organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2,3-Di­meth­oxy­benzaldehyde isonicotinoyl­hydrazone chloro­form monosolvate, and the mono- and dihydrates of 3,4,5-tri­meth­oxy­benzaldehyde isonicotinoyl­hydrazone: hydrogen-bonded supra­molecular structures in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 27 November 2006; accepted 4 December 2006; online 23 December 2006)

In 2,3-dimethoxy­benzaldehyde isonicotinoyl­hydrazone chloro­form monosolvate, C15H15N3O3·CHCl3, the hydrazone mol­ecules are linked by a combination of N—H⋯N and C—H⋯N hydrogen bonds into chains from which the chloro­form mol­ecules are pendent. 3,4,5-Trimethoxy­benzaldehyde isonicotinoyl­hydrazone forms two stoichiometric hydrates. In the monohydrate, C16H17N3O4·H2O, the components are linked into sheets by a combination of O—H⋯O, O—H⋯N and N—H⋯N hydrogen bonds, and in the dihydrate, C16H17N3O4·2H2O, a combination of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds links the components into a three-dimensional framework structure.

Comment

We report here the mol­ecular and supra­molecular structures of three meth­oxy-substituted benzaldehyde isonicotinoyl­hydrazones, namely 2,3-dimethoxy­benzaldehyde isonicotinoyl­hydrazone which crystallizes as a chloro­form monosolvate, (I)[link], and the mono- and dihydrates of 3,4,5-trimethoxy­benzaldehyde isonicotinoyl­hydrazone, (II)[link] and (III)[link], respectively (Figs. 1[link]–3[link][link]). We have undertaken this work as part of a more general study of isonicotinoyl­hydrazones (Wardell, de Souza, Ferreira et al., 2005[Wardell, S. M. S. V., de Souza, M. V. N., Ferreira, M. de L., Vasconcelos, T. R. A., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o617-o620.]; Wardell, de Souza, Wardell et al., 2005[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o683-o689.]; Wardell et al., 2006[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3361-o3363.]; Low et al., 2006[Low, J. N., Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. C62, o444-o446.]). The structure of the dihydrate, (III)[link], has been reported previously (Bhagiratha et al., 2000[Bhagiratha, V. G., Chandrakantha, T. M., Puttaraja, M., Kokila, M. K. & Methaji, M. (2000). Mol. Mater. 12, 215-221.]), determined from diffraction data collected at ambient temperature, but the description of the supra­molecular aggregation differs markedly from that deduced here.

[Scheme 1]

In the organic components in each of compounds (I)[link]–(III)[link], the central spacer unit between atoms C14 and C21 (Figs. 1[link]–3[link][link]) is effectively planar, with an all-trans chain-extended conformation, as shown by the relevant torsion angles (Table 1[link]). The two independent rings are only slightly twisted out of the plane of the central spacer unit, although with no evident pattern in the torsion angles defining the ring orientations. Meth­oxy atom C231 in (I)[link], and the corresponding atoms C231 and C251 in the two hydrates (II)[link] and (III)[link], are all almost coplanar with the adjacent aryl rings, whereas the C/O/C planes containing atoms C221 in (I)[link] and C241 in (II)[link] and (III)[link] are almost orthogonal to the planes of the adjacent rings. In general, isolated meth­oxy groups bonded to aryl rings exhibit effective coplanarity with the aryl ring (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. Ser. B, 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]; Gallagher et al., 2001[Gallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410-1414.], 2004[Gallagher, J. F., Coleman, C. M. & O'Shea, D. F. (2004). Acta Cryst. C60, o149-o151.]). Thus, the meth­oxy groups in compounds (I)[link]–(III)[link], where the C/O/C planes are approximately normal to the planes of the adjacent aryl rings, are anomalous. If the two meth­oxy groups in compound (I)[link] were both approximately coplanar with the aryl ring, with atoms C221 and C231 maximally distant from one another to minimize close repulsive H⋯O contacts involving the H atoms of one substituent and the O atom of the other, there would be close repulsive contacts between the H atoms bonded to atoms C221 and C27, hence the orthogonal conformation of the meth­oxy group at C22. Rather similar considerations govern the conformations adopted by the 4-­meth­oxy groups in each of (II)[link] and (III)[link]. As usual, the two exocyclic C—C—O angles for the orthogonal meth­oxy groups are very similar, whereas these two angles consistently differ by 8–10° for the coplanar meth­oxy groups. The organic components of hydrates (II)[link] and (III)[link] show no significant differences, apart from minor differences in conformation (Table 1[link]).

The supra­molecular aggregation in compound (I)[link] is extremely simple, even though the structure contains three types of hydrogen bond (Table 2[link]). Atoms N17 and C27 in the hydrazone mol­ecule at (x, y, z) both act as hydrogen-bond donors to pyridyl atom N11 of the hydrazone mol­ecule at ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), so forming a C(7)C(9)[R21(6)] (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain of rings running parallel to the [010] direction and generated by the 21 screw axis along ([{1 \over 4}]y[{3 \over 4}]) (Fig. 4[link]). The chloro­form mol­ecules are pendent from the chain, to which they are weakly linked via a planar three-centre C—H⋯(O)2 hydrogen bond (Fig. 1[link] and Table 2[link]). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between the chains, so that the supra­molecular structure is strictly one-dimensional.

Within the selected asymmetric unit of compound (II)[link], the water mol­ecule is linked to the hydrazone component via a three-centre O—H⋯(N,O) hydrogen bond (Fig. 2[link] and Table 3[link]). Two further hydrogen bonds, one each of O—H⋯O and N—H⋯N types, link these bimolecular aggregates into sheets. Water atom O2 at (x, y, z) acts as hydrogen-bond donor to atom N27 and meth­oxy atom O24 at (−x, −[{1\over 2}] + y, [{1\over 2}] − z), so forming a C22(12) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y[{1 \over 4}]). In addition, amino atom N17 at (x, y, z) acts as hydrogen-bond donor to pyridyl atom N11 at (1 − x, [{1\over 2}] + y, [{3\over 2}] − z), so forming a second motif running parallel to the [010] direction, this time of C(7) type and generated by the 21 screw axis along ([{1 \over 2}]y[{3 \over 4}]). The combination of these two chain motifs generates a sheet of R12(5) and R66(35) rings parallel to (10[\overline{1}]) (Fig. 5[link]). Two inversion-related sheets pass through each unit cell, but there are no direction-specific inter­actions between adjacent sheets, so that the supra­molecular structure is strictly two-dimensional.

The asymmetric unit of the dihydrate compound, (III)[link], has been selected such that the components are joined by one O—H⋯O hydrogen bond and one N—H⋯O hydrogen bond (Fig. 3[link] and Table 4[link]). These three-component aggregates are linked by two-centre O—H⋯N and O—H⋯O hydrogen bonds and by a three-centre O—H⋯(O)2 hydrogen bond to form a three-dimensional framework, whose formation is readily analysed in terms of simple substructures of low dimensionality. In the first such substructure, water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atom H2A, to pyridyl atom N11 at (−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), so forming a C22(9) chain running parallel to the [101] direction and generated by the n-glide plane at y = [{3 \over 4}]. In the second substructure, water atom O3 at (x, y, z) acts as hydrogen-bond donor, via atom H3B, to meth­oxy atoms O24 and O25, both at ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z), thus forming a C22(12)C22(13)[R12(5)] chain of rings, again parallel to the [101] direction but now generated by the n-glide plane at y = [{1 \over 4}]. The combination of these two substructures then generates a sheet parallel to (10[\overline{1}]) (Fig. 6[link]).

Two sheets of this type, related to one another by inversion, pass through each unit cell, and adjacent sheets are linked by the final substructural motif. Water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atom H2B, to water atom O3 at (1 − x, 1 − y, 1 − z), so generating by inversion an R66(16) motif (Fig. 7[link]). Propagation of this motif by the space group links each (10[\overline{1}]) sheet to the two neighbouring sheets, so linking all of the mol­ecular components into a single three-dimensional framework of considerable complexity.

The structure deduced here for dihydrate (III)[link] differs markedly from that recently reported for this compound at ambient temperature, where the structure was described in terms of sheets parallel to (010) formed by O—H⋯O and O—H⋯N hydrogen bonds (Bhagiratha et al., 2000[Bhagiratha, V. G., Chandrakantha, T. M., Puttaraja, M., Kokila, M. K. & Methaji, M. (2000). Mol. Mater. 12, 215-221.]). Although the unit-cell dimensions, space group and atomic coordinates reported earlier show that there has been no phase change between ambient temperature and 120 K, we find no combination of any subset of the hydrogen bonds present which can generate a sheet parallel to (010). In any event, as noted above, the supra­molecular structure of (III)[link] is three-dimensional, not two-dimensional.

It is of inter­est at this point briefly to compare the structures of compounds (I)[link] and the isomeric solvent-free hydrazone (IV), which was crystallized from acetonitrile (Chen et al., 1997[Chen, W., Zhang, X., Shan, B. & You, X. (1997). Acta Cryst. C53, 775-777.]). In both meth­oxy groups of compound (IV), the methyl C atoms are essentially coplanar with the adjacent aryl ring. The supra­molecular structure of (IV) was described in terms of simple chains formed by a single N—H⋯O hydrogen bond (Chen et al., 1997[Chen, W., Zhang, X., Shan, B. & You, X. (1997). Acta Cryst. C53, 775-777.]). In fact, these chains, which are of C(4) type, are linked into sheets by a C—H⋯π(arene) hydrogen bond, although this inter­action was not mentioned in the original report. The parameters are H1⋯Cgi = 2.88 Å, C1⋯Cgi = 3.675 (3) Å and C1—H1⋯Cgi = 144°, where the original atom numbers have been used and Cg represents the centroid of the aryl ring [symmetry code: (i) 1 + x, y, z]. The resulting supra­molecular structure of (IV) then takes the form of sheets parallel to (010) (Fig. 8[link]).

[Figure 1]
Figure 1
The independent mol­ecular components of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The independent mol­ecular components of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
The independent mol­ecular components of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of rings along [010]. For the sake of clarity, the chloro­form mol­ecules and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) and (x, −1 + y, z), respectively.
[Figure 5]
Figure 5
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded sheet of R12(5) and R66(35) rings parallel to (10[\overline{1}]). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded sheet of R12(5) and R66(40) rings parallel to (10[\overline{1}]). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link], showing the formation of the centrosymmetric R66(16) motif linking the (10[\overline{1}]) sheets. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of compound (IV), showing the formation of a sheet parallel to (010) built from N—H⋯O and C—H⋯π(arene) hydrogen bonds. The original atomic coordinates (Chen et al., 1997[Chen, W., Zhang, X., Shan, B. & You, X. (1997). Acta Cryst. C53, 775-777.]) have been used. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

Equimolar quanti­ties (1 mmol) of the appropriate aryl­aldehyde [2,3-dimethoxy­benzaldehyde for the synthesis of (I)[link], and 3,4,5-tri­'methoxy­benzaldehyde for (II)[link] and (III)[link]] and isonicotinoyl­hydrazine were dissolved, respectively, in ethanol (10 ml) and water (10 ml). These solutions were mixed and each mixture was stirred at room temperature until reaction was complete, as shown by thin-layer chromatography. Each reaction mixture was concentrated under reduced pressure. The residues were washed successively with cold ethanol and diethyl ether, and then recrystallized from ethanol. Analysis for 2,3-dimethoxy­benzaldehyde isonicotinoylhydrazone: yield 90%, m.p. 413–414 K; 1H NMR (DMSO-d6): δ 12.08 (s, 1H, NH), 8.78 (d, 2H, J = 6.0 Hz, H12 and H16), 8.75 (s, 1H, H27), 7.85 (d, 2H, J = 6.0 Hz, H13 and H15), 7.48 (dd, 1H, J = 6.5 and 3.5 Hz, H24), 7.16–7.14 (m, 2H, H25 and H26), 3.83 (s, 3H, OCH3), 3.80 (s, 3H, OCH3); IR (KBr disc, ν, cm−1): 1671 (CO). Crystals grown from solution in ethanol were found to be unsuitable for single-crystal X-ray diffraction, as were crystals obtained by slow recrystallization from both methanol and acetonitrile. Crystals obtained by slow evaporation of a solution in chloro­form, viz. the chloro­form monosolvate (I)[link], were found to be suitable for single-crystal X-ray diffraction. Analysis for 3,4,5-trimethoxy­benzaldehyde isonicotinoylhydrazone: yield 88%; 1H NMR (DMSO-d6): δ 12.06 (s, 1H, NH), 8.79 (d, 2H, J = 5.5 Hz, H12 and H16), 8.40 (s, 1H, H27), 7.84 (d, 2H, J = 5.5 Hz, H13 and H15), 7.81 (s, 2H, H22 and H26), 3.84 (s, 6H, 2 × OCH3), 3.17 (s, 3H, OCH3). Recrystallization from ethanol gave the dihydrate, (III)[link]: m.p. 466–468 K; IR (KBr disc, ν, cm−1) 1664 (CO). Further recrystallization from chloro­form–propan-2-ol (1:1 v/v) produced the monohydrate, (II)[link]: IR (KBr disc, ν, cm−1) 1664 (CO).

Compound (I)[link]

Crystal data
  • C15H15N3O3·CHCl3

  • Mr = 404.67

  • Monoclinic, P 21 /n

  • a = 12.7400 (4) Å

  • b = 10.8595 (3) Å

  • c = 13.9187 (4) Å

  • β = 110.7280 (10)°

  • V = 1801.01 (9) Å3

  • Z = 4

  • Dx = 1.492 Mg m−3

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.18 × 0.13 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.984

  • 20128 measured reflections

  • 4128 independent reflections

  • 3388 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.090

  • S = 1.02

  • 4128 reflections

  • 228 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.02P)2 + 1.8708P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected torsion and bond angles (°) for compounds (I)[link]–(III)[link]

  (I)[link] (II)[link] (III)[link]
C13—C14—C17—N17 27.7 (2) 18.5 (2) 7.9 (3)
C14—C17—N17—N27 −176.86 (15) −177.52 (14) 178.43 (17)
C17—N17—N27—C27 175.15 (16) 176.37 (16) 174.09 (19)
N17—N27—C27—C21 −178.11 (16) −178.87 (14) 177.30 (19)
N27—C27—C21—C22 172.79 (17) 159.37 (17) −177.6 (2)
C21—C22—O22 120.19 (16)    
C23—C22—O22 118.71 (16)    
C21—C22—O22—C221 98.85 (19)    
C22—C23—O23 115.64 (16) 124.14 (16) 124.62 (19)
C24—C23—O23 125.14 (17) 115.97 (14) 116.02 (18)
C22—C23—O23—C231 179.89 (18) −12.3 (2) −2.9 (3)
C23—C24—O24   120.76 (15) 120.48 (18)
C25—C24—O24   118.85 (15) 118.96 (19)
C23—C24—O24—C241   87.82 (19) 81.1 (2)
C24—C25—O25   115.24 (14) 114.09 (18)
C26—C25—O25   124.59 (15) 125.19 (19)
C26—C25—O25—C251   8.2 (2) 3.1 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.88 2.17 3.015 (2) 162
C1—H1⋯O22 1.00 2.41 3.363 (2) 159
C1—H1⋯O23 1.00 2.59 3.371 (3) 134
C27—H27⋯N11i 0.95 2.60 3.411 (2) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Compound (II)[link]

Crystal data
  • C16H17N3O4·H2O

  • Mr = 333.34

  • Monoclinic, P 21 /c

  • a = 10.8081 (6) Å

  • b = 10.3597 (3) Å

  • c = 14.4270 (7) Å

  • β = 95.281 (2)°

  • V = 1608.52 (13) Å3

  • Z = 4

  • Dx = 1.376 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.995

  • 15972 measured reflections

  • 3686 independent reflections

  • 2480 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.03

  • 3686 reflections

  • 220 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2493P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.88 2.12 2.947 (2) 157
O2—H2A⋯O1 0.90 2.41 3.015 (2) 125
O2—H2A⋯N27 0.90 2.32 3.206 (2) 166
O2—H2B⋯O24ii 0.90 1.95 2.823 (2) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Compound (III)[link]

Crystal data
  • C16H17N3O4·2H2O

  • Mr = 351.36

  • Monoclinic, P 21 /n

  • a = 8.9930 (5) Å

  • b = 16.2713 (10) Å

  • c = 11.6311 (6) Å

  • β = 90.354 (3)°

  • V = 1701.92 (17) Å3

  • Z = 4

  • Dx = 1.371 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.48 × 0.10 × 0.01 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.999

  • 21442 measured reflections

  • 3890 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.090

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.121

  • S = 1.01

  • 3890 reflections

  • 229 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0413P)2 + 0.796P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O2 0.88 2.02 2.871 (2) 163
O2—H2A⋯N11i 0.87 1.99 2.843 (2) 166
O2—H2B⋯O3ii 0.87 1.88 2.745 (2) 174
O3—H3A⋯O1 0.87 2.01 2.864 (2) 166
O3—H3B⋯O24iii 0.87 2.24 2.874 (2) 130
O3—H3B⋯O25iii 0.87 2.33 3.157 (2) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}], [-y+{\script{1\over 2}}], [z+{\script{1\over 2}}].

For compounds (I)[link] and (III)[link], the space group P21/n was uniquely assigned from the systematic absences, and space group P21/c was similarly assigned for compound (II)[link]. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95(aromatic and –CH=N–), 0.98 (methyl) and 1.00 Å (aliphatic CH), N—H = 0.88 Å and O—H = 0.87–0.90 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for the methyl groups and the water mol­ecules or 1.2 for all other H atoms.

For all compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures of three methoxy-substituted benzaldehyde isonicotinoylhydrazones, namely 2,3-dimethoxybenzaldehyde isonicotinoylhydrazone which crystallizes as a chloroform monosolvate, (I), and the mono- and dihydrates of 3,4,5-trimethoxybenzaldehyde isonicotinoylhydrazone, (II) and (III), respectively (Figs. 1–3). We have undertaken this work as part of a more general study of isonicotinoylhydrazones (Wardell, de Souza, Ferreira et al., 2005; Wardell, de Souza, Wardell et al., 2005; Wardell et al., 2006; Low et al., 2006). The structure of the dihydrate, (III), has been reported previously (Bhagiratha et al., 2000), determined from diffraction data collected at ambient temperature, but the description of the supramolecular aggregation differs markedly from that deduced here.

In the organic components in each of compounds (I)–(III), the central spacer unit between atoms C14 and C21 (Figs. 1–3) is effectively planar, with an all-trans chain-extended conformation, as shown by the relevant torsion angles (Table 1). The two independent rings are only slightly twisted out of the plane of the central spacer unit, although with no evident pattern in the torsion angles defining the ring orientations. Methoxy atom C231 in (I), and the corresponding atoms C231 and C251 in the two hydrates (II) and (III), are all almost coplanar with the adjacent aryl rings, whereas the C/O/C planes containing atoms C221 in (I) and C241 in (II) and (III) are almost orthogonal to the planes of the adjacent rings. In general, isolated methoxy groups bonded to aryl rings exhibit effective coplanarity with the aryl ring (Seip & Seip, 1973; Ferguson et al., 1996; Gallagher et al., 2001, 2004). Thus, the methoxy groups in compounds (I)–(III), where the C/O/C planes are approximately normal to the planes of the adjacent aryl rings, are anomalous. If the two methoxy groups in compound (I) were both approximately coplanar with the aryl ring, with atoms C221 and C231 maximally distant from one another to minimize close repulsive H···O contacts involving the H atoms of one substituent and the O atom of the other, there would be close repulsive contacts between the H atoms bonded to atoms C221 and C27, hence the orthogonal conformation of the methoxy group at C22. Rather similar considerations govern the conformations adopted by the 4-methoxy groups in each of (II) and (III). As usual, the two exocyclic C—C—O angles for the orthogonal methoxy groups are very similar, whereas these two angles consistently differ by 8–10° for the coplanar methoxy groups. The organic components of the hydrates (II) and (III) show no significant differences, apart from minor differences in conformation (Table 1).

The supramolecular aggregation in compound (I) is extremely simple, even though the structure contains three types of hydrogen bond (Table 2). Atoms N17 and C27 in the hydrazone molecule at (x, y, z) both act as hydrogen-bond donors to pyridyl atom N11 of the hydrazone molecule at (1/2 − x, −1/2 + y, 3/2 − z), so forming a C(7)C(9)[R12(6)] (Bernstein et al., 1995) chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (1/4, y, 3/4) (Fig. 4). The chloroform molecules are pendent from the chain, to which they are weakly linked via a planar three-centre C—H···(O)2 hydrogen bond (Fig. 1, Table 2). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between the chains, so that the supramolecular structure is strictly one-dimensional.

Within the selected asymmetric unit of compound (II), the water molecule is linked to the hydrazone component via a three-centre O—H···(N,O) hydrogen bond (Fig. 2, Table 3). Two further hydrogen bonds, one each of O—H···O and N—H···N types, link these bimolecular aggregates into sheets. Water atom O2 at (x, y, z) acts as hydrogen-bond donor to atom N27 and methoxy atom O24 at (−x, −1/2 + y, 1/2 − z), so forming a C22(12) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y, 1/4). In addition, amino atom N17 at (x, y, z) acts as hydrogen-bond donor to pyridyl atom N11 at (1 − x, 1/2 + y, 3/2 − z), so forming a second motif running parallel to the [010] direction, this time of C(7) type and generated by the 21 screw axis along (1/2, y, 3/4). The combination of these two chain motifs generates a sheet of R21(5) and R66(35) rings parallel to (101) (Fig. 5). Two inversion-related sheets pass through each unit cell, but there are no direction-specific interactions between adjacent sheets, so that the supramolecular structure is strictly two-dimensional.

The asymmetric unit of the dihydrate compound, (III), has been selected such that the components are joined by one O—H···O hydrogen bond and one N—H···O hydrogen bond (Fig. 3, Table 4). These three-component aggregates are linked by two-centre O—H···N and O—H···O hydrogen bonds and by a three-centre O—H···(O)2 hydrogen bond to form a three-dimensional framework, whose formation is readily analysed in terms of simple sub-structures of low dimensionality. In the first such sub-structure, water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atom H2A, to pyridyl atom N11 at (−1/2 + x, 1/2 − y, −1/2 + z), so forming a C22(9) chain running parallel to the [101] direction and generated by the n-glide plane at y = 3/4. In the second sub-structure, water atom O3 at (x, y, z) acts as hydrogen-bond donor, via atom H3B, to methoxy atoms O24 and O25, both at (1/2 + x, 1/2 − y, 1/2 + z), thus forming a C22(12)C22(13)[R21(5)] chain of rings, again parallel to the [101] direction but now generated by the n-glide plane at y = 1/4. The combination of these two sub-structures then generates a sheet parallel to (101) (Fig. 6).

Two sheets of this type, related to one another by inversion, pass through each unit cell, and adjacent sheets are linked by the final sub-structural motif. Water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atom H2B, to water atom O3 at (1 − x, 1 − y, 1 − z), so generating by inversion an R66(16) motif (Fig. 7). Propagation of this motif by the space group links each (101) sheet to the two neighbouring sheets, so linking all of the molecular components into a single three-dimensional framework of considerable complexity.

The structure deduced here for dihydrate (III) differs markedly from that recently reported for this compound at ambient temperature, where the structure was described in terms of sheets parallel to (010) formed by O—H···O and O—H···N hydrogen bonds (Bhagiratha et al., 2000). Although the unit-cell dimensions, space group and atom coordinates reported earlier show that there has been no phase change between ambient temperature and 120 K, we find no combination of any sub-set of the hydrogen bonds present which can generate a sheet parallel to (010). In any event, as noted above, the supramolecular structure of (III) is three-dimensional, not two-dimensional.

It is of interest at this point briefly to compare the structures of compounds (I) and the isomeric solvent-free hydrazone (IV), which was crystallized from acetonitrile (Chen et al., 1997). In both methoxy groups of compound (IV), the methyl C atoms are essentially coplanar with the adjacent aryl ring. The supramolecular structure of (IV) was described in terms of simple chains formed by a single N—H···O hydrogen bond (Chen et al., 1997). In fact, these chains, which are of C(4) type, are linked into sheets by a C—H···π(arene) hydrogen bond, although this interaction was not mentioned in the original report. The parameters are H1···Cgi = 2.88 Å, C1···Cgi = 3.675 (3) Å and C1—H1···Cgi = 144°, where the original atom numbers have been used and Cg represents the centroid of the aryl ring [symmetry code: (i) 1 + x, y, z]. The resulting supramolecular structure of (IV) then takes the form of sheets parallel to (010) (Fig. 8).

Experimental top

Equimolar quantities of the appropriate arylaldehyde [2,3-dimethoxybenzaldehyde for the synthesis of (I), and 3,4,5-trimethoxybenzaldehyde for (II) and (III)] and isonicotinoylhydrazine were dissolved, respectively, in ethanol and water (Volumes?). These solutions were mixed and each mixture was stirred at room temperature until reaction was complete as shown by thin-layer chromatography. Each reaction mixture was concentrated under reduced pressure. The residues were washed successively with cold ethanol and diethyl ether, and then recrystallized from ethanol. Analysis for 2,3-dimethoxybenzaldehyde isonicotinoylhydrazone: yield 90%, m.p. 413–414 K; 1H NMR (DMSO-d6, δ, p.p.m.): 12.08 (s, 1H, NH), 8.78 (d, 2H, J = 6.0 Hz, H12 and H16), 8.75 (s, 1H, H27), 7.85 (d, 2H, J = 6.0 Hz, H13 and H15), 7.48 (dd, 1H, J = 6.5 and 3.5 Hz, H24), 7.16–7.14 (m, 2H, H25 and H26), 3.83 (s, 3H, OCH3), 3.80 (s, 3H, OCH3); IR (KBr disc, ν, cm−1): 1671 (CO). Crystals grown from solution in ethanol were found to be unsuitable for single-crystal X-ray diffraction, as were crystals obtained by slow recrystallization from both methanol and acetonitrile. Crystals obtained by slow evaporation of a solution in chloroform, the chloroform monosolvate (I), were found to be suitable for single-crystal X-ray diffraction. Analysis for 3,4,5-trimethoxybenzaldehyde isonicotinoylhydrazone: yield 88%; 1 NMR (DMSO-d6, δ, p.p.m.): 12.06 (s, 1H, NH), 8.79 (d, 2H, J = 5.5 Hz, H12 and H16), 8.40 (s, 1H, H27), 7.84 (d, 2H, J = 5.5 Hz, H13 and H15), 7.81 (s, 2H, H22 and H26), 3.84 (s, 6H, 2 × OCH3), 3.17 (s, 3H, OCH3). Recrystallization from ethanol gave the dihydrate, (III): m.p. 466–468 K; IR (KBr disc, ν, cm−1) 1664 (CO). Further recrystallization from chloroform–propan-2-ol (1:1 v/v) produced the monohydrate, (II): IR (KBr disc, ν, cm−1) 1664 (CO).

Refinement top

For compounds (I) and (III), the space group P21/n was uniquely assigned from the systematic absences, and space group P21/c was similarly assigned for compound (II). All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å (aromatic and –CHN–), 0.98 Å (methyl) and 1.00 Å (aliphatic CH), N—H = 0.88 Å and O—H = 0.87–0.90 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for the methyl groups and the water molecules or 1.2 for all other H atoms.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The independent molecular components of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The independent molecular components of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings along [010]. For the sake of clarity, the chloroform molecules and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1/2 − x, −1/2 + y, 3/2 − z), (1/2 − x, 1/2 + y, 3/2 − z) and (x, −1 + y, z), respectively.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet of R21(5) and R66(35) rings parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded sheet of R21(5) and R66(40) rings parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of compound (III), showing the formation of the centrosymmetric R66(16) motif linking the (101) sheets. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (IV), showing the formation of a sheet parallel to (010) built from N—H···O and C—H···π(arene) hydrogen bonds. The original atom coordinates (Chen et al., 1997) have been used. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2,3-Dimethoxybenzaldehyde isonicotinoylhydrazone chloroform monosolvate top
Crystal data top
C15H15N3O3·CHCl3F(000) = 832
Mr = 404.67Dx = 1.492 Mg m3
Monoclinic, P21/nMelting point: 413 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.7400 (4) ÅCell parameters from 4128 reflections
b = 10.8595 (3) Åθ = 3.1–27.5°
c = 13.9187 (4) ŵ = 0.53 mm1
β = 110.728 (1)°T = 120 K
V = 1801.01 (9) Å3Plate, colourless
Z = 40.18 × 0.13 × 0.03 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4128 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1412
Tmin = 0.932, Tmax = 0.984l = 1518
20128 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.02P)2 + 1.8708P]
where P = (Fo2 + 2Fc2)/3
4128 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C15H15N3O3·CHCl3V = 1801.01 (9) Å3
Mr = 404.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7400 (4) ŵ = 0.53 mm1
b = 10.8595 (3) ÅT = 120 K
c = 13.9187 (4) Å0.18 × 0.13 × 0.03 mm
β = 110.728 (1)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4128 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3388 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.984Rint = 0.047
20128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
4128 reflectionsΔρmin = 0.60 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.22757 (13)0.98240 (14)0.77907 (12)0.0185 (3)
C120.28780 (15)0.88659 (17)0.76639 (14)0.0181 (4)
C130.24866 (15)0.80306 (16)0.68662 (14)0.0168 (4)
C140.14125 (15)0.81829 (16)0.61437 (13)0.0144 (4)
C150.07851 (15)0.91794 (16)0.62648 (14)0.0164 (4)
C160.12398 (15)0.99619 (17)0.70910 (14)0.0177 (4)
C170.09228 (15)0.73817 (17)0.52085 (13)0.0155 (4)
O10.02107 (11)0.77780 (12)0.44265 (10)0.0225 (3)
N170.13378 (13)0.62205 (14)0.53120 (11)0.0166 (3)
N270.09778 (13)0.54331 (14)0.44744 (11)0.0171 (3)
C270.14763 (15)0.43921 (16)0.46255 (14)0.0165 (4)
C210.12237 (15)0.34655 (16)0.38124 (13)0.0148 (4)
C220.18842 (14)0.24095 (17)0.39888 (13)0.0149 (4)
O220.27244 (10)0.22225 (11)0.49363 (9)0.0164 (3)
C2210.23499 (16)0.14032 (18)0.55703 (14)0.0210 (4)
C230.17311 (15)0.15285 (16)0.32166 (14)0.0164 (4)
O230.24417 (11)0.05456 (12)0.34760 (10)0.0216 (3)
C2310.22892 (19)0.0361 (2)0.26949 (18)0.0357 (6)
C240.08938 (16)0.17058 (17)0.22664 (14)0.0191 (4)
C250.02193 (16)0.27503 (18)0.20963 (14)0.0202 (4)
C260.03706 (15)0.36202 (17)0.28503 (14)0.0183 (4)
C10.48909 (17)0.20831 (19)0.40932 (15)0.0247 (4)
Cl10.45379 (4)0.19099 (5)0.27618 (4)0.02812 (13)
Cl20.59683 (5)0.10637 (5)0.47660 (4)0.03738 (15)
Cl30.53302 (6)0.36172 (5)0.44572 (4)0.04491 (18)
H120.36150.87550.81490.022*
H130.29440.73630.68120.020*
H150.00510.93210.57840.020*
H160.07971.06320.71680.021*
H170.18280.59700.59010.020*
H270.20230.42160.52800.020*
H22A0.16810.17490.56620.032*
H22B0.29470.13090.62420.032*
H22C0.21680.05970.52360.032*
H23A0.15220.06840.24780.054*
H23B0.28240.10350.29660.054*
H23C0.24160.00130.21050.054*
H240.07820.11170.17340.023*
H250.03570.28640.14460.024*
H260.01010.43250.27210.022*
H10.42140.19040.42750.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0217 (8)0.0159 (8)0.0160 (8)0.0014 (6)0.0043 (6)0.0007 (6)
C120.0181 (9)0.0173 (9)0.0155 (9)0.0006 (7)0.0018 (7)0.0017 (7)
C130.0172 (9)0.0135 (8)0.0185 (9)0.0016 (7)0.0048 (7)0.0021 (7)
C140.0174 (8)0.0127 (8)0.0137 (8)0.0018 (7)0.0065 (7)0.0021 (7)
C150.0147 (8)0.0172 (9)0.0159 (9)0.0002 (7)0.0038 (7)0.0006 (7)
C160.0207 (9)0.0147 (9)0.0188 (9)0.0009 (7)0.0082 (7)0.0010 (7)
C170.0150 (8)0.0156 (9)0.0165 (9)0.0006 (7)0.0062 (7)0.0002 (7)
O10.0236 (7)0.0224 (7)0.0157 (7)0.0071 (6)0.0003 (6)0.0016 (5)
N170.0192 (8)0.0144 (7)0.0127 (7)0.0009 (6)0.0012 (6)0.0013 (6)
N270.0190 (8)0.0158 (8)0.0152 (7)0.0019 (6)0.0044 (6)0.0036 (6)
C270.0182 (9)0.0157 (9)0.0136 (8)0.0006 (7)0.0033 (7)0.0000 (7)
C210.0167 (8)0.0146 (9)0.0137 (8)0.0023 (7)0.0062 (7)0.0002 (7)
C220.0127 (8)0.0181 (9)0.0139 (8)0.0023 (7)0.0045 (7)0.0009 (7)
O220.0148 (6)0.0184 (6)0.0140 (6)0.0003 (5)0.0027 (5)0.0023 (5)
C2210.0180 (9)0.0237 (10)0.0203 (9)0.0010 (8)0.0057 (8)0.0076 (8)
C230.0151 (8)0.0139 (9)0.0214 (9)0.0006 (7)0.0077 (7)0.0005 (7)
O230.0207 (7)0.0171 (7)0.0242 (7)0.0049 (5)0.0047 (6)0.0053 (5)
C2310.0311 (12)0.0271 (12)0.0398 (13)0.0092 (10)0.0012 (10)0.0168 (10)
C240.0226 (9)0.0188 (9)0.0166 (9)0.0014 (8)0.0078 (7)0.0040 (7)
C250.0194 (9)0.0229 (10)0.0151 (9)0.0004 (8)0.0023 (7)0.0004 (7)
C260.0190 (9)0.0157 (9)0.0185 (9)0.0018 (7)0.0047 (7)0.0006 (7)
C10.0244 (10)0.0249 (10)0.0254 (10)0.0044 (8)0.0095 (8)0.0016 (8)
Cl10.0273 (3)0.0304 (3)0.0249 (3)0.0020 (2)0.0071 (2)0.0064 (2)
Cl20.0376 (3)0.0400 (3)0.0385 (3)0.0186 (3)0.0184 (3)0.0179 (2)
Cl30.0703 (4)0.0274 (3)0.0243 (3)0.0043 (3)0.0010 (3)0.0048 (2)
Geometric parameters (Å, º) top
N11—C121.341 (2)C22—C231.400 (3)
N11—C161.343 (2)O22—C2211.448 (2)
C12—C131.383 (3)C221—H22A0.98
C12—H120.95C221—H22B0.98
C13—C141.392 (2)C221—H22C0.98
C13—H130.95C23—O231.363 (2)
C14—C151.390 (3)C23—C241.388 (3)
C14—C171.505 (2)O23—C2311.428 (2)
C15—C161.382 (3)C231—H23A0.98
C15—H150.95C231—H23B0.98
C16—H160.95C231—H23C0.98
C17—O11.222 (2)C24—C251.392 (3)
C17—N171.355 (2)C24—H240.95
N17—N271.386 (2)C25—C261.374 (3)
N17—H170.88C25—H250.95
N27—C271.277 (2)C26—H260.95
C27—C211.463 (2)C1—Cl21.754 (2)
C27—H270.95C1—Cl11.755 (2)
C21—C221.392 (3)C1—Cl31.773 (2)
C21—C261.404 (2)C1—H11.00
C22—O221.388 (2)
C12—N11—C16116.89 (16)C22—O22—C221111.05 (13)
N11—C12—C13123.65 (17)O22—C221—H22A109.5
N11—C12—H12118.2O22—C221—H22B109.5
C13—C12—H12118.2H22A—C221—H22B109.5
C12—C13—C14119.02 (17)O22—C221—H22C109.5
C12—C13—H13120.5H22A—C221—H22C109.5
C14—C13—H13120.5H22B—C221—H22C109.5
C15—C14—C13117.73 (16)O23—C23—C24125.14 (17)
C15—C14—C17118.33 (15)O23—C23—C22115.64 (16)
C13—C14—C17123.83 (16)C24—C23—C22119.21 (16)
C16—C15—C14119.34 (16)C23—O23—C231116.08 (15)
C16—C15—H15120.3O23—C231—H23A109.5
C14—C15—H15120.3O23—C231—H23B109.5
N11—C16—C15123.37 (17)H23A—C231—H23B109.5
N11—C16—H16118.3O23—C231—H23C109.5
C15—C16—H16118.3H23A—C231—H23C109.5
O1—C17—N17124.12 (16)H23B—C231—H23C109.5
O1—C17—C14121.09 (16)C23—C24—C25119.69 (17)
N17—C17—C14114.79 (15)C23—C24—H24120.2
C17—N17—N27118.95 (14)C25—C24—H24120.2
C17—N17—H17120.5C26—C25—C24121.27 (17)
N27—N17—H17120.5C26—C25—H25119.4
C27—N27—N17114.22 (15)C24—C25—H25119.4
N27—C27—C21121.41 (16)C25—C26—C21119.87 (17)
N27—C27—H27119.3C25—C26—H26120.1
C21—C27—H27119.3C21—C26—H26120.1
C22—C21—C26118.83 (16)Cl2—C1—Cl1110.83 (11)
C22—C21—C27118.47 (15)Cl2—C1—Cl3109.41 (11)
C26—C21—C27122.65 (16)Cl1—C1—Cl3109.83 (11)
O22—C22—C21120.19 (16)Cl2—C1—H1108.9
O22—C22—C23118.71 (16)Cl1—C1—H1108.9
C21—C22—C23121.09 (16)Cl3—C1—H1108.9
C16—N11—C12—C130.3 (3)C26—C21—C22—O22179.16 (16)
N11—C12—C13—C140.4 (3)C27—C21—C22—O223.2 (3)
C12—C13—C14—C150.1 (3)C26—C21—C22—C231.9 (3)
C12—C13—C14—C17176.08 (17)C27—C21—C22—C23175.74 (16)
C13—C14—C15—C160.7 (3)C21—C22—O22—C22198.85 (19)
C17—C14—C15—C16176.90 (16)C23—C22—O22—C22182.2 (2)
C12—N11—C16—C150.3 (3)O22—C22—C23—O230.0 (2)
C14—C15—C16—N110.8 (3)C21—C22—C23—O23178.88 (16)
C15—C14—C17—O124.0 (3)O22—C22—C23—C24180.00 (16)
C13—C14—C17—O1151.96 (18)C21—C22—C23—C241.1 (3)
C15—C14—C17—N17156.28 (16)C24—C23—O23—C2310.3 (3)
C13—C14—C17—N1727.7 (2)C22—C23—O23—C231179.73 (18)
O1—C17—N17—N272.8 (3)O23—C23—C24—C25179.89 (18)
C14—C17—N17—N27176.86 (15)C22—C23—C24—C250.2 (3)
C17—N17—N27—C27175.15 (16)C23—C24—C25—C260.5 (3)
N17—N27—C27—C21178.11 (16)C24—C25—C26—C210.4 (3)
N27—C27—C21—C22172.79 (17)C22—C21—C26—C251.6 (3)
N27—C27—C21—C264.8 (3)C27—C21—C26—C25176.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.173.015 (2)162
C1—H1···O221.002.413.363 (2)159
C1—H1···O231.002.593.371 (3)134
C27—H27···N11i0.952.603.411 (2)144
Symmetry code: (i) x+1/2, y1/2, z+3/2.
(II) 3,4,5-trimethoxybenzaldehyde isonicotinoylhydrazone monohydrate top
Crystal data top
C16H17N3O4·H2OF(000) = 704
Mr = 333.34Dx = 1.376 Mg m3
Monoclinic, P21/cMelting point: 467 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8081 (6) ÅCell parameters from 3686 reflections
b = 10.3597 (3) Åθ = 2.4–27.6°
c = 14.4270 (7) ŵ = 0.10 mm1
β = 95.281 (2)°T = 120 K
V = 1608.52 (13) Å3Plate, colourless
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3686 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.4°
ϕ and ω scansh = 1114
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.967, Tmax = 0.995l = 1818
15972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2493P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H17N3O4·H2OV = 1608.52 (13) Å3
Mr = 333.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8081 (6) ŵ = 0.10 mm1
b = 10.3597 (3) ÅT = 120 K
c = 14.4270 (7) Å0.20 × 0.20 × 0.05 mm
β = 95.281 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2480 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.995Rint = 0.048
15972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3686 reflectionsΔρmin = 0.29 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.58743 (14)0.02109 (12)0.76354 (9)0.0215 (3)
C120.50542 (18)0.11347 (15)0.77901 (11)0.0233 (4)
C130.45279 (17)0.19599 (15)0.71086 (11)0.0214 (4)
C140.48758 (16)0.18307 (14)0.62074 (11)0.0183 (4)
C150.57154 (16)0.08648 (15)0.60377 (12)0.0209 (4)
C160.61908 (17)0.00829 (16)0.67642 (11)0.0215 (4)
C170.43634 (17)0.26361 (15)0.53950 (11)0.0203 (4)
O10.44437 (14)0.22647 (11)0.45970 (8)0.0320 (3)
N170.38043 (14)0.37580 (12)0.56025 (9)0.0201 (3)
N270.32816 (14)0.44914 (13)0.48629 (9)0.0207 (3)
C210.20923 (16)0.63447 (14)0.43460 (11)0.0194 (4)
C270.27012 (17)0.55110 (15)0.50791 (11)0.0213 (4)
C220.11573 (17)0.71712 (15)0.45893 (12)0.0221 (4)
C230.05273 (16)0.79419 (14)0.39082 (12)0.0216 (4)
O230.04416 (12)0.87398 (11)0.40643 (9)0.0287 (3)
C2310.0971 (2)0.85704 (19)0.49307 (14)0.0354 (5)
C240.08617 (16)0.79116 (14)0.30013 (11)0.0213 (4)
C2410.06472 (19)0.99143 (16)0.22163 (13)0.0286 (4)
O240.02084 (12)0.86211 (11)0.23053 (8)0.0261 (3)
C250.18028 (17)0.70794 (14)0.27631 (11)0.0201 (4)
O250.20376 (12)0.71095 (11)0.18479 (8)0.0254 (3)
C2510.28537 (19)0.61441 (18)0.15469 (12)0.0303 (4)
C260.24135 (16)0.62851 (15)0.34344 (11)0.0203 (4)
O20.21573 (13)0.25793 (13)0.32528 (10)0.0387 (4)
H120.48180.12310.84050.028*
H130.39440.25980.72520.026*
H150.59620.07410.54290.025*
H160.67670.05730.66390.026*
H170.37740.40100.61820.024*
H270.26630.57300.57150.026*
H220.09510.72090.52150.027*
H23A0.12110.76650.49970.053*
H23B0.17060.91220.49430.053*
H23C0.03570.88080.54450.053*
H24A0.05501.03910.27920.043*
H24B0.01651.03400.16950.043*
H24C0.15270.98980.21010.043*
H25A0.36790.62490.18800.045*
H25B0.29140.62330.08760.045*
H25C0.25280.52870.16780.045*
H260.30430.57080.32730.024*
H2A0.25840.30180.37170.058*
H2B0.14920.30770.30830.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0272 (9)0.0181 (7)0.0182 (7)0.0008 (6)0.0033 (6)0.0001 (5)
C120.0353 (11)0.0197 (8)0.0149 (8)0.0013 (7)0.0029 (7)0.0008 (6)
C130.0290 (10)0.0160 (8)0.0193 (9)0.0011 (7)0.0031 (7)0.0013 (6)
C140.0218 (10)0.0149 (8)0.0175 (8)0.0029 (6)0.0017 (7)0.0006 (6)
C150.0239 (10)0.0214 (8)0.0177 (8)0.0007 (7)0.0029 (7)0.0000 (6)
C160.0227 (10)0.0210 (8)0.0205 (9)0.0019 (7)0.0007 (7)0.0005 (6)
C170.0253 (10)0.0187 (8)0.0168 (9)0.0009 (7)0.0011 (7)0.0015 (6)
O10.0546 (10)0.0255 (7)0.0155 (7)0.0119 (6)0.0016 (6)0.0005 (5)
N170.0301 (9)0.0165 (7)0.0129 (7)0.0031 (6)0.0033 (6)0.0010 (5)
N270.0286 (9)0.0181 (7)0.0143 (7)0.0011 (6)0.0037 (6)0.0026 (5)
C210.0252 (10)0.0140 (7)0.0178 (8)0.0023 (6)0.0042 (7)0.0007 (6)
C270.0285 (10)0.0175 (8)0.0168 (8)0.0012 (7)0.0038 (7)0.0000 (6)
C220.0296 (10)0.0176 (8)0.0185 (9)0.0021 (7)0.0008 (7)0.0022 (6)
C230.0222 (10)0.0164 (8)0.0256 (9)0.0014 (7)0.0018 (7)0.0027 (7)
O230.0310 (8)0.0268 (6)0.0282 (7)0.0098 (5)0.0027 (6)0.0010 (5)
C2310.0356 (12)0.0351 (11)0.0365 (11)0.0109 (9)0.0082 (9)0.0008 (9)
C240.0232 (10)0.0155 (8)0.0234 (9)0.0015 (6)0.0074 (7)0.0027 (6)
C2410.0332 (12)0.0197 (9)0.0321 (11)0.0016 (7)0.0015 (8)0.0070 (7)
O240.0282 (7)0.0203 (6)0.0277 (7)0.0005 (5)0.0085 (5)0.0061 (5)
C250.0246 (10)0.0172 (8)0.0177 (8)0.0035 (7)0.0023 (7)0.0015 (6)
O250.0317 (8)0.0273 (7)0.0169 (6)0.0056 (5)0.0006 (5)0.0048 (5)
C2510.0356 (12)0.0344 (10)0.0212 (9)0.0078 (8)0.0035 (8)0.0016 (7)
C260.0218 (10)0.0173 (8)0.0210 (9)0.0004 (6)0.0017 (7)0.0010 (6)
O20.0321 (9)0.0403 (8)0.0422 (9)0.0080 (6)0.0049 (6)0.0060 (6)
Geometric parameters (Å, º) top
N11—C121.337 (2)C23—O231.369 (2)
N11—C161.339 (2)C23—C241.389 (2)
C12—C131.385 (2)O23—C2311.432 (2)
C12—H120.95C231—H23A0.98
C13—C141.393 (2)C231—H23B0.98
C13—H130.95C231—H23C0.98
C14—C151.388 (2)C24—O241.3844 (19)
C14—C171.502 (2)C24—C251.400 (2)
C15—C161.385 (2)C241—O241.431 (2)
C15—H150.95C241—H24A0.98
C16—H160.95C241—H24B0.98
C17—O11.2245 (19)C241—H24C0.98
C17—N171.356 (2)C25—O251.368 (2)
N17—N271.3870 (18)C25—C261.390 (2)
N17—H170.88O25—C2511.427 (2)
N27—C271.282 (2)C251—H25A0.98
C21—C261.392 (2)C251—H25B0.98
C21—C221.394 (2)C251—H25C0.98
C21—C271.473 (2)C26—H260.95
C27—H270.95O2—H2A0.90
C22—C231.394 (2)O2—H2B0.90
C22—H220.95
C12—N11—C16117.26 (14)O23—C23—C22124.14 (16)
N11—C12—C13123.95 (15)C24—C23—C22119.89 (16)
N11—C12—H12118.0C23—O23—C231116.27 (13)
C13—C12—H12118.0O23—C231—H23A109.5
C12—C13—C14118.35 (15)O23—C231—H23B109.5
C12—C13—H13120.8H23A—C231—H23B109.5
C14—C13—H13120.8O23—C231—H23C109.5
C15—C14—C13118.11 (14)H23A—C231—H23C109.5
C15—C14—C17117.58 (14)H23B—C231—H23C109.5
C13—C14—C17124.27 (15)O24—C24—C23120.76 (15)
C16—C15—C14119.42 (15)O24—C24—C25118.85 (15)
C16—C15—H15120.3C23—C24—C25120.19 (15)
C14—C15—H15120.3O24—C241—H24A109.5
N11—C16—C15122.90 (16)O24—C241—H24B109.5
N11—C16—H16118.6H24A—C241—H24B109.5
C15—C16—H16118.6O24—C241—H24C109.5
O1—C17—N17123.26 (15)H24A—C241—H24C109.5
O1—C17—C14120.40 (14)H24B—C241—H24C109.5
N17—C17—C14116.33 (14)C24—O24—C241114.27 (13)
C17—N17—N27117.25 (13)O25—C25—C26124.59 (15)
C17—N17—H17121.4O25—C25—C24115.24 (14)
N27—N17—H17121.4C26—C25—C24120.17 (15)
C27—N27—N17115.98 (13)C25—O25—C251116.90 (12)
C26—C21—C22120.98 (15)O25—C251—H25A109.5
C26—C21—C27121.23 (15)O25—C251—H25B109.5
C22—C21—C27117.76 (15)H25A—C251—H25B109.5
N27—C27—C21120.33 (15)O25—C251—H25C109.5
N27—C27—H27119.8H25A—C251—H25C109.5
C21—C27—H27119.8H25B—C251—H25C109.5
C21—C22—C23119.52 (15)C25—C26—C21119.22 (16)
C21—C22—H22120.2C25—C26—H26120.4
C23—C22—H22120.2C21—C26—H26120.4
O23—C23—C24115.97 (14)H2A—O2—H2B104.8
C16—N11—C12—C130.4 (2)C21—C22—C23—O23176.85 (15)
N11—C12—C13—C140.4 (3)C21—C22—C23—C242.1 (2)
C12—C13—C14—C151.2 (2)C24—C23—O23—C231166.68 (15)
C12—C13—C14—C17178.64 (15)C22—C23—O23—C23112.3 (2)
C13—C14—C15—C161.0 (2)O23—C23—C24—O242.2 (2)
C17—C14—C15—C16178.70 (15)C22—C23—C24—O24176.80 (14)
C12—N11—C16—C150.5 (2)O23—C23—C24—C25176.98 (15)
C14—C15—C16—N110.2 (3)C22—C23—C24—C252.0 (2)
C15—C14—C17—O117.1 (2)C23—C24—O24—C24187.82 (19)
C13—C14—C17—O1160.42 (17)C25—C24—O24—C24197.33 (18)
C15—C14—C17—N17163.98 (15)O24—C24—C25—O253.8 (2)
C13—C14—C17—N1718.5 (2)C23—C24—C25—O25178.68 (14)
O1—C17—N17—N271.4 (3)O24—C24—C25—C26175.31 (14)
C14—C17—N17—N27177.52 (14)C23—C24—C25—C260.4 (2)
C17—N17—N27—C27176.37 (16)C26—C25—O25—C2518.2 (2)
N17—N27—C27—C21178.87 (14)C24—C25—O25—C251170.87 (15)
C26—C21—C27—N2718.8 (2)O25—C25—C26—C21179.88 (15)
C22—C21—C27—N27159.37 (17)C24—C25—C26—C211.1 (2)
C26—C21—C22—C230.5 (2)C22—C21—C26—C251.0 (2)
C27—C21—C22—C23177.69 (15)C27—C21—C26—C25179.21 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.122.947 (2)157
O2—H2A···O10.902.413.015 (2)125
O2—H2A···N270.902.323.206 (2)166
O2—H2B···O24ii0.901.952.823 (2)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+1/2.
(III) 3,4,5-trimethoxybenzaldehyde isonicotinoylhydrazone dihydrate top
Crystal data top
C16H17N3O4·2H2OF(000) = 744
Mr = 351.36Dx = 1.371 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3890 reflections
a = 8.9930 (5) Åθ = 2.6–27.6°
b = 16.2713 (10) ŵ = 0.11 mm1
c = 11.6311 (6) ÅT = 120 K
β = 90.354 (3)°Lath, colourless
V = 1701.92 (17) Å30.48 × 0.10 × 0.01 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3890 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.6°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2120
Tmin = 0.966, Tmax = 0.999l = 1515
21442 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.796P]
where P = (Fo2 + 2Fc2)/3
3890 reflections(Δ/σ)max = 0.002
229 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H17N3O4·2H2OV = 1701.92 (17) Å3
Mr = 351.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9930 (5) ŵ = 0.11 mm1
b = 16.2713 (10) ÅT = 120 K
c = 11.6311 (6) Å0.48 × 0.10 × 0.01 mm
β = 90.354 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2409 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.999Rint = 0.090
21442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3890 reflectionsΔρmin = 0.24 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.0327 (2)0.68440 (11)0.80314 (15)0.0268 (5)
C120.9186 (3)0.70929 (14)0.73826 (19)0.0286 (5)
C130.8480 (2)0.66129 (13)0.65684 (18)0.0251 (5)
C140.8961 (2)0.58113 (13)0.64087 (17)0.0199 (5)
C151.0161 (2)0.55471 (14)0.70717 (17)0.0224 (5)
C161.0793 (2)0.60735 (14)0.78556 (18)0.0242 (5)
C170.8275 (2)0.51997 (14)0.55960 (17)0.0207 (5)
O10.86770 (16)0.44784 (9)0.55984 (12)0.0249 (4)
N170.72086 (19)0.54970 (10)0.48753 (14)0.0209 (4)
N270.65662 (19)0.49611 (11)0.40880 (14)0.0220 (4)
C270.5482 (2)0.52674 (13)0.35114 (17)0.0214 (5)
C210.4712 (2)0.48049 (13)0.26075 (17)0.0201 (5)
C220.3589 (2)0.52179 (13)0.20126 (18)0.0216 (5)
C230.2834 (2)0.48265 (13)0.11183 (18)0.0209 (5)
O230.16987 (16)0.51694 (9)0.04958 (12)0.0243 (4)
C2310.1219 (3)0.59722 (14)0.0828 (2)0.0294 (6)
C240.3213 (2)0.40283 (13)0.08293 (17)0.0205 (5)
O240.24446 (16)0.36157 (8)0.00298 (11)0.0225 (4)
C2410.2936 (3)0.38260 (15)0.11629 (18)0.0317 (6)
C250.4325 (2)0.36127 (13)0.14397 (18)0.0219 (5)
C2510.5604 (3)0.23406 (14)0.1718 (2)0.0329 (6)
O250.45521 (17)0.28201 (9)0.10813 (13)0.0282 (4)
C260.5081 (2)0.39941 (13)0.23326 (18)0.0215 (5)
O20.56908 (17)0.70492 (9)0.49034 (13)0.0297 (4)
O30.72426 (17)0.31146 (9)0.44996 (13)0.0315 (4)
H120.88350.76380.74880.034*
H130.76790.68270.61250.030*
H151.05400.50060.69820.027*
H161.16110.58800.83000.029*
H170.69330.60150.49070.025*
H270.51680.58120.36750.026*
H220.33390.57660.22170.026*
H23A0.10050.59770.16530.044*
H23B0.03190.61190.03950.044*
H23C0.20060.63710.06620.044*
H24A0.27800.44150.12960.048*
H24B0.23670.35100.17320.048*
H24C0.39950.36970.12350.048*
H25A0.66000.25740.16240.049*
H25B0.55940.17740.14320.049*
H25C0.53380.23450.25340.049*
H260.58350.37110.27490.026*
H2A0.57440.73820.43190.045*
H2B0.47750.70180.51360.045*
H3A0.75810.35790.47640.047*
H3B0.77750.27430.48490.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0273 (10)0.0282 (12)0.0249 (10)0.0039 (9)0.0048 (8)0.0016 (8)
C120.0356 (14)0.0201 (13)0.0300 (13)0.0001 (11)0.0046 (11)0.0035 (10)
C130.0290 (13)0.0206 (13)0.0256 (12)0.0004 (10)0.0080 (10)0.0015 (10)
C140.0203 (11)0.0223 (13)0.0170 (11)0.0030 (9)0.0010 (9)0.0035 (9)
C150.0213 (12)0.0241 (13)0.0218 (12)0.0005 (10)0.0014 (10)0.0001 (9)
C160.0222 (12)0.0292 (14)0.0210 (12)0.0009 (10)0.0029 (9)0.0012 (10)
C170.0210 (11)0.0220 (13)0.0190 (11)0.0018 (10)0.0011 (9)0.0014 (9)
O10.0281 (9)0.0208 (9)0.0257 (8)0.0000 (7)0.0053 (7)0.0021 (7)
N170.0266 (10)0.0148 (10)0.0212 (9)0.0003 (8)0.0054 (8)0.0036 (8)
N270.0242 (10)0.0215 (10)0.0202 (9)0.0028 (8)0.0039 (8)0.0027 (8)
C270.0257 (12)0.0166 (12)0.0219 (11)0.0004 (9)0.0020 (10)0.0003 (9)
C210.0204 (11)0.0205 (12)0.0194 (11)0.0028 (9)0.0008 (9)0.0015 (9)
C220.0242 (12)0.0177 (12)0.0229 (11)0.0002 (10)0.0016 (9)0.0003 (9)
C230.0201 (11)0.0222 (13)0.0204 (11)0.0010 (9)0.0033 (9)0.0054 (9)
O230.0264 (8)0.0207 (9)0.0257 (8)0.0052 (7)0.0086 (7)0.0007 (7)
C2310.0325 (14)0.0221 (13)0.0335 (14)0.0083 (11)0.0100 (11)0.0011 (10)
C240.0217 (11)0.0205 (12)0.0194 (11)0.0050 (9)0.0033 (9)0.0016 (9)
O240.0267 (8)0.0212 (8)0.0195 (8)0.0042 (7)0.0061 (7)0.0008 (6)
C2410.0399 (14)0.0328 (14)0.0224 (12)0.0069 (12)0.0029 (11)0.0032 (10)
C250.0244 (12)0.0167 (12)0.0244 (12)0.0003 (9)0.0015 (10)0.0016 (9)
C2510.0348 (14)0.0215 (13)0.0422 (15)0.0076 (11)0.0124 (12)0.0003 (11)
O250.0323 (9)0.0174 (9)0.0348 (9)0.0047 (7)0.0124 (7)0.0040 (7)
C260.0225 (11)0.0209 (12)0.0212 (11)0.0008 (10)0.0044 (9)0.0037 (9)
O20.0320 (9)0.0239 (9)0.0331 (9)0.0023 (7)0.0059 (7)0.0067 (7)
O30.0375 (10)0.0173 (9)0.0396 (10)0.0006 (7)0.0099 (8)0.0013 (7)
Geometric parameters (Å, º) top
N11—C121.333 (3)C23—C241.385 (3)
N11—C161.338 (3)O23—C2311.429 (3)
C12—C131.379 (3)C231—H23A0.98
C12—H120.95C231—H23B0.98
C13—C141.387 (3)C231—H23C0.98
C13—H130.95C24—O241.385 (2)
C14—C151.391 (3)C24—C251.397 (3)
C14—C171.502 (3)O24—C2411.434 (3)
C15—C161.372 (3)C241—H24A0.98
C15—H150.95C241—H24B0.98
C16—H160.95C241—H24C0.98
C17—O11.228 (3)C25—O251.371 (2)
C17—N171.359 (3)C25—C261.385 (3)
N17—N271.388 (2)C251—O251.429 (3)
N17—H170.88C251—H25A0.98
N27—C271.281 (3)C251—H25B0.98
C27—C211.464 (3)C251—H25C0.98
C27—H270.95C26—H260.95
C21—C221.393 (3)O2—H2A0.87
C21—C261.398 (3)O2—H2B0.87
C22—C231.393 (3)O3—H3A0.87
C22—H220.95O3—H3B0.87
C23—O231.367 (2)
C12—N11—C16116.05 (18)C24—C23—C22119.36 (19)
N11—C12—C13124.5 (2)C23—O23—C231117.10 (16)
N11—C12—H12117.8O23—C231—H23A109.5
C13—C12—H12117.8O23—C231—H23B109.5
C12—C13—C14118.8 (2)H23A—C231—H23B109.5
C12—C13—H13120.6O23—C231—H23C109.5
C14—C13—H13120.6H23A—C231—H23C109.5
C13—C14—C15117.26 (19)H23B—C231—H23C109.5
C13—C14—C17125.45 (19)C23—C24—O24120.48 (18)
C15—C14—C17117.28 (19)C23—C24—C25120.48 (18)
C16—C15—C14119.5 (2)O24—C24—C25118.96 (19)
C16—C15—H15120.2C24—O24—C241113.10 (16)
C14—C15—H15120.2O24—C241—H24A109.5
N11—C16—C15123.9 (2)O24—C241—H24B109.5
N11—C16—H16118.1H24A—C241—H24B109.5
C15—C16—H16118.1O24—C241—H24C109.5
O1—C17—N17123.25 (19)H24A—C241—H24C109.5
O1—C17—C14120.79 (18)H24B—C241—H24C109.5
N17—C17—C14115.96 (19)O25—C25—C26125.19 (19)
C17—N17—N27118.21 (17)O25—C25—C24114.09 (18)
C17—N17—H17120.9C26—C25—C24120.7 (2)
N27—N17—H17120.9O25—C251—H25A109.5
C27—N27—N17114.42 (18)O25—C251—H25B109.5
N27—C27—C21122.1 (2)H25A—C251—H25B109.5
N27—C27—H27119.0O25—C251—H25C109.5
C21—C27—H27119.0H25A—C251—H25C109.5
C22—C21—C26120.95 (19)H25B—C251—H25C109.5
C22—C21—C27116.55 (19)C25—O25—C251117.08 (16)
C26—C21—C27122.50 (19)C25—C26—C21118.56 (19)
C21—C22—C23119.9 (2)C25—C26—H26120.7
C21—C22—H22120.0C21—C26—H26120.7
C23—C22—H22120.0H2A—O2—H2B109.6
O23—C23—C24116.02 (18)H3A—O3—H3B104.4
O23—C23—C22124.62 (19)
C16—N11—C12—C130.2 (3)C21—C22—C23—O23178.68 (19)
N11—C12—C13—C140.8 (4)C21—C22—C23—C240.1 (3)
C12—C13—C14—C151.4 (3)C24—C23—O23—C231175.93 (19)
C12—C13—C14—C17177.3 (2)C22—C23—O23—C2312.9 (3)
C13—C14—C15—C161.1 (3)O23—C23—C24—O241.2 (3)
C17—C14—C15—C16177.7 (2)C22—C23—C24—O24177.76 (19)
C12—N11—C16—C150.6 (3)O23—C23—C24—C25177.85 (18)
C14—C15—C16—N110.1 (3)C22—C23—C24—C251.1 (3)
C13—C14—C17—O1172.3 (2)C23—C24—O24—C24181.1 (2)
C15—C14—C17—O16.4 (3)C25—C24—O24—C241102.1 (2)
C13—C14—C17—N177.9 (3)C23—C24—C25—O25178.19 (19)
C15—C14—C17—N17173.41 (18)O24—C24—C25—O251.5 (3)
O1—C17—N17—N271.4 (3)C23—C24—C25—C260.9 (3)
C14—C17—N17—N27178.43 (17)O24—C24—C25—C26177.6 (2)
C17—N17—N27—C27174.09 (19)C26—C25—O25—C2513.1 (3)
N17—N27—C27—C21177.30 (19)C24—C25—O25—C251175.91 (19)
N27—C27—C21—C22177.6 (2)O25—C25—C26—C21179.2 (2)
N27—C27—C21—C261.6 (3)C24—C25—C26—C210.2 (3)
C26—C21—C22—C231.0 (3)C22—C21—C26—C251.2 (3)
C27—C21—C22—C23178.2 (2)C27—C21—C26—C25177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O20.882.022.871 (2)163
O2—H2A···N11i0.871.992.843 (2)166
O2—H2B···O3ii0.871.882.745 (2)174
O3—H3A···O10.872.012.864 (2)166
O3—H3B···O24iii0.872.242.874 (2)130
O3—H3B···O25iii0.872.333.157 (2)159
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H15N3O3·CHCl3C16H17N3O4·H2OC16H17N3O4·2H2O
Mr404.67333.34351.36
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)12.7400 (4), 10.8595 (3), 13.9187 (4)10.8081 (6), 10.3597 (3), 14.4270 (7)8.9930 (5), 16.2713 (10), 11.6311 (6)
β (°) 110.728 (1) 95.281 (2) 90.354 (3)
V3)1801.01 (9)1608.52 (13)1701.92 (17)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.530.100.11
Crystal size (mm)0.18 × 0.13 × 0.030.20 × 0.20 × 0.050.48 × 0.10 × 0.01
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.932, 0.9840.967, 0.9950.966, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
20128, 4128, 3388 15972, 3686, 2480 21442, 3890, 2409
Rint0.0470.0480.090
(sin θ/λ)max1)0.6510.6510.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.02 0.047, 0.133, 1.03 0.065, 0.121, 1.02
No. of reflections412836863890
No. of parameters228220229
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.600.21, 0.290.21, 0.24

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.173.015 (2)162
C1—H1···O221.002.413.363 (2)159
C1—H1···O231.002.593.371 (3)134
C27—H27···N11i0.952.603.411 (2)144
Symmetry code: (i) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.122.947 (2)157
O2—H2A···O10.902.413.015 (2)125
O2—H2A···N270.902.323.206 (2)166
O2—H2B···O24ii0.901.952.823 (2)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O20.882.022.871 (2)163
O2—H2A···N11i0.871.992.843 (2)166
O2—H2B···O3ii0.871.882.745 (2)174
O3—H3A···O10.872.012.864 (2)166
O3—H3B···O24iii0.872.242.874 (2)130
O3—H3B···O25iii0.872.333.157 (2)159
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.
Selected torsion and bond angles (°) for compounds (I)–(III) top
Parameter(I)(II)(III)
C13-C14-C17-N1727.7 (2)18.5 (2)7.9 (3)
C14-C17-N17-N27-176.86 (15)-177.52 (14)178.43 (17)
C17-N17-N27-C27175.15 (16)176.37 (16)174.09 (19)
N17-N27-C27-C21-178.11 (16)-178.87 (14)177.30 (19)
N27-C27-C21-C22172.79 (17)159.37 (17)-177.6 (2)
C21-C22-O22120.19 (16)
C23-C22-O22118.71 (16)
C21-C22-O22-C22198.85 (19)
C22-C23-O23115.64 (16)124.14 (16)124.62 (19)
C24-C23-O23125.14 (17)115.97 (14)116.02 (18)
C22-C23-O23-C231179.89 (18)-12.3 (2)-2.9 (3)
C23-C24-O24120.76 (15)120.48 (18)
C25-C24-O24118.85 (15)118.96 (19)
C23-C24-O24-C24187.82 (19)81.1 (2)
C24-C25-O25115.24 (14)114.09 (18)
C26-C25-O25124.59 (15)125.19 (19)
C26-C25-O25-C2518.2 (2)3.1 (3)
 

Acknowledgements

The X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhagiratha, V. G., Chandrakantha, T. M., Puttaraja, M., Kokila, M. K. & Methaji, M. (2000). Mol. Mater. 12, 215–221.  CAS Google Scholar
First citationChen, W., Zhang, X., Shan, B. & You, X. (1997). Acta Cryst. C53, 775–777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallagher, J. F., Coleman, C. M. & O'Shea, D. F. (2004). Acta Cryst. C60, o149–o151.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410–1414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. C62, o444–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. Ser. B, 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Ferreira, M. de L., Vasconcelos, T. R. A., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o617–o620.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o683–o689.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3361–o3363.  CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds