organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three ethyl 5-amino-1-aryl-1H-imidazole-4-carboxylates: hydrogen-bonded supra­molecular structures in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Baptista, CEP 24020-150 Niterói, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 13 November 2006; accepted 14 November 2006; online 12 December 2006)

The mol­ecules of ethyl 5-amino-1-(4-cyano­phen­yl)-1H-imidazole-4-carboxyl­ate, C13H12N4O2, are linked into a chain of alternating R22(10) and R44(34) rings by a combination of N—H⋯N and C—H⋯N hydrogen bonds. In ethyl 5-amino-1-(4-chloro­phen­yl)-1H-imidazole-4-carboxyl­ate, C12H12ClN3O2, where the ethyl group is disordered over two sets of sites, a combination of N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯π(arene) hydrogen bonds links the mol­ecules into complex sheets. Two inter­molecular hydrogen bonds, one each of N—H⋯N and C—H⋯O types, link the mol­ecules of ethyl 5-amino-1-(2,6-difluoro­phen­yl)-1H-imidazole-4-carboxyl­ate, C12H11F2N3O2, into a continuous three-dimensional framework structure.

Comment

Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997[Have, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355-11368.]). In particular, N-substituted imidazoles (Khabnadideh et al., 2003[Khabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. & Farrokhroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863-2865.]) have been found to exhibit a variety of pharmacological properties, including anti­parasitic, anti­fungal and anti­microbial properties (Gangneux et al., 1999[Gangneux, J.-P., Dullin, M., Sulahian, A., Garin, Y. J.-F. & Derouin, F. (1999). Antimicrob. Agents Chemother. 43, 172-174.]; Gupta et al., 2004[Gupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem. 39, 805-814.]; Foroumadi et al., 2005[Foroumadi, A., Emami, S., Pournourmohammadi, S., Kharazmi, A. & Shafiee, A. (2005). Eur. J. Med. Chem. 40, 1346-1350.]). In continuation of our studies on agents having inhibitory activity against Mycobacterium tuberculosis and anti-leishmanicidal activity (Costa et al., 2006[Costa, M. S., Boechat, N., Rangel, E. A., da Silva, F. de C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Junior, I. N., Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). Biorg. Med. Chem. 14, 8644-8653.]), we have prepared a series of ethyl 5-amino-1-aryl-1H-imidazole-4-carboxylates, and report here the structures of three such compounds, namely ethyl 5-amino-1-(4-cyano­phen­yl)-1H-imidazole-4-carboxyl­ate, (I)[link] (Fig. 1[link]), ethyl 5-amino-1-(4-chloro­phen­yl)-1H-imidazole-4-carboxyl­ate, (II)[link] (Fig. 2[link]), and lastly ethyl 5-amino-1-(2,6-difluoro­phen­yl)-1H-imidazole-4-carboxyl­ate, (III)[link] (Fig. 3[link]), where small changes in the substituents on the aryl ring lead to significant changes in the supra­molecular structures.

[Scheme 1]

In each of compounds (I)–(III)[link], the two rings are far from being coplanar; the dihedral angles between the rings are 40.4 (2), 48.0 (2) and 56.9 (2)° in (I)–(III)[link], respectively. However, the principal point of interest in the conformations concerns the ester portion of the mol­ecules. In each compound, there is a short intra­molecular N—H⋯O hydrogen bond (Tables 1[link]–3[link][link]) and this may control the conformation of the carboxyl fragment, which is, in each case, almost coplanar with the imidazole ring, as shown by the torsion angles (Table 4[link]). However, while in compounds (I)[link] and (III)[link] it is carbonyl atom O41 that participates in the intra­molecular hydrogen bond, in compound (II)[link] it is ethoxy atom O42. Similarly, the ethoxy­carbonyl groups in compounds (I)[link] and (III)[link] adopt a nearly planar conformation, while in compound (II)[link], where this fragment is disordered over two sets of sites with equal occupancy, neither conformation of this group is even close to planarity (Table 4[link]). Apart from the long C14—C141 bond and the short C141—N14 bond characteristic of nitriles, as found in compound (I)[link], none of the other bond distances presents any unusual features.

The mol­ecules of compound (I)[link] are linked by a combination of N—H⋯N and C—H⋯N hydrogen bonds (Table 1[link]) into chains of edge-fused rings. Atoms N5 and C15 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to N3 in the mol­ecule at (1 + x, y, z) and N14 in the mol­ecule at (2 − x, 1 − y, −z), so forming a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(10) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (n, [1\over2], 0) (where n is zero or an integer) and R44(34) rings centred at (n + [1\over2], [1\over2], 0) (where n is zero or an integer) (Fig. 4[link]). There are no direction-specific inter­actions between the chains, so the supra­molecular structure of compound (I)[link] is one-dimensional.

The supra­molecular structure of compound (II)[link] takes the form of sheets generated by a combination of N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 2[link]), and the formation of the sheet is readily analysed in terms of two distinct low-dimensional substructures. The simpler of these substructures is a finite (zero-dimensional) dimer motif; atom C12 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the mol­ecule at (1 − x, −y, 1 − z), so generating by inversion an R22(12) dimer centred at ([1\over2], 0, [1\over2]) (Fig. 5[link]). In the second substructure, atom N5 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H5A and H5B, respectively, to atoms O41 and N3, both in the mol­ecule at (x, [{1\over 2}] − y, [{1\over 2}] + z), so forming a C(5)C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = [1\over4]. At the same time, atom C2 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the C11–C16 ring in the mol­ecule at (x, [{1\over 2}] − y, −[{1\over 2}] + z), so both reinforcing and adding complexity to the [001] chain (Fig. 6[link]). Propagation by the space group of this chain motif then directly links the dimer centred at ([1\over2], 0, [1\over2]) to those centred at ([1\over2], −[1\over2], 0), ([1\over2], −[1\over2], 1), ([1\over2], [1\over2], 0) and ([1\over2], [1\over2], 1), so generating a rather complex sheet lying parallel to (100) (Fig. 7[link]). However, there are no direction-specific inter­actions between adjacent sheets, so that the supra­molecular structure of compound (II)[link] is two-dimensional.

There are only two hydrogen bonds (Table 3[link]) in the structure of compound (III)[link], but as propagated by the space group they link all the mol­ecules into a single three-dimensional framework, whose formation is readily analysed in terms of simple one-dimensional substructures. In the first substructure, atom N5 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the mol­ecule at (x, 1 − y, [{1\over 2}] + z), so forming a C(5) chain running parallel to the [001] direction and generated by the c-glide plane at y = [1\over2] (Fig. 8[link]). The second substructure is built using the C—H⋯O hydrogen bond, where atom C2 in the mol­ecule at (x, y, z) acts as donor to carbonyl atom O41 in the mol­ecule at ([{1\over 2}] + x, −[{1\over 2}] + y, z), so generating by translation a C(6) chain running parallel to the [1[\overline{1}]0] direction (Fig. 9[link]). The action of the c-glide plane upon the chain along [1[\overline{1}]0] generates an identical C(6) chain, this time running parallel to the [110] direction. Successive [110] and [1[\overline{1}]0] chains are linked by the [001] chain, and the combination of these three chain motifs is thus sufficient to generate a continuous three-dimensional structure.

Accordingly, the supra­molecular structures of compounds (I)[link], (II)[link] and (III)[link] are, respectively, one-, two- and three-dimensional.

[Figure 1]
Figure 1
A mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A mol­ecule of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; for the sake of clarity, only one orientation of the disordered ethyl group is shown.
[Figure 3]
Figure 3
A mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a chain of hydrogen-bonded R22(10) and R44(34) rings along [100]. For the sake of clarity, H atoms bonded to C atoms and not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of an R22(12) dimer centred at ([1\over2], 0, [1\over2]). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded chain along [001]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, [{1\over 2}] + z) and (x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded sheet parallel to (100). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown.
[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded C(5) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, [{1\over 2}] + z) and (x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 9]
Figure 9
Part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded C(6) chain along [1[\overline{1}]0]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, −[{1\over 2}] + y, z) and (−[{1\over 2}] + x, −[{1\over 2}] + y, z), respectively.

Experimental

The title compounds were obtained following a published procedure (Shaw et al., 1980[Shaw, G., Brown, T. & Durant, G. J. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2310-2315.]). A solution of ethyl 2-amino-2-cyano­acetate (0.0273 mol) and triethyl orthoformate (0.0273 mol) in acetonitrile (15 ml) was stirred at room temperature for 5 min and the appropriate aniline [4-cyano­aniline for (I)[link], 4-chloro­aniline for (II)[link] and 2,6-difluoro­aniline for (III)[link]] (0.0273 mol) was then added. The reaction mixtures were heated under reflux for 4 h; after cooling the mixtures, the solid products were collected by filtration, washed with cold acetonitrile and recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction. Compound (I)[link]: yield 65%; m.p. 516–518 K; IR (KBr disk, cm−1): 3426 (NH2), 2231 (CN), 1669 (C=O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 5.99 (s, NH2), 7.36 (s, imidazole CH), 7.45 (d, J = 8.0 Hz), 7.76 (d, J = 8.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 121.3 (CN), 127.1, 130.9, 133.4, 132.6, 145.7, 163.7 (C=O); MS (m/z, %): 256 (60, M+), 210 [82, (M − 46)+], 184 [30, (M − 72)+], 129 [100 (M − 127)+], 102 [70 (M − 154)+]. Compound (II)[link]: yield 70%; m.p. 522–524 K; IR (KBr disk, cm−1): 3437 (NH2), 1696 (C=O); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 6.02 (s, NH2), 7.36 (s, imidazole CH), 7.52 (dd, J = 3.0 and 9.0 Hz), 7.64 (dd, J = 3.0 and 9.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 126.9, 129.7, 131.0, 132.8, 133.0, 145.8, 163.7 (C=O); MS (m/z, %): 219 [82 (M − 46)+], 193 [30 (M − 72)+], 138 [100 (M − 127)+], 111 [76 (M − 154)+]. Compound (III)[link]: yield 65%; m.p. 529–531 K; IR (KBr disk, cm−1): 3417 (NH2), 1675 (C=O); NMR (DMSO-d6): δ(H) 1.27 (t, CH3, J = 6.5 Hz), 4.20 (q, CH2, J = 6.0 Hz), 6.20 (s, NH2), 7.32 (s, imidazole CH), 7.39 (dd, J = 8.0, 8.5 Hz), 7.66 (dd, J = 6.5, 7.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 108.4, 110.8 [t, 2J(CF) = 17.2 Hz], 112.7 [d, 2J(CF) = 19.7 Hz], 131.9 [t, 3J(CF) = 10.3 Hz], 131.2, 146.9, 158.0 [d, 1J(CF) = 250.1 Hz], 163.5 (C=O); MS (m/z, %): 267 (60, M+), 221 [34 (M − 46)+], 202 [70 (M − 65)+], 195 [24 (M − 72)+], 140 [100 (M − 127)+], 113 [18 (M − 154)+].

Compound (I)[link]

Crystal data
  • C13H12N4O2

  • Mr = 256.27

  • Triclinic, [P \overline 1]

  • a = 6.3212 (5) Å

  • b = 9.4121 (11) Å

  • c = 10.2496 (12) Å

  • α = 90.311 (5)°

  • β = 94.183 (7)°

  • γ = 92.946 (7)°

  • V = 607.35 (11) Å3

  • Z = 2

  • Dx = 1.401 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.64 × 0.04 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.997

  • 11051 measured reflections

  • 2688 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.079

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.147

  • S = 1.04

  • 2688 reflections

  • 173 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0736P)2 + 0.0026P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O41 0.90 2.21 2.866 (2) 129
N5—H5B⋯N3i 0.90 2.22 3.073 (2) 158
C15—H15⋯N14ii 0.95 2.52 3.397 (3) 154
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z.

Compound (II)[link]

Crystal data
  • C12H12ClN3O2

  • Mr = 265.70

  • Monoclinic, P 21 /c

  • a = 13.1153 (6) Å

  • b = 8.7114 (4) Å

  • c = 11.5273 (4) Å

  • β = 107.064 (3)°

  • V = 1259.05 (9) Å3

  • Z = 4

  • Dx = 1.402 Mg m−3

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.48 × 0.32 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.976

  • 17524 measured reflections

  • 2864 independent reflections

  • 2210 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.05

  • 2864 reflections

  • 171 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7518P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.47 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O42 0.90 2.24 2.834 (2) 123
N5—H5A⋯O41i 0.90 2.51 3.071 (2) 121
N5—H5B⋯N3i 0.90 2.09 2.952 (2) 161
C12—H12⋯N3ii 0.95 2.59 3.462 (3) 153
C2—H2⋯Cgiii 0.95 2.78 3.500 (2) 133
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Compound (III)[link]

Crystal data
  • C12H11F2N3O2

  • Mr = 267.24

  • Monoclinic, C c

  • a = 7.9045 (4) Å

  • b = 12.9950 (7) Å

  • c = 11.7737 (5) Å

  • β = 98.810 (4)°

  • V = 1195.11 (10) Å3

  • Z = 4

  • Dx = 1.485 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.35 × 0.17 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.985

  • 8086 measured reflections

  • 1362 independent reflections

  • 1175 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.07

  • 1362 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2764P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O41 0.88 2.30 2.903 (3) 125
N5—H5B⋯N3i 0.88 2.07 2.946 (3) 173
C2—H2⋯O41ii 0.95 2.23 3.175 (3) 176
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 4
Selected torsion angles (°) for compounds (I)–(III)

  (I) (II) (III)
N3—C4—C41—O41 179.3 (2) 3.6 (3) −177.6 (2)
N3—C4—C41—O42 −2.6 (3) −176.39 (17) 2.2 (3)
C4—C41—O42—C42 −179.12 (18) −171.1 (2) −179.5 (2)
C4—C41—O42—C42A 164.8 (3)
C41—O42—C42—C43 161.84 (18) −99.3 (3) −171.2 (2)
C41—O42—C42A—C43A −155.7 (4)
Note: in compound (II), the ethyl group is disordered over two sets of sites (see Comment).

Crystals of compound (I)[link] are triclinic; the space group P[\overline{1}] was selected and subsequently confirmed by the structure analysis. For compound (II)[link], the space group P21/c was uniquely assigned from the systematic absences. For compound (III)[link], the systematic absences permitted Cc and C2/c as possible space groups; Cc was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). It was apparent from an early stage that the ethyl group in compound (II)[link] was disordered over two sets of sites; refinement of the site-occupancy factors gave values which were experimentally indistinguishable from 0.5, and consequently these factors were thereafter fixed at 0.5. In the absence of significant resonant scattering, it was not possible to establish the correct orientation of the structure of compound (III)[link] with respect to the polar-axis directions; accordingly, the Friedel equivalent reflections were merged prior to the final refinements.

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997). In particular, N-substituted imidazoles (Khabnadideh et al., 2003) have been found to exhibit a variety of pharmacological properties, including antiparasitic, antifungal and antimicrobial properties (Gangneux et al., 1999; Gupta et al., 2004; Foroumadi et al., 2005). In continuation of our studies on agents having inhibitory activity against Mycobacterium tuberculosis and anti-leishmanicidal activity, we have prepared a series of 5-amino-1-aryl-4-ethoxycarbonyl-1H-imidazoles, and we report here the structures of three such compounds, viz. ethyl 5-amino-1-(4-cyanophenyl)-1H-imidazole-4-carboxylate, (I) (Fig. 1), ethyl 5-amino-1-(4-chlorophenyl)-1H-imidazole-4-carboxylate, (II) (Fig. 2), and ethyl 5-amino-1-(2,6-difluorophenyl)-1H-imidazole-4-carboxylate, (III) (Fig. 3), where small changes in the substituents on the aryl ring lead to significant changes in the supramolecular structures.

In each of compounds (I)–(III), the two rings are far from being coplanar; the dihedral angles between the rings are 40.4 (2), 48.0 (2) and 56.9 (2)° in (I)–(III), respectively. However, the principal point of interest in the conformations concerns the ester portion of the molecules. In each compound, there is a short intramolecular N—H···O hydrogen bond (Tables 1–3) and this may control the conformation of the carboxyl fragment which is, in each case, almost coplanar with the imidazole ring, as shown by the torsion angles (Table 4). However, while in compounds (I) and (III) it is the carbonyl O atom O41 which participates in the intramolecular hydrogen bond, in compound (II) it is the ethoxy atom O42. Similarly, the ethoxycarbonyl groups in compounds (I) and (III) adopt a nearly planar conformation, while in compound (II), where this fragment is disordered over two sets of sites with equal occupancy, neither conformation of this group is even close to planarity (Table 4). Apart from the long C14—C141 bond and the short C141—N14 characteristic of nitriles, as found in compound (I), none of the other bond distances presents any unusual features.

The molecules of compound (I) are linked by a combination of N—H···N and C—H···N hydrogen bonds (Table 1) into chains of edge-fused rings. Atoms N5 and C15 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms N3 in the molecule at (1 + x, y, z) and N14 in the molecule at (2 − x, 1 − y, −z), so forming a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, with R22(10) (Bernstein et al., 1995) rings centred at (n, 1/2, 0) (where n is zero or an integer) and R44(34) rings centred at (n + 1/2, 1/2, 0) (where n is zero or an integer) (Fig. 4). There are no direction-specific interactions between the chains, so that the supramolecular structure of compound (I) is one-dimensional.

The supramolecular structure of compound (II) takes the form of sheets generated by a combination of N—H···O, N—H···N, C—H···N and C—H..π(arene) hydrogen bonds (Table 2), and the formation of the sheet is readily analysed in terms of two distinct low-dimensional substructures. The simpler of these substructures is a finite (zero-dimensional) dimer motif; atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (1 − x, −y, 1 − z), so generating by inversion an R22(12) dimer centred at (1/2, 0, 1/2) (Fig. 5). In the second substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H5A and H5B, respectively, to atoms O41 and N3, both in the molecule at (x, 1/2 − y, 1/2 + z), so forming a C(5) C(6)[R22(7)] chain of rings running parallel to the [001] direction and generated by the c-glide plane at y = 0.25. A t the same time, atom C2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C11–C16 ring in the molecule at (x, 1/2 − y, −1/2 + z), so both reinforcing and adding complexity to the [001] chain (Fig. 6). The propagation by the space group of this chain motif then directly links the dimer centred at (1/2, 0, 1/2) to those centred at (1/2, −0.5, 0), (1/2, −0.5, 1), (1/2, 1/2, 0) and (1/2, 1/2, 1), so generating a rather complex sheet lying parallel to (100) (Fig. 7). However, there are no direction-specific interactions between adjacent sheets, so that the supramolecular structure of compound (II) is two-dimensional.

There are only two hydrogen bonds (Table 3) in the structure of compound (III), but as propagated by the space group they link all the molecules into a single three-dimensional framework, whose formation is readily analysed in terms of simple, one-dimensional substructures. In the first substructure, atom N5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N3 in the molecule at (x, 1 − y, 1/2 + z), so forming a C(5) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.5 (Fig. 8). The second substructure is built using the C—H···O hydrogen bond, where atom C2 in the molecule at (x, y, z) acts as donor to carbonyl atom O41 in the molecule at (1/2 + x, −1/2 + y, z), so generating by translation a C(6) chain running parallel to the [110] direction (Fig. 9). The action of the c-glide plane upon the chain along [110] generates an identical C(6) chain, this time running parallel to the [110] direction. Successive [110] and [110] chains are linked by the [001] chain and the combination of these three chain motifs is thus sufficient to generate a continuous three-dimensional structure.

Accordingly, the supramolecular structures of compounds (I), (II) and (III) are, respectively, one-, two- and three-dimensional.

Experimental top

The title compounds were obtained following a published procedure (Shaw et al., 1980). A solution of ethyl 2-amino-2-cyanoacetate (0.0273 mol) and triethyl orthoformate (0.0273 mol) in acetonitrile (15 ml) was stirred at room temperature for 5 min and the appropriate aniline [4-cyanoaniline for (I), 4-chloroaniline for (II) and 2,6-difluoroaniline for (III)] (0.0273 mol) was then added. The reaction mixtures were heated under reflux for 4 h; after cooling the mixtures, the solid products were collected by filtration, washed with cold acetonitrile and recrystallized from ethanol to give crystal suitable for single-crystal X-ray diffraction. Compound (I): yield 65%, m.p. 516–518 K; IR (KBr disk, cm−1): 3426 (NH2), 2231 (CN), 1669 (CO); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 5.99 (s, NH2), 7.36 (s, imidazole CH), 7.45 (d, J = 8.0 Hz), 7.76 (d, J = 8.0 Hz); δ(C) 14.5 (CH3), 58.5 (CH2), 109.6, 121.3 (CN), 127.1, 130.9, 133.4, 132.6, 145.7, 163.7 (CO); MS (m/z, %): 256 (60, M+), 210 [82, (M-46)+], 184 [30, (M-72)+], 129 [100 (M– 127)+], 102 [70 (M-154)+]. Compound (II): yield 70%, m.p. 522–524 K; IR (KBr disk, cm−1): 3437 (NH2), 1696 (CO); NMR (DMSO-d6): δ(H) 1.26 (t, CH3, J = 7.0 Hz), 4.20 (q, CH2, J = 7.0 Hz), 6.02 (s, NH2), 7.36 (s, imidazole CH), 7.52 (dd, J = 3.0, 9.0 Hz), 7.64 (dd, J = 3.0, 9.0 Hz); δ(C): 14.5 (CH3), 58.5 (CH2), 109.6, 126.9, 129.7, 131.0, 132.8, 133.0, 145.8, 163.7 (CO); MS (m/z, %) 219 [82 (M-46)+], 193 [30 (M-72)+], 138 [100 (M-127)+], 111 [76 (M– 154)+]. Compound (III): yield 65%, m.p. 529–531 K; IR (KBr disk, cm−1): 3417 (NH2), 1675 (CO); NMR (DMSO-d6): δ(H) 1.27 (t, CH3, J = 6.5 Hz), 4.20 (q, CH2, J = 6.0 Hz), 6.20 (s, NH2), 7.32 (s, imidazole CH), 7.39 (dd, J = 8.0, 8.5 Hz), 7.66 (dd, J = 6.5, 7.0 Hz); δ(C): 14.5 (CH3), 58.5 (CH2), 108.4, 110.8 [t, 2J(CF) = 17.2 Hz], 112.7 [d, 2J(CF) = 19.7 Hz], 131.9 [t, 3J(CF) = 10.3 Hz], 131.2, 146.9, 158.0 [d, 1J(CF) = 250.1 Hz), 163.5 (CO); MS (m/z, %) 267 (60, M+), 221 [34 (M-46)+], 202 [70 (M-65)+], 195 [24 (M-72)+], 140 [100 (M– 127)+], 113 [18 (M– 154)+].

Refinement top

Crystals of compound (I) are triclinic; the space group P1 was selected and subsequently confirmed by the structure analysis. For compound (II), the space group P21/c was uniquely assigned from the systematic absences. For compound (III), the systematic absences permitted Cc and C2/c as possible space groups; Cc was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms with C—H distances of 0.95 Å (aromatic and heteroaromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and N—H distances of 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). It was apparent from an early stage that the ethyl group in compound (II) was disordered over two sets of sites; refinement of the site-occupancy factors gave values which were experimentally indistinguishable from 1/2, and consequently these factors were thereafter fixed at 0.5. In the absence of significant resonant scattering, it was not possible to establish the correct orientation of the structure of compound (III) with respect to the polar axis directions; accordingly, the Friedel equivalent reflections were merged prior to the final refinements.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; for the sake of clarity only one orientation of the disordered ethyl group is shown.
[Figure 3] Fig. 3. A molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a chain of hydrogen-bonded R22(10) and R44(34) rings along [100]. For the sake of clarity, H atoms bonded to C atoms and not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of compound (II), showing the formation of an R22(12) dimer centred at (1/2, 0, 1/2). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).
[Figure 6] Fig. 6. Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain along [001]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 − y, 1/2 + z) and (x, 1/2 − y, −1/2 + z), respectively.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet parallel to (100). For the sake of clarity, H atoms not involved in the motifs shown have been omitted, and only one orientation of the disordered ethyl group is shown.
[Figure 8] Fig. 8. Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(5) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 − y, 1/2 + z) and (x, 1/2 − y, −1/2 + z), respectively.
[Figure 9] Fig. 9. Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(6) chain along [110]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1/2 + x, −1/2 + y, z) and (−1/2 + x, −1/2 + y, z), respectively.
(I) ethyl 5-amino-1-(4-cyanophenyl)-1H-imidazole-4-carboxylate top
Crystal data top
C13H12N4O2Z = 2
Mr = 256.27F(000) = 268
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3212 (5) ÅCell parameters from 2688 reflections
b = 9.4121 (11) Åθ = 3.2–27.6°
c = 10.2496 (12) ŵ = 0.10 mm1
α = 90.311 (5)°T = 120 K
β = 94.183 (7)°Needle, colourless
γ = 92.946 (7)°0.64 × 0.04 × 0.03 mm
V = 607.35 (11) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2688 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.946, Tmax = 0.997l = 1313
11051 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.0026P]
where P = (Fo2 + 2Fc2)/3
2688 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H12N4O2γ = 92.946 (7)°
Mr = 256.27V = 607.35 (11) Å3
Triclinic, P1Z = 2
a = 6.3212 (5) ÅMo Kα radiation
b = 9.4121 (11) ŵ = 0.10 mm1
c = 10.2496 (12) ÅT = 120 K
α = 90.311 (5)°0.64 × 0.04 × 0.03 mm
β = 94.183 (7)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1720 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.997Rint = 0.079
11051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2688 reflectionsΔρmin = 0.28 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O410.2434 (2)0.01631 (16)0.69543 (15)0.0333 (4)
O420.0923 (2)0.08389 (15)0.70768 (14)0.0278 (4)
N10.2612 (2)0.32789 (18)0.40492 (17)0.0239 (4)
N30.0421 (3)0.27643 (18)0.49852 (18)0.0268 (4)
N50.4953 (3)0.16377 (18)0.51255 (18)0.0294 (5)
N140.8987 (3)0.6796 (2)0.0046 (2)0.0411 (5)
C20.0487 (3)0.3558 (2)0.4137 (2)0.0265 (5)
C40.1169 (3)0.1903 (2)0.5512 (2)0.0242 (5)
C50.3047 (3)0.2205 (2)0.4931 (2)0.0238 (5)
C110.3986 (3)0.3979 (2)0.3183 (2)0.0237 (5)
C120.3832 (3)0.5438 (2)0.3006 (2)0.0270 (5)
C130.5118 (3)0.6140 (2)0.2157 (2)0.0296 (5)
C140.6547 (3)0.5396 (2)0.1489 (2)0.0260 (5)
C150.6686 (3)0.3932 (2)0.1663 (2)0.0276 (5)
C160.5404 (3)0.3222 (2)0.2512 (2)0.0248 (5)
C410.0973 (3)0.0889 (2)0.6555 (2)0.0257 (5)
C420.1120 (3)0.0169 (2)0.8145 (2)0.0298 (5)
C430.2963 (3)0.0227 (2)0.8891 (2)0.0330 (6)
C1410.7914 (3)0.6162 (2)0.0626 (2)0.0304 (5)
H20.02230.42550.36300.032*
H5A0.49920.09630.57440.035*
H5B0.61480.21100.49060.035*
H120.28520.59450.34640.032*
H130.50250.71350.20310.036*
H150.76600.34240.12000.033*
H160.54920.22270.26360.030*
H42A0.02000.01270.87300.036*
H42B0.13640.11500.77920.036*
H43A0.26720.11780.92760.040*
H43B0.31730.04640.95870.040*
H43C0.42490.02260.82950.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (10)0.0234 (10)0.0262 (10)0.0008 (7)0.0052 (7)0.0063 (8)
C110.0216 (11)0.0254 (12)0.0241 (12)0.0032 (9)0.0035 (9)0.0051 (9)
C120.0269 (12)0.0243 (12)0.0310 (13)0.0016 (9)0.0089 (9)0.0031 (10)
C130.0306 (12)0.0238 (12)0.0350 (14)0.0007 (9)0.0066 (10)0.0098 (10)
C140.0233 (11)0.0313 (13)0.0234 (12)0.0012 (9)0.0030 (9)0.0095 (10)
C1410.0299 (13)0.0269 (13)0.0350 (14)0.0019 (9)0.0056 (10)0.0079 (11)
N140.0404 (12)0.0369 (12)0.0485 (14)0.0045 (9)0.0179 (10)0.0167 (10)
C150.0266 (12)0.0301 (13)0.0268 (12)0.0021 (9)0.0067 (9)0.0038 (10)
C160.0252 (11)0.0213 (11)0.0280 (13)0.0007 (9)0.0033 (9)0.0054 (9)
C50.0237 (11)0.0213 (11)0.0267 (12)0.0001 (8)0.0034 (9)0.0048 (9)
C20.0229 (11)0.0271 (12)0.0302 (13)0.0015 (9)0.0049 (9)0.0092 (10)
N30.0249 (10)0.0260 (10)0.0300 (11)0.0000 (7)0.0054 (8)0.0074 (8)
C40.0232 (11)0.0251 (12)0.0247 (12)0.0009 (9)0.0047 (9)0.0047 (10)
C410.0226 (11)0.0274 (12)0.0273 (12)0.0020 (9)0.0064 (9)0.0015 (10)
O410.0272 (8)0.0359 (9)0.0380 (10)0.0060 (7)0.0060 (7)0.0147 (8)
O420.0256 (8)0.0319 (9)0.0269 (9)0.0007 (6)0.0085 (6)0.0126 (7)
C420.0297 (12)0.0336 (13)0.0268 (13)0.0000 (9)0.0060 (9)0.0121 (10)
C430.0319 (13)0.0365 (14)0.0316 (14)0.0008 (10)0.0088 (10)0.0120 (11)
N50.0241 (10)0.0287 (11)0.0368 (11)0.0017 (8)0.0099 (8)0.0141 (9)
Geometric parameters (Å, º) top
N1—C51.384 (3)C5—C41.384 (3)
N1—C21.391 (2)C2—N31.295 (3)
N1—C111.427 (3)C2—H20.95
C11—C161.391 (3)N3—C41.403 (2)
C11—C121.394 (3)C4—C411.445 (3)
C12—C131.381 (3)C41—O411.225 (2)
C12—H120.95C41—O421.346 (2)
C13—C141.388 (3)O42—C421.461 (2)
C13—H130.95C42—C431.500 (3)
C14—C151.397 (3)C42—H42A0.99
C14—C1411.450 (3)C42—H42B0.99
C141—N141.150 (3)C43—H43A0.98
C15—C161.383 (3)C43—H43B0.98
C15—H150.95C43—H43C0.98
C16—H160.95N5—H5A0.90
C5—N51.345 (3)N5—H5B0.90
C5—N1—C2106.30 (16)N3—C2—H2123.6
C5—N1—C11128.92 (17)N1—C2—H2123.6
C2—N1—C11124.77 (17)C2—N3—C4105.25 (16)
C16—C11—C12120.91 (19)C5—C4—N3110.16 (17)
C16—C11—N1121.00 (18)C5—C4—C41123.32 (18)
C12—C11—N1118.07 (19)N3—C4—C41126.45 (18)
C13—C12—C11119.4 (2)O41—C41—O42122.79 (19)
C13—C12—H12120.3O41—C41—C4122.63 (19)
C11—C12—H12120.3O42—C41—C4114.55 (17)
C12—C13—C14120.14 (19)C41—O42—C42114.81 (15)
C12—C13—H13119.9O42—C42—C43107.95 (17)
C14—C13—H13119.9O42—C42—H42A110.1
C13—C14—C15120.30 (18)C43—C42—H42A110.1
C13—C14—C141119.11 (19)O42—C42—H42B110.1
C15—C14—C141120.59 (19)C43—C42—H42B110.1
N14—C141—C14178.5 (2)H42A—C42—H42B108.4
C16—C15—C14119.9 (2)C42—C43—H43A109.5
C16—C15—H15120.1C42—C43—H43B109.5
C14—C15—H15120.1H43A—C43—H43B109.5
C15—C16—C11119.4 (2)C42—C43—H43C109.5
C15—C16—H16120.3H43A—C43—H43C109.5
C11—C16—H16120.3H43B—C43—H43C109.5
N5—C5—C4130.44 (19)C5—N5—H5A113.5
N5—C5—N1124.03 (18)C5—N5—H5B121.3
C4—C5—N1105.53 (17)H5A—N5—H5B121.2
N3—C2—N1112.76 (18)
C5—N1—C11—C1640.3 (3)C11—N1—C5—C4179.43 (19)
C2—N1—C11—C16138.4 (2)C5—N1—C2—N30.1 (2)
C5—N1—C11—C12141.1 (2)C11—N1—C2—N3179.05 (18)
C2—N1—C11—C1240.2 (3)N1—C2—N3—C40.4 (2)
C16—C11—C12—C130.4 (3)N5—C5—C4—N3179.5 (2)
N1—C11—C12—C13178.98 (18)N1—C5—C4—N30.8 (2)
C11—C12—C13—C140.1 (3)N5—C5—C4—C413.4 (4)
C12—C13—C14—C150.3 (3)N1—C5—C4—C41176.31 (19)
C12—C13—C14—C141178.6 (2)C2—N3—C4—C50.7 (2)
C13—C14—C15—C160.4 (3)C2—N3—C4—C41176.3 (2)
C141—C14—C15—C16178.53 (19)C5—C4—C41—O414.1 (3)
C14—C15—C16—C110.1 (3)N3—C4—C41—O41179.3 (2)
C12—C11—C16—C150.4 (3)C5—C4—C41—O42174.03 (19)
N1—C11—C16—C15178.88 (18)N3—C4—C41—O422.6 (3)
C2—N1—C5—N5179.7 (2)O41—C41—O42—C421.0 (3)
C11—N1—C5—N50.9 (3)C4—C41—O42—C42179.12 (18)
C2—N1—C5—C40.5 (2)C41—O42—C42—C43161.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O410.902.212.866 (2)129
N5—H5B···N3i0.902.223.073 (2)158
C15—H15···N14ii0.952.523.397 (3)154
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
(II) ethyl 5-amino-1-(4-chlorophenyl)-1H-imidazole-4-carboxylate top
Crystal data top
C12H12ClN3O2F(000) = 552
Mr = 265.70Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2864 reflections
a = 13.1153 (6) Åθ = 3.0–27.5°
b = 8.7114 (4) ŵ = 0.30 mm1
c = 11.5273 (4) ÅT = 120 K
β = 107.064 (3)°Plate, colourless
V = 1259.05 (9) Å30.48 × 0.32 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2864 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.869, Tmax = 0.976l = 1414
17524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7518P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.56 e Å3
6 restraintsΔρmin = 0.47 e Å3
Crystal data top
C12H12ClN3O2V = 1259.05 (9) Å3
Mr = 265.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1153 (6) ŵ = 0.30 mm1
b = 8.7114 (4) ÅT = 120 K
c = 11.5273 (4) Å0.48 × 0.32 × 0.08 mm
β = 107.064 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2210 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.976Rint = 0.042
17524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
2864 reflectionsΔρmin = 0.47 e Å3
171 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.51730 (11)0.26567 (17)0.56323 (13)0.0234 (3)
C110.60284 (14)0.3043 (2)0.66890 (17)0.0240 (4)
C120.67642 (16)0.1913 (2)0.72186 (19)0.0335 (5)
C130.76126 (17)0.2258 (3)0.8226 (2)0.0412 (5)
C140.77080 (16)0.3738 (3)0.86903 (19)0.0365 (5)
Cl140.87511 (5)0.41628 (9)0.99806 (6)0.0616 (3)
C150.69846 (17)0.4870 (2)0.81636 (19)0.0340 (5)
C160.61350 (16)0.4524 (2)0.71555 (18)0.0281 (4)
C20.52840 (16)0.1845 (2)0.46505 (17)0.0303 (4)
N30.43834 (12)0.15927 (18)0.38327 (14)0.0269 (4)
C40.36118 (14)0.2260 (2)0.42881 (15)0.0222 (4)
C410.24951 (14)0.2237 (2)0.36037 (17)0.0256 (4)
O410.21065 (10)0.16072 (16)0.26323 (11)0.0298 (3)
O420.19094 (10)0.3029 (2)0.41924 (15)0.0501 (5)
C420.07542 (13)0.2967 (5)0.3757 (4)0.0415 (9)0.50
C430.0490 (3)0.4458 (5)0.3047 (4)0.0415 (9)0.50
C42A0.0844 (2)0.3388 (6)0.3420 (4)0.0491 (10)0.50
C43A0.0428 (3)0.4788 (5)0.3924 (5)0.0491 (10)0.50
C50.40971 (14)0.2940 (2)0.54048 (16)0.0223 (4)
N50.37065 (13)0.3775 (2)0.61699 (15)0.0325 (4)
H120.66860.09040.68910.040*
H130.81210.14940.85930.049*
H150.70680.58800.84890.041*
H160.56300.52930.67870.034*
H20.59520.15050.45800.036*
H42A0.04380.29400.44380.050*0.50
H42B0.05050.20650.32280.050*0.50
H43A0.08500.53130.35560.050*0.50
H43B0.02830.46260.28060.050*0.50
H43C0.07320.43960.23210.050*0.50
H42C0.03640.25040.33930.059*0.50
H42D0.08660.35990.25830.059*0.50
H43D0.04710.46080.47760.059*0.50
H43E0.03160.49750.34550.059*0.50
H43F0.08610.56860.38650.059*0.50
H5A0.29910.37790.59960.039*
H5B0.40600.37450.69670.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (7)0.0205 (7)0.0256 (7)0.0026 (6)0.0079 (6)0.0004 (6)
C110.0247 (9)0.0203 (9)0.0286 (9)0.0015 (7)0.0102 (7)0.0027 (7)
C120.0314 (10)0.0231 (10)0.0398 (11)0.0033 (8)0.0009 (8)0.0122 (8)
C130.0283 (10)0.0432 (13)0.0449 (12)0.0065 (9)0.0006 (9)0.0157 (10)
C140.0255 (10)0.0459 (13)0.0397 (11)0.0125 (9)0.0119 (8)0.0205 (10)
Cl140.0346 (3)0.0885 (5)0.0570 (4)0.0193 (3)0.0063 (3)0.0404 (4)
C150.0411 (11)0.0254 (10)0.0447 (11)0.0138 (9)0.0268 (9)0.0141 (9)
C160.0355 (10)0.0185 (9)0.0373 (10)0.0036 (7)0.0217 (8)0.0014 (8)
C20.0286 (10)0.0309 (10)0.0322 (10)0.0061 (8)0.0102 (8)0.0058 (8)
N30.0265 (8)0.0280 (8)0.0270 (8)0.0050 (6)0.0093 (6)0.0004 (6)
C40.0261 (9)0.0203 (9)0.0224 (8)0.0032 (7)0.0104 (7)0.0049 (7)
C410.0276 (9)0.0235 (9)0.0287 (9)0.0029 (7)0.0130 (7)0.0040 (7)
O410.0296 (7)0.0341 (8)0.0259 (7)0.0024 (6)0.0082 (5)0.0005 (6)
O420.0229 (7)0.0705 (12)0.0563 (10)0.0036 (7)0.0107 (7)0.0323 (9)
C420.0236 (15)0.054 (2)0.050 (2)0.0017 (14)0.0153 (13)0.0065 (17)
C430.0236 (15)0.054 (2)0.050 (2)0.0017 (14)0.0153 (13)0.0065 (17)
C42A0.0269 (16)0.055 (2)0.064 (2)0.0061 (15)0.0110 (15)0.016 (2)
C43A0.0269 (16)0.055 (2)0.064 (2)0.0061 (15)0.0110 (15)0.016 (2)
C50.0249 (9)0.0195 (9)0.0255 (9)0.0020 (7)0.0119 (7)0.0058 (7)
N50.0259 (8)0.0436 (10)0.0304 (9)0.0019 (7)0.0120 (7)0.0085 (7)
Geometric parameters (Å, º) top
N1—C21.378 (2)C41—O411.216 (2)
N1—C51.380 (2)C41—O421.354 (2)
N1—C111.433 (2)O42—C421.4505 (11)
C11—C121.388 (3)O42—C42A1.4535 (11)
C11—C161.389 (2)C42—C431.5199 (11)
C12—C131.385 (3)C42—H42A0.99
C12—H120.95C42—H42B0.99
C13—C141.387 (3)C43—H43A0.98
C13—H130.95C43—H43B0.98
C14—C151.380 (3)C43—H43C0.98
C14—Cl141.740 (2)C42A—C43A1.5193 (11)
C15—C161.387 (3)C42A—H42C0.99
C15—H150.95C42A—H42D0.99
C16—H160.95C43A—H43D0.98
C2—N31.296 (2)C43A—H43E0.98
C2—H20.95C43A—H43F0.98
N3—C41.396 (2)C5—N51.354 (2)
C4—C51.390 (2)N5—H5A0.90
C4—C411.446 (2)N5—H5B0.90
C2—N1—C5106.52 (15)O41—C41—C4126.33 (17)
C2—N1—C11125.00 (15)O42—C41—C4110.63 (16)
C5—N1—C11128.42 (15)C41—O42—C42119.8 (3)
C12—C11—C16120.70 (17)C41—O42—C42A112.8 (2)
C12—C11—N1118.49 (16)O42—C42—C43101.8 (2)
C16—C11—N1120.80 (16)O42—C42—H42A111.4
C13—C12—C11119.87 (18)C43—C42—H42A111.4
C13—C12—H12120.1O42—C42—H42B111.4
C11—C12—H12120.1C43—C42—H42B111.4
C12—C13—C14119.0 (2)H42A—C42—H42B109.3
C12—C13—H13120.5O42—C42A—C43A109.1 (2)
C14—C13—H13120.5O42—C42A—H42C109.9
C15—C14—C13121.46 (19)C43A—C42A—H42C109.9
C15—C14—Cl14119.39 (16)O42—C42A—H42D109.9
C13—C14—Cl14119.15 (18)C43A—C42A—H42D109.9
C14—C15—C16119.54 (18)H42C—C42A—H42D108.3
C14—C15—H15120.2C42A—C43A—H43D109.5
C16—C15—H15120.2C42A—C43A—H43E109.5
C15—C16—C11119.43 (18)H43D—C43A—H43E109.5
C15—C16—H16120.3C42A—C43A—H43F109.5
C11—C16—H16120.3H43D—C43A—H43F109.5
N3—C2—N1113.02 (17)H43E—C43A—H43F109.5
N3—C2—H2123.5N5—C5—N1122.24 (16)
N1—C2—H2123.5N5—C5—C4132.38 (16)
C2—N3—C4105.22 (15)N1—C5—C4105.34 (15)
C5—C4—N3109.89 (15)C5—N5—H5A115.2
C5—C4—C41128.80 (16)C5—N5—H5B117.9
N3—C4—C41121.26 (16)H5A—N5—H5B114.8
O41—C41—O42123.04 (17)
C2—N1—C11—C1245.6 (3)N3—C4—C41—O413.6 (3)
C5—N1—C11—C12131.3 (2)C5—C4—C41—O421.0 (3)
C2—N1—C11—C16132.80 (19)N3—C4—C41—O42176.39 (17)
C5—N1—C11—C1650.3 (3)O41—C41—O42—C428.9 (3)
C16—C11—C12—C130.3 (3)C4—C41—O42—C42171.1 (2)
N1—C11—C12—C13178.66 (19)O41—C41—O42—C42A15.2 (4)
C11—C12—C13—C140.2 (3)C4—C41—O42—C42A164.8 (3)
C12—C13—C14—C150.7 (3)C41—O42—C42—C4399.3 (3)
C12—C13—C14—Cl14178.21 (18)C42A—O42—C42—C4321.4 (6)
C13—C14—C15—C160.7 (3)C41—O42—C42A—C43A155.7 (4)
Cl14—C14—C15—C16178.18 (15)C42—O42—C42A—C43A91.3 (9)
C14—C15—C16—C110.3 (3)C2—N1—C5—N5177.30 (17)
C12—C11—C16—C150.2 (3)C11—N1—C5—N55.4 (3)
N1—C11—C16—C15178.60 (16)C2—N1—C5—C40.59 (19)
C5—N1—C2—N30.1 (2)C11—N1—C5—C4176.74 (16)
C11—N1—C2—N3177.40 (17)N3—C4—C5—N5176.67 (18)
N1—C2—N3—C40.5 (2)C41—C4—C5—N50.9 (3)
C2—N3—C4—C50.9 (2)N3—C4—C5—N10.92 (19)
C2—N3—C4—C41178.70 (17)C41—C4—C5—N1178.52 (17)
C5—C4—C41—O41179.04 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O420.902.242.834 (2)123
N5—H5A···O41i0.902.513.071 (2)121
N5—H5B···N3i0.902.092.952 (2)161
C12—H12···N3ii0.952.593.462 (3)153
C2—H2···Cgiii0.952.783.500 (2)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
(III) ethyl 5-amino-1-(2,6-difluorophenyl)-1H-imidazole-4-carboxylate top
Crystal data top
C12H11F2N3O2F(000) = 552
Mr = 267.24Dx = 1.485 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1362 reflections
a = 7.9045 (4) Åθ = 3.0–27.4°
b = 12.9950 (7) ŵ = 0.12 mm1
c = 11.7737 (5) ÅT = 120 K
β = 98.810 (4)°Block, colourless
V = 1195.11 (10) Å30.35 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1362 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.966, Tmax = 0.985l = 1415
8086 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2764P]
where P = (Fo2 + 2Fc2)/3
1362 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H11F2N3O2V = 1195.11 (10) Å3
Mr = 267.24Z = 4
Monoclinic, CcMo Kα radiation
a = 7.9045 (4) ŵ = 0.12 mm1
b = 12.9950 (7) ÅT = 120 K
c = 11.7737 (5) Å0.35 × 0.17 × 0.12 mm
β = 98.810 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1175 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.053
8086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
1362 reflectionsΔρmin = 0.23 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7418 (2)0.44928 (15)0.32789 (17)0.0180 (4)
C110.8301 (3)0.41351 (19)0.4350 (2)0.0192 (5)
C120.8023 (3)0.3162 (2)0.4754 (2)0.0245 (6)
F120.6923 (2)0.25366 (11)0.40811 (15)0.0325 (4)
C130.8811 (4)0.2800 (2)0.5803 (2)0.0353 (7)
C140.9920 (4)0.3445 (3)0.6480 (2)0.0408 (8)
C151.0281 (4)0.4427 (3)0.6105 (3)0.0398 (8)
C160.9482 (3)0.4742 (2)0.5039 (2)0.0275 (6)
F160.9841 (2)0.56769 (12)0.46446 (16)0.0401 (5)
C20.7396 (3)0.40146 (17)0.2217 (2)0.0197 (5)
N30.6457 (3)0.45155 (14)0.13983 (16)0.0192 (4)
C40.5808 (3)0.53617 (18)0.19226 (19)0.0169 (5)
C410.4727 (3)0.61539 (19)0.1344 (2)0.0188 (5)
O410.4240 (2)0.68972 (12)0.18471 (15)0.0251 (4)
O420.4313 (2)0.59990 (12)0.02070 (14)0.0210 (4)
C420.3235 (3)0.67827 (19)0.0419 (2)0.0226 (5)
C430.2717 (4)0.6361 (2)0.1621 (2)0.0319 (6)
C50.6379 (3)0.53487 (17)0.3093 (2)0.0179 (5)
N50.6083 (3)0.60006 (16)0.39356 (17)0.0211 (4)
H130.85950.21240.60510.042*
H141.04480.32170.72160.049*
H151.10580.48670.65720.048*
H20.79940.33980.21060.024*
H42A0.38750.74350.04420.027*
H42B0.22120.69130.00490.027*
H43A0.19790.68610.20840.038*
H43B0.20930.57140.15820.038*
H43C0.37430.62370.19740.038*
H5A0.52780.64590.37200.025*
H5B0.61960.57930.46550.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0234 (11)0.0169 (10)0.0131 (9)0.0026 (8)0.0007 (8)0.0014 (8)
C110.0222 (13)0.0227 (12)0.0122 (11)0.0063 (10)0.0013 (9)0.0014 (9)
C120.0260 (14)0.0277 (14)0.0206 (13)0.0066 (10)0.0062 (10)0.0049 (10)
F120.0374 (8)0.0229 (8)0.0371 (9)0.0036 (7)0.0049 (7)0.0051 (6)
C130.0371 (15)0.0450 (17)0.0257 (14)0.0135 (14)0.0110 (11)0.0161 (13)
C140.0403 (18)0.062 (2)0.0199 (15)0.0266 (16)0.0039 (12)0.0074 (14)
C150.0365 (16)0.0521 (19)0.0267 (15)0.0164 (15)0.0084 (12)0.0151 (14)
C160.0280 (14)0.0242 (14)0.0285 (14)0.0055 (11)0.0016 (11)0.0049 (11)
F160.0368 (10)0.0233 (9)0.0551 (11)0.0014 (7)0.0093 (8)0.0059 (7)
C20.0269 (13)0.0167 (12)0.0157 (12)0.0022 (10)0.0036 (10)0.0017 (9)
N30.0256 (11)0.0172 (10)0.0150 (10)0.0010 (8)0.0034 (8)0.0014 (8)
C40.0204 (12)0.0173 (11)0.0128 (11)0.0008 (9)0.0022 (9)0.0003 (8)
C410.0234 (13)0.0185 (12)0.0146 (12)0.0000 (9)0.0034 (9)0.0001 (9)
O410.0329 (10)0.0214 (9)0.0201 (9)0.0089 (8)0.0014 (7)0.0018 (7)
O420.0271 (9)0.0208 (9)0.0141 (9)0.0062 (7)0.0000 (7)0.0030 (7)
C420.0250 (13)0.0230 (13)0.0187 (13)0.0057 (10)0.0003 (10)0.0056 (9)
C430.0366 (15)0.0416 (16)0.0161 (13)0.0119 (13)0.0004 (11)0.0027 (12)
C50.0213 (12)0.0159 (11)0.0164 (11)0.0004 (9)0.0029 (9)0.0007 (9)
N50.0304 (11)0.0203 (10)0.0121 (10)0.0065 (9)0.0014 (8)0.0007 (7)
Geometric parameters (Å, º) top
N1—C51.380 (3)N3—C41.397 (3)
N1—C21.394 (3)C4—C51.382 (3)
N1—C111.423 (3)C4—C411.441 (3)
C11—C121.380 (3)C41—O411.226 (3)
C11—C161.386 (4)C41—O421.343 (3)
C12—F121.354 (3)O42—C421.454 (3)
C12—C131.379 (4)C42—C431.514 (4)
C13—C141.375 (5)C42—H42A0.99
C13—H130.95C42—H42B0.99
C14—C151.394 (5)C43—H43A0.98
C14—H140.95C43—H43B0.98
C15—C161.378 (4)C43—H43C0.98
C15—H150.95C5—N51.352 (3)
C16—F161.346 (3)N5—H5A0.88
C2—N31.298 (3)N5—H5B0.88
C2—H20.95
C5—N1—C2106.93 (18)C5—C4—N3110.2 (2)
C5—N1—C11127.1 (2)C5—C4—C41124.0 (2)
C2—N1—C11125.9 (2)N3—C4—C41125.8 (2)
C12—C11—C16116.7 (2)O41—C41—O42123.6 (2)
C12—C11—N1121.5 (2)O41—C41—C4122.8 (2)
C16—C11—N1121.8 (2)O42—C41—C4113.60 (19)
F12—C12—C13118.7 (2)C41—O42—C42115.75 (18)
F12—C12—C11118.1 (2)O42—C42—C43105.9 (2)
C13—C12—C11123.2 (3)O42—C42—H42A110.6
C14—C13—C12118.1 (3)C43—C42—H42A110.6
C14—C13—H13120.9O42—C42—H42B110.6
C12—C13—H13120.9C43—C42—H42B110.6
C13—C14—C15121.2 (3)H42A—C42—H42B108.7
C13—C14—H14119.4C42—C43—H43A109.5
C15—C14—H14119.4C42—C43—H43B109.5
C16—C15—C14118.2 (3)H43A—C43—H43B109.5
C16—C15—H15120.9C42—C43—H43C109.5
C14—C15—H15120.9H43A—C43—H43C109.5
F16—C16—C15119.4 (3)H43B—C43—H43C109.5
F16—C16—C11118.1 (2)N5—C5—N1123.6 (2)
C15—C16—C11122.5 (3)N5—C5—C4131.1 (2)
N3—C2—N1111.7 (2)N1—C5—C4105.29 (19)
N3—C2—H2124.2C5—N5—H5A114.3
N1—C2—H2124.2C5—N5—H5B120.7
C2—N3—C4105.89 (19)H5A—N5—H5B116.6
C5—N1—C11—C12121.5 (3)C11—N1—C2—N3179.0 (2)
C2—N1—C11—C1255.9 (3)N1—C2—N3—C40.4 (3)
C5—N1—C11—C1658.6 (3)C2—N3—C4—C50.5 (3)
C2—N1—C11—C16123.9 (3)C2—N3—C4—C41178.3 (2)
C16—C11—C12—F12177.6 (2)C5—C4—C41—O411.0 (4)
N1—C11—C12—F122.3 (3)N3—C4—C41—O41177.6 (2)
C16—C11—C12—C132.3 (4)C5—C4—C41—O42179.1 (2)
N1—C11—C12—C13177.9 (2)N3—C4—C41—O422.2 (3)
F12—C12—C13—C14179.7 (2)O41—C41—O42—C420.4 (3)
C11—C12—C13—C140.4 (4)C4—C41—O42—C42179.5 (2)
C12—C13—C14—C152.0 (4)C41—O42—C42—C43171.2 (2)
C13—C14—C15—C160.7 (5)C2—N1—C5—N5179.6 (2)
C14—C15—C16—F16178.4 (2)C11—N1—C5—N51.7 (4)
C14—C15—C16—C112.1 (5)C2—N1—C5—C41.3 (2)
C12—C11—C16—F16176.9 (2)C11—N1—C5—C4179.2 (2)
N1—C11—C16—F162.9 (4)N3—C4—C5—N5179.8 (2)
C12—C11—C16—C153.6 (4)C41—C4—C5—N51.3 (4)
N1—C11—C16—C15176.6 (3)N3—C4—C5—N11.2 (3)
C5—N1—C2—N31.1 (3)C41—C4—C5—N1177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O410.882.302.903 (3)125
N5—H5B···N3i0.882.072.946 (3)173
C2—H2···O41ii0.952.233.175 (3)176
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC13H12N4O2C12H12ClN3O2C12H11F2N3O2
Mr256.27265.70267.24
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, Cc
Temperature (K)120120120
a, b, c (Å)6.3212 (5), 9.4121 (11), 10.2496 (12)13.1153 (6), 8.7114 (4), 11.5273 (4)7.9045 (4), 12.9950 (7), 11.7737 (5)
α, β, γ (°)90.311 (5), 94.183 (7), 92.946 (7)90, 107.064 (3), 9090, 98.810 (4), 90
V3)607.35 (11)1259.05 (9)1195.11 (10)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.300.12
Crystal size (mm)0.64 × 0.04 × 0.030.48 × 0.32 × 0.080.35 × 0.17 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.946, 0.9970.869, 0.9760.966, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11051, 2688, 1720 17524, 2864, 2210 8086, 1362, 1175
Rint0.0790.0420.053
(sin θ/λ)max1)0.6520.6490.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 1.04 0.047, 0.126, 1.05 0.034, 0.080, 1.07
No. of reflections268828641362
No. of parameters173171172
No. of restraints062
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.280.56, 0.470.17, 0.23

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O410.902.212.866 (2)129
N5—H5B···N3i0.902.223.073 (2)158
C15—H15···N14ii0.952.523.397 (3)154
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O420.902.242.834 (2)123
N5—H5A···O41i0.902.513.071 (2)121
N5—H5B···N3i0.902.092.952 (2)161
C12—H12···N3ii0.952.593.462 (3)153
C2—H2···Cgiii0.952.783.500 (2)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O410.882.302.903 (3)125
N5—H5B···N3i0.882.072.946 (3)173
C2—H2···O41ii0.952.233.175 (3)176
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z.
Selected torsion angles (°) for compounds (I)–(III) top
Parameter(I)(II)(III)
N3—C4—C41—O41179.3 (2)3.6 (3)-177.6 (2)
N3—C4—C41—O42-2.6 (3)-176.39 (17)2.2 (3)
C4—C41—O42—C42-179.12 (18)-171.1 (2)-179.5 (2)
C4—C41—O42—C42A164.8 (3)
C41—O42—C42—C43161.84 (18)-99.3 (3)-171.2 (2)
C41—O42—C42A—C43A-155.7 (4)
In compound (II) the ethyl group is disordered over two sets of sites (see text).
 

Acknowledgements

X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCosta, M. S., Boechat, N., Rangel, E. A., da Silva, F. de C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Junior, I. N., Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). Biorg. Med. Chem. 14, 8644–8653.  CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForoumadi, A., Emami, S., Pournourmohammadi, S., Kharazmi, A. & Shafiee, A. (2005). Eur. J. Med. Chem. 40, 1346–1350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGangneux, J.-P., Dullin, M., Sulahian, A., Garin, Y. J.-F. & Derouin, F. (1999). Antimicrob. Agents Chemother. 43, 172–174.  Web of Science CAS PubMed Google Scholar
First citationGupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem. 39, 805–814.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHave, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355–11368.  CSD CrossRef Web of Science Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKhabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. & Farrokhroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863–2865.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaw, G., Brown, T. & Durant, G. J. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2310–2315.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds