected on the basis of their different trans effects. The Pd1—O1 bond length is similar to (I) and other palladium(II) compounds (Bei et al., 1999). The Pd atom deviates from the least-squares plane through atoms P1/O1/Cl1/C1 by 0.0151 (7) Å. The κ2-P,O donor substituents form a six-membered metallacycle (containing atoms Pd1/O1/P1/C4/C7/C12) which adopts a skewed-boat conformation, with atom C4 having the largest deviation from coplanarity [0.4789 (13) Å]. The difference in the C4—O1 [1.439 (2) Å] and C4—O2 [1.388 (2) Å] bond lengths confirms that one of the ether groups is coordinated while the other is non-coordinating. Furthermore, it should be noted the P—Pd—O bite angles in the two complexes are different [86.93 (6)° for (I) and 92.65 (3)° for (II)], which is consistent with the different ring sizes adopted by the chelating κ2-P,O ligands.

In summary, we have shown that two κ2-P,O hybrid ligands display envelope [for (I)] and skewed-boat [for (II)] ring conformations when complexed to square-planar palladium(II) bearing ancillary methyl and chloro ligands.

Experimental top

The preparation of (I) was carried out as follows. To a CH2Cl2 solution (2 ml) of Pd(CH3)Cl(cod) (0.047 g, 0.177 mmol) was added Ph2PNHP(O)Ph2 (0.072 g, 0.179 mmol). After ca 1 min, solid (I) was deposited and this mixture was stirred for an additional 15 min. Diethyl ether (10 ml) was added to further the precipitation, and the solid was collected by suction filtration and dried in vacuo (yield 0.097 g, 98%). Selected spectroscopic data: 31P{1H} NMR (DMSO-d6, δ, p.p.m.): 65.8, 44.5 [2J(PP) = 23 Hz]; 1H NMR (DMSO-d6, δ, p.p.m.): 8.73 (NH), 7.70–7.51 (arom. H), 0.50 [3J(PH) = 3 Hz (CH3)]; FT–IR: νNH 2988, νPO 1145 cm−1. Analysis, found: C 53.56, H 4.26, N 2.53; C25H24ClNOP2Pd requires: C 53.78, H 4.34, N 2.51%. Colourless block crystals of (I) were obtained by vapour diffusion of diethyl ether into a CDCl3–(CH3)2SO (Ratio?) solution of the product.

The preparation of (II) was carried out as follows. An unsuccessful attempt to synthesize the Schiff base compound 2–2-Ph2PC6H4CH NC6H4CO2H(3-OCH3) by refluxing an absolute ethanol solution (10 ml) of 2-Ph2PC6H4CHO (0.184 g, 0.634 mmol) and H2NC6H4(OCH3)(CO2H) (0.109 g, 0.652 mmol) under nitrogen for ca 7 d gave instead 2-Ph2PC6H4CH(OCH2CH3)2 [δ(P) −17.0 p.p.m. (ca 60% purity by 31P{1H} NMR)]. The ligand 2-Ph2PC6H4CH(OCH2CH3)2 was reacted with Pd(CH3)Cl(cod) in CDCl3 to afford (II). Selected spectroscopic data: 31P{1H} NMR (CDCl3, δ, p.p.m.): 28.0; 1H NMR (CDCl3, δ, p.p.m.): 7.53–7.01 (arom. H), 5.37 (CH), 4.18 and 3.69 (both CH2), 1.08 (CH3), 0.90 [3J(PH) = 4 Hz (Pd—CH3)]. Analysis, found: C 54.57, H 5.30; C24H28ClO2PPd requires: C 55.29, H 5.43%. Yellow block crystals of (II) were obtained upon slow diffusion of petroleum ether (b.p. 333–353 K) into a CDCl3 solution of the product.

Refinement top

H atoms were placed in geometric positions, with C—H distances in the range 0.95–0.99 Å and an N—H distance of 0.88 Å, and were treated using a riding model, with Uiso(H) = 1.2Ueq(C,N). In (I), the (CH3)2SO molecule exhibits disorder, which was modelled with the S atom in two positions [major occupancy 0.671 (3)]. Restraints [Please give details] were applied to the S—O and S—C bond lengths and the anisotropic displacement parameters for the non-H atoms of the (CH3)2SO molecule, and also for atoms C2–C13 of the Ph rings. The data sets for both (I) and (II) were truncated at 2θ = 52°; reflections were of insignificant intensity above this value. For (I), the correct orientation of the structure with respect to the polar axis directions was established by means of the Flack parameter (Flack, 1983).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level, and NH and Pd—CH3 H atoms are shown as small spheres of arbitrary radii. Other H atoms have been omitted. The minor disorder component has been omitted for clarity. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A perspective view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. CH2 and CH3 H atoms are shown as small spheres of arbitrary radii. Other H atoms have been omitted.
(I) chloro[(diphenylphosphinoamino)diphenylphosphine oxide]methylpalladium(II) dimethyl sulfoxide solvate top
Crystal data top
[Pd(CH3)Cl(C24H21NOP2)]·C2H6OSF(000) = 648
Mr = 636.37Dx = 1.493 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 8788 reflections
a = 11.5432 (6) Åθ = 2.6–28.6°
b = 9.5417 (5) ŵ = 0.96 mm1
c = 13.1351 (7) ÅT = 150 K
β = 101.904 (2)°Block, colourless
V = 1415.61 (13) Å30.42 × 0.15 × 0.14 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5385 independent reflections
Radiation source: sealed tube5182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω rotation with narrow frames scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.688, Tmax = 0.877k = 1111
10824 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4115P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5385 reflectionsΔρmax = 0.47 e Å3
327 parametersΔρmin = 0.54 e Å3
156 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Pd(CH3)Cl(C24H21NOP2)]·C2H6OSV = 1415.61 (13) Å3
Mr = 636.37Z = 2
Monoclinic, PnMo Kα radiation
a = 11.5432 (6) ŵ = 0.96 mm1
b = 9.5417 (5) ÅT = 150 K
c = 13.1351 (7) Å0.42 × 0.15 × 0.14 mm
β = 101.904 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5385 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5182 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.877Rint = 0.014
10824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.54 e Å3
5385 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
327 parametersAbsolute structure parameter: 0.02 (2)
156 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.540806 (18)0.18884 (2)0.191022 (17)0.02648 (7)
Cl10.70964 (8)0.09213 (9)0.14119 (7)0.0362 (2)
C10.5276 (4)0.0156 (4)0.2767 (3)0.0423 (9)
H1A0.60220.00120.32690.051*
H1B0.51140.06600.23070.051*
H1C0.46300.02780.31390.051*
O10.5430 (2)0.3821 (2)0.09624 (17)0.0309 (5)
P10.50100 (8)0.50388 (9)0.15232 (7)0.02762 (18)
N10.3915 (2)0.4519 (3)0.2077 (2)0.0278 (6)
H10.33530.51010.21670.033*
P20.39198 (7)0.28259 (8)0.24609 (6)0.02533 (18)
C20.4447 (3)0.6481 (4)0.0693 (3)0.0344 (8)
C30.3266 (4)0.6634 (4)0.0267 (3)0.0431 (9)
H30.27060.60160.04660.052*
C40.2883 (4)0.7689 (4)0.0453 (3)0.0472 (9)
H40.20620.77820.07440.057*
C50.3664 (4)0.8587 (5)0.0748 (3)0.0503 (9)
H50.34000.92850.12590.060*
C60.4842 (5)0.8467 (6)0.0292 (4)0.0790 (14)
H60.54000.91100.04660.095*
C70.5218 (4)0.7401 (6)0.0425 (4)0.0700 (13)
H70.60360.73210.07310.084*
C80.6212 (3)0.5696 (4)0.2498 (3)0.0350 (7)
C90.6026 (5)0.6714 (4)0.3194 (4)0.0488 (10)
H90.52530.70840.31480.059*
C100.6944 (5)0.7203 (5)0.3956 (4)0.0653 (11)
H100.68030.78870.44410.078*
C110.8052 (5)0.6694 (5)0.4002 (4)0.0652 (11)
H110.86900.70550.45100.078*
C120.8272 (4)0.5669 (6)0.3333 (4)0.0633 (10)
H120.90500.53090.33890.076*
C130.7340 (3)0.5160 (5)0.2568 (3)0.0485 (8)
H130.74810.44520.21000.058*
C140.4025 (3)0.2911 (3)0.3863 (3)0.0272 (7)
C150.4925 (3)0.3711 (4)0.4448 (3)0.0343 (8)
H150.54300.42440.41100.041*
C160.5091 (3)0.3738 (4)0.5528 (3)0.0434 (9)
H160.57080.42880.59260.052*
C170.4352 (4)0.2959 (4)0.6022 (3)0.0429 (9)
H170.44560.29840.67590.052*
C180.3472 (4)0.2156 (4)0.5445 (3)0.0424 (9)
H180.29690.16210.57840.051*
C190.3311 (3)0.2118 (4)0.4373 (3)0.0374 (8)
H190.27060.15440.39820.045*
C200.2446 (3)0.2146 (4)0.1957 (3)0.0308 (7)
C210.2318 (3)0.0874 (4)0.1424 (3)0.0363 (8)
H210.29960.03820.13130.044*
C220.1187 (4)0.0326 (4)0.1052 (3)0.0464 (9)
H220.10980.05370.06830.056*
C230.0210 (3)0.1026 (5)0.1218 (3)0.0492 (10)
H230.05560.06480.09660.059*
C240.0336 (5)0.2296 (4)0.1756 (4)0.0502 (11)
H240.03440.27780.18740.060*
C250.1441 (3)0.2849 (4)0.2114 (3)0.0408 (9)
H250.15210.37200.24720.049*
S10.26311 (14)0.72127 (18)0.36439 (11)0.0452 (5)0.671 (3)
O20.2299 (3)0.6294 (3)0.2686 (2)0.0519 (7)
C260.1530 (5)0.8389 (5)0.3633 (4)0.0837 (14)
H26A0.14970.90370.30490.126*0.671 (3)
H26B0.16830.89150.42880.126*0.671 (3)
H26C0.07730.78940.35560.126*0.671 (3)
H26D0.10400.87060.29730.126*0.329 (3)
H26E0.23030.88550.37450.126*0.329 (3)
H26F0.11370.86210.42040.126*0.329 (3)
C270.2575 (4)0.6201 (5)0.4708 (3)0.0643 (12)
H27A0.31920.54810.47870.097*0.671 (3)
H27B0.17970.57520.46150.097*0.671 (3)
H27C0.27040.67920.53320.097*0.671 (3)
H27D0.27140.51880.47060.097*0.329 (3)
H27E0.21860.64400.52820.097*0.329 (3)
H27F0.33330.66970.47990.097*0.329 (3)
S1X0.1718 (3)0.6672 (3)0.3593 (2)0.0454 (9)0.329 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02604 (11)0.02464 (11)0.03058 (11)0.00181 (12)0.01006 (8)0.00179 (12)
Cl10.0328 (4)0.0399 (5)0.0393 (5)0.0057 (4)0.0157 (4)0.0011 (4)
C10.048 (2)0.0284 (19)0.054 (2)0.0026 (17)0.0189 (19)0.0083 (17)
O10.0316 (12)0.0319 (13)0.0314 (12)0.0022 (10)0.0114 (10)0.0015 (10)
P10.0257 (4)0.0272 (4)0.0293 (4)0.0049 (3)0.0042 (3)0.0032 (4)
N10.0269 (13)0.0239 (14)0.0331 (15)0.0002 (11)0.0073 (11)0.0019 (11)
P20.0241 (4)0.0241 (4)0.0290 (4)0.0030 (3)0.0082 (3)0.0002 (3)
C20.0324 (16)0.0331 (17)0.0358 (18)0.0057 (14)0.0027 (14)0.0068 (15)
C30.0313 (15)0.0408 (19)0.056 (2)0.0021 (15)0.0053 (16)0.0145 (16)
C40.0374 (17)0.045 (2)0.057 (2)0.0059 (15)0.0056 (16)0.0158 (16)
C50.0492 (19)0.046 (2)0.051 (2)0.0027 (16)0.0021 (17)0.0193 (17)
C60.054 (2)0.082 (3)0.089 (3)0.028 (2)0.012 (2)0.055 (2)
C70.0398 (19)0.077 (3)0.081 (3)0.023 (2)0.015 (2)0.046 (2)
C80.0370 (15)0.0317 (17)0.0322 (16)0.0096 (14)0.0024 (14)0.0123 (12)
C90.060 (2)0.0257 (18)0.048 (2)0.0009 (16)0.0175 (18)0.0026 (14)
C100.082 (2)0.040 (2)0.056 (2)0.0064 (19)0.027 (2)0.0016 (17)
C110.065 (2)0.060 (2)0.055 (2)0.0262 (19)0.026 (2)0.0170 (16)
C120.0398 (18)0.088 (3)0.056 (2)0.0175 (19)0.0067 (16)0.0149 (19)
C130.0343 (16)0.069 (2)0.0405 (18)0.0094 (16)0.0045 (14)0.0087 (16)
C140.0269 (16)0.0255 (16)0.0310 (17)0.0053 (13)0.0100 (13)0.0007 (13)
C150.0280 (17)0.041 (2)0.0342 (18)0.0009 (15)0.0071 (14)0.0011 (15)
C160.035 (2)0.054 (2)0.038 (2)0.0044 (18)0.0028 (16)0.0028 (18)
C170.046 (2)0.056 (2)0.030 (2)0.0211 (19)0.0127 (17)0.0076 (17)
C180.043 (2)0.045 (2)0.046 (2)0.0104 (18)0.0256 (19)0.0156 (18)
C190.038 (2)0.0318 (19)0.045 (2)0.0016 (16)0.0159 (17)0.0046 (16)
C200.0284 (17)0.0332 (18)0.0319 (17)0.0063 (14)0.0087 (14)0.0013 (14)
C210.0353 (19)0.0366 (19)0.0387 (19)0.0089 (16)0.0115 (16)0.0083 (15)
C220.042 (2)0.046 (2)0.050 (2)0.0151 (18)0.0076 (18)0.0119 (19)
C230.032 (2)0.058 (3)0.056 (3)0.0210 (19)0.0030 (18)0.005 (2)
C240.0275 (19)0.053 (2)0.069 (3)0.005 (2)0.009 (2)0.008 (3)
C250.0290 (19)0.037 (2)0.055 (2)0.0046 (15)0.0073 (17)0.0099 (17)
S10.0491 (10)0.0555 (10)0.0345 (8)0.0124 (7)0.0168 (7)0.0078 (6)
O20.0602 (17)0.0582 (16)0.0371 (12)0.0168 (14)0.0098 (12)0.0102 (12)
C260.135 (3)0.060 (2)0.051 (2)0.041 (2)0.006 (2)0.0088 (18)
C270.094 (3)0.061 (2)0.0419 (16)0.029 (2)0.023 (2)0.0066 (17)
S1X0.0394 (17)0.0524 (16)0.0457 (15)0.0092 (13)0.0121 (12)0.0066 (12)
Geometric parameters (Å, º) top
Pd1—C12.023 (4)C15—C161.392 (5)
Pd1—P22.1880 (8)C15—H150.9500
Pd1—O12.228 (2)C16—C171.390 (6)
Pd1—Cl12.3674 (9)C16—H160.9500
C1—H1A0.9800C17—C181.369 (6)
C1—H1B0.9800C17—H170.9500
C1—H1C0.9800C18—C191.383 (6)
O1—P11.509 (2)C18—H180.9500
P1—N11.659 (3)C19—H190.9500
P1—C21.792 (4)C20—C251.392 (5)
P1—C81.796 (4)C20—C211.394 (5)
N1—P21.692 (3)C21—C221.397 (5)
N1—H10.8800C21—H210.9500
P2—C201.814 (3)C22—C231.366 (6)
P2—C141.822 (3)C22—H220.9500
C2—C71.348 (6)C23—C241.395 (6)
C2—C31.371 (5)C23—H230.9500
C3—C41.389 (5)C24—C251.370 (6)
C3—H30.9500C24—H240.9500
C4—C51.356 (6)C25—H250.9500
C4—H40.9500S1—O21.516 (3)
C5—C61.373 (6)S1—C261.693 (4)
C5—H50.9500S1—C271.711 (4)
C6—C71.394 (6)O2—S1X1.526 (4)
C6—H60.9500C26—S1X1.655 (4)
C7—H70.9500C26—H26A0.9800
C8—C91.380 (6)C26—H26B0.9800
C8—C131.385 (5)C26—H26C0.9800
C9—C101.380 (6)C26—H26D0.9800
C9—H90.9500C26—H26E0.9800
C10—C111.358 (8)C26—H26F0.9800
C10—H100.9500C27—S1X1.652 (4)
C11—C121.373 (8)C27—H27A0.9800
C11—H110.9500C27—H27B0.9800
C12—C131.399 (6)C27—H27C0.9800
C12—H120.9500C27—H27D0.9800
C13—H130.9500C27—H27E0.9800
C14—C151.387 (5)C27—H27F0.9800
C14—C191.390 (5)
C1—Pd1—P289.77 (11)C15—C14—P2118.1 (3)
C1—Pd1—O1176.31 (14)C19—C14—P2122.8 (3)
P2—Pd1—O186.93 (6)C14—C15—C16120.3 (3)
C1—Pd1—Cl189.77 (11)C14—C15—H15119.8
P2—Pd1—Cl1176.43 (3)C16—C15—H15119.8
O1—Pd1—Cl193.63 (6)C17—C16—C15119.8 (4)
Pd1—C1—H1A109.5C17—C16—H16120.1
Pd1—C1—H1B109.5C15—C16—H16120.1
H1A—C1—H1B109.5C18—C17—C16119.9 (4)
Pd1—C1—H1C109.5C18—C17—H17120.1
H1A—C1—H1C109.5C16—C17—H17120.1
H1B—C1—H1C109.5C17—C18—C19120.4 (4)
P1—O1—Pd1108.85 (12)C17—C18—H18119.8
O1—P1—N1109.52 (14)C19—C18—H18119.8
O1—P1—C2114.01 (17)C18—C19—C14120.6 (4)
N1—P1—C2106.42 (16)C18—C19—H19119.7
O1—P1—C8109.80 (16)C14—C19—H19119.7
N1—P1—C8109.78 (15)C25—C20—C21119.3 (3)
C2—P1—C8107.20 (17)C25—C20—P2121.4 (3)
P1—N1—P2117.39 (16)C21—C20—P2119.3 (3)
P1—N1—H1121.3C20—C21—C22119.7 (3)
P2—N1—H1121.3C20—C21—H21120.1
N1—P2—C20106.71 (15)C22—C21—H21120.1
N1—P2—C14104.74 (14)C23—C22—C21120.2 (4)
C20—P2—C14104.29 (16)C23—C22—H22119.9
N1—P2—Pd1104.26 (10)C21—C22—H22119.9
C20—P2—Pd1118.33 (12)C22—C23—C24120.2 (4)
C14—P2—Pd1117.31 (11)C22—C23—H23119.9
C7—C2—C3118.6 (4)C24—C23—H23119.9
C7—C2—P1118.9 (3)C25—C24—C23120.0 (4)
C3—C2—P1122.4 (3)C25—C24—H24120.0
C2—C3—C4120.3 (4)C23—C24—H24120.0
C2—C3—H3119.8C24—C25—C20120.6 (4)
C4—C3—H3119.8C24—C25—H25119.7
C5—C4—C3121.0 (4)C20—C25—H25119.7
C5—C4—H4119.5O2—S1—C26108.4 (2)
C3—C4—H4119.5O2—S1—C27107.8 (2)
C4—C5—C6118.7 (4)C26—S1—C27103.1 (3)
C4—C5—H5120.7S1—C26—H26A109.5
C6—C5—H5120.7S1—C26—H26B109.5
C5—C6—C7119.8 (4)H26A—C26—H26B109.5
C5—C6—H6120.1S1—C26—H26C109.5
C7—C6—H6120.1H26A—C26—H26C109.5
C2—C7—C6121.4 (4)H26B—C26—H26C109.5
C2—C7—H7119.3S1X—C26—H26D109.5
C6—C7—H7119.3S1X—C26—H26E109.5
C9—C8—C13119.3 (4)H26D—C26—H26E109.5
C9—C8—P1121.0 (3)S1X—C26—H26F109.5
C13—C8—P1119.7 (3)H26D—C26—H26F109.5
C10—C9—C8121.1 (5)H26E—C26—H26F109.5
C10—C9—H9119.4S1—C27—H27A109.5
C8—C9—H9119.4S1—C27—H27B109.5
C11—C10—C9119.2 (5)H27A—C27—H27B109.5
C11—C10—H10120.4S1—C27—H27C109.5
C9—C10—H10120.4H27A—C27—H27C109.5
C10—C11—C12121.5 (5)H27B—C27—H27C109.5
C10—C11—H11119.2S1X—C27—H27D109.5
C12—C11—H11119.2S1X—C27—H27E109.5
C11—C12—C13119.4 (5)H27D—C27—H27E109.5
C11—C12—H12120.3S1X—C27—H27F109.5
C13—C12—H12120.3H27D—C27—H27F109.5
C8—C13—C12119.5 (4)H27E—C27—H27F109.5
C8—C13—H13120.3O2—S1X—C27110.4 (2)
C12—C13—H13120.3O2—S1X—C26109.9 (3)
C15—C14—C19118.9 (3)C27—S1X—C26107.4 (3)
P2—Pd1—O1—P130.74 (11)C13—C8—C9—C100.0 (6)
Cl1—Pd1—O1—P1145.73 (11)P1—C8—C9—C10178.8 (4)
Pd1—O1—P1—N138.54 (16)C8—C9—C10—C111.5 (7)
Pd1—O1—P1—C2157.63 (15)C9—C10—C11—C122.3 (8)
Pd1—O1—P1—C882.07 (15)C10—C11—C12—C131.6 (7)
O1—P1—N1—P229.9 (2)C9—C8—C13—C120.7 (6)
C2—P1—N1—P2153.59 (19)P1—C8—C13—C12179.6 (3)
C8—P1—N1—P290.7 (2)C11—C12—C13—C80.1 (7)
P1—N1—P2—C20130.93 (18)N1—P2—C14—C1552.1 (3)
P1—N1—P2—C14118.85 (18)C20—P2—C14—C15164.0 (3)
P1—N1—P2—Pd14.96 (18)Pd1—P2—C14—C1562.9 (3)
C1—Pd1—P2—N1168.88 (16)N1—P2—C14—C19133.5 (3)
O1—Pd1—P2—N112.76 (11)C20—P2—C14—C1921.6 (3)
C1—Pd1—P2—C2072.82 (18)Pd1—P2—C14—C19111.5 (3)
O1—Pd1—P2—C20105.53 (14)C19—C14—C15—C161.3 (5)
C1—Pd1—P2—C1453.62 (18)P2—C14—C15—C16175.9 (3)
O1—Pd1—P2—C14128.03 (13)C14—C15—C16—C170.0 (6)
O1—P1—C2—C781.5 (5)C15—C16—C17—C180.7 (6)
N1—P1—C2—C7157.6 (4)C16—C17—C18—C190.2 (6)
C8—P1—C2—C740.2 (5)C17—C18—C19—C141.1 (6)
O1—P1—C2—C394.3 (4)C15—C14—C19—C181.8 (5)
N1—P1—C2—C326.5 (4)P2—C14—C19—C18176.1 (3)
C8—P1—C2—C3143.9 (4)N1—P2—C20—C2550.7 (3)
C7—C2—C3—C42.3 (7)C14—P2—C20—C2559.8 (3)
P1—C2—C3—C4173.6 (3)Pd1—P2—C20—C25167.7 (3)
C2—C3—C4—C50.2 (7)N1—P2—C20—C21130.9 (3)
C3—C4—C5—C62.3 (8)C14—P2—C20—C21118.5 (3)
C4—C5—C6—C72.6 (9)Pd1—P2—C20—C2113.9 (3)
C3—C2—C7—C61.9 (9)C25—C20—C21—C220.2 (5)
P1—C2—C7—C6174.1 (5)P2—C20—C21—C22178.6 (3)
C5—C6—C7—C20.5 (10)C20—C21—C22—C230.5 (6)
O1—P1—C8—C9173.0 (3)C21—C22—C23—C240.2 (7)
N1—P1—C8—C952.5 (4)C22—C23—C24—C250.4 (7)
C2—P1—C8—C962.7 (3)C23—C24—C25—C200.8 (7)
O1—P1—C8—C135.9 (3)C21—C20—C25—C240.5 (6)
N1—P1—C8—C13126.4 (3)P2—C20—C25—C24177.9 (3)
C2—P1—C8—C13118.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.892.757 (4)167
(II) chloro{diethoxy[2-(diphenylphosphino)phenyl]methane]methylpalladium(II) top
Crystal data top
[Pd(CH3)Cl(C23H25O2P)]F(000) = 2128
Mr = 521.28Dx = 1.512 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 19047 reflections
a = 17.3748 (5) Åθ = 2.2–28.9°
b = 14.3919 (4) ŵ = 1.01 mm1
c = 18.3124 (5) ÅT = 150 K
V = 4579.1 (2) Å3Block, yellow
Z = 80.22 × 0.20 × 0.14 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4504 independent reflections
Radiation source: sealed tube3901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω rotation with narrow frames scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2121
Tmin = 0.808, Tmax = 0.871k = 1717
34078 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0245P)2 + 3.3794P]
where P = (Fo2 + 2Fc2)/3
4504 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Pd(CH3)Cl(C23H25O2P)]V = 4579.1 (2) Å3
Mr = 521.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.3748 (5) ŵ = 1.01 mm1
b = 14.3919 (4) ÅT = 150 K
c = 18.3124 (5) Å0.22 × 0.20 × 0.14 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4504 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3901 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.871Rint = 0.020
34078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
4504 reflectionsΔρmin = 0.24 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.141807 (8)0.093513 (10)0.390415 (7)0.02191 (6)
C10.09559 (14)0.03010 (14)0.36063 (12)0.0363 (5)
H1A0.13370.06590.33300.054*
H1B0.05010.01930.33010.054*
H1C0.08060.06480.40440.054*
Cl10.21955 (3)0.01875 (4)0.47875 (3)0.03910 (13)
O10.19524 (7)0.22514 (9)0.42659 (7)0.0253 (3)
C20.27841 (11)0.23719 (16)0.42475 (12)0.0328 (5)
H2A0.30220.19950.46400.039*
H2B0.29110.30320.43390.039*
C30.31100 (13)0.20823 (19)0.35219 (13)0.0439 (6)
H3A0.29790.14310.34280.066*
H3B0.36710.21540.35290.066*
H3C0.28930.24740.31360.066*
C40.15077 (10)0.30812 (13)0.41475 (11)0.0247 (4)
H40.17270.36050.44400.030*
O20.07625 (7)0.28939 (9)0.43771 (7)0.0243 (3)
C50.07042 (12)0.26580 (15)0.51444 (10)0.0316 (4)
H5A0.09480.31480.54460.038*
H5B0.09710.20630.52410.038*
C60.01294 (13)0.2575 (2)0.53309 (12)0.0462 (6)
H6A0.03810.31780.52630.069*
H6B0.01830.23800.58410.069*
H6C0.03710.21130.50120.069*
C70.14744 (10)0.33510 (13)0.33475 (10)0.0227 (4)
C80.17940 (11)0.41944 (13)0.31420 (12)0.0285 (4)
H80.20240.45810.35010.034*
C90.17824 (12)0.44825 (14)0.24178 (12)0.0319 (5)
H90.20010.50630.22850.038*
C100.14516 (12)0.39219 (15)0.18915 (12)0.0308 (5)
H100.14430.41150.13950.037*
C110.11323 (11)0.30758 (14)0.20920 (11)0.0268 (4)
H110.09070.26930.17280.032*
C120.11344 (10)0.27737 (12)0.28168 (10)0.0213 (4)
P10.07187 (3)0.16428 (3)0.30570 (2)0.01978 (10)
C130.02866 (10)0.18881 (13)0.32708 (10)0.0232 (4)
C140.06962 (12)0.12725 (15)0.37067 (11)0.0306 (4)
H140.04560.07220.38790.037*
C150.14583 (12)0.14588 (19)0.38925 (12)0.0402 (6)
H150.17380.10320.41860.048*
C160.18056 (12)0.22610 (18)0.36505 (13)0.0403 (5)
H160.23240.23880.37800.048*
C170.14052 (12)0.28806 (17)0.32210 (14)0.0395 (5)
H170.16480.34340.30560.047*
C180.06443 (11)0.26961 (14)0.30287 (12)0.0312 (4)
H180.03690.31230.27310.037*
C190.07026 (11)0.10150 (12)0.21925 (10)0.0229 (4)
C200.14117 (12)0.08146 (14)0.18658 (11)0.0300 (4)
H200.18730.10430.20780.036*
C210.14443 (14)0.02847 (16)0.12346 (12)0.0371 (5)
H210.19270.01580.10110.045*
C220.07751 (15)0.00588 (15)0.09312 (12)0.0406 (5)
H220.07990.04270.05010.049*
C230.00728 (15)0.01296 (16)0.12484 (12)0.0393 (5)
H230.03860.01080.10370.047*
C240.00343 (12)0.06697 (14)0.18807 (11)0.0301 (4)
H240.04500.08010.20970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02494 (9)0.02006 (8)0.02075 (8)0.00238 (6)0.00191 (5)0.00234 (5)
C10.0482 (13)0.0203 (10)0.0405 (12)0.0021 (9)0.0056 (10)0.0035 (9)
Cl10.0518 (3)0.0357 (3)0.0298 (3)0.0124 (2)0.0107 (2)0.0063 (2)
O10.0216 (6)0.0264 (7)0.0277 (7)0.0001 (5)0.0047 (5)0.0015 (6)
C20.0220 (10)0.0393 (12)0.0372 (11)0.0015 (9)0.0062 (9)0.0018 (9)
C30.0274 (11)0.0587 (15)0.0456 (14)0.0008 (11)0.0033 (10)0.0028 (12)
C40.0247 (9)0.0225 (9)0.0268 (9)0.0014 (8)0.0030 (8)0.0016 (8)
O20.0237 (7)0.0283 (7)0.0211 (6)0.0001 (6)0.0006 (5)0.0006 (5)
C50.0360 (11)0.0388 (12)0.0201 (9)0.0012 (9)0.0007 (8)0.0015 (8)
C60.0410 (13)0.0682 (17)0.0294 (11)0.0092 (12)0.0035 (10)0.0026 (11)
C70.0189 (9)0.0224 (9)0.0269 (10)0.0012 (7)0.0005 (7)0.0003 (8)
C80.0259 (10)0.0235 (10)0.0361 (11)0.0027 (8)0.0025 (8)0.0015 (8)
C90.0281 (10)0.0252 (10)0.0424 (12)0.0042 (9)0.0040 (9)0.0078 (9)
C100.0316 (11)0.0310 (11)0.0297 (11)0.0012 (9)0.0020 (8)0.0094 (9)
C110.0280 (10)0.0271 (10)0.0254 (10)0.0007 (8)0.0017 (8)0.0017 (8)
C120.0188 (8)0.0197 (9)0.0256 (9)0.0009 (7)0.0003 (7)0.0031 (7)
P10.0201 (2)0.0187 (2)0.0206 (2)0.00083 (18)0.00163 (18)0.00098 (18)
C130.0202 (9)0.0260 (9)0.0233 (9)0.0024 (7)0.0018 (7)0.0054 (8)
C140.0280 (10)0.0328 (11)0.0312 (10)0.0043 (9)0.0009 (8)0.0008 (9)
C150.0303 (12)0.0530 (15)0.0371 (12)0.0119 (11)0.0065 (9)0.0065 (10)
C160.0216 (10)0.0568 (15)0.0426 (13)0.0007 (10)0.0011 (9)0.0190 (11)
C170.0277 (11)0.0384 (12)0.0523 (14)0.0078 (9)0.0064 (10)0.0109 (11)
C180.0261 (10)0.0296 (10)0.0380 (11)0.0008 (8)0.0020 (9)0.0016 (9)
C190.0281 (10)0.0187 (9)0.0219 (9)0.0000 (8)0.0012 (8)0.0021 (7)
C200.0290 (11)0.0312 (11)0.0299 (11)0.0039 (8)0.0004 (8)0.0000 (8)
C210.0455 (13)0.0346 (12)0.0312 (11)0.0082 (10)0.0093 (10)0.0001 (9)
C220.0654 (16)0.0301 (11)0.0263 (10)0.0026 (11)0.0043 (11)0.0054 (9)
C230.0503 (14)0.0365 (12)0.0311 (11)0.0150 (11)0.0052 (10)0.0046 (9)
C240.0308 (11)0.0303 (10)0.0291 (10)0.0053 (9)0.0007 (8)0.0015 (8)
Geometric parameters (Å, º) top
Pd1—C12.027 (2)C9—H90.9500
Pd1—O12.2112 (13)C10—C111.388 (3)
Pd1—P12.2181 (5)C10—H100.9500
Pd1—Cl12.3663 (5)C11—C121.397 (3)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—P11.8343 (18)
C1—H1C0.9800P1—C191.8231 (19)
O1—C41.439 (2)P1—C131.8246 (19)
O1—C21.456 (2)C13—C141.389 (3)
C2—C31.503 (3)C13—C181.391 (3)
C2—H2A0.9900C14—C151.393 (3)
C2—H2B0.9900C14—H140.9500
C3—H3A0.9800C15—C161.376 (4)
C3—H3B0.9800C15—H150.9500
C3—H3C0.9800C16—C171.378 (4)
C4—O21.388 (2)C16—H160.9500
C4—C71.517 (3)C17—C181.394 (3)
C4—H41.0000C17—H170.9500
O2—C51.449 (2)C18—H180.9500
C5—C61.493 (3)C19—C241.386 (3)
C5—H5A0.9900C19—C201.400 (3)
C5—H5B0.9900C20—C211.386 (3)
C6—H6A0.9800C20—H200.9500
C6—H6B0.9800C21—C221.380 (3)
C6—H6C0.9800C21—H210.9500
C7—C81.387 (3)C22—C231.378 (3)
C7—C121.409 (3)C22—H220.9500
C8—C91.390 (3)C23—C241.396 (3)
C8—H80.9500C23—H230.9500
C9—C101.382 (3)C24—H240.9500
C1—Pd1—O1177.48 (7)C10—C9—H9120.1
C1—Pd1—P189.87 (6)C8—C9—H9120.1
O1—Pd1—P192.65 (3)C9—C10—C11119.62 (19)
C1—Pd1—Cl190.63 (6)C9—C10—H10120.2
O1—Pd1—Cl186.85 (4)C11—C10—H10120.2
P1—Pd1—Cl1178.38 (2)C10—C11—C12121.57 (19)
Pd1—C1—H1A109.5C10—C11—H11119.2
Pd1—C1—H1B109.5C12—C11—H11119.2
H1A—C1—H1B109.5C11—C12—C7118.25 (17)
Pd1—C1—H1C109.5C11—C12—P1120.21 (14)
H1A—C1—H1C109.5C7—C12—P1121.54 (14)
H1B—C1—H1C109.5C19—P1—C13105.52 (9)
C4—O1—C2115.51 (15)C19—P1—C12103.74 (8)
C4—O1—Pd1116.13 (10)C13—P1—C12104.87 (8)
C2—O1—Pd1120.79 (12)C19—P1—Pd1112.84 (6)
O1—C2—C3111.18 (17)C13—P1—Pd1117.60 (6)
O1—C2—H2A109.4C12—P1—Pd1111.07 (6)
C3—C2—H2A109.4C14—C13—C18119.19 (18)
O1—C2—H2B109.4C14—C13—P1119.37 (15)
C3—C2—H2B109.4C18—C13—P1121.41 (15)
H2A—C2—H2B108.0C13—C14—C15120.3 (2)
C2—C3—H3A109.5C13—C14—H14119.8
C2—C3—H3B109.5C15—C14—H14119.8
H3A—C3—H3B109.5C16—C15—C14120.0 (2)
C2—C3—H3C109.5C16—C15—H15120.0
H3A—C3—H3C109.5C14—C15—H15120.0
H3B—C3—H3C109.5C15—C16—C17120.4 (2)
O2—C4—O1107.11 (15)C15—C16—H16119.8
O2—C4—C7107.87 (15)C17—C16—H16119.8
O1—C4—C7112.25 (15)C16—C17—C18120.0 (2)
O2—C4—H4109.8C16—C17—H17120.0
O1—C4—H4109.8C18—C17—H17120.0
C7—C4—H4109.8C13—C18—C17120.2 (2)
C4—O2—C5113.85 (14)C13—C18—H18119.9
O2—C5—C6107.96 (17)C17—C18—H18119.9
O2—C5—H5A110.1C24—C19—C20119.18 (18)
C6—C5—H5A110.1C24—C19—P1123.24 (15)
O2—C5—H5B110.1C20—C19—P1117.38 (15)
C6—C5—H5B110.1C21—C20—C19120.4 (2)
H5A—C5—H5B108.4C21—C20—H20119.8
C5—C6—H6A109.5C19—C20—H20119.8
C5—C6—H6B109.5C22—C21—C20119.9 (2)
H6A—C6—H6B109.5C22—C21—H21120.1
C5—C6—H6C109.5C20—C21—H21120.1
H6A—C6—H6C109.5C23—C22—C21120.4 (2)
H6B—C6—H6C109.5C23—C22—H22119.8
C8—C7—C12119.80 (18)C21—C22—H22119.8
C8—C7—C4118.10 (17)C22—C23—C24120.1 (2)
C12—C7—C4122.10 (17)C22—C23—H23120.0
C7—C8—C9120.95 (19)C24—C23—H23120.0
C7—C8—H8119.5C19—C24—C23120.1 (2)
C9—C8—H8119.5C19—C24—H24120.0
C10—C9—C8119.82 (18)C23—C24—H24120.0
P1—Pd1—O1—C426.73 (12)C1—Pd1—P1—C1943.00 (10)
Cl1—Pd1—O1—C4154.82 (12)O1—Pd1—P1—C19137.00 (8)
P1—Pd1—O1—C2121.57 (13)C1—Pd1—P1—C1380.21 (10)
Cl1—Pd1—O1—C256.89 (13)O1—Pd1—P1—C1399.79 (8)
C4—O1—C2—C399.8 (2)C1—Pd1—P1—C12159.01 (9)
Pd1—O1—C2—C348.7 (2)O1—Pd1—P1—C1220.99 (7)
C2—O1—C4—O2164.10 (15)C19—P1—C13—C1493.00 (16)
Pd1—O1—C4—O245.92 (17)C12—P1—C13—C14157.81 (15)
C2—O1—C4—C777.69 (19)Pd1—P1—C13—C1433.85 (17)
Pd1—O1—C4—C772.29 (16)C19—P1—C13—C1889.38 (17)
O1—C4—O2—C561.13 (19)C12—P1—C13—C1819.81 (18)
C7—C4—O2—C5177.84 (15)Pd1—P1—C13—C18143.76 (14)
C4—O2—C5—C6174.04 (18)C18—C13—C14—C150.6 (3)
O2—C4—C7—C8124.97 (18)P1—C13—C14—C15178.30 (16)
O1—C4—C7—C8117.27 (18)C13—C14—C15—C160.7 (3)
O2—C4—C7—C1255.2 (2)C14—C15—C16—C170.4 (3)
O1—C4—C7—C1262.5 (2)C15—C16—C17—C180.1 (3)
C12—C7—C8—C90.2 (3)C14—C13—C18—C170.2 (3)
C4—C7—C8—C9179.99 (18)P1—C13—C18—C17177.81 (16)
C7—C8—C9—C100.3 (3)C16—C17—C18—C130.2 (3)
C8—C9—C10—C110.1 (3)C13—P1—C19—C2411.04 (19)
C9—C10—C11—C120.1 (3)C12—P1—C19—C24121.05 (17)
C10—C11—C12—C70.2 (3)Pd1—P1—C19—C24118.65 (15)
C10—C11—C12—P1179.11 (15)C13—P1—C19—C20174.21 (15)
C8—C7—C12—C110.1 (3)C12—P1—C19—C2064.20 (16)
C4—C7—C12—C11179.73 (17)Pd1—P1—C19—C2056.10 (16)
C8—C7—C12—P1178.92 (14)C24—C19—C20—C210.6 (3)
C4—C7—C12—P10.9 (2)P1—C19—C20—C21175.57 (16)
C11—C12—P1—C1919.66 (18)C19—C20—C21—C220.9 (3)
C7—C12—P1—C19159.16 (15)C20—C21—C22—C230.6 (3)
C11—C12—P1—C1390.82 (17)C21—C22—C23—C240.1 (3)
C7—C12—P1—C1390.36 (16)C20—C19—C24—C230.0 (3)
C11—C12—P1—Pd1141.15 (14)P1—C19—C24—C23174.69 (16)
C7—C12—P1—Pd137.67 (16)C22—C23—C24—C190.2 (3)

Experimental details

(I)(II)
Crystal data
Chemical formula[Pd(CH3)Cl(C24H21NOP2)]·C2H6OS[Pd(CH3)Cl(C23H25O2P)]
Mr636.37521.28
Crystal system, space groupMonoclinic, PnOrthorhombic, Pbca
Temperature (K)150150
a, b, c (Å)11.5432 (6), 9.5417 (5), 13.1351 (7)17.3748 (5), 14.3919 (4), 18.3124 (5)
α, β, γ (°)90, 101.904 (2), 9090, 90, 90
V3)1415.61 (13)4579.1 (2)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.961.01
Crystal size (mm)0.42 × 0.15 × 0.140.22 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.688, 0.8770.808, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
10824, 5385, 5182 34078, 4504, 3901
Rint0.0140.020
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.04 0.020, 0.056, 1.10
No. of reflections53854504
No. of parameters327265
No. of restraints1560
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.540.39, 0.24
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.02 (2)?

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Bruker, 2000), SHELXTL and local programs.

Selected geometric parameters (Å, º) for (I) top
Pd1—C12.023 (4)O1—P11.509 (2)
Pd1—P22.1880 (8)P1—N11.659 (3)
Pd1—O12.228 (2)N1—P21.692 (3)
Pd1—Cl12.3674 (9)
C1—Pd1—P289.77 (11)C1—Pd1—Cl189.77 (11)
C1—Pd1—O1176.31 (14)P2—Pd1—Cl1176.43 (3)
P2—Pd1—O186.93 (6)O1—Pd1—Cl193.63 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.892.757 (4)167
Selected geometric parameters (Å, º) for (II) top
Pd1—C12.027 (2)Pd1—Cl12.3663 (5)
Pd1—O12.2112 (13)O1—C41.439 (2)
Pd1—P12.2181 (5)C4—O21.388 (2)
C1—Pd1—O1177.48 (7)C1—Pd1—Cl190.63 (6)
C1—Pd1—P189.87 (6)O1—Pd1—Cl186.85 (4)
O1—Pd1—P192.65 (3)P1—Pd1—Cl1178.38 (2)
 

References

First citationBei, X., Uno, T., Norris, J., Turner, H. W., Weinberg, W. H., Guram, A. S. & Petersen, J. L. (1999). Organometallics, 18, 1840–1853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhattacharyya, P., Slawin, A. M. Z., Smith, M. B. & Woollins, J. D. (1996). Inorg. Chem. 35, 3675–3682.  CSD CrossRef CAS Web of Science Google Scholar
First citationBraunstein, P. (2006). Chem. Rev. 106, 134–159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGianneschi, N. C., Masar, M. S. III & Mirkin, C. A. (2005). Acc. Chem. Res. 38, 825–837.  CrossRef PubMed CAS Google Scholar
First citationGrushin, V. V. (2004). Chem. Rev. 104, 1629–1662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKabat, M. M., Garofalo, L. M., Daniewski, A. R., Hutchings, S. D., Liu, W., Okabe, M., Radinov, R. & Zhou, Y. (2001). J. Org. Chem. 66, 6141–6150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNash, K. L., Lavallette, C., Borkowski, M., Paine, R. T. & Gan, X. (2002). Inorg. Chem. 41, 5849–5858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.  Google Scholar
First citationSmith, M. B. & Slawin, A. M. Z. (2000). Inorg. Chim. Acta, 299, 172–179.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, J. S. L., Vittal, J. J. & Hor, T. S. A. (1999). Chem. Commun. pp. 1477–1478.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds