Comment
Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997). In particular, N-substituted imidazoles (Khabnadideh et al., 2003) have been found to exhibit a variety of pharmacological properties, including antiparasitic, antifungal and antimicrobial properties (Gangneux et al., 1999; Gupta et al., 2004; Foroumadi et al., 2005). In continuation of our studies on agents having inhibitory activity against Mycobacterium tuberculosis and anti-leishmanicidal activity (Costa et al., 2006), we have prepared a series of ethyl 5-amino-1-aryl-1H-imidazole-4-carboxylates, and report here the structures of three such compounds, namely ethyl 5-amino-1-(4-cyanophenyl)-1H-imidazole-4-carboxylate, (I) (Fig. 1), ethyl 5-amino-1-(4-chlorophenyl)-1H-imidazole-4-carboxylate, (II) (Fig. 2), and lastly ethyl 5-amino-1-(2,6-difluorophenyl)-1H-imidazole-4-carboxylate, (III) (Fig. 3), where small changes in the substituents on the aryl ring lead to significant changes in the supramolecular structures.
In each of compounds (I)–(III), the two rings are far from being coplanar; the dihedral angles between the rings are 40.4 (2), 48.0 (2) and 56.9 (2)° in (I)–(III), respectively. However, the principal point of interest in the conformations concerns the ester portion of the molecules. In each compound, there is a short intramolecular N—H⋯O hydrogen bond (Tables 1–3) and this may control the conformation of the carboxyl fragment, which is, in each case, almost coplanar with the imidazole ring, as shown by the torsion angles (Table 4). However, while in compounds (I) and (III) it is carbonyl atom O41 that participates in the intramolecular hydrogen bond, in compound (II) it is ethoxy atom O42. Similarly, the ethoxycarbonyl groups in compounds (I) and (III) adopt a nearly planar conformation, while in compound (II), where this fragment is disordered over two sets of sites with equal occupancy, neither conformation of this group is even close to planarity (Table 4). Apart from the long C14—C141 bond and the short C141—N14 bond characteristic of nitriles, as found in compound (I), none of the other bond distances presents any unusual features.
The molecules of compound (I) are linked by a combination of N—H⋯N and C—H⋯N hydrogen bonds (Table 1) into chains of edge-fused rings. Atoms N5 and C15 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to N3 in the molecule at (1 + x, y, z) and N14 in the molecule at (2 − x, 1 − y, −z), so forming a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(10) (Bernstein et al., 1995) rings centred at (n, , 0) (where n is zero or an integer) and R44(34) rings centred at (n + , , 0) (where n is zero or an integer) (Fig. 4). There are no direction-specific interactions between the chains, so the supramolecular structure of compound (I) is one-dimensional.
The supramolecular structure of compound (II) takes the form of sheets generated by a combination of N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 2), and the formation of the sheet is readily analysed in terms of two distinct low-dimensional substructures. The simpler of these substructures is a finite (zero-dimensional) dimer motif; atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (1 − x, −y, 1 − z), so generating by inversion an R22(12) dimer centred at (, 0, ) (Fig. 5). In the second substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H5A and H5B, respectively, to atoms O41 and N3, both in the molecule at (x, − y, + z), so forming a C(5)C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = . At the same time, atom C2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C11–C16 ring in the molecule at (x, − y, − + z), so both reinforcing and adding complexity to the [001] chain (Fig. 6). Propagation by the space group of this chain motif then directly links the dimer centred at (, 0, ) to those centred at (, −, 0), (, −, 1), (, , 0) and (, , 1), so generating a rather complex sheet lying parallel to (100) (Fig. 7). However, there are no direction-specific interactions between adjacent sheets, so that the supramolecular structure of compound (II) is two-dimensional.
There are only two hydrogen bonds (Table 3) in the structure of compound (III), but as propagated by the space group they link all the molecules into a single three-dimensional framework, whose formation is readily analysed in terms of simple one-dimensional substructures. In the first substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (x, 1 − y, + z), so forming a C(5) chain running parallel to the [001] direction and generated by the c-glide plane at y = (Fig. 8). The second substructure is built using the C—H⋯O hydrogen bond, where atom C2 in the molecule at (x, y, z) acts as donor to carbonyl atom O41 in the molecule at ( + x, − + y, z), so generating by translation a C(6) chain running parallel to the [10] direction (Fig. 9). The action of the c-glide plane upon the chain along [10] generates an identical C(6) chain, this time running parallel to the [110] direction. Successive [110] and [10] chains are linked by the [001] chain, and the combination of these three chain motifs is thus sufficient to generate a continuous three-dimensional structure.
Accordingly, the supramolecular structures of compounds (I), (II) and (III) are, respectively, one-, two- and three-dimensional.
| Figure 1 A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
| Figure 2 A molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; for the sake of clarity, only one orientation of the disordered ethyl group is shown. |
| Figure 3 A molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
| Figure 4 A stereoview of part of the crystal structure of compound (I), showing the formation of a chain of hydrogen-bonded R22(10) and R44(34) rings along [100]. For the sake of clarity, H atoms bonded to C atoms and not involved in the motifs shown have been omitted. |
| Figure 5 Part of the crystal structure of compound (II), showing the formation of an R22(12) dimer centred at (, 0, ). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z). |
| Figure 6 Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain along [001]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, − y, + z) and (x, − y, − + z), respectively. |
| Figure 7 A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet parallel to (100). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. |
| Figure 8 Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(5) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, − y, + z) and (x, − y, − + z), respectively. |
| Figure 9 Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(6) chain along [10]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ( + x, − + y, z) and (− + x, − + y, z), respectively. |
Experimental
The title compounds were obtained following a published procedure (Shaw et al., 1980). A solution of ethyl 2-amino-2-cyanoacetate (0.0273 mol) and triethyl orthoformate (0.0273 mol) in acetonitrile (15 ml) was stirred at room temperature for 5 min and the appropriate aniline [4-cyanoaniline for (I), 4-chloroaniline for (II) and 2,6-difluoroaniline for (III)] (0.0273 mol) was then added. The reaction mixtures were heated under reflux for 4 h; after cooling the mixtures, the solid products were collected by filtration, washed with cold acetonitrile and recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction. Compound (I): yield 65%; m.p. 516–518 K; IR (KBr disk, cm−1): 3426 (NH2), 2231 (CN), 1669 (C=O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 5.99 (s, NH2), 7.36 (s, imidazole CH), 7.45 (d, J = 8.0 Hz), 7.76 (d, J = 8.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 121.3 (CN), 127.1, 130.9, 133.4, 132.6, 145.7, 163.7 (C=O); MS (m/z, %): 256 (60, M+), 210 [82, (M − 46)+], 184 [30, (M − 72)+], 129 [100 (M − 127)+], 102 [70 (M − 154)+]. Compound (II): yield 70%; m.p. 522–524 K; IR (KBr disk, cm−1): 3437 (NH2), 1696 (C=O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 6.02 (s, NH2), 7.36 (s, imidazole CH), 7.52 (dd, J = 3.0 and 9.0 Hz), 7.64 (dd, J = 3.0 and 9.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 126.9, 129.7, 131.0, 132.8, 133.0, 145.8, 163.7 (C=O); MS (m/z, %): 219 [82 (M − 46)+], 193 [30 (M − 72)+], 138 [100 (M − 127)+], 111 [76 (M − 154)+]. Compound (III): yield 65%; m.p. 529–531 K; IR (KBr disk, cm−1): 3417 (NH2), 1675 (C=O); NMR (DMSO-d6): δ(H) 1.27 (t, CH3, J = 6.5 Hz), 4.20 (q, CH2, J = 6.0 Hz), 6.20 (s, NH2), 7.32 (s, imidazole CH), 7.39 (dd, J = 8.0, 8.5 Hz), 7.66 (dd, J = 6.5, 7.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 108.4, 110.8 [t, 2J(CF) = 17.2 Hz], 112.7 [d, 2J(CF) = 19.7 Hz], 131.9 [t, 3J(CF) = 10.3 Hz], 131.2, 146.9, 158.0 [d, 1J(CF) = 250.1 Hz], 163.5 (C=O); MS (m/z, %): 267 (60, M+), 221 [34 (M − 46)+], 202 [70 (M − 65)+], 195 [24 (M − 72)+], 140 [100 (M − 127)+], 113 [18 (M − 154)+].
Compound (I)
Crystal data
C13H12N4O2 Mr = 256.27 Triclinic, a = 6.3212 (5) Å b = 9.4121 (11) Å c = 10.2496 (12) Å α = 90.311 (5)° β = 94.183 (7)° γ = 92.946 (7)° V = 607.35 (11) Å3 Z = 2 Dx = 1.401 Mg m−3 Mo Kα radiation μ = 0.10 mm−1 T = 120 (2) K Needle, colourless 0.64 × 0.04 × 0.03 mm
|
Data collection
Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) Tmin = 0.946, Tmax = 0.997 11051 measured reflections 2688 independent reflections 1720 reflections with I > 2σ(I) Rint = 0.079 θmax = 27.6°
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N5—H5A⋯O41 | 0.90 | 2.21 | 2.866 (2) | 129 | N5—H5B⋯N3i | 0.90 | 2.22 | 3.073 (2) | 158 | C15—H15⋯N14ii | 0.95 | 2.52 | 3.397 (3) | 154 | Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z. | |
Compound (II)
Crystal data
C12H12ClN3O2 Mr = 265.70 Monoclinic, P 21 /c a = 13.1153 (6) Å b = 8.7114 (4) Å c = 11.5273 (4) Å β = 107.064 (3)° V = 1259.05 (9) Å3 Z = 4 Dx = 1.402 Mg m−3 Mo Kα radiation μ = 0.30 mm−1 T = 120 (2) K Plate, colourless 0.48 × 0.32 × 0.08 mm
|
Data collection
Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) Tmin = 0.869, Tmax = 0.976 17524 measured reflections 2864 independent reflections 2210 reflections with I > 2σ(I) Rint = 0.042 θmax = 27.5°
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N5—H5A⋯O42 | 0.90 | 2.24 | 2.834 (2) | 123 | N5—H5A⋯O41i | 0.90 | 2.51 | 3.071 (2) | 121 | N5—H5B⋯N3i | 0.90 | 2.09 | 2.952 (2) | 161 | C12—H12⋯N3ii | 0.95 | 2.59 | 3.462 (3) | 153 | C2—H2⋯Cgiii | 0.95 | 2.78 | 3.500 (2) | 133 | Symmetry codes: (i) ; (ii) -x+1, -y, -z+1; (iii) . | |
Compound (III)
Crystal data
C12H11F2N3O2 Mr = 267.24 Monoclinic, C c a = 7.9045 (4) Å b = 12.9950 (7) Å c = 11.7737 (5) Å β = 98.810 (4)° V = 1195.11 (10) Å3 Z = 4 Dx = 1.485 Mg m−3 Mo Kα radiation μ = 0.12 mm−1 T = 120 (2) K Block, colourless 0.35 × 0.17 × 0.12 mm
|
Data collection
Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) Tmin = 0.966, Tmax = 0.985 8086 measured reflections 1362 independent reflections 1175 reflections with I > 2σ(I) Rint = 0.053 θmax = 27.4°
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N5—H5A⋯O41 | 0.88 | 2.30 | 2.903 (3) | 125 | N5—H5B⋯N3i | 0.88 | 2.07 | 2.946 (3) | 173 | C2—H2⋯O41ii | 0.95 | 2.23 | 3.175 (3) | 176 | Symmetry codes: (i) ; (ii) . | |
| (I) | (II) | (III) | N3—C4—C41—O41 | 179.3 (2) | 3.6 (3) | −177.6 (2) | N3—C4—C41—O42 | −2.6 (3) | −176.39 (17) | 2.2 (3) | C4—C41—O42—C42 | −179.12 (18) | −171.1 (2) | −179.5 (2) | C4—C41—O42—C42A | – | 164.8 (3) | – | C41—O42—C42—C43 | 161.84 (18) | −99.3 (3) | −171.2 (2) | C41—O42—C42A—C43A | – | −155.7 (4) | – | Note: in compound (II), the ethyl group is disordered over two sets of sites (see Comment). | |
Crystals of compound (I) are triclinic; the space group P was selected and subsequently confirmed by the structure analysis. For compound (II), the space group P21/c was uniquely assigned from the systematic absences. For compound (III), the systematic absences permitted Cc and C2/c as possible space groups; Cc was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). It was apparent from an early stage that the ethyl group in compound (II) was disordered over two sets of sites; refinement of the site-occupancy factors gave values which were experimentally indistinguishable from 0.5, and consequently these factors were thereafter fixed at 0.5. In the absence of significant resonant scattering, it was not possible to establish the correct orientation of the structure of compound (III) with respect to the polar-axis directions; accordingly, the Friedel equivalent reflections were merged prior to the final refinements.
For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
The title compounds were obtained following a published procedure (Shaw et al., 1980). A solution of ethyl 2-amino-2-cyanoacetate (0.0273 mol) and triethyl orthoformate (0.0273 mol) in acetonitrile (15 ml) was stirred at room temperature for 5 min and the appropriate aniline [4-cyanoaniline for (I), 4-chloroaniline for (II) and 2,6-difluoroaniline for (III)] (0.0273 mol) was then added. The reaction mixtures were heated under reflux for 4 h; after cooling the mixtures, the solid products were collected by filtration, washed with cold acetonitrile and recrystallized from ethanol to give crystal suitable for single-crystal X-ray diffraction. Compound (I): yield 65%, m.p. 516–518 K; IR (KBr disk, cm−1): 3426 (NH2), 2231 (CN), 1669 (C═O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 5.99 (s, NH2), 7.36 (s, imidazole CH), 7.45 (d, J = 8.0 Hz), 7.76 (d, J = 8.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 121.3 (CN), 127.1, 130.9, 133.4, 132.6, 145.7, 163.7 (C═O); MS (m/z, %): 256 (60, M+), 210 [82, (M-46)+], 184 [30, (M-72)+], 129 [100 (M– 127)+], 102 [70 (M-154)+]. Compound (II): yield 70%, m.p. 522–524 K; IR (KBr disk, cm−1): 3437 (NH2), 1696 (C═O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 6.02 (s, NH2), 7.36 (s, imidazole CH), 7.52 (dd, J = 3.0, 9.0 Hz), 7.64 (dd, J = 3.0, 9.0 Hz); δ(C): 14.5 (CH3), 58.5 (CH2), 109.6, 126.9, 129.7, 131.0, 132.8, 133.0, 145.8, 163.7 (C═O); MS (m/z, %) 219 [82 (M-46)+], 193 [30 (M-72)+], 138 [100 (M-127)+], 111 [76 (M– 154)+]. Compound (III): yield 65%, m.p. 529–531 K; IR (KBr disk, cm−1): 3417 (NH2), 1675 (C═O); NMR (DMSO-d6): δ(H) 1.27 (t, CH3, J = 6.5 Hz), 4.20 (q, CH2, J = 6.0 Hz), 6.20 (s, NH2), 7.32 (s, imidazole CH), 7.39 (dd, J = 8.0, 8.5 Hz), 7.66 (dd, J = 6.5, 7.0 Hz); δ(C): 14.5 (CH3), 58.5 (CH2), 108.4, 110.8 [t, 2J(CF) = 17.2 Hz], 112.7 [d, 2J(CF) = 19.7 Hz], 131.9 [t, 3J(CF) = 10.3 Hz], 131.2, 146.9, 158.0 [d, 1J(CF) = 250.1 Hz), 163.5 (C═O); MS (m/z, %) 267 (60, M+), 221 [34 (M-46)+], 202 [70 (M-65)+], 195 [24 (M-72)+], 140 [100 (M– 127)+], 113 [18 (M– 154)+].
Crystals of compound (I) are triclinic; the space group P1 was selected and subsequently confirmed by the structure analysis. For compound (II), the space group P21/c was uniquely assigned from the systematic absences. For compound (III), the systematic absences permitted Cc and C2/c as possible space groups; Cc was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms with C—H distances of 0.95 Å (aromatic and heteroaromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and N—H distances of 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). It was apparent from an early stage that the ethyl group in compound (II) was disordered over two sets of sites; refinement of the site-occupancy factors gave values which were experimentally indistinguishable from 1/2, and consequently these factors were thereafter fixed at 0.5. In the absence of significant resonant scattering, it was not possible to establish the correct orientation of the structure of compound (III) with respect to the polar axis directions; accordingly, the Friedel equivalent reflections were merged prior to the final refinements.
For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
(I) ethyl 5-amino-1-(4-cyanophenyl)-1
H-imidazole-4-carboxylate
top Crystal data top C13H12N4O2 | Z = 2 |
Mr = 256.27 | F(000) = 268 |
Triclinic, P1 | Dx = 1.401 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3212 (5) Å | Cell parameters from 2688 reflections |
b = 9.4121 (11) Å | θ = 3.2–27.6° |
c = 10.2496 (12) Å | µ = 0.10 mm−1 |
α = 90.311 (5)° | T = 120 K |
β = 94.183 (7)° | Needle, colourless |
γ = 92.946 (7)° | 0.64 × 0.04 × 0.03 mm |
V = 607.35 (11) Å3 | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 2688 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 1720 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.2° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −12→12 |
Tmin = 0.946, Tmax = 0.997 | l = −13→13 |
11051 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0736P)2 + 0.0026P] where P = (Fo2 + 2Fc2)/3 |
2688 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Crystal data top C13H12N4O2 | γ = 92.946 (7)° |
Mr = 256.27 | V = 607.35 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.3212 (5) Å | Mo Kα radiation |
b = 9.4121 (11) Å | µ = 0.10 mm−1 |
c = 10.2496 (12) Å | T = 120 K |
α = 90.311 (5)° | 0.64 × 0.04 × 0.03 mm |
β = 94.183 (7)° | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 2688 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1720 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.997 | Rint = 0.079 |
11051 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.25 e Å−3 |
2688 reflections | Δρmin = −0.28 e Å−3 |
173 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O41 | 0.2434 (2) | 0.01631 (16) | 0.69543 (15) | 0.0333 (4) | |
O42 | −0.0923 (2) | 0.08389 (15) | 0.70768 (14) | 0.0278 (4) | |
N1 | 0.2612 (2) | 0.32789 (18) | 0.40492 (17) | 0.0239 (4) | |
N3 | −0.0421 (3) | 0.27643 (18) | 0.49852 (18) | 0.0268 (4) | |
N5 | 0.4953 (3) | 0.16377 (18) | 0.51255 (18) | 0.0294 (5) | |
N14 | 0.8987 (3) | 0.6796 (2) | −0.0046 (2) | 0.0411 (5) | |
C2 | 0.0487 (3) | 0.3558 (2) | 0.4137 (2) | 0.0265 (5) | |
C4 | 0.1169 (3) | 0.1903 (2) | 0.5512 (2) | 0.0242 (5) | |
C5 | 0.3047 (3) | 0.2205 (2) | 0.4931 (2) | 0.0238 (5) | |
C11 | 0.3986 (3) | 0.3979 (2) | 0.3183 (2) | 0.0237 (5) | |
C12 | 0.3832 (3) | 0.5438 (2) | 0.3006 (2) | 0.0270 (5) | |
C13 | 0.5118 (3) | 0.6140 (2) | 0.2157 (2) | 0.0296 (5) | |
C14 | 0.6547 (3) | 0.5396 (2) | 0.1489 (2) | 0.0260 (5) | |
C15 | 0.6686 (3) | 0.3932 (2) | 0.1663 (2) | 0.0276 (5) | |
C16 | 0.5404 (3) | 0.3222 (2) | 0.2512 (2) | 0.0248 (5) | |
C41 | 0.0973 (3) | 0.0889 (2) | 0.6555 (2) | 0.0257 (5) | |
C42 | −0.1120 (3) | −0.0169 (2) | 0.8145 (2) | 0.0298 (5) | |
C43 | −0.2963 (3) | 0.0227 (2) | 0.8891 (2) | 0.0330 (6) | |
C141 | 0.7914 (3) | 0.6162 (2) | 0.0626 (2) | 0.0304 (5) | |
H2 | −0.0223 | 0.4255 | 0.3630 | 0.032* | |
H5A | 0.4992 | 0.0963 | 0.5744 | 0.035* | |
H5B | 0.6148 | 0.2110 | 0.4906 | 0.035* | |
H12 | 0.2852 | 0.5945 | 0.3464 | 0.032* | |
H13 | 0.5025 | 0.7135 | 0.2031 | 0.036* | |
H15 | 0.7660 | 0.3424 | 0.1200 | 0.033* | |
H16 | 0.5492 | 0.2227 | 0.2636 | 0.030* | |
H42A | 0.0200 | −0.0127 | 0.8730 | 0.036* | |
H42B | −0.1364 | −0.1150 | 0.7792 | 0.036* | |
H43A | −0.2672 | 0.1178 | 0.9276 | 0.040* | |
H43B | −0.3173 | −0.0464 | 0.9587 | 0.040* | |
H43C | −0.4249 | 0.0226 | 0.8295 | 0.040* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0225 (10) | 0.0234 (10) | 0.0262 (10) | −0.0008 (7) | 0.0052 (7) | 0.0063 (8) |
C11 | 0.0216 (11) | 0.0254 (12) | 0.0241 (12) | −0.0032 (9) | 0.0035 (9) | 0.0051 (9) |
C12 | 0.0269 (12) | 0.0243 (12) | 0.0310 (13) | 0.0016 (9) | 0.0089 (9) | 0.0031 (10) |
C13 | 0.0306 (12) | 0.0238 (12) | 0.0350 (14) | 0.0007 (9) | 0.0066 (10) | 0.0098 (10) |
C14 | 0.0233 (11) | 0.0313 (13) | 0.0234 (12) | −0.0012 (9) | 0.0030 (9) | 0.0095 (10) |
C141 | 0.0299 (13) | 0.0269 (13) | 0.0350 (14) | 0.0019 (9) | 0.0056 (10) | 0.0079 (11) |
N14 | 0.0404 (12) | 0.0369 (12) | 0.0485 (14) | 0.0045 (9) | 0.0179 (10) | 0.0167 (10) |
C15 | 0.0266 (12) | 0.0301 (13) | 0.0268 (12) | 0.0021 (9) | 0.0067 (9) | 0.0038 (10) |
C16 | 0.0252 (11) | 0.0213 (11) | 0.0280 (13) | 0.0007 (9) | 0.0033 (9) | 0.0054 (9) |
C5 | 0.0237 (11) | 0.0213 (11) | 0.0267 (12) | −0.0001 (8) | 0.0034 (9) | 0.0048 (9) |
C2 | 0.0229 (11) | 0.0271 (12) | 0.0302 (13) | 0.0015 (9) | 0.0049 (9) | 0.0092 (10) |
N3 | 0.0249 (10) | 0.0260 (10) | 0.0300 (11) | 0.0000 (7) | 0.0054 (8) | 0.0074 (8) |
C4 | 0.0232 (11) | 0.0251 (12) | 0.0247 (12) | −0.0009 (9) | 0.0047 (9) | 0.0047 (10) |
C41 | 0.0226 (11) | 0.0274 (12) | 0.0273 (12) | −0.0020 (9) | 0.0064 (9) | 0.0015 (10) |
O41 | 0.0272 (8) | 0.0359 (9) | 0.0380 (10) | 0.0060 (7) | 0.0060 (7) | 0.0147 (8) |
O42 | 0.0256 (8) | 0.0319 (9) | 0.0269 (9) | 0.0007 (6) | 0.0085 (6) | 0.0126 (7) |
C42 | 0.0297 (12) | 0.0336 (13) | 0.0268 (13) | 0.0000 (9) | 0.0060 (9) | 0.0121 (10) |
C43 | 0.0319 (13) | 0.0365 (14) | 0.0316 (14) | 0.0008 (10) | 0.0088 (10) | 0.0120 (11) |
N5 | 0.0241 (10) | 0.0287 (11) | 0.0368 (11) | 0.0017 (8) | 0.0099 (8) | 0.0141 (9) |
Geometric parameters (Å, º) top N1—C5 | 1.384 (3) | C5—C4 | 1.384 (3) |
N1—C2 | 1.391 (2) | C2—N3 | 1.295 (3) |
N1—C11 | 1.427 (3) | C2—H2 | 0.95 |
C11—C16 | 1.391 (3) | N3—C4 | 1.403 (2) |
C11—C12 | 1.394 (3) | C4—C41 | 1.445 (3) |
C12—C13 | 1.381 (3) | C41—O41 | 1.225 (2) |
C12—H12 | 0.95 | C41—O42 | 1.346 (2) |
C13—C14 | 1.388 (3) | O42—C42 | 1.461 (2) |
C13—H13 | 0.95 | C42—C43 | 1.500 (3) |
C14—C15 | 1.397 (3) | C42—H42A | 0.99 |
C14—C141 | 1.450 (3) | C42—H42B | 0.99 |
C141—N14 | 1.150 (3) | C43—H43A | 0.98 |
C15—C16 | 1.383 (3) | C43—H43B | 0.98 |
C15—H15 | 0.95 | C43—H43C | 0.98 |
C16—H16 | 0.95 | N5—H5A | 0.90 |
C5—N5 | 1.345 (3) | N5—H5B | 0.90 |
| | | |
C5—N1—C2 | 106.30 (16) | N3—C2—H2 | 123.6 |
C5—N1—C11 | 128.92 (17) | N1—C2—H2 | 123.6 |
C2—N1—C11 | 124.77 (17) | C2—N3—C4 | 105.25 (16) |
C16—C11—C12 | 120.91 (19) | C5—C4—N3 | 110.16 (17) |
C16—C11—N1 | 121.00 (18) | C5—C4—C41 | 123.32 (18) |
C12—C11—N1 | 118.07 (19) | N3—C4—C41 | 126.45 (18) |
C13—C12—C11 | 119.4 (2) | O41—C41—O42 | 122.79 (19) |
C13—C12—H12 | 120.3 | O41—C41—C4 | 122.63 (19) |
C11—C12—H12 | 120.3 | O42—C41—C4 | 114.55 (17) |
C12—C13—C14 | 120.14 (19) | C41—O42—C42 | 114.81 (15) |
C12—C13—H13 | 119.9 | O42—C42—C43 | 107.95 (17) |
C14—C13—H13 | 119.9 | O42—C42—H42A | 110.1 |
C13—C14—C15 | 120.30 (18) | C43—C42—H42A | 110.1 |
C13—C14—C141 | 119.11 (19) | O42—C42—H42B | 110.1 |
C15—C14—C141 | 120.59 (19) | C43—C42—H42B | 110.1 |
N14—C141—C14 | 178.5 (2) | H42A—C42—H42B | 108.4 |
C16—C15—C14 | 119.9 (2) | C42—C43—H43A | 109.5 |
C16—C15—H15 | 120.1 | C42—C43—H43B | 109.5 |
C14—C15—H15 | 120.1 | H43A—C43—H43B | 109.5 |
C15—C16—C11 | 119.4 (2) | C42—C43—H43C | 109.5 |
C15—C16—H16 | 120.3 | H43A—C43—H43C | 109.5 |
C11—C16—H16 | 120.3 | H43B—C43—H43C | 109.5 |
N5—C5—C4 | 130.44 (19) | C5—N5—H5A | 113.5 |
N5—C5—N1 | 124.03 (18) | C5—N5—H5B | 121.3 |
C4—C5—N1 | 105.53 (17) | H5A—N5—H5B | 121.2 |
N3—C2—N1 | 112.76 (18) | | |
| | | |
C5—N1—C11—C16 | 40.3 (3) | C11—N1—C5—C4 | −179.43 (19) |
C2—N1—C11—C16 | −138.4 (2) | C5—N1—C2—N3 | 0.1 (2) |
C5—N1—C11—C12 | −141.1 (2) | C11—N1—C2—N3 | 179.05 (18) |
C2—N1—C11—C12 | 40.2 (3) | N1—C2—N3—C4 | 0.4 (2) |
C16—C11—C12—C13 | −0.4 (3) | N5—C5—C4—N3 | −179.5 (2) |
N1—C11—C12—C13 | −178.98 (18) | N1—C5—C4—N3 | 0.8 (2) |
C11—C12—C13—C14 | 0.1 (3) | N5—C5—C4—C41 | 3.4 (4) |
C12—C13—C14—C15 | 0.3 (3) | N1—C5—C4—C41 | −176.31 (19) |
C12—C13—C14—C141 | −178.6 (2) | C2—N3—C4—C5 | −0.7 (2) |
C13—C14—C15—C16 | −0.4 (3) | C2—N3—C4—C41 | 176.3 (2) |
C141—C14—C15—C16 | 178.53 (19) | C5—C4—C41—O41 | −4.1 (3) |
C14—C15—C16—C11 | 0.1 (3) | N3—C4—C41—O41 | 179.3 (2) |
C12—C11—C16—C15 | 0.4 (3) | C5—C4—C41—O42 | 174.03 (19) |
N1—C11—C16—C15 | 178.88 (18) | N3—C4—C41—O42 | −2.6 (3) |
C2—N1—C5—N5 | 179.7 (2) | O41—C41—O42—C42 | −1.0 (3) |
C11—N1—C5—N5 | 0.9 (3) | C4—C41—O42—C42 | −179.12 (18) |
C2—N1—C5—C4 | −0.5 (2) | C41—O42—C42—C43 | 161.84 (18) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O41 | 0.90 | 2.21 | 2.866 (2) | 129 |
N5—H5B···N3i | 0.90 | 2.22 | 3.073 (2) | 158 |
C15—H15···N14ii | 0.95 | 2.52 | 3.397 (3) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z. |
(II) ethyl 5-amino-1-(4-chlorophenyl)-1
H-imidazole-4-carboxylate
top Crystal data top C12H12ClN3O2 | F(000) = 552 |
Mr = 265.70 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2864 reflections |
a = 13.1153 (6) Å | θ = 3.0–27.5° |
b = 8.7114 (4) Å | µ = 0.30 mm−1 |
c = 11.5273 (4) Å | T = 120 K |
β = 107.064 (3)° | Plate, colourless |
V = 1259.05 (9) Å3 | 0.48 × 0.32 × 0.08 mm |
Z = 4 | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 2864 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 2210 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −16→17 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→11 |
Tmin = 0.869, Tmax = 0.976 | l = −14→14 |
17524 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7518P] where P = (Fo2 + 2Fc2)/3 |
2864 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.56 e Å−3 |
6 restraints | Δρmin = −0.47 e Å−3 |
Crystal data top C12H12ClN3O2 | V = 1259.05 (9) Å3 |
Mr = 265.70 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.1153 (6) Å | µ = 0.30 mm−1 |
b = 8.7114 (4) Å | T = 120 K |
c = 11.5273 (4) Å | 0.48 × 0.32 × 0.08 mm |
β = 107.064 (3)° | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 2864 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2210 reflections with I > 2σ(I) |
Tmin = 0.869, Tmax = 0.976 | Rint = 0.042 |
17524 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.047 | 6 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.56 e Å−3 |
2864 reflections | Δρmin = −0.47 e Å−3 |
171 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
N1 | 0.51730 (11) | 0.26567 (17) | 0.56323 (13) | 0.0234 (3) | |
C11 | 0.60284 (14) | 0.3043 (2) | 0.66890 (17) | 0.0240 (4) | |
C12 | 0.67642 (16) | 0.1913 (2) | 0.72186 (19) | 0.0335 (5) | |
C13 | 0.76126 (17) | 0.2258 (3) | 0.8226 (2) | 0.0412 (5) | |
C14 | 0.77080 (16) | 0.3738 (3) | 0.86903 (19) | 0.0365 (5) | |
Cl14 | 0.87511 (5) | 0.41628 (9) | 0.99806 (6) | 0.0616 (3) | |
C15 | 0.69846 (17) | 0.4870 (2) | 0.81636 (19) | 0.0340 (5) | |
C16 | 0.61350 (16) | 0.4524 (2) | 0.71555 (18) | 0.0281 (4) | |
C2 | 0.52840 (16) | 0.1845 (2) | 0.46505 (17) | 0.0303 (4) | |
N3 | 0.43834 (12) | 0.15927 (18) | 0.38327 (14) | 0.0269 (4) | |
C4 | 0.36118 (14) | 0.2260 (2) | 0.42881 (15) | 0.0222 (4) | |
C41 | 0.24951 (14) | 0.2237 (2) | 0.36037 (17) | 0.0256 (4) | |
O41 | 0.21065 (10) | 0.16072 (16) | 0.26323 (11) | 0.0298 (3) | |
O42 | 0.19094 (10) | 0.3029 (2) | 0.41924 (15) | 0.0501 (5) | |
C42 | 0.07542 (13) | 0.2967 (5) | 0.3757 (4) | 0.0415 (9) | 0.50 |
C43 | 0.0490 (3) | 0.4458 (5) | 0.3047 (4) | 0.0415 (9) | 0.50 |
C42A | 0.0844 (2) | 0.3388 (6) | 0.3420 (4) | 0.0491 (10) | 0.50 |
C43A | 0.0428 (3) | 0.4788 (5) | 0.3924 (5) | 0.0491 (10) | 0.50 |
C5 | 0.40971 (14) | 0.2940 (2) | 0.54048 (16) | 0.0223 (4) | |
N5 | 0.37065 (13) | 0.3775 (2) | 0.61699 (15) | 0.0325 (4) | |
H12 | 0.6686 | 0.0904 | 0.6891 | 0.040* | |
H13 | 0.8121 | 0.1494 | 0.8593 | 0.049* | |
H15 | 0.7068 | 0.5880 | 0.8489 | 0.041* | |
H16 | 0.5630 | 0.5293 | 0.6787 | 0.034* | |
H2 | 0.5952 | 0.1505 | 0.4580 | 0.036* | |
H42A | 0.0438 | 0.2940 | 0.4438 | 0.050* | 0.50 |
H42B | 0.0505 | 0.2065 | 0.3228 | 0.050* | 0.50 |
H43A | 0.0850 | 0.5313 | 0.3556 | 0.050* | 0.50 |
H43B | −0.0283 | 0.4626 | 0.2806 | 0.050* | 0.50 |
H43C | 0.0732 | 0.4396 | 0.2321 | 0.050* | 0.50 |
H42C | 0.0364 | 0.2504 | 0.3393 | 0.059* | 0.50 |
H42D | 0.0866 | 0.3599 | 0.2583 | 0.059* | 0.50 |
H43D | 0.0471 | 0.4608 | 0.4776 | 0.059* | 0.50 |
H43E | −0.0316 | 0.4975 | 0.3455 | 0.059* | 0.50 |
H43F | 0.0861 | 0.5686 | 0.3865 | 0.059* | 0.50 |
H5A | 0.2991 | 0.3779 | 0.5996 | 0.039* | |
H5B | 0.4060 | 0.3745 | 0.6967 | 0.039* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0245 (7) | 0.0205 (7) | 0.0256 (7) | 0.0026 (6) | 0.0079 (6) | 0.0004 (6) |
C11 | 0.0247 (9) | 0.0203 (9) | 0.0286 (9) | −0.0015 (7) | 0.0102 (7) | −0.0027 (7) |
C12 | 0.0314 (10) | 0.0231 (10) | 0.0398 (11) | 0.0033 (8) | 0.0009 (8) | −0.0122 (8) |
C13 | 0.0283 (10) | 0.0432 (13) | 0.0449 (12) | 0.0065 (9) | −0.0006 (9) | −0.0157 (10) |
C14 | 0.0255 (10) | 0.0459 (13) | 0.0397 (11) | −0.0125 (9) | 0.0119 (8) | −0.0205 (10) |
Cl14 | 0.0346 (3) | 0.0885 (5) | 0.0570 (4) | −0.0193 (3) | 0.0063 (3) | −0.0404 (4) |
C15 | 0.0411 (11) | 0.0254 (10) | 0.0447 (11) | −0.0138 (9) | 0.0268 (9) | −0.0141 (9) |
C16 | 0.0355 (10) | 0.0185 (9) | 0.0373 (10) | −0.0036 (7) | 0.0217 (8) | −0.0014 (8) |
C2 | 0.0286 (10) | 0.0309 (10) | 0.0322 (10) | 0.0061 (8) | 0.0102 (8) | −0.0058 (8) |
N3 | 0.0265 (8) | 0.0280 (8) | 0.0270 (8) | 0.0050 (6) | 0.0093 (6) | −0.0004 (6) |
C4 | 0.0261 (9) | 0.0203 (9) | 0.0224 (8) | 0.0032 (7) | 0.0104 (7) | 0.0049 (7) |
C41 | 0.0276 (9) | 0.0235 (9) | 0.0287 (9) | 0.0029 (7) | 0.0130 (7) | 0.0040 (7) |
O41 | 0.0296 (7) | 0.0341 (8) | 0.0259 (7) | 0.0024 (6) | 0.0082 (5) | −0.0005 (6) |
O42 | 0.0229 (7) | 0.0705 (12) | 0.0563 (10) | 0.0036 (7) | 0.0107 (7) | −0.0323 (9) |
C42 | 0.0236 (15) | 0.054 (2) | 0.050 (2) | −0.0017 (14) | 0.0153 (13) | −0.0065 (17) |
C43 | 0.0236 (15) | 0.054 (2) | 0.050 (2) | −0.0017 (14) | 0.0153 (13) | −0.0065 (17) |
C42A | 0.0269 (16) | 0.055 (2) | 0.064 (2) | 0.0061 (15) | 0.0110 (15) | −0.016 (2) |
C43A | 0.0269 (16) | 0.055 (2) | 0.064 (2) | 0.0061 (15) | 0.0110 (15) | −0.016 (2) |
C5 | 0.0249 (9) | 0.0195 (9) | 0.0255 (9) | 0.0020 (7) | 0.0119 (7) | 0.0058 (7) |
N5 | 0.0259 (8) | 0.0436 (10) | 0.0304 (9) | 0.0019 (7) | 0.0120 (7) | −0.0085 (7) |
Geometric parameters (Å, º) top N1—C2 | 1.378 (2) | C41—O41 | 1.216 (2) |
N1—C5 | 1.380 (2) | C41—O42 | 1.354 (2) |
N1—C11 | 1.433 (2) | O42—C42 | 1.4505 (11) |
C11—C12 | 1.388 (3) | O42—C42A | 1.4535 (11) |
C11—C16 | 1.389 (2) | C42—C43 | 1.5199 (11) |
C12—C13 | 1.385 (3) | C42—H42A | 0.99 |
C12—H12 | 0.95 | C42—H42B | 0.99 |
C13—C14 | 1.387 (3) | C43—H43A | 0.98 |
C13—H13 | 0.95 | C43—H43B | 0.98 |
C14—C15 | 1.380 (3) | C43—H43C | 0.98 |
C14—Cl14 | 1.740 (2) | C42A—C43A | 1.5193 (11) |
C15—C16 | 1.387 (3) | C42A—H42C | 0.99 |
C15—H15 | 0.95 | C42A—H42D | 0.99 |
C16—H16 | 0.95 | C43A—H43D | 0.98 |
C2—N3 | 1.296 (2) | C43A—H43E | 0.98 |
C2—H2 | 0.95 | C43A—H43F | 0.98 |
N3—C4 | 1.396 (2) | C5—N5 | 1.354 (2) |
C4—C5 | 1.390 (2) | N5—H5A | 0.90 |
C4—C41 | 1.446 (2) | N5—H5B | 0.90 |
| | | |
C2—N1—C5 | 106.52 (15) | O41—C41—C4 | 126.33 (17) |
C2—N1—C11 | 125.00 (15) | O42—C41—C4 | 110.63 (16) |
C5—N1—C11 | 128.42 (15) | C41—O42—C42 | 119.8 (3) |
C12—C11—C16 | 120.70 (17) | C41—O42—C42A | 112.8 (2) |
C12—C11—N1 | 118.49 (16) | O42—C42—C43 | 101.8 (2) |
C16—C11—N1 | 120.80 (16) | O42—C42—H42A | 111.4 |
C13—C12—C11 | 119.87 (18) | C43—C42—H42A | 111.4 |
C13—C12—H12 | 120.1 | O42—C42—H42B | 111.4 |
C11—C12—H12 | 120.1 | C43—C42—H42B | 111.4 |
C12—C13—C14 | 119.0 (2) | H42A—C42—H42B | 109.3 |
C12—C13—H13 | 120.5 | O42—C42A—C43A | 109.1 (2) |
C14—C13—H13 | 120.5 | O42—C42A—H42C | 109.9 |
C15—C14—C13 | 121.46 (19) | C43A—C42A—H42C | 109.9 |
C15—C14—Cl14 | 119.39 (16) | O42—C42A—H42D | 109.9 |
C13—C14—Cl14 | 119.15 (18) | C43A—C42A—H42D | 109.9 |
C14—C15—C16 | 119.54 (18) | H42C—C42A—H42D | 108.3 |
C14—C15—H15 | 120.2 | C42A—C43A—H43D | 109.5 |
C16—C15—H15 | 120.2 | C42A—C43A—H43E | 109.5 |
C15—C16—C11 | 119.43 (18) | H43D—C43A—H43E | 109.5 |
C15—C16—H16 | 120.3 | C42A—C43A—H43F | 109.5 |
C11—C16—H16 | 120.3 | H43D—C43A—H43F | 109.5 |
N3—C2—N1 | 113.02 (17) | H43E—C43A—H43F | 109.5 |
N3—C2—H2 | 123.5 | N5—C5—N1 | 122.24 (16) |
N1—C2—H2 | 123.5 | N5—C5—C4 | 132.38 (16) |
C2—N3—C4 | 105.22 (15) | N1—C5—C4 | 105.34 (15) |
C5—C4—N3 | 109.89 (15) | C5—N5—H5A | 115.2 |
C5—C4—C41 | 128.80 (16) | C5—N5—H5B | 117.9 |
N3—C4—C41 | 121.26 (16) | H5A—N5—H5B | 114.8 |
O41—C41—O42 | 123.04 (17) | | |
| | | |
C2—N1—C11—C12 | −45.6 (3) | N3—C4—C41—O41 | 3.6 (3) |
C5—N1—C11—C12 | 131.3 (2) | C5—C4—C41—O42 | 1.0 (3) |
C2—N1—C11—C16 | 132.80 (19) | N3—C4—C41—O42 | −176.39 (17) |
C5—N1—C11—C16 | −50.3 (3) | O41—C41—O42—C42 | 8.9 (3) |
C16—C11—C12—C13 | 0.3 (3) | C4—C41—O42—C42 | −171.1 (2) |
N1—C11—C12—C13 | 178.66 (19) | O41—C41—O42—C42A | −15.2 (4) |
C11—C12—C13—C14 | 0.2 (3) | C4—C41—O42—C42A | 164.8 (3) |
C12—C13—C14—C15 | −0.7 (3) | C41—O42—C42—C43 | −99.3 (3) |
C12—C13—C14—Cl14 | 178.21 (18) | C42A—O42—C42—C43 | −21.4 (6) |
C13—C14—C15—C16 | 0.7 (3) | C41—O42—C42A—C43A | −155.7 (4) |
Cl14—C14—C15—C16 | −178.18 (15) | C42—O42—C42A—C43A | 91.3 (9) |
C14—C15—C16—C11 | −0.3 (3) | C2—N1—C5—N5 | −177.30 (17) |
C12—C11—C16—C15 | −0.2 (3) | C11—N1—C5—N5 | 5.4 (3) |
N1—C11—C16—C15 | −178.60 (16) | C2—N1—C5—C4 | 0.59 (19) |
C5—N1—C2—N3 | −0.1 (2) | C11—N1—C5—C4 | −176.74 (16) |
C11—N1—C2—N3 | 177.40 (17) | N3—C4—C5—N5 | 176.67 (18) |
N1—C2—N3—C4 | −0.5 (2) | C41—C4—C5—N5 | −0.9 (3) |
C2—N3—C4—C5 | 0.9 (2) | N3—C4—C5—N1 | −0.92 (19) |
C2—N3—C4—C41 | 178.70 (17) | C41—C4—C5—N1 | −178.52 (17) |
C5—C4—C41—O41 | −179.04 (18) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O42 | 0.90 | 2.24 | 2.834 (2) | 123 |
N5—H5A···O41i | 0.90 | 2.51 | 3.071 (2) | 121 |
N5—H5B···N3i | 0.90 | 2.09 | 2.952 (2) | 161 |
C12—H12···N3ii | 0.95 | 2.59 | 3.462 (3) | 153 |
C2—H2···Cgiii | 0.95 | 2.78 | 3.500 (2) | 133 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2. |
(III) ethyl 5-amino-1-(2,6-difluorophenyl)-1
H-imidazole-4-carboxylate
top Crystal data top C12H11F2N3O2 | F(000) = 552 |
Mr = 267.24 | Dx = 1.485 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1362 reflections |
a = 7.9045 (4) Å | θ = 3.0–27.4° |
b = 12.9950 (7) Å | µ = 0.12 mm−1 |
c = 11.7737 (5) Å | T = 120 K |
β = 98.810 (4)° | Block, colourless |
V = 1195.11 (10) Å3 | 0.35 × 0.17 × 0.12 mm |
Z = 4 | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 1362 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 1175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
ϕ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −16→16 |
Tmin = 0.966, Tmax = 0.985 | l = −14→15 |
8086 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2764P] where P = (Fo2 + 2Fc2)/3 |
1362 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.17 e Å−3 |
2 restraints | Δρmin = −0.23 e Å−3 |
Crystal data top C12H11F2N3O2 | V = 1195.11 (10) Å3 |
Mr = 267.24 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 7.9045 (4) Å | µ = 0.12 mm−1 |
b = 12.9950 (7) Å | T = 120 K |
c = 11.7737 (5) Å | 0.35 × 0.17 × 0.12 mm |
β = 98.810 (4)° | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 1362 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1175 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 0.985 | Rint = 0.053 |
8086 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.034 | 2 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.17 e Å−3 |
1362 reflections | Δρmin = −0.23 e Å−3 |
172 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.7418 (2) | 0.44928 (15) | 0.32789 (17) | 0.0180 (4) | |
C11 | 0.8301 (3) | 0.41351 (19) | 0.4350 (2) | 0.0192 (5) | |
C12 | 0.8023 (3) | 0.3162 (2) | 0.4754 (2) | 0.0245 (6) | |
F12 | 0.6923 (2) | 0.25366 (11) | 0.40811 (15) | 0.0325 (4) | |
C13 | 0.8811 (4) | 0.2800 (2) | 0.5803 (2) | 0.0353 (7) | |
C14 | 0.9920 (4) | 0.3445 (3) | 0.6480 (2) | 0.0408 (8) | |
C15 | 1.0281 (4) | 0.4427 (3) | 0.6105 (3) | 0.0398 (8) | |
C16 | 0.9482 (3) | 0.4742 (2) | 0.5039 (2) | 0.0275 (6) | |
F16 | 0.9841 (2) | 0.56769 (12) | 0.46446 (16) | 0.0401 (5) | |
C2 | 0.7396 (3) | 0.40146 (17) | 0.2217 (2) | 0.0197 (5) | |
N3 | 0.6457 (3) | 0.45155 (14) | 0.13983 (16) | 0.0192 (4) | |
C4 | 0.5808 (3) | 0.53617 (18) | 0.19226 (19) | 0.0169 (5) | |
C41 | 0.4727 (3) | 0.61539 (19) | 0.1344 (2) | 0.0188 (5) | |
O41 | 0.4240 (2) | 0.68972 (12) | 0.18471 (15) | 0.0251 (4) | |
O42 | 0.4313 (2) | 0.59990 (12) | 0.02070 (14) | 0.0210 (4) | |
C42 | 0.3235 (3) | 0.67827 (19) | −0.0419 (2) | 0.0226 (5) | |
C43 | 0.2717 (4) | 0.6361 (2) | −0.1621 (2) | 0.0319 (6) | |
C5 | 0.6379 (3) | 0.53487 (17) | 0.3093 (2) | 0.0179 (5) | |
N5 | 0.6083 (3) | 0.60006 (16) | 0.39356 (17) | 0.0211 (4) | |
H13 | 0.8595 | 0.2124 | 0.6051 | 0.042* | |
H14 | 1.0448 | 0.3217 | 0.7216 | 0.049* | |
H15 | 1.1058 | 0.4867 | 0.6572 | 0.048* | |
H2 | 0.7994 | 0.3398 | 0.2106 | 0.024* | |
H42A | 0.3875 | 0.7435 | −0.0442 | 0.027* | |
H42B | 0.2212 | 0.6913 | −0.0049 | 0.027* | |
H43A | 0.1979 | 0.6861 | −0.2084 | 0.038* | |
H43B | 0.2093 | 0.5714 | −0.1582 | 0.038* | |
H43C | 0.3743 | 0.6237 | −0.1974 | 0.038* | |
H5A | 0.5278 | 0.6459 | 0.3720 | 0.025* | |
H5B | 0.6196 | 0.5793 | 0.4655 | 0.025* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0234 (11) | 0.0169 (10) | 0.0131 (9) | 0.0026 (8) | 0.0007 (8) | 0.0014 (8) |
C11 | 0.0222 (13) | 0.0227 (12) | 0.0122 (11) | 0.0063 (10) | 0.0013 (9) | 0.0014 (9) |
C12 | 0.0260 (14) | 0.0277 (14) | 0.0206 (13) | 0.0066 (10) | 0.0062 (10) | 0.0049 (10) |
F12 | 0.0374 (8) | 0.0229 (8) | 0.0371 (9) | −0.0036 (7) | 0.0049 (7) | 0.0051 (6) |
C13 | 0.0371 (15) | 0.0450 (17) | 0.0257 (14) | 0.0135 (14) | 0.0110 (11) | 0.0161 (13) |
C14 | 0.0403 (18) | 0.062 (2) | 0.0199 (15) | 0.0266 (16) | 0.0039 (12) | 0.0074 (14) |
C15 | 0.0365 (16) | 0.0521 (19) | 0.0267 (15) | 0.0164 (15) | −0.0084 (12) | −0.0151 (14) |
C16 | 0.0280 (14) | 0.0242 (14) | 0.0285 (14) | 0.0055 (11) | −0.0016 (11) | −0.0049 (11) |
F16 | 0.0368 (10) | 0.0233 (9) | 0.0551 (11) | −0.0014 (7) | −0.0093 (8) | −0.0059 (7) |
C2 | 0.0269 (13) | 0.0167 (12) | 0.0157 (12) | 0.0022 (10) | 0.0036 (10) | −0.0017 (9) |
N3 | 0.0256 (11) | 0.0172 (10) | 0.0150 (10) | 0.0010 (8) | 0.0034 (8) | 0.0014 (8) |
C4 | 0.0204 (12) | 0.0173 (11) | 0.0128 (11) | 0.0008 (9) | 0.0022 (9) | 0.0003 (8) |
C41 | 0.0234 (13) | 0.0185 (12) | 0.0146 (12) | 0.0000 (9) | 0.0034 (9) | −0.0001 (9) |
O41 | 0.0329 (10) | 0.0214 (9) | 0.0201 (9) | 0.0089 (8) | 0.0014 (7) | −0.0018 (7) |
O42 | 0.0271 (9) | 0.0208 (9) | 0.0141 (9) | 0.0062 (7) | 0.0000 (7) | 0.0030 (7) |
C42 | 0.0250 (13) | 0.0230 (13) | 0.0187 (13) | 0.0057 (10) | 0.0003 (10) | 0.0056 (9) |
C43 | 0.0366 (15) | 0.0416 (16) | 0.0161 (13) | 0.0119 (13) | −0.0004 (11) | 0.0027 (12) |
C5 | 0.0213 (12) | 0.0159 (11) | 0.0164 (11) | −0.0004 (9) | 0.0029 (9) | 0.0007 (9) |
N5 | 0.0304 (11) | 0.0203 (10) | 0.0121 (10) | 0.0065 (9) | 0.0014 (8) | −0.0007 (7) |
Geometric parameters (Å, º) top N1—C5 | 1.380 (3) | N3—C4 | 1.397 (3) |
N1—C2 | 1.394 (3) | C4—C5 | 1.382 (3) |
N1—C11 | 1.423 (3) | C4—C41 | 1.441 (3) |
C11—C12 | 1.380 (3) | C41—O41 | 1.226 (3) |
C11—C16 | 1.386 (4) | C41—O42 | 1.343 (3) |
C12—F12 | 1.354 (3) | O42—C42 | 1.454 (3) |
C12—C13 | 1.379 (4) | C42—C43 | 1.514 (4) |
C13—C14 | 1.375 (5) | C42—H42A | 0.99 |
C13—H13 | 0.95 | C42—H42B | 0.99 |
C14—C15 | 1.394 (5) | C43—H43A | 0.98 |
C14—H14 | 0.95 | C43—H43B | 0.98 |
C15—C16 | 1.378 (4) | C43—H43C | 0.98 |
C15—H15 | 0.95 | C5—N5 | 1.352 (3) |
C16—F16 | 1.346 (3) | N5—H5A | 0.88 |
C2—N3 | 1.298 (3) | N5—H5B | 0.88 |
C2—H2 | 0.95 | | |
| | | |
C5—N1—C2 | 106.93 (18) | C5—C4—N3 | 110.2 (2) |
C5—N1—C11 | 127.1 (2) | C5—C4—C41 | 124.0 (2) |
C2—N1—C11 | 125.9 (2) | N3—C4—C41 | 125.8 (2) |
C12—C11—C16 | 116.7 (2) | O41—C41—O42 | 123.6 (2) |
C12—C11—N1 | 121.5 (2) | O41—C41—C4 | 122.8 (2) |
C16—C11—N1 | 121.8 (2) | O42—C41—C4 | 113.60 (19) |
F12—C12—C13 | 118.7 (2) | C41—O42—C42 | 115.75 (18) |
F12—C12—C11 | 118.1 (2) | O42—C42—C43 | 105.9 (2) |
C13—C12—C11 | 123.2 (3) | O42—C42—H42A | 110.6 |
C14—C13—C12 | 118.1 (3) | C43—C42—H42A | 110.6 |
C14—C13—H13 | 120.9 | O42—C42—H42B | 110.6 |
C12—C13—H13 | 120.9 | C43—C42—H42B | 110.6 |
C13—C14—C15 | 121.2 (3) | H42A—C42—H42B | 108.7 |
C13—C14—H14 | 119.4 | C42—C43—H43A | 109.5 |
C15—C14—H14 | 119.4 | C42—C43—H43B | 109.5 |
C16—C15—C14 | 118.2 (3) | H43A—C43—H43B | 109.5 |
C16—C15—H15 | 120.9 | C42—C43—H43C | 109.5 |
C14—C15—H15 | 120.9 | H43A—C43—H43C | 109.5 |
F16—C16—C15 | 119.4 (3) | H43B—C43—H43C | 109.5 |
F16—C16—C11 | 118.1 (2) | N5—C5—N1 | 123.6 (2) |
C15—C16—C11 | 122.5 (3) | N5—C5—C4 | 131.1 (2) |
N3—C2—N1 | 111.7 (2) | N1—C5—C4 | 105.29 (19) |
N3—C2—H2 | 124.2 | C5—N5—H5A | 114.3 |
N1—C2—H2 | 124.2 | C5—N5—H5B | 120.7 |
C2—N3—C4 | 105.89 (19) | H5A—N5—H5B | 116.6 |
| | | |
C5—N1—C11—C12 | 121.5 (3) | C11—N1—C2—N3 | 179.0 (2) |
C2—N1—C11—C12 | −55.9 (3) | N1—C2—N3—C4 | −0.4 (3) |
C5—N1—C11—C16 | −58.6 (3) | C2—N3—C4—C5 | −0.5 (3) |
C2—N1—C11—C16 | 123.9 (3) | C2—N3—C4—C41 | 178.3 (2) |
C16—C11—C12—F12 | −177.6 (2) | C5—C4—C41—O41 | 1.0 (4) |
N1—C11—C12—F12 | 2.3 (3) | N3—C4—C41—O41 | −177.6 (2) |
C16—C11—C12—C13 | 2.3 (4) | C5—C4—C41—O42 | −179.1 (2) |
N1—C11—C12—C13 | −177.9 (2) | N3—C4—C41—O42 | 2.2 (3) |
F12—C12—C13—C14 | −179.7 (2) | O41—C41—O42—C42 | 0.4 (3) |
C11—C12—C13—C14 | 0.4 (4) | C4—C41—O42—C42 | −179.5 (2) |
C12—C13—C14—C15 | −2.0 (4) | C41—O42—C42—C43 | −171.2 (2) |
C13—C14—C15—C16 | 0.7 (5) | C2—N1—C5—N5 | 179.6 (2) |
C14—C15—C16—F16 | −178.4 (2) | C11—N1—C5—N5 | 1.7 (4) |
C14—C15—C16—C11 | 2.1 (5) | C2—N1—C5—C4 | −1.3 (2) |
C12—C11—C16—F16 | 176.9 (2) | C11—N1—C5—C4 | −179.2 (2) |
N1—C11—C16—F16 | −2.9 (4) | N3—C4—C5—N5 | −179.8 (2) |
C12—C11—C16—C15 | −3.6 (4) | C41—C4—C5—N5 | 1.3 (4) |
N1—C11—C16—C15 | 176.6 (3) | N3—C4—C5—N1 | 1.2 (3) |
C5—N1—C2—N3 | 1.1 (3) | C41—C4—C5—N1 | −177.7 (2) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O41 | 0.88 | 2.30 | 2.903 (3) | 125 |
N5—H5B···N3i | 0.88 | 2.07 | 2.946 (3) | 173 |
C2—H2···O41ii | 0.95 | 2.23 | 3.175 (3) | 176 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1/2, y−1/2, z. |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | C13H12N4O2 | C12H12ClN3O2 | C12H11F2N3O2 |
Mr | 256.27 | 265.70 | 267.24 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c | Monoclinic, Cc |
Temperature (K) | 120 | 120 | 120 |
a, b, c (Å) | 6.3212 (5), 9.4121 (11), 10.2496 (12) | 13.1153 (6), 8.7114 (4), 11.5273 (4) | 7.9045 (4), 12.9950 (7), 11.7737 (5) |
α, β, γ (°) | 90.311 (5), 94.183 (7), 92.946 (7) | 90, 107.064 (3), 90 | 90, 98.810 (4), 90 |
V (Å3) | 607.35 (11) | 1259.05 (9) | 1195.11 (10) |
Z | 2 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.10 | 0.30 | 0.12 |
Crystal size (mm) | 0.64 × 0.04 × 0.03 | 0.48 × 0.32 × 0.08 | 0.35 × 0.17 × 0.12 |
|
Data collection |
Diffractometer | Bruker–Nonius KappaCCD diffractometer | Bruker–Nonius KappaCCD diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.946, 0.997 | 0.869, 0.976 | 0.966, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11051, 2688, 1720 | 17524, 2864, 2210 | 8086, 1362, 1175 |
Rint | 0.079 | 0.042 | 0.053 |
(sin θ/λ)max (Å−1) | 0.652 | 0.649 | 0.648 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.147, 1.04 | 0.047, 0.126, 1.05 | 0.034, 0.080, 1.07 |
No. of reflections | 2688 | 2864 | 1362 |
No. of parameters | 173 | 171 | 172 |
No. of restraints | 0 | 6 | 2 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.28 | 0.56, −0.47 | 0.17, −0.23 |
Hydrogen-bond geometry (Å, º) for (I) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O41 | 0.90 | 2.21 | 2.866 (2) | 129 |
N5—H5B···N3i | 0.90 | 2.22 | 3.073 (2) | 158 |
C15—H15···N14ii | 0.95 | 2.52 | 3.397 (3) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z. |
Hydrogen-bond geometry (Å, º) for (II) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O42 | 0.90 | 2.24 | 2.834 (2) | 123 |
N5—H5A···O41i | 0.90 | 2.51 | 3.071 (2) | 121 |
N5—H5B···N3i | 0.90 | 2.09 | 2.952 (2) | 161 |
C12—H12···N3ii | 0.95 | 2.59 | 3.462 (3) | 153 |
C2—H2···Cgiii | 0.95 | 2.78 | 3.500 (2) | 133 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2. |
Hydrogen-bond geometry (Å, º) for (III) top D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O41 | 0.88 | 2.30 | 2.903 (3) | 125 |
N5—H5B···N3i | 0.88 | 2.07 | 2.946 (3) | 173 |
C2—H2···O41ii | 0.95 | 2.23 | 3.175 (3) | 176 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1/2, y−1/2, z. |
Selected torsion angles (°) for compounds (I)–(III) topParameter | (I) | (II) | (III) |
N3—C4—C41—O41 | 179.3 (2) | 3.6 (3) | -177.6 (2) |
N3—C4—C41—O42 | -2.6 (3) | -176.39 (17) | 2.2 (3) |
C4—C41—O42—C42 | -179.12 (18) | -171.1 (2) | -179.5 (2) |
C4—C41—O42—C42A | | 164.8 (3) | |
C41—O42—C42—C43 | 161.84 (18) | -99.3 (3) | -171.2 (2) |
C41—O42—C42A—C43A | | -155.7 (4) | |
In compound (II) the ethyl group is disordered over two sets of sites (see text). |
Acknowledgements
X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Costa, M. S., Boechat, N., Rangel, E. A., da Silva, F. de C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Junior, I. N., Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). Biorg. Med. Chem. 14, 8644–8653. CrossRef CAS Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Foroumadi, A., Emami, S., Pournourmohammadi, S., Kharazmi, A. & Shafiee, A. (2005). Eur. J. Med. Chem. 40, 1346–1350. Web of Science CrossRef PubMed CAS Google Scholar
Gangneux, J.-P., Dullin, M., Sulahian, A., Garin, Y. J.-F. & Derouin, F. (1999). Antimicrob. Agents Chemother. 43, 172–174. Web of Science CAS PubMed Google Scholar
Gupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem. 39, 805–814. Web of Science CrossRef PubMed CAS Google Scholar
Have, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355–11368. CSD CrossRef Web of Science Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Khabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. & Farrokhroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863–2865. Web of Science CrossRef PubMed CAS Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shaw, G., Brown, T. & Durant, G. J. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2310–2315. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
| STRUCTURAL CHEMISTRY |
ISSN: 2053-2296
Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997). In particular, N-substituted imidazoles (Khabnadideh et al., 2003) have been found to exhibit a variety of pharmacological properties, including antiparasitic, antifungal and antimicrobial properties (Gangneux et al., 1999; Gupta et al., 2004; Foroumadi et al., 2005). In continuation of our studies on agents having inhibitory activity against Mycobacterium tuberculosis and anti-leishmanicidal activity, we have prepared a series of 5-amino-1-aryl-4-ethoxycarbonyl-1H-imidazoles, and we report here the structures of three such compounds, viz. ethyl 5-amino-1-(4-cyanophenyl)-1H-imidazole-4-carboxylate, (I) (Fig. 1), ethyl 5-amino-1-(4-chlorophenyl)-1H-imidazole-4-carboxylate, (II) (Fig. 2), and ethyl 5-amino-1-(2,6-difluorophenyl)-1H-imidazole-4-carboxylate, (III) (Fig. 3), where small changes in the substituents on the aryl ring lead to significant changes in the supramolecular structures.
In each of compounds (I)–(III), the two rings are far from being coplanar; the dihedral angles between the rings are 40.4 (2), 48.0 (2) and 56.9 (2)° in (I)–(III), respectively. However, the principal point of interest in the conformations concerns the ester portion of the molecules. In each compound, there is a short intramolecular N—H···O hydrogen bond (Tables 1–3) and this may control the conformation of the carboxyl fragment which is, in each case, almost coplanar with the imidazole ring, as shown by the torsion angles (Table 4). However, while in compounds (I) and (III) it is the carbonyl O atom O41 which participates in the intramolecular hydrogen bond, in compound (II) it is the ethoxy atom O42. Similarly, the ethoxycarbonyl groups in compounds (I) and (III) adopt a nearly planar conformation, while in compound (II), where this fragment is disordered over two sets of sites with equal occupancy, neither conformation of this group is even close to planarity (Table 4). Apart from the long C14—C141 bond and the short C141—N14 characteristic of nitriles, as found in compound (I), none of the other bond distances presents any unusual features.
The molecules of compound (I) are linked by a combination of N—H···N and C—H···N hydrogen bonds (Table 1) into chains of edge-fused rings. Atoms N5 and C15 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms N3 in the molecule at (1 + x, y, z) and N14 in the molecule at (2 − x, 1 − y, −z), so forming a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(10) (Bernstein et al., 1995) rings centred at (n, 1/2, 0) (where n is zero or an integer) and R44(34) rings centred at (n + 1/2, 1/2, 0) (where n is zero or an integer) (Fig. 4). There are no direction-specific interactions between the chains, so that the supramolecular structure of compound (I) is one-dimensional.
The supramolecular structure of compound (II) takes the form of sheets generated by a combination of N—H···O, N—H···N, C—H···N and C—H..π(arene) hydrogen bonds (Table 2), and the formation of the sheet is readily analysed in terms of two distinct low-dimensional substructures. The simpler of these substructures is a finite (zero-dimensional) dimer motif; atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (1 − x, −y, 1 − z), so generating by inversion an R22(12) dimer centred at (1/2, 0, 1/2) (Fig. 5). In the second substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H5A and H5B, respectively, to atoms O41 and N3, both in the molecule at (x, 1/2 − y, 1/2 + z), so forming a C(5) C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = 0.25. A t the same time, atom C2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C11–C16 ring in the molecule at (x, 1/2 − y, −1/2 + z), so both reinforcing and adding complexity to the [001] chain (Fig. 6). The propagation by the space group of this chain motif then directly links the dimer centred at (1/2, 0, 1/2) to those centred at (1/2, −0.5, 0), (1/2, −0.5, 1), (1/2, 1/2, 0) and (1/2, 1/2, 1), so generating a rather complex sheet lying parallel to (100) (Fig. 7). However, there are no direction-specific interactions between adjacent sheets, so that the supramolecular structure of compound (II) is two-dimensional.
There are only two hydrogen bonds (Table 3) in the structure of compound (III), but as propagated by the space group they link all the molecules into a single three-dimensional framework, whose formation is readily analysed in terms of simple, one-dimensional substructures. In the first substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (x, 1 − y, 1/2 + z), so forming a C(5) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.5 (Fig. 8). The second substructure is built using the C—H···O hydrogen bond, where atom C2 in the molecule at (x, y, z) acts as donor to carbonyl atom O41 in the molecule at (1/2 + x, −1/2 + y, z), so generating by translation a C(6) chain running parallel to the [110] direction (Fig. 9). The action of the c-glide plane upon the chain along [110] generates an identical C(6) chain, this time running parallel to the [110] direction. Successive [110] and [110] chains are linked by the [001] chain and the combination of these three chain motifs is thus sufficient to generate a continuous three-dimensional structure.
Accordingly, the supramolecular structures of compounds (I), (II) and (III) are, respectively, one-, two- and three-dimensional.