organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrogen-bonded chains in 3-tert-butyl-5-[(4-meth­oxy­benz­yl)amino]-1-phenyl-1H-pyrazole and tetra­molecular hydrogen-bonded aggregates in 5-[(benzotriazol-1-ylmeth­yl)(4-meth­oxy­benz­yl)amino]-3-tert-butyl-1-phenyl-1H-pyrazole

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 November 2006; accepted 22 November 2006; online 12 December 2006)

The mol­ecules of 3-tert-butyl-5-[(4-methoxy­benz­yl)amino]-1-phenyl-1H-pyrazole, C21H25N3O, are linked into simple C(9) chains by a single C—H⋯N hydrogen bond. 5-[(Benzotriazol-1-ylmeth­yl)(4-methoxy­benz­yl)amino]-3-tert-butyl-1-phenyl-1H-pyrazole, C28H30N6O, crystallizes with Z′ = 2 in the space group P21/c. The mol­ecules are weakly linked into centrosymmetric tetra­molecular aggregates by a combination of C—H⋯N and C—H⋯O hydrogen bonds.

Comment

We are inter­ested in the synthesis of compounds containing the pyrazolo[3,4-b]pyridine skeleton, which may have potential biological activity, and we have recently described the synthesis and structure of 3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridine, prepared by the reaction of 5-(3-phenyl-2-propyn­yl­idene)-2,2-dimethyl­cyclo­hexane-1,3-dione with 5-amino-3-methyl-1-phenyl­pyrazole (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. & Insuasty, B. (2002). Acta Cryst. C58, o298-o300.]). We report here the structures of two potential inter­mediates for the synthesis of fused pyrazolo ring systems via benzotriazole chemistry (Katritzky et al., 1998[Katritzky, A. R., Lan, X., Yang, J. Z. & Denisko, O. V. (1998). Chem. Rev. 98, 409-548.]), namely 3-tert-butyl-5-[(4-methoxy­benz­yl)amino]-1-phenyl-1H-pyrazole, (I)[link], and 5-[(benzo­triazol-1-ylmeth­yl)(4-methoxy­benz­yl)amino]-3-tert-butyl-1-phenyl-1H-pyrazole, (II)[link] (Figs. 1[link] and 2[link]).

Compound (I)[link], whose mol­ecules are chiral in the solid state, crystallizes in the enantiomeric pair of space groups P41212 and P43212; in the absence of racemic twinning, each crystal thus contains only one enantiomer. However, since the chirality is a consequence of the mol­ecular conformation, it has no chemical significance, and it may be expected that the distribution of the crystalline product between the two space groups is essentially statistical. The coordination at amino atom N15 is markedly pyramidal and there is significant bond fixation within the pyrazole ring (Table 1[link]), but the remaining bond distances are unremarkable.

[Scheme 1]

Compound (II)[link] crystallizes with Z′ = 2 in the space group P21/c; the asymmetric unit (Fig. 2[link]) was selected so that the two mol­ecules within it are linked by C—H⋯O hydrogen bonds (Table 4[link]) and in these circumstances the two mol­ecules in the selected asymmetric unit are approximately, but not exactly, enantiomeric, as shown by the leading torsion angles (Table 3[link]); the space-group symmetry ensures that the compound, as crystallized, is a true racemate. We denote the mol­ecules containing atoms N15 and N45 as types 1 and 2, respectively. The intra­molecular geometry is similar for the two mol­ecules, albeit with some minor differences; in each mol­ecule, the coordination at the central N atoms is distinctly pyramidal and there is significant bond fixation both within the pyrazole rings and within the benzotriazole units (Table 3[link]), where the bond fixation in the carbocyclic rings is reminiscent of that in naphthalene.

In both compounds, the C atoms of the meth­oxy substituents are almost coplanar with the adjacent aryl rings; the angles at the O atoms are both well above the normal value at ethereal O atoms, and the exocyclic C—C—O angles at C34 and C64 show the usual differences of ca 10°.

The mol­ecules of compound (I)[link] are linked by a single C—H⋯N hydrogen bond (Table 2[link]) into simple C(9) (Bernstein et al., 1995[Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains generated by translation (Fig. 3[link]). Eight chains of this type pass through each unit cell, but there are no direction-specific inter­actions between the chains. In particular, there are no potential acceptors within hydrogen-bonding range of amino atom N15, and C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are both absent from the structure of (I)[link].

Within the selected asymmetric unit of compound (II)[link], there are two inter­molecular C—H⋯O contacts (Table 4[link]), one of which is certainly too long and weak to be regarded as a hydrogen bond; there are no other inter­actions linking these mol­ecules, which form an approximately centrosymmetric pair centred close to ([1\over4], [1\over2], [1\over4]). In addition, pairs of type 1 mol­ecules are linked by paired C—H⋯N hydrogen bonds into centrosymmetric R22(16) dimers centred at (0, [1\over2], 0), so forming a tetra­molecular aggregate with the two type 1 mol­ecules in the centre and the type 2 mol­ecules at the periphery (Fig. 4[link]), but there are no direction-specific inter­actions between these aggregates.

[Figure 1]
Figure 1
A mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The two independent mol­ecules of (II)[link], showing the atom-labelling schemes for (a) a type 1 mol­ecule and (b) a type 2 mol­ecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded C(9) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with as asterisk (*) or a hash (#) are at the symmetry positions (x, −1 + y, z) and (x, 1 + y, z), respectively.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (II)[link], showing the formation of a centrosymmetric tetra­molecular aggregate. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

For the synthesis of compound (I)[link], sodium borohydride (4.5 mmol) was added in small portions over a period of 2 h to a solution of 3-tert-butyl-5-[(4-methoxy­benzyl­idene)amino]-1-phenyl­pyrazole (1.50 mmol) in methanol (30 ml). After the addition had been completed, the reaction mixture was heated under reflux for 3 h. The mixture was then cooled to ambient temperature and water (20 ml) was added; the mixture was neutralized with 5% aqueous hydro­chloric acid (5 ml) and then extracted with ethyl acetate (3 × 10 ml). The combined extracts were dried with sodium sulfate and the organic solvent was then removed under reduced pressure, giving compound (I)[link] as a pale-yellow solid (yield 98%, m.p. 372 K). MS (70 eV) m/e (%): 335 (13), 121 (100); IR (cm−1): 3319 (NH), 1245, 1033 (OCH3). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethyl acetate–hexane (1:2 v/v). For the synthesis of compound (II)[link], a mixture of compound (I)[link] (0.06 mmol) and 1-(hydroxy­methyl)­benzotriazole (0.06 mmol) in ethanol (5 ml) was heated under reflux for 1 h. After cooling the mixture to ambient temperature, a colourless precipitate was formed, which was collected by filtration and washed with ethanol to give compound (II)[link] (yield 65%, m.p. 435 K). MS (70 eV) m/e (%): 466 (3), 347 (3), 227 (43), 121 (100), 77 (22). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol.

Compound (I)[link]

Crystal data
  • C21H25N3O

  • Mr = 335.44

  • Tetragonal, P 43 21 2

  • a = 10.9665 (14) Å

  • c = 30.796 (6) Å

  • V = 3703.7 (10) Å3

  • Z = 8

  • Dx = 1.203 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, pale-yellow

  • 0.52 × 0.28 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.994

  • 77731 measured reflections

  • 2521 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.096

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.120

  • S = 1.05

  • 2521 reflections

  • 230 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0508P)2 + 1.6749P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N11—N12 1.380 (3)
N12—C13 1.331 (3)
C13—C14 1.414 (4)
C14—C15 1.383 (4)
C15—N11 1.371 (3)
C33—C34—O34 115.3 (3)
C35—C34—O34 124.1 (3)
C34—O34—C341 118.4 (3)
C33—C34—O34—C341 174.1 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯N12i 0.95 2.47 3.398 (4) 166
Symmetry code: (i) x, y-1, z.

Compound (II)[link]

Crystal data
  • C28H30N6O

  • Mr = 466.58

  • Monoclinic, P 21 /c

  • a = 12.5184 (2) Å

  • b = 18.5142 (5) Å

  • c = 21.7580 (5) Å

  • β = 96.0730 (15)°

  • V = 5014.5 (2) Å3

  • Z = 8

  • Dx = 1.236 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.28 × 0.16 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.994

  • 55879 measured reflections

  • 11492 independent reflections

  • 7071 reflections with I > 2σ(I)

  • Rint = 0.077

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.113

  • S = 1.03

  • 11492 reflections

  • 639 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5141P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

N11—N12 1.3795 (17)
N12—C13 1.3290 (19)
C13—C14 1.408 (2)
C14—C15 1.372 (2)
C15—N11 1.369 (2)
N21—N22 1.3655 (18)
N22—N23 1.3039 (18)
N23—C23A 1.380 (2)
C23A—C24 1.398 (2)
C24—C25 1.364 (2)
C25—C26 1.403 (3)
C26—C27 1.378 (2)
C27—C27A 1.398 (2)
C27A—N21 1.3712 (19)
C23A—C27A 1.389 (2)
N41—N42 1.3838 (18)
N42—C43 1.3315 (19)
C43—C44 1.409 (2)
C44—C45 1.371 (2)
C45—N41 1.367 (2)
N51—N52 1.3629 (19)
N52—N53 1.3093 (18)
N53—C53A 1.382 (2)
C53A—C54 1.404 (2)
C54—C55 1.372 (3)
C55—C56 1.406 (2)
C56—C57 1.372 (2)
C57—C57A 1.395 (2)
C57A—N51 1.3705 (19)
C53A—C57A 1.390 (2)
C15—N15—C28 112.94 (12)
C15—N15—C37 113.97 (12)
C28—N15—C37 114.00 (13)
C33—C34—O34 115.70 (15)
C35—C34—O34 124.44 (14)
C34—O34—C341 116.83 (13)
C45—N45—C58 115.37 (12)
C45—N45—C67 115.34 (13)
C58—N45—C67 114.52 (13)
C63—C64—O64 115.66 (16)
C65—C64—O64 124.11 (15)
C64—O64—C641 116.64 (14)
N12—N11—C111—C112 −143.20 (15)
N12—C13—C131—C132 −13.3 (2)
N11—C15—N15—C28 65.91 (18)
C15—N15—C28—N21 65.98 (17)
N15—C28—N21—N22 91.31 (17)
N11—C15—N15—C37 −161.90 (13)
C15—N15—C37—C31 160.59 (13)
N15—C37—C31—C32 101.72 (18)
N42—N41—C411—C412 132.59 (15)
N42—C43—C431—C432 −35.5 (2)
N41—C45—N45—C58 −63.80 (19)
C45—N45—C58—N51 −70.54 (18)
N45—C58—N51—N52 −103.19 (17)
N41—C45—N45—C67 159.09 (13)
C45—N45—C67—C61 −149.29 (14)
N45—C67—C61—C62 −107.87 (17)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N23i 0.95 2.61 3.531 (2) 162
C28—H28A⋯O64 0.99 2.55 3.273 (3) 129
C58—H58A⋯O34 0.99 2.64 3.252 (3) 120
Symmetry code: (i) -x, -y+1, -z.

For compound (I)[link], the systematic absences permitted P41212 and P43212 as possible space groups. In the absence of significant resonant scattering, it was not possible to distinguish between these enantiomeric space groups for the crystal selected for data collection; P43212 was selected, although this choice has no chemical significance, and the Friedel equivalent reflections were merged. For compound (II)[link], the space group P21/c was uniquely assigned from the systematic absences; 16 low-angle reflections were partially obscured by the beam stop and hence these reflections were omitted from the refinement. All H atoms were located in difference maps; H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k is 1.5 for the methyl groups and 1.2 for all other H atoms bonded to C atoms. The H atom bonded to N15 in compound (I)[link] was allowed to ride at the position deduced from the difference maps, giving an N—H distance of 0.88 Å [Uiso(H) = 1.2Ueq(N)].

For (I), data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]). For (II), data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97. For both compounds, molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We are interested in the synthesis of compounds containing the pyrazolo[3,4-b]pyridine skeleton, which may have potential biological activity, and we have recently described the synthesis and structure of 3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridine, prepared by the reaction of 5-(3-phenyl-2-propynylidene)-2,2-dimethylcyclohexane-1,3-dione with 5-amino-3-methyl-1-phenylpyrazole (Low et al., 2002). We report here the structures of two potential intermediates for the synthesis of fused pyrazolo ring systems via benzotriazole chemistry (Katritzky et al., 1998), namely 3-tert-butyl-5-[(4-methoxybenzyl)amino]-1-phenyl-1H-pyrazole, (I), and 5-[(benzotriazol-1-ylmethyl)(4-methoxybenzyl)amino]-3-tert-butyl-1- phenyl-1H-pyrazole, (II) (Figs. 1 and 2).

Compound (I), whose molecules are chiral in the solid state, crystallizes in the enantiomeric pair of space groups P41212 and P43212; in the absence of racemic twinning, each crystal thus contains only one enantiomer. However, since the chirality is a consequence of the molecular conformation, it has no chemical significance, and it may be expected that the distribution of the crystalline product between the two space groups is essentially statistical. The coordination at the amino atom N15 is markedly pyramidal and there is significant bond fixation within the pyrazole ring (Table 1), but the remaining bond distances are unremarkable.

Compound (II) crystallizes with Z' = 2 in space group P21/c; the asymmetric unit (Fig. 2) was selected so that the two molecules within it are linked by C—H···O hydrogen bonds (Table 4) and in these circumstances the two molecules in the selected asymmetric unit are approximately, but not exactly, enantiomeric, as shown by the leading torsion angles (Table 3); the space-group symmetry ensures that the compound, as crystallized, is a true racemate. We denote the molecules containing atoms N15 and N45 as types 1 and 2, respectively. The intramolecular geometry is similar for the two molecules, albeit with some minor differences: in each molecule, the coordination at the central N atoms, N15 and N45, respectively, is distinctly pyramidal and there is significant bond fixation both within the pyrazole rings and within the benzotriazole units (Table 3), where the bond fixation in the carbocyclic rings is reminiscent of that in naphthalene.

In both compounds the C atoms of the methoxy substituents are almost coplanar with the adjacent aryl rings; the angles at the O atoms are both well above the normal value at ethereal O atoms, and the exocyclic C—C—O angles at C34 and C64 show the usual differences of ca 10°.

The molecules of compound (I) are linked by a single C—H···N hydrogen bond (Table 2) into simple C(9) (Bernstein et al., 1995) chains generated by translation (Fig. 3). Eight chains of this type pass through each unit cell, but there are no direction-specific interactions between the chains. In particular, there are no potential acceptors within hydrogen-bonding range of the amino atom N15, and C—H···π(arene) hydrogen bonds and aromatic ππ stacking interactions are both absent from the structure of (I).

Within the selected asymmetric unit of compound (II), there are two intermolecular C—H···O contacts (Table 4), one of which is certainly too long and weak to be regarded as a hydrogen bond; there are no other interactions linking these molecules, which form an approximately centrosymmetric pair centred close to (1/4, 1/2, 1/4). In addition, pairs of type 1 molecules are linked by paired C—H···N hydrogen bonds into centrosymmetric R22(16) dimers centred at (0, 1/2, 0), so forming a tetramolecular aggregate with the two type 1 molecules in the centre and the type 2 molecules at the periphery (Fig. 4), but there are no direction-specific interactions between these aggregates.

Experimental top

For the synthesis of compound (I), sodium borohydride (4.5 mmol) was added in small portions over a period of 2 h to a solution of 3-tert-butyl-5-[(4-methoxybenzylidene)amino]-1-phenylpyrazole (1.50 mmol) in methanol (30 ml). After the addition had been completed, the reaction mixture was heated under reflux for 3 h. The mixture was then cooled to ambient temperature, and 20 ml of water was added; the mixture was neutralized with 5% aqueous hydrochloric acid (5 ml), and then extracted with ethyl acetate (3 × 10 ml). The combined extracts were dried with sodium sulfate and the organic solvent was then removed under reduced pressure, giving compound (I) as a yellow solid (yield 98%, m.p. 372 K). MS (70 eV) m/e (%) 335 (13), 121 (100); IR (cm−1): 3319 (NH), 1245, 1033 (OCH3). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethyl acetate–hexane (1:2 v/v). For the synthesis of compound (II), a mixture of compound (I) (0.06 mmol) and 1-hydroxymethylbenzotriazole (0.06 mmol) in ethanol (5 ml) was heated under reflux for 1 h. After cooling the mixture to ambient temperature, a white precipitate was formed, which was collected by filtration and washed with ethanol to give compound (II) (yield 65%, m.p. 435 K). MS (70 eV) m/e (%) 466 (3), 347 (3), 227 (43), 121 (100), 77 (22). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol.

Refinement top

For compound (I), the systematic absences permitted P41212 and P43212 as possible space groups. In the absence of significant resonant scattering, it was not possible to distinguish between these enantiomeric space groups for the crystal selected for data collection; P43212 was selected, although this choice has no chemical significance, and the Friedel equivalent reflections were merged. For compound (II), the space group P21/c was uniquely assigned from the systematic absences. For compound (II), sixteen low-angle reflections were partially obscured by the beam stop and hence these reflections were omitted from the refinement. All H atoms were located in difference maps; H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 Å (aromatic and heteroaromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k is 1.5 for the methyl groups and 1.2 for all other H atoms bonded to C atoms. The H atom bonded to N15 in compound (I) was allowed to ride at the position deduced from the difference maps, giving an N—H distance of 0.88 Å [Uiso(H) = 1.2Ueq(N)].

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999). Cell refinement: DIRAX/LSQ (Duisenberg et al., 2000) for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT for (II). Data reduction: EVALCCD (Duisenberg et al., 2003) for (I); DENZO and COLLECT for (II). Program(s) used to solve structure: Sir2004 (Burla et al., 2005) for (I); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (II). Program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997) for (I); OSCAIL and SHELXL97 (Sheldrick, 1997) for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules of (II), showing the atom-labelling scheme: (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(9) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with as asterisk (*) or a hash (#) are at the symmetry positions (x, −1 + y, z) and (x, 1 + y, z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a centrosymmetric tetramolecular aggregate. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 3-tert-butyl-5-[(4-methoxybenzyl)amino]-1-phenyl-1H-pyrazole top
Crystal data top
C21H25N3ODx = 1.203 Mg m3
Mr = 335.44Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 4241 reflections
Hall symbol: P 4nw 2abwθ = 3.9–27.5°
a = 10.9665 (14) ŵ = 0.08 mm1
c = 30.796 (6) ÅT = 120 K
V = 3703.7 (10) Å3Block, colourless
Z = 80.52 × 0.28 × 0.08 mm
F(000) = 1440
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2521 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.940, Tmax = 0.994k = 1413
77731 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.6749P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2521 reflectionsΔρmax = 0.22 e Å3
230 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Friedel pairs merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H25N3OZ = 8
Mr = 335.44Mo Kα radiation
Tetragonal, P43212µ = 0.08 mm1
a = 10.9665 (14) ÅT = 120 K
c = 30.796 (6) Å0.52 × 0.28 × 0.08 mm
V = 3703.7 (10) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2521 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1840 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.994Rint = 0.096
77731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2521 reflectionsΔρmin = 0.24 e Å3
230 parametersAbsolute structure: Friedel pairs merged
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1664 (2)0.6731 (2)0.53442 (7)0.0223 (5)
C1110.2473 (2)0.6929 (2)0.49894 (8)0.0226 (6)
C1120.3592 (3)0.6346 (3)0.49683 (9)0.0263 (6)
C1130.4339 (3)0.6547 (3)0.46093 (9)0.0322 (7)
C1140.3980 (3)0.7331 (3)0.42815 (9)0.0343 (7)
C1150.2873 (3)0.7917 (3)0.43124 (9)0.0324 (7)
C1160.2108 (3)0.7726 (3)0.46652 (8)0.0259 (6)
N120.0857 (2)0.7651 (2)0.54479 (7)0.0232 (5)
C130.0147 (2)0.7192 (2)0.57584 (8)0.0211 (6)
C1310.0805 (3)0.7986 (3)0.59690 (8)0.0246 (6)
C1320.1218 (3)0.8991 (3)0.56624 (10)0.0380 (8)
C1330.0251 (3)0.8588 (3)0.63739 (10)0.0387 (8)
C1340.1901 (3)0.7219 (3)0.61038 (11)0.0374 (8)
C140.0462 (3)0.5970 (3)0.58515 (8)0.0233 (6)
C150.1423 (3)0.5696 (2)0.55780 (8)0.0206 (6)
N150.2088 (2)0.4637 (2)0.55262 (7)0.0247 (5)
C370.1632 (3)0.3570 (3)0.57574 (10)0.0329 (7)
C310.2383 (3)0.2460 (3)0.56588 (9)0.0266 (6)
C320.1798 (3)0.1358 (3)0.55619 (10)0.0337 (8)
C330.2447 (3)0.0309 (3)0.54790 (10)0.0340 (7)
C340.3703 (3)0.0342 (3)0.54868 (9)0.0300 (7)
O340.4273 (2)0.07496 (19)0.53941 (7)0.0408 (6)
C3410.5550 (3)0.0759 (3)0.53556 (11)0.0396 (8)
C350.4316 (3)0.1414 (3)0.55834 (9)0.0305 (7)
C360.3641 (3)0.2471 (3)0.56696 (9)0.0307 (7)
H1120.38460.58170.51950.032*
H1130.51030.61410.45900.039*
H1140.44920.74630.40370.041*
H1150.26290.84620.40890.039*
H1160.13460.81360.46840.031*
H13A0.05120.94780.55730.057*
H13B0.18090.95160.58110.057*
H13C0.16010.86270.54060.057*
H13D0.00000.79550.65800.058*
H13E0.08600.91180.65100.058*
H13F0.04600.90740.62900.058*
H13G0.22290.67950.58490.056*
H13H0.25310.77510.62270.056*
H13I0.16480.66200.63220.056*
H140.00910.54460.60590.028*
H150.22510.44670.52530.030*
H37A0.07740.34190.56720.040*
H37B0.16500.37300.60740.040*
H320.09320.13340.55530.040*
H330.20330.04320.54170.041*
H34A0.57980.02060.51220.059*
H34B0.58270.15880.52890.059*
H34C0.59160.04900.56300.059*
H350.51810.14320.55910.037*
H360.40560.32080.57370.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0247 (13)0.0202 (12)0.0220 (11)0.0016 (10)0.0043 (10)0.0002 (9)
C1110.0241 (15)0.0229 (14)0.0208 (12)0.0029 (13)0.0015 (12)0.0015 (11)
C1120.0238 (15)0.0306 (16)0.0246 (13)0.0006 (12)0.0017 (12)0.0019 (12)
C1130.0262 (16)0.0339 (18)0.0367 (16)0.0006 (14)0.0112 (14)0.0026 (14)
C1140.0363 (19)0.0383 (19)0.0283 (14)0.0034 (15)0.0113 (14)0.0008 (14)
C1150.0400 (19)0.0321 (17)0.0250 (14)0.0017 (15)0.0024 (14)0.0050 (13)
C1160.0296 (16)0.0244 (16)0.0237 (13)0.0006 (13)0.0010 (12)0.0011 (12)
N120.0229 (13)0.0225 (13)0.0242 (11)0.0030 (10)0.0022 (10)0.0023 (10)
C130.0204 (14)0.0218 (15)0.0210 (12)0.0023 (11)0.0020 (11)0.0031 (11)
C1310.0238 (15)0.0263 (16)0.0236 (13)0.0022 (13)0.0015 (12)0.0002 (12)
C1320.0363 (19)0.042 (2)0.0355 (16)0.0142 (16)0.0064 (15)0.0071 (15)
C1330.0388 (19)0.042 (2)0.0349 (16)0.0097 (16)0.0021 (15)0.0158 (15)
C1340.0291 (18)0.0341 (19)0.0488 (18)0.0016 (15)0.0151 (15)0.0025 (15)
C140.0251 (15)0.0238 (15)0.0212 (13)0.0032 (12)0.0025 (12)0.0001 (11)
C150.0235 (15)0.0189 (14)0.0193 (12)0.0006 (12)0.0016 (11)0.0003 (11)
N150.0292 (14)0.0227 (13)0.0222 (11)0.0023 (11)0.0058 (10)0.0003 (10)
C370.0353 (18)0.0246 (16)0.0390 (16)0.0016 (14)0.0093 (14)0.0027 (13)
C310.0318 (17)0.0231 (15)0.0251 (13)0.0014 (13)0.0060 (12)0.0021 (12)
C320.0343 (19)0.0286 (18)0.0381 (16)0.0016 (15)0.0013 (14)0.0039 (14)
C330.0366 (19)0.0229 (16)0.0425 (18)0.0006 (14)0.0022 (15)0.0002 (14)
C340.0376 (19)0.0227 (16)0.0297 (15)0.0047 (15)0.0056 (13)0.0025 (13)
O340.0376 (13)0.0269 (12)0.0579 (14)0.0043 (10)0.0052 (11)0.0032 (11)
C3410.0351 (19)0.0377 (19)0.0460 (18)0.0071 (16)0.0134 (15)0.0074 (16)
C350.0263 (16)0.0351 (18)0.0301 (15)0.0007 (14)0.0075 (13)0.0050 (14)
C360.0329 (17)0.0268 (17)0.0323 (15)0.0009 (15)0.0070 (14)0.0021 (13)
Geometric parameters (Å, º) top
N11—N121.380 (3)C133—H13F0.98
N12—C131.331 (3)C134—H13G0.98
C13—C141.414 (4)C134—H13H0.98
C14—C151.383 (4)C134—H13I0.98
C15—N111.371 (3)C14—H140.95
N11—C1111.424 (3)C15—N151.381 (4)
C111—C1121.384 (4)N15—C371.458 (3)
C111—C1161.387 (4)N15—H150.88
C112—C1131.394 (4)C37—C311.501 (4)
C112—H1120.95C37—H37A0.99
C113—C1141.383 (4)C37—H37B0.99
C113—H1130.95C31—C361.380 (4)
C114—C1151.377 (4)C31—C321.400 (4)
C114—H1140.95C32—C331.377 (4)
C115—C1161.389 (4)C32—H320.95
C115—H1150.95C33—C341.377 (4)
C116—H1160.95C33—H330.95
C13—C1311.506 (4)C34—O341.380 (4)
C131—C1321.521 (4)C34—C351.387 (4)
C131—C1341.525 (4)O34—C3411.406 (4)
C131—C1331.536 (4)C341—H34A0.98
C132—H13A0.98C341—H34B0.98
C132—H13B0.98C341—H34C0.98
C132—H13C0.98C35—C361.401 (4)
C133—H13D0.98C35—H350.95
C133—H13E0.98C36—H360.95
C15—N11—N12111.2 (2)H13G—C134—H13H109.5
C15—N11—C111130.5 (2)C131—C134—H13I109.5
N12—N11—C111117.8 (2)H13G—C134—H13I109.5
C112—C111—C116120.9 (2)H13H—C134—H13I109.5
C112—C111—N11121.2 (2)C15—C14—C13105.6 (2)
C116—C111—N11117.9 (2)C15—C14—H14127.2
C111—C112—C113119.1 (3)C13—C14—H14127.2
C111—C112—H112120.5N11—C15—N15122.3 (2)
C113—C112—H112120.5N11—C15—C14106.7 (2)
C114—C113—C112120.6 (3)N15—C15—C14131.0 (3)
C114—C113—H113119.7C15—N15—C37115.9 (2)
C112—C113—H113119.7C15—N15—H15113.3
C115—C114—C113119.4 (3)C37—N15—H15111.5
C115—C114—H114120.3N15—C37—C31111.3 (2)
C113—C114—H114120.3N15—C37—H37A109.4
C114—C115—C116121.1 (3)C31—C37—H37A109.4
C114—C115—H115119.5N15—C37—H37B109.4
C116—C115—H115119.5C31—C37—H37B109.4
C111—C116—C115118.9 (3)H37A—C37—H37B108.0
C111—C116—H116120.5C36—C31—C32118.1 (3)
C115—C116—H116120.5C36—C31—C37122.4 (3)
C13—N12—N11105.4 (2)C32—C31—C37119.5 (3)
N12—C13—C14111.2 (2)C33—C32—C31121.6 (3)
N12—C13—C131119.7 (2)C33—C32—H32119.2
C14—C13—C131129.0 (2)C31—C32—H32119.2
C13—C131—C132111.0 (2)C32—C33—C34119.5 (3)
C13—C131—C134110.2 (2)C32—C33—H33120.3
C132—C131—C134109.5 (3)C34—C33—H33120.3
C13—C131—C133108.9 (2)C33—C34—O34115.3 (3)
C132—C131—C133108.1 (3)C33—C34—C35120.7 (3)
C134—C131—C133109.1 (2)C35—C34—O34124.1 (3)
C131—C132—H13A109.5C34—O34—C341118.4 (3)
C131—C132—H13B109.5O34—C341—H34A109.5
H13A—C132—H13B109.5O34—C341—H34B109.5
C131—C132—H13C109.5H34A—C341—H34B109.5
H13A—C132—H13C109.5O34—C341—H34C109.5
H13B—C132—H13C109.5H34A—C341—H34C109.5
C131—C133—H13D109.5H34B—C341—H34C109.5
C131—C133—H13E109.5C34—C35—C36119.1 (3)
H13D—C133—H13E109.5C34—C35—H35120.4
C131—C133—H13F109.5C36—C35—H35120.4
H13D—C133—H13F109.5C31—C36—C35121.1 (3)
H13E—C133—H13F109.5C31—C36—H36119.5
C131—C134—H13G109.5C35—C36—H36119.5
C131—C134—H13H109.5
C15—N11—C111—C11236.5 (4)N12—N11—C15—N15178.6 (2)
N12—N11—C111—C112153.2 (2)C111—N11—C15—N157.7 (4)
C15—N11—C111—C116143.7 (3)N12—N11—C15—C142.2 (3)
N12—N11—C111—C11626.7 (3)C111—N11—C15—C14173.1 (3)
C116—C111—C112—C1131.7 (4)C13—C14—C15—N111.2 (3)
N11—C111—C112—C113178.5 (3)C13—C14—C15—N15179.7 (3)
C111—C112—C113—C1141.0 (4)N11—C15—N15—C37172.7 (2)
C112—C113—C114—C1150.1 (5)C14—C15—N15—C378.3 (4)
C113—C114—C115—C1160.6 (5)C15—N15—C37—C31176.9 (2)
C112—C111—C116—C1151.2 (4)N15—C37—C31—C3647.2 (4)
N11—C111—C116—C115178.9 (2)N15—C37—C31—C32134.3 (3)
C114—C115—C116—C1110.1 (4)C36—C31—C32—C330.0 (5)
C15—N11—N12—C132.3 (3)C37—C31—C32—C33178.5 (3)
C111—N11—N12—C13174.4 (2)C31—C32—C33—C340.7 (5)
N11—N12—C13—C141.5 (3)C32—C33—C34—O34179.2 (3)
N11—N12—C13—C131176.4 (2)C32—C33—C34—C351.0 (5)
N12—C13—C131—C13226.9 (4)C33—C34—O34—C341174.1 (3)
C14—C13—C131—C132155.6 (3)C35—C34—O34—C3416.0 (4)
N12—C13—C131—C134148.3 (3)C33—C34—C35—C360.5 (4)
C14—C13—C131—C13434.2 (4)O34—C34—C35—C36179.6 (3)
N12—C13—C131—C13392.0 (3)C32—C31—C36—C350.4 (5)
C14—C13—C131—C13385.5 (4)C37—C31—C36—C35178.9 (3)
N12—C13—C14—C150.2 (3)C34—C35—C36—C310.2 (4)
C131—C13—C14—C15177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···N12i0.952.473.398 (4)166
Symmetry code: (i) x, y1, z.
(II) 5-[(benzotriazol-1-ylmethyl)(4-methoxybenzyl)amino]-3-tert-butyl-1- phenyl-1H-pyrazole top
Crystal data top
C28H30N6OF(000) = 1984
Mr = 466.58Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11492 reflections
a = 12.5184 (2) Åθ = 1.5–27.5°
b = 18.5142 (5) ŵ = 0.08 mm1
c = 21.7580 (5) ÅT = 120 K
β = 96.0730 (15)°Needle, colourless
V = 5014.5 (2) Å30.28 × 0.16 × 0.08 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11492 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode7071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 1615
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2424
Tmin = 0.966, Tmax = 0.994l = 2828
55879 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5141P]
where P = (Fo2 + 2Fc2)/3
11492 reflections(Δ/σ)max < 0.001
639 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C28H30N6OV = 5014.5 (2) Å3
Mr = 466.58Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.5184 (2) ŵ = 0.08 mm1
b = 18.5142 (5) ÅT = 120 K
c = 21.7580 (5) Å0.28 × 0.16 × 0.08 mm
β = 96.0730 (15)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11492 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7071 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.994Rint = 0.077
55879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
11492 reflectionsΔρmin = 0.24 e Å3
639 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.06686 (10)0.72513 (7)0.11799 (6)0.0214 (3)
C1110.09984 (12)0.75389 (9)0.17777 (7)0.0223 (4)
C1120.20427 (13)0.74464 (9)0.20492 (8)0.0290 (4)
C1130.23393 (14)0.77473 (10)0.26263 (8)0.0354 (5)
C1140.16107 (15)0.81381 (10)0.29256 (8)0.0359 (5)
C1150.05792 (15)0.82306 (10)0.26474 (8)0.0351 (5)
C1160.02687 (13)0.79336 (10)0.20742 (8)0.0294 (4)
N120.00437 (10)0.76441 (7)0.07842 (6)0.0225 (3)
C130.01370 (12)0.72707 (9)0.02595 (7)0.0216 (4)
C1310.08599 (13)0.75316 (9)0.02991 (7)0.0258 (4)
C1320.15971 (16)0.81303 (10)0.01145 (9)0.0456 (5)
C1330.15419 (14)0.69015 (10)0.05704 (8)0.0377 (5)
C1340.01554 (16)0.78072 (13)0.07811 (9)0.0522 (6)
C140.04901 (12)0.66378 (9)0.03069 (7)0.0227 (4)
C150.09797 (12)0.66340 (9)0.09018 (7)0.0209 (4)
N150.16214 (10)0.61132 (7)0.12377 (6)0.0214 (3)
C280.10739 (12)0.57628 (9)0.17162 (7)0.0233 (4)
N210.01559 (10)0.53198 (7)0.14746 (6)0.0234 (3)
N220.03151 (11)0.46046 (7)0.13611 (6)0.0280 (3)
N230.05692 (11)0.43316 (8)0.10853 (7)0.0301 (4)
C23A0.13244 (13)0.48759 (9)0.10083 (7)0.0246 (4)
C240.23893 (13)0.48541 (10)0.07396 (8)0.0314 (4)
C250.29591 (14)0.54829 (11)0.07310 (8)0.0353 (5)
C260.25016 (13)0.61234 (11)0.09834 (8)0.0351 (5)
C270.14544 (13)0.61560 (10)0.12503 (8)0.0301 (4)
C27A0.08701 (12)0.55124 (9)0.12517 (7)0.0228 (4)
C370.21623 (12)0.56054 (9)0.08458 (7)0.0246 (4)
C310.31040 (12)0.52372 (9)0.12077 (7)0.0222 (4)
C320.30442 (12)0.45315 (9)0.14256 (7)0.0258 (4)
C330.39113 (12)0.42103 (9)0.17639 (7)0.0264 (4)
C340.48619 (12)0.45916 (9)0.18965 (7)0.0235 (4)
C3410.66547 (12)0.46126 (10)0.23934 (8)0.0337 (5)
O340.56773 (8)0.42268 (6)0.22380 (5)0.0308 (3)
C350.49425 (13)0.52901 (9)0.16825 (7)0.0262 (4)
C360.40655 (12)0.56052 (9)0.13401 (7)0.0253 (4)
N410.43024 (10)0.27951 (7)0.38865 (6)0.0222 (3)
C4110.39240 (12)0.25946 (9)0.32670 (7)0.0222 (4)
C4120.29005 (13)0.27831 (9)0.30132 (8)0.0292 (4)
C4130.25350 (14)0.25455 (10)0.24230 (8)0.0336 (5)
C4140.31766 (14)0.21160 (10)0.20962 (8)0.0323 (4)
C4150.41964 (14)0.19293 (10)0.23521 (8)0.0303 (4)
C4160.45764 (13)0.21747 (9)0.29354 (7)0.0271 (4)
N420.47976 (10)0.22722 (7)0.42719 (6)0.0237 (3)
C430.49291 (12)0.25830 (9)0.48267 (7)0.0230 (4)
C4310.54768 (12)0.21787 (9)0.53779 (7)0.0261 (4)
C4320.51925 (14)0.13757 (10)0.53354 (8)0.0329 (4)
C4330.51099 (15)0.24882 (10)0.59749 (8)0.0373 (5)
C4340.66993 (13)0.22750 (11)0.53842 (8)0.0378 (5)
C440.45465 (12)0.32992 (9)0.48065 (7)0.0233 (4)
C450.41604 (12)0.34205 (9)0.42019 (7)0.0214 (4)
N450.37079 (10)0.40299 (7)0.38945 (6)0.0231 (3)
C580.43263 (12)0.43363 (9)0.34318 (7)0.0252 (4)
N510.53207 (10)0.46955 (8)0.36863 (6)0.0249 (3)
N520.53661 (11)0.54305 (8)0.37128 (6)0.0296 (3)
N530.63245 (11)0.56262 (8)0.39548 (7)0.0316 (4)
C53A0.69180 (13)0.50065 (9)0.40920 (7)0.0266 (4)
C540.79858 (14)0.49242 (11)0.43530 (8)0.0337 (5)
C550.83664 (14)0.42319 (11)0.44323 (8)0.0360 (5)
C560.77169 (13)0.36308 (10)0.42587 (8)0.0339 (5)
C570.66743 (13)0.37031 (10)0.39998 (8)0.0309 (4)
C57A0.62857 (12)0.44071 (9)0.39231 (7)0.0237 (4)
C670.32434 (12)0.45673 (9)0.42914 (7)0.0254 (4)
C610.23138 (12)0.49515 (9)0.39355 (7)0.0238 (4)
C620.23769 (13)0.56648 (9)0.37464 (8)0.0290 (4)
C630.15126 (13)0.60008 (10)0.34126 (8)0.0306 (4)
C640.05685 (13)0.56212 (9)0.32613 (7)0.0261 (4)
O640.02434 (9)0.59973 (7)0.29223 (5)0.0326 (3)
C6410.12521 (13)0.56373 (11)0.28044 (9)0.0393 (5)
C650.04849 (13)0.49101 (10)0.34445 (8)0.0284 (4)
C660.13585 (13)0.45838 (10)0.37796 (8)0.0275 (4)
H1120.25480.71810.18430.035*
H1130.30510.76840.28170.042*
H1140.18190.83420.33210.043*
H1150.00770.85010.28520.042*
H1160.04430.80000.18850.035*
H13A0.20660.82890.04790.068*
H13B0.11630.85390.00550.068*
H13C0.20370.79480.01990.068*
H13D0.20130.70680.09310.056*
H13E0.19790.67140.02580.056*
H13F0.10710.65180.06960.056*
H13G0.03170.74180.08940.078*
H13H0.02810.82130.06090.078*
H13I0.06120.79680.11490.078*
H140.05590.62880.00060.027*
H28A0.08220.61380.19910.028*
H28B0.15950.54540.19690.028*
H240.27020.44210.05710.038*
H250.36840.54870.05500.042*
H260.29280.65490.09700.042*
H270.11480.65900.14230.036*
H37A0.24160.58720.04950.030*
H37B0.16410.52360.06750.030*
H320.23950.42670.13390.031*
H330.38570.37280.19060.032*
H34A0.69700.47410.20140.051*
H34B0.71590.43090.26540.051*
H34C0.65070.50530.26190.051*
H350.55930.55530.17690.031*
H360.41260.60850.11930.030*
H4120.24530.30720.32410.035*
H4130.18390.26790.22430.040*
H4140.29170.19490.16950.039*
H4150.46370.16320.21280.036*
H4160.52830.20550.31080.033*
H43A0.54350.11720.49580.049*
H43B0.44130.13170.53240.049*
H43C0.55470.11230.56970.049*
H43D0.54380.22110.63300.056*
H43E0.43260.24560.59580.056*
H43F0.53310.29950.60190.056*
H43G0.68780.27900.54130.057*
H43H0.69320.20760.50030.057*
H43I0.70660.20200.57410.057*
H440.45540.36290.51420.028*
H58A0.45100.39460.31500.030*
H58B0.38720.46900.31830.030*
H540.84250.53300.44690.040*
H550.90850.41570.46090.043*
H560.80090.31600.43230.041*
H570.62400.32960.38790.037*
H67A0.38010.49230.44420.031*
H67B0.29940.43220.46550.031*
H620.30240.59270.38480.035*
H630.15670.64900.32880.037*
H64A0.11580.51920.25730.059*
H64B0.17640.59540.25620.059*
H64C0.15270.55190.31970.059*
H650.01620.46480.33420.034*
H660.13010.40950.39060.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0215 (7)0.0219 (8)0.0198 (7)0.0001 (6)0.0027 (6)0.0007 (6)
C1110.0264 (9)0.0196 (9)0.0200 (9)0.0046 (7)0.0013 (7)0.0008 (7)
C1120.0283 (9)0.0276 (11)0.0294 (10)0.0006 (8)0.0045 (8)0.0026 (8)
C1130.0368 (10)0.0314 (12)0.0337 (11)0.0029 (9)0.0160 (9)0.0014 (9)
C1140.0507 (12)0.0290 (11)0.0253 (10)0.0057 (9)0.0087 (9)0.0037 (9)
C1150.0413 (11)0.0360 (12)0.0279 (10)0.0005 (9)0.0034 (9)0.0073 (9)
C1160.0279 (9)0.0329 (11)0.0268 (10)0.0021 (8)0.0006 (8)0.0042 (8)
N120.0211 (7)0.0241 (8)0.0212 (7)0.0002 (6)0.0027 (6)0.0008 (6)
C130.0217 (8)0.0236 (10)0.0194 (9)0.0019 (7)0.0016 (7)0.0005 (8)
C1310.0306 (9)0.0256 (10)0.0202 (9)0.0028 (8)0.0019 (7)0.0004 (8)
C1320.0571 (13)0.0376 (13)0.0373 (11)0.0193 (10)0.0171 (10)0.0074 (10)
C1330.0379 (10)0.0339 (12)0.0369 (11)0.0025 (9)0.0161 (9)0.0041 (9)
C1340.0516 (13)0.0740 (17)0.0291 (11)0.0112 (12)0.0050 (10)0.0159 (11)
C140.0232 (8)0.0250 (10)0.0198 (9)0.0012 (7)0.0023 (7)0.0028 (8)
C150.0183 (8)0.0217 (10)0.0227 (9)0.0003 (7)0.0030 (7)0.0012 (8)
N150.0214 (7)0.0246 (8)0.0184 (7)0.0024 (6)0.0028 (6)0.0000 (6)
C280.0230 (8)0.0256 (10)0.0210 (9)0.0006 (7)0.0013 (7)0.0018 (8)
N210.0228 (7)0.0234 (8)0.0241 (8)0.0004 (6)0.0027 (6)0.0006 (6)
N220.0316 (8)0.0205 (8)0.0322 (8)0.0007 (7)0.0050 (7)0.0002 (7)
N230.0292 (8)0.0283 (9)0.0332 (8)0.0051 (7)0.0058 (7)0.0023 (7)
C23A0.0253 (9)0.0288 (11)0.0205 (9)0.0011 (8)0.0071 (7)0.0002 (8)
C240.0286 (9)0.0422 (12)0.0242 (10)0.0088 (9)0.0065 (8)0.0030 (9)
C250.0233 (9)0.0527 (14)0.0297 (10)0.0017 (10)0.0022 (8)0.0063 (10)
C260.0268 (10)0.0418 (13)0.0380 (11)0.0071 (9)0.0095 (8)0.0079 (10)
C270.0285 (10)0.0283 (11)0.0346 (10)0.0019 (8)0.0080 (8)0.0007 (9)
C27A0.0219 (8)0.0284 (11)0.0186 (9)0.0011 (8)0.0041 (7)0.0016 (8)
C370.0255 (9)0.0269 (10)0.0218 (9)0.0013 (7)0.0041 (7)0.0013 (8)
C310.0226 (9)0.0251 (10)0.0194 (9)0.0034 (7)0.0042 (7)0.0027 (8)
C320.0225 (9)0.0264 (11)0.0282 (10)0.0009 (8)0.0006 (7)0.0051 (8)
C330.0289 (9)0.0215 (10)0.0289 (10)0.0000 (8)0.0034 (8)0.0003 (8)
C340.0213 (8)0.0278 (10)0.0214 (9)0.0047 (8)0.0017 (7)0.0017 (8)
C3410.0228 (9)0.0452 (12)0.0325 (11)0.0030 (9)0.0003 (8)0.0012 (9)
O340.0239 (6)0.0336 (7)0.0340 (7)0.0034 (5)0.0006 (5)0.0028 (6)
C350.0207 (8)0.0306 (11)0.0274 (9)0.0033 (8)0.0029 (7)0.0015 (8)
C360.0270 (9)0.0238 (10)0.0259 (9)0.0005 (8)0.0060 (8)0.0010 (8)
N410.0242 (7)0.0221 (8)0.0195 (7)0.0023 (6)0.0011 (6)0.0002 (6)
C4110.0268 (9)0.0203 (9)0.0191 (9)0.0043 (7)0.0002 (7)0.0000 (7)
C4120.0261 (9)0.0338 (11)0.0273 (10)0.0003 (8)0.0013 (8)0.0026 (9)
C4130.0290 (9)0.0415 (12)0.0284 (10)0.0022 (9)0.0066 (8)0.0017 (9)
C4140.0419 (11)0.0326 (11)0.0213 (9)0.0092 (9)0.0024 (8)0.0026 (8)
C4150.0383 (10)0.0298 (11)0.0233 (9)0.0010 (9)0.0054 (8)0.0023 (8)
C4160.0302 (9)0.0259 (10)0.0253 (9)0.0012 (8)0.0028 (8)0.0014 (8)
N420.0253 (7)0.0248 (8)0.0202 (7)0.0040 (6)0.0012 (6)0.0024 (6)
C430.0195 (8)0.0287 (10)0.0209 (9)0.0014 (7)0.0026 (7)0.0005 (8)
C4310.0260 (9)0.0315 (11)0.0200 (9)0.0062 (8)0.0017 (7)0.0011 (8)
C4320.0366 (10)0.0348 (12)0.0267 (10)0.0056 (9)0.0003 (8)0.0046 (9)
C4330.0471 (11)0.0424 (12)0.0215 (9)0.0107 (10)0.0013 (8)0.0004 (9)
C4340.0278 (10)0.0460 (13)0.0377 (11)0.0025 (9)0.0064 (8)0.0068 (10)
C440.0227 (8)0.0266 (10)0.0202 (9)0.0035 (7)0.0007 (7)0.0047 (8)
C450.0185 (8)0.0219 (10)0.0240 (9)0.0017 (7)0.0028 (7)0.0002 (8)
N450.0251 (7)0.0234 (8)0.0212 (7)0.0051 (6)0.0039 (6)0.0018 (6)
C580.0276 (9)0.0265 (10)0.0212 (9)0.0018 (8)0.0010 (7)0.0001 (8)
N510.0258 (8)0.0237 (9)0.0255 (8)0.0005 (6)0.0041 (6)0.0004 (7)
N520.0366 (9)0.0241 (9)0.0282 (8)0.0014 (7)0.0041 (7)0.0013 (7)
N530.0345 (8)0.0289 (9)0.0312 (8)0.0029 (7)0.0027 (7)0.0027 (7)
C53A0.0309 (10)0.0283 (11)0.0216 (9)0.0012 (9)0.0075 (8)0.0025 (8)
C540.0332 (10)0.0388 (12)0.0295 (10)0.0047 (9)0.0054 (8)0.0065 (9)
C550.0258 (9)0.0487 (14)0.0333 (11)0.0014 (9)0.0027 (8)0.0003 (10)
C560.0283 (10)0.0331 (12)0.0414 (11)0.0070 (9)0.0089 (8)0.0030 (9)
C570.0250 (9)0.0302 (11)0.0387 (11)0.0002 (8)0.0093 (8)0.0018 (9)
C57A0.0230 (9)0.0268 (10)0.0221 (9)0.0026 (8)0.0063 (7)0.0010 (8)
C670.0250 (9)0.0266 (10)0.0250 (9)0.0034 (8)0.0040 (7)0.0039 (8)
C610.0255 (9)0.0237 (10)0.0229 (9)0.0047 (8)0.0055 (7)0.0016 (8)
C620.0274 (9)0.0261 (11)0.0338 (10)0.0012 (8)0.0041 (8)0.0030 (9)
C630.0339 (10)0.0216 (10)0.0369 (11)0.0020 (8)0.0069 (8)0.0025 (8)
C640.0253 (9)0.0315 (11)0.0222 (9)0.0082 (8)0.0064 (7)0.0037 (8)
O640.0280 (6)0.0380 (8)0.0316 (7)0.0092 (6)0.0026 (5)0.0061 (6)
C6410.0254 (10)0.0559 (14)0.0361 (11)0.0058 (9)0.0013 (8)0.0083 (10)
C650.0251 (9)0.0297 (11)0.0306 (10)0.0020 (8)0.0035 (8)0.0012 (9)
C660.0290 (9)0.0241 (10)0.0298 (10)0.0014 (8)0.0049 (8)0.0054 (8)
Geometric parameters (Å, º) top
N11—N121.3795 (17)N41—N421.3838 (18)
N12—C131.3290 (19)N42—C431.3315 (19)
C13—C141.408 (2)C43—C441.409 (2)
C14—C151.372 (2)C44—C451.371 (2)
C15—N111.369 (2)C45—N411.367 (2)
N11—C1111.4254 (19)N41—C4111.4297 (19)
C111—C1161.382 (2)C411—C4161.384 (2)
C111—C1121.387 (2)C411—C4121.385 (2)
C112—C1131.388 (2)C412—C4131.389 (2)
C112—H1120.95C412—H4120.95
C113—C1141.380 (2)C413—C4141.380 (2)
C113—H1130.95C413—H4130.95
C114—C1151.378 (2)C414—C4151.382 (2)
C114—H1140.95C414—H4140.95
C115—C1161.381 (2)C415—C4161.384 (2)
C115—H1150.95C415—H4150.95
C116—H1160.95C416—H4160.95
C13—C1311.516 (2)C43—C4311.515 (2)
C131—C1321.523 (2)C431—C4321.529 (2)
C131—C1331.527 (2)C431—C4331.534 (2)
C131—C1341.528 (2)C431—C4341.539 (2)
C132—H13A0.98C432—H43A0.98
C132—H13B0.98C432—H43B0.98
C132—H13C0.98C432—H43C0.98
C133—H13D0.98C433—H43D0.98
C133—H13E0.98C433—H43E0.98
C133—H13F0.98C433—H43F0.98
C134—H13G0.98C434—H43G0.98
C134—H13H0.98C434—H43H0.98
C134—H13I0.98C434—H43I0.98
C14—H140.95C44—H440.95
C15—N151.409 (2)C45—N451.400 (2)
N15—C281.4579 (19)N45—C581.4488 (19)
N15—C371.4805 (19)N45—C671.477 (2)
C28—N211.4635 (19)C58—N511.467 (2)
C28—H28A0.99C58—H58A0.99
C28—H28B0.99C58—H58B0.99
N21—N221.3655 (18)N51—N521.3629 (19)
N22—N231.3039 (18)N52—N531.3093 (18)
N23—C23A1.380 (2)N53—C53A1.382 (2)
C23A—C241.398 (2)C53A—C541.404 (2)
C24—C251.364 (2)C54—C551.372 (3)
C25—C261.403 (3)C55—C561.406 (2)
C26—C271.378 (2)C56—C571.372 (2)
C27—C27A1.398 (2)C57—C57A1.395 (2)
C27A—N211.3712 (19)C57A—N511.3705 (19)
C23A—C27A1.389 (2)C53A—C57A1.390 (2)
C24—H240.95C54—H540.95
C25—H250.95C55—H550.95
C26—H260.95C56—H560.95
C27—H270.95C57—H570.95
C37—C311.509 (2)C67—C611.506 (2)
C37—H37A0.99C67—H67A0.99
C37—H37B0.99C67—H67B0.99
C31—C361.387 (2)C61—C661.387 (2)
C31—C321.394 (2)C61—C621.388 (2)
C32—C331.380 (2)C62—C631.385 (2)
C32—H320.95C62—H620.95
C33—C341.388 (2)C63—C641.384 (2)
C33—H330.95C63—H630.95
C34—O341.3747 (18)C64—O641.3796 (19)
C34—C351.382 (2)C64—C651.383 (2)
C341—O341.4263 (19)O64—C6411.427 (2)
C341—H34A0.98C641—H64A0.98
C341—H34B0.98C641—H64B0.98
C341—H34C0.98C641—H64C0.98
C35—C361.388 (2)C65—C661.387 (2)
C35—H350.95C65—H650.95
C36—H360.95C66—H660.95
C15—N11—N12111.06 (12)C45—N41—N42111.23 (12)
C15—N11—C111130.30 (13)C45—N41—C411130.20 (13)
N12—N11—C111118.57 (13)N42—N41—C411118.18 (13)
C116—C111—C112120.42 (15)C416—C411—C412120.37 (15)
C116—C111—N11118.79 (14)C416—C411—N41118.83 (14)
C112—C111—N11120.75 (15)C412—C411—N41120.71 (15)
C111—C112—C113119.05 (16)C411—C412—C413119.29 (16)
C111—C112—H112120.5C411—C412—H412120.4
C113—C112—H112120.5C413—C412—H412120.4
C114—C113—C112120.69 (16)C414—C413—C412120.42 (16)
C114—C113—H113119.7C414—C413—H413119.8
C112—C113—H113119.7C412—C413—H413119.8
C115—C114—C113119.56 (16)C413—C414—C415120.00 (16)
C115—C114—H114120.2C413—C414—H414120.0
C113—C114—H114120.2C415—C414—H414120.0
C114—C115—C116120.57 (17)C414—C415—C416120.05 (16)
C114—C115—H115119.7C414—C415—H415120.0
C116—C115—H115119.7C416—C415—H415120.0
C115—C116—C111119.70 (16)C415—C416—C411119.85 (16)
C115—C116—H116120.1C415—C416—H416120.1
C111—C116—H116120.1C411—C416—H416120.1
C13—N12—N11104.73 (12)C43—N42—N41104.56 (13)
N12—C13—C14111.85 (14)N42—C43—C44111.68 (14)
N12—C13—C131120.92 (14)N42—C43—C431120.43 (15)
C14—C13—C131127.22 (15)C44—C43—C431127.84 (15)
C13—C131—C132110.32 (14)C43—C431—C432110.45 (13)
C13—C131—C133109.17 (14)C43—C431—C433109.57 (13)
C132—C131—C133109.17 (14)C432—C431—C433109.01 (14)
C13—C131—C134108.54 (13)C43—C431—C434108.43 (14)
C132—C131—C134110.36 (16)C432—C431—C434109.75 (14)
C133—C131—C134109.25 (15)C433—C431—C434109.61 (14)
C131—C132—H13A109.5C431—C432—H43A109.5
C131—C132—H13B109.5C431—C432—H43B109.5
H13A—C132—H13B109.5H43A—C432—H43B109.5
C131—C132—H13C109.5C431—C432—H43C109.5
H13A—C132—H13C109.5H43A—C432—H43C109.5
H13B—C132—H13C109.5H43B—C432—H43C109.5
C131—C133—H13D109.5C431—C433—H43D109.5
C131—C133—H13E109.5C431—C433—H43E109.5
H13D—C133—H13E109.5H43D—C433—H43E109.5
C131—C133—H13F109.5C431—C433—H43F109.5
H13D—C133—H13F109.5H43D—C433—H43F109.5
H13E—C133—H13F109.5H43E—C433—H43F109.5
C131—C134—H13G109.5C431—C434—H43G109.5
C131—C134—H13H109.5C431—C434—H43H109.5
H13G—C134—H13H109.5H43G—C434—H43H109.5
C131—C134—H13I109.5C431—C434—H43I109.5
H13G—C134—H13I109.5H43G—C434—H43I109.5
H13H—C134—H13I109.5H43H—C434—H43I109.5
C15—C14—C13105.26 (14)C45—C44—C43105.56 (14)
C15—C14—H14127.4C45—C44—H44127.2
C13—C14—H14127.4C43—C44—H44127.2
N11—C15—C14107.05 (14)N41—C45—C44106.94 (14)
N11—C15—N15121.01 (13)N41—C45—N45120.67 (14)
C14—C15—N15131.76 (15)C44—C45—N45132.38 (15)
C15—N15—C28112.94 (12)C45—N45—C58115.37 (12)
C15—N15—C37113.97 (12)C45—N45—C67115.34 (13)
C28—N15—C37114.00 (13)C58—N45—C67114.52 (13)
N15—C28—N21113.80 (12)N45—C58—N51114.17 (13)
N15—C28—H28A108.8N45—C58—H58A108.7
N21—C28—H28A108.8N51—C58—H58A108.7
N15—C28—H28B108.8N45—C58—H58B108.7
N21—C28—H28B108.8N51—C58—H58B108.7
H28A—C28—H28B107.7H58A—C58—H58B107.6
N22—N21—C27A109.71 (13)N52—N51—C57A109.99 (13)
N22—N21—C28118.97 (12)N52—N51—C58119.90 (13)
C27A—N21—C28130.68 (14)C57A—N51—C58130.10 (14)
N23—N22—N21109.03 (13)N53—N52—N51109.00 (13)
N22—N23—C23A108.07 (13)N52—N53—C53A107.81 (14)
N23—C23A—C27A109.01 (14)N53—C53A—C57A109.13 (14)
N23—C23A—C24129.81 (16)N53—C53A—C54130.11 (16)
C27A—C23A—C24121.18 (16)C57A—C53A—C54120.76 (16)
C25—C24—C23A117.06 (17)C55—C54—C53A117.08 (17)
C25—C24—H24121.5C55—C54—H54121.5
C23A—C24—H24121.5C53A—C54—H54121.5
C24—C25—C26121.63 (16)C54—C55—C56121.49 (16)
C24—C25—H25119.2C54—C55—H55119.3
C26—C25—H25119.2C56—C55—H55119.3
C27—C26—C25122.18 (17)C57—C56—C55122.06 (17)
C27—C26—H26118.9C57—C56—H56119.0
C25—C26—H26118.9C55—C56—H56119.0
C26—C27—C27A115.98 (17)C56—C57—C57A116.41 (17)
C26—C27—H27122.0C56—C57—H57121.8
C27A—C27—H27122.0C57A—C57—H57121.8
N21—C27A—C23A104.17 (14)N51—C57A—C53A104.07 (14)
N21—C27A—C27133.85 (16)N51—C57A—C57133.73 (16)
C23A—C27A—C27121.95 (15)C53A—C57A—C57122.19 (15)
N15—C37—C31111.47 (12)N45—C67—C61110.37 (13)
N15—C37—H37A109.3N45—C67—H67A109.6
C31—C37—H37A109.3C61—C67—H67A109.6
N15—C37—H37B109.3N45—C67—H67B109.6
C31—C37—H37B109.3C61—C67—H67B109.6
H37A—C37—H37B108.0H67A—C67—H67B108.1
C36—C31—C32117.81 (15)C66—C61—C62117.98 (15)
C36—C31—C37119.96 (15)C66—C61—C67119.56 (15)
C32—C31—C37122.23 (14)C62—C61—C67122.45 (15)
C33—C32—C31121.17 (15)C63—C62—C61121.12 (16)
C33—C32—H32119.4C63—C62—H62119.4
C31—C32—H32119.4C61—C62—H62119.4
C32—C33—C34120.02 (16)C64—C63—C62119.77 (17)
C32—C33—H33120.0C64—C63—H63120.1
C34—C33—H33120.0C62—C63—H63120.1
C33—C34—O34115.70 (15)C63—C64—O64115.66 (16)
C35—C34—O34124.44 (14)C65—C64—O64124.11 (15)
C34—O34—C341116.83 (13)C64—O64—C641116.64 (14)
C35—C34—C33119.86 (15)C65—C64—C63120.23 (15)
O34—C341—H34A109.5O64—C641—H64A109.5
O34—C341—H34B109.5O64—C641—H64B109.5
H34A—C341—H34B109.5H64A—C641—H64B109.5
O34—C341—H34C109.5O64—C641—H64C109.5
H34A—C341—H34C109.5H64A—C641—H64C109.5
H34B—C341—H34C109.5H64B—C641—H64C109.5
C34—C35—C36119.49 (15)C64—C65—C66119.12 (16)
C34—C35—H35120.3C64—C65—H65120.4
C36—C35—H35120.3C66—C65—H65120.4
C31—C36—C35121.64 (16)C61—C66—C65121.76 (16)
C31—C36—H36119.2C61—C66—H66119.1
C35—C36—H36119.2C65—C66—H66119.1
C15—N11—C111—C116148.43 (16)C45—N41—C411—C416143.97 (17)
N12—N11—C111—C11634.6 (2)N42—N41—C411—C41643.9 (2)
C15—N11—C111—C11233.7 (2)C45—N41—C411—C41239.5 (2)
N12—N11—C111—C112143.20 (15)N42—N41—C411—C412132.59 (15)
C116—C111—C112—C1130.9 (3)C416—C411—C412—C4130.1 (3)
N11—C111—C112—C113178.68 (15)N41—C411—C412—C413176.38 (15)
C111—C112—C113—C1140.5 (3)C411—C412—C413—C4141.1 (3)
C112—C113—C114—C1150.1 (3)C412—C413—C414—C4151.0 (3)
C113—C114—C115—C1160.3 (3)C413—C414—C415—C4160.2 (3)
C114—C115—C116—C1110.1 (3)C414—C415—C416—C4111.4 (3)
C112—C111—C116—C1150.7 (3)C412—C411—C416—C4151.3 (3)
N11—C111—C116—C115178.55 (15)N41—C411—C416—C415175.22 (15)
C15—N11—N12—C131.73 (16)C45—N41—N42—C431.48 (16)
C111—N11—N12—C13175.77 (13)C411—N41—N42—C43172.04 (13)
N11—N12—C13—C140.70 (17)N41—N42—C43—C441.00 (17)
N11—N12—C13—C131179.86 (13)N41—N42—C43—C431178.62 (13)
N12—C13—C131—C13213.3 (2)N42—C43—C431—C43235.5 (2)
C14—C13—C131—C132166.06 (16)C44—C43—C431—C432147.28 (16)
N12—C13—C131—C133133.26 (16)N42—C43—C431—C433155.62 (15)
C14—C13—C131—C13346.1 (2)C44—C43—C431—C43327.2 (2)
N12—C13—C131—C134107.74 (18)N42—C43—C431—C43484.78 (19)
C14—C13—C131—C13472.9 (2)C44—C43—C431—C43492.43 (19)
N12—C13—C14—C150.54 (18)N42—C43—C44—C450.19 (18)
C131—C13—C14—C15178.86 (15)C431—C43—C44—C45177.60 (15)
N12—N11—C15—C142.11 (17)N42—N41—C45—C441.40 (17)
C111—N11—C15—C14175.01 (15)C411—N41—C45—C44171.12 (15)
N12—N11—C15—N15173.63 (13)N42—N41—C45—N45177.67 (12)
C111—N11—C15—N159.3 (2)C411—N41—C45—N459.8 (2)
C13—C14—C15—N111.57 (17)C43—C44—C45—N410.72 (17)
C13—C14—C15—N15173.53 (15)C43—C44—C45—N45178.19 (15)
N11—C15—N15—C2865.91 (18)N41—C45—N45—C5863.80 (19)
C14—C15—N15—C28108.62 (19)C44—C45—N45—C58114.99 (19)
C14—C15—N15—C3723.6 (2)C44—C45—N45—C6722.1 (2)
C15—N15—C28—N2165.98 (17)C45—N45—C58—N5170.54 (18)
N15—C28—N21—N2291.31 (17)C67—N45—C58—N5166.92 (17)
N11—C15—N15—C37161.90 (13)N45—C58—N51—N52103.19 (17)
C37—N15—C28—N2166.20 (16)N41—C45—N45—C67159.09 (13)
N15—C28—N21—C27A78.6 (2)N45—C58—N51—C57A76.5 (2)
C27A—N21—N22—N231.04 (17)C57A—N51—N52—N530.29 (18)
C28—N21—N22—N23172.89 (13)C58—N51—N52—N53179.98 (13)
N21—N22—N23—C23A0.66 (17)N51—N52—N53—C53A0.24 (17)
N22—N23—C23A—C27A0.05 (18)N52—N53—C53A—C57A0.12 (18)
N22—N23—C23A—C24179.92 (16)N52—N53—C53A—C54179.61 (16)
N23—C23A—C24—C25179.51 (16)N53—C53A—C54—C55179.54 (17)
C27A—C23A—C24—C250.3 (2)C57A—C53A—C54—C550.1 (2)
C23A—C24—C25—C260.4 (2)C53A—C54—C55—C560.1 (3)
C24—C25—C26—C270.4 (3)C54—C55—C56—C570.2 (3)
C25—C26—C27—C27A0.3 (2)C55—C56—C57—C57A0.6 (3)
N22—N21—C27A—C23A0.96 (16)N52—N51—C57A—C53A0.20 (17)
C28—N21—C27A—C23A171.54 (15)C58—N51—C57A—C53A179.91 (15)
N22—N21—C27A—C27178.86 (17)N52—N51—C57A—C57179.22 (18)
C28—N21—C27A—C2710.6 (3)C58—N51—C57A—C571.1 (3)
N23—C23A—C27A—N210.56 (17)N53—C53A—C57A—N510.06 (17)
C24—C23A—C27A—N21179.33 (14)C54—C53A—C57A—N51179.49 (14)
N23—C23A—C27A—C27178.77 (15)N53—C53A—C57A—C57179.22 (15)
C24—C23A—C27A—C271.1 (2)C54—C53A—C57A—C570.3 (2)
C26—C27—C27A—N21178.67 (16)C56—C57—C57A—N51179.56 (17)
C26—C27—C27A—C23A1.1 (2)C56—C57—C57A—C53A0.7 (2)
C15—N15—C37—C31160.59 (13)C45—N45—C67—C61149.29 (14)
C28—N15—C37—C3167.73 (16)C58—N45—C67—C6173.24 (16)
N15—C37—C31—C3677.49 (18)N45—C67—C61—C6671.20 (19)
N15—C37—C31—C32101.72 (18)N45—C67—C61—C62107.87 (17)
C36—C31—C32—C330.3 (2)C66—C61—C62—C630.1 (2)
C37—C31—C32—C33178.96 (14)C67—C61—C62—C63179.15 (15)
C31—C32—C33—C340.4 (2)C61—C62—C63—C640.2 (3)
C32—C33—C34—O34179.74 (14)C62—C63—C64—O64179.27 (14)
C32—C33—C34—C350.8 (2)C62—C63—C64—C650.3 (2)
C35—C34—O34—C3412.0 (2)C65—C64—O64—C6415.4 (2)
C33—C34—O34—C341178.53 (14)C63—C64—O64—C641175.03 (14)
O34—C34—C35—C36179.89 (14)O64—C64—C65—C66179.37 (14)
C33—C34—C35—C360.5 (2)C63—C64—C65—C660.1 (2)
C32—C31—C36—C350.6 (2)C62—C61—C66—C650.1 (2)
C37—C31—C36—C35178.66 (14)C67—C61—C66—C65179.03 (15)
C34—C35—C36—C310.2 (2)C64—C65—C66—C610.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N23i0.952.613.531 (2)162
C28—H28A···O640.992.553.273 (3)129
C58—H58A···O340.992.643.252 (3)120
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H25N3OC28H30N6O
Mr335.44466.58
Crystal system, space groupTetragonal, P43212Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)10.9665 (14), 10.9665 (14), 30.796 (6)12.5184 (2), 18.5142 (5), 21.7580 (5)
α, β, γ (°)90, 90, 9090, 96.0730 (15), 90
V3)3703.7 (10)5014.5 (2)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.52 × 0.28 × 0.080.28 × 0.16 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.940, 0.9940.966, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
77731, 2521, 1840 55879, 11492, 7071
Rint0.0960.077
(sin θ/λ)max1)0.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.120, 1.05 0.059, 0.113, 1.03
No. of reflections252111492
No. of parameters230639
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.240.19, 0.24
Absolute structureFriedel pairs merged?

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), DENZO (Otwinowski & Minor, 1997) and COLLECT, EVALCCD (Duisenberg et al., 2003), DENZO and COLLECT, Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N11—N121.380 (3)C14—C151.383 (4)
N12—C131.331 (3)C15—N111.371 (3)
C13—C141.414 (4)
C33—C34—O34115.3 (3)C34—O34—C341118.4 (3)
C35—C34—O34124.1 (3)
C33—C34—O34—C341174.1 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C33—H33···N12i0.952.473.398 (4)166
Symmetry code: (i) x, y1, z.
Selected geometric parameters (Å, º) for (II) top
N11—N121.3795 (17)N41—N421.3838 (18)
N12—C131.3290 (19)N42—C431.3315 (19)
C13—C141.408 (2)C43—C441.409 (2)
C14—C151.372 (2)C44—C451.371 (2)
C15—N111.369 (2)C45—N411.367 (2)
N21—N221.3655 (18)N51—N521.3629 (19)
N22—N231.3039 (18)N52—N531.3093 (18)
N23—C23A1.380 (2)N53—C53A1.382 (2)
C23A—C241.398 (2)C53A—C541.404 (2)
C24—C251.364 (2)C54—C551.372 (3)
C25—C261.403 (3)C55—C561.406 (2)
C26—C271.378 (2)C56—C571.372 (2)
C27—C27A1.398 (2)C57—C57A1.395 (2)
C27A—N211.3712 (19)C57A—N511.3705 (19)
C23A—C27A1.389 (2)C53A—C57A1.390 (2)
C15—N15—C28112.94 (12)C45—N45—C58115.37 (12)
C15—N15—C37113.97 (12)C45—N45—C67115.34 (13)
C28—N15—C37114.00 (13)C58—N45—C67114.52 (13)
C33—C34—O34115.70 (15)C63—C64—O64115.66 (16)
C35—C34—O34124.44 (14)C65—C64—O64124.11 (15)
C34—O34—C341116.83 (13)C64—O64—C641116.64 (14)
N12—N11—C111—C112143.20 (15)N42—N41—C411—C412132.59 (15)
N12—C13—C131—C13213.3 (2)N42—C43—C431—C43235.5 (2)
N11—C15—N15—C2865.91 (18)N41—C45—N45—C5863.80 (19)
C15—N15—C28—N2165.98 (17)C45—N45—C58—N5170.54 (18)
N15—C28—N21—N2291.31 (17)N45—C58—N51—N52103.19 (17)
N11—C15—N15—C37161.90 (13)N41—C45—N45—C67159.09 (13)
C15—N15—C37—C31160.59 (13)C45—N45—C67—C61149.29 (14)
N15—C37—C31—C32101.72 (18)N45—C67—C61—C62107.87 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N23i0.952.613.531 (2)162
C28—H28A···O640.992.553.273 (3)129
C58—H58A···O340.992.643.252 (3)120
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

X-ray data for compound (I) were collected at `Servicios Técnicos de Investigación' of the Universidad de Jaén, Spain, and for compound (II) at the EPSRC National Crystallography Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. RA and ER thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support and RA thanks AUIP for supporting a research trip.

References

First citationBernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKatritzky, A. R., Lan, X., Yang, J. Z. & Denisko, O. V. (1998). Chem. Rev. 98, 409–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. & Insuasty, B. (2002). Acta Cryst. C58, o298–o300.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds