organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid mol­ecules in the same crystal

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 18 December 2006; accepted 19 December 2006; online 23 January 2007)

The title compound {systematic name: (+)-(S)-3-[5-cyano-2-(4-fluoro­phen­yl)-1,3-dihydro­isobenzofuran-2­yl]­propan­amin­ium oxalate oxalic acid 0.325-hydrate}, 2C20H22FN2O+·C2O42−·C2H2O4·0.325H2O, is a mol­ecular salt of the N-protonated escitalopram cation. As well as charge-balancing oxalate dianions, neutral mol­ecules of oxalic acid are present. The component species inter­act by way of N—H⋯O and short O—H⋯O hydrogen bonds, resulting in supra­molecular chains.

Comment

(+)-(S)-1-[3-(Dimethyl­ammonio)prop­yl]-1-(4-fluoro­phen­yl)-5-phthalan-5-carbonitrile oxalate (C20H21FN2O), common names escitalopram or S-(+)-citalopram, is a widely prescribed drug used to treat depression and related conditions (Burke, 2002[Burke, W. J. (2002). Expert Opin. Invest. Drugs, 11, 1477-1486.]). It is conveniently introduced as an oxalate salt, with a nominal formula usually given as C20H21FN2O·C2H2O4, i.e. the presumed proton-transfer reaction is not specified (Sorbera et al., 2001[Sorbera, L. A., Revel, L., Martin, L. & Castaner, J. (2001). Drugs Future, 26, 115-120.]). As part of our ongoing crystallographic studies of pharmaceutical mol­ecules (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810-o3812.]), we now report the structure of the title compound, (I)[link], in which two N-protonated escitalopram cations (C20H22FN2O+) and a C2O42− oxalate dianon are accompanied by a neutral mol­ecule of oxalic acid and a partially occupied water mol­ecule (Fig. 1[link]).

[Scheme 1]

The bond lengths and angles in (I)[link] fall within their expected ranges (Cambridge Structural Database, Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). There are two C20H22FN2O+ cations in the asymmetric unit; atoms C8 and C28 are assumed to possess S configurations, consistent with the known absolute structure of the biologically active enantiomer of citalopram (Sanchez et al., 2004[Sanchez, C., Bogeso, K. P., Ebert, B., Reines, E. H. & Braestrup, C. (2004). Psychopharmacology, 174, 163-176.]). For the C1-containing mol­ecule, the dihedral angle between the mean planes of the C2–C7 and C9–C14 benzene rings is 62.83 (13)°, and the C1/C2/C7/C8/O1 five-membered ring displays an envelope conformation with atom O1 in the flap position [the displacement from the C-atom mean plane is 0.435 (5) Å]. In the C21-containing mol­ecule, the dihedral angle between the C22–C27 and C29–C34 mean planes is 81.99 (13)°, and the envelope conformation for C21/C22/C27/C28/O2 is less pronounced, with atom O2 displaced from the C-atom mean plane by 0.113 (6) Å. The oxalate species are both approximately planar; the dihedral angle between the C41/O3/O4 and C42/O5/O6 groupings is 4.4 (3)°, and the equivalent value for C43/O7/O8 and C44/O9/O10 is 2.8 (6)°.

The component species in (I)[link] inter­act by way of N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]), such that both C20H22FN2O+ cations make bifurcated N—H⋯(O,O) hydrogen bonds to the same oxalate dianion. Then, the 2C20H22FN2O+·C2O42− units are linked into [001] chains by way of the oxalic acid mol­ecules, i.e. the oxalate dianions and oxalic acid mol­ecules alternate in the chains (Fig. 2[link]). The short H⋯O separations of the oxalic acid-to-oxalate hydrogen bonds suggests that they are strong inter­actions.

Although it is not expected from a consideration of the pKa values of oxalic acid (pKa1 = 1.23 and pKa2 = 4.19; Newkome et al., 1985[Newkome, G. R., Theriot, K. J. & Fronczek, F. R. (1985). Acta Cryst. C41, 1642-1644.]) the co-existence of oxalate dianions and oxalic acid molecules in the same crystal has been observed in a number of compounds, three examples being bis­(pyridinium) oxalate oxalic acid (Newkome et al., 1985[Newkome, G. R., Theriot, K. J. & Fronczek, F. R. (1985). Acta Cryst. C41, 1642-1644.]), barium oxalate oxalic acid dihydrate (Chaix-Pluchery et al., 1989[Chaix-Pluchery, O., Mutin, J. C., Bouillot, J. & Niepce, J. C. (1989). Acta Cryst. C45, 1699-1705.]) and 1-(α-pyrrolidiniobenz­yl)-2-naphthol oxalate oxalic acid (Periasamy et al., 2004[Periasamy, M., Reddy, M. N. & Anwar, S. (2004). Tetrahedron Asymmetry, 15, 1809-1812.]). These three compounds show the same alternating oxalate–oxalic acid hydrogen-bonded chains seen in (I)[link].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms). All H atoms, except those involved in hydrogen bonds (dashed lines), have been omitted for clarity.
[Figure 2]
Figure 2
A view along [010] of part of an [001] chain in (I)[link], with hydrogen bonds shown as dashed lines. Atoms labelled with an asterisk (*) are generated by the symmetry operation (x, y, z − 1).

Experimental

The title compound was obtained as a gift sample from Jubilant Organosys, Nanjangud, India. The sample of (I)[link] was recrystallized from ethanol (m.p. 420 K).

Crystal data
  • 2C20H22FN2O+·C2O42−·C2H2O4·0.325H2O

  • Mr = 834.05

  • Monoclinic, P 21

  • a = 7.9355 (3) Å

  • b = 24.7376 (9) Å

  • c = 11.1332 (5) Å

  • β = 106.589 (2)°

  • V = 2094.54 (14) Å3

  • Z = 2

  • Dx = 1.324 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.982

  • 7581 measured reflections

  • 3609 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 25.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.02

  • 3609 reflections

  • 562 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0473P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.008

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0118 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.93 1.91 2.768 (4) 152
N1—H1⋯O4 0.93 2.22 2.886 (4) 128
N3—H2⋯O3 0.93 1.91 2.764 (4) 152
N3—H2⋯O5 0.93 2.22 2.884 (4) 127
O7—H3⋯O5 0.91 (3) 1.56 (3) 2.466 (4) 177 (4)
O9—H4⋯O4i 0.91 (3) 1.57 (3) 2.465 (4) 173 (4)
Symmetry code: (i) x, y, z+1.

Anomalous dispersion effects were negligible and Friedel pairs were merged before refinement. The absolute structure of (I)[link] was assigned on the basis of the known chirality of escitalopram (Sanchez et al., 2004[Sanchez, C., Bogeso, K. P., Ebert, B., Reines, E. H. & Braestrup, C. (2004). Psychopharmacology, 174, 163-176.]). The C- and N-bound H atoms were placed in idealized locations (C—H = 0.95–0.99 Å and N—H = 0.93 Å) and refined as riding with Uiso(H) values of 1.2Ueq(carrier) or 1.5Ueq(methyl C). The oxalic acid H atoms were located in a difference map and refined with the restraint O—H = 0.90 (1) Å and the constraint Uiso(H) = 1.2Ueq(O). The H atoms of the partially occupied water mol­ecule could not be located.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(S)-(+)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)- 5-phthalan-5-carbonitrileoxalate (C20H21FON2), common names escitalopram or S-(+)-citalopram, is a widely prescribed drug used to treat depression and related conditions (Burke, 2002). It is conveniently introduced as an oxalate salt, with a nominal formula usually given as C20H21FON2·C2H2O4, i.e. the presumed proton-transfer reaction is not specified (Sorbera et al., 2001). As part of our ongoing crystallographic studies of pharmaceutical molecules (Harrison et al., 2005), we now report the structure of the title compound, (I), in which two N-protonated escitalopram cations (C20H22FON2+), and a C2O42- oxalate dianon are accompanied by a neutral molecule of oxalic acid and a partially occupied water molecule (Fig. 1).

The bond lengths and angles in (I) fall within their expected ranges (Cambridge Structural Database, Version 5.27; Allen, 2002). There are two C20H22FON2+ cations in the asymmetric unit; atoms C8 and C28 are assumed to possess S configurations, consistent with the known absolute structure of the biologically active enantiomer of citalopram (Sanchez et al., 2004). For the C1-containing molecule, the dihedral angle between the mean planes of the C2–C7 and C9–C14 benzene rings is 62.83 (13)° and the C1/C2/C7/C8/O1 five-membered ring displays an envelope conformation with atom O1 in the flap position [the displacement from the C-atom mean plane is 0.435 (5) Å]. In the C21-containing molecule, the dihedral angle between the C22–C27 and C29–C34 mean planes is 81.99 (13)° and the envelope conformation for C21/C22/C27/C28/O2 is less pronounced, with atom O2 displaced from the C-atom mean plane by 0.113 (6) Å. The oxalate species are both approximately planar; the dihedral angle between the C41/O3/O4 and C42/O5/O6 groupings is 4.4 (3)° and the equivalent value for C43/O7/O8 and C44/O9/O10 is 2.8 (6)°.

The component species in (I) interact by way of N—H···O and O—H···O hydrogen bonds (Table 1), such that both C20H22FON2+ cations make bifurcated N—H···(O,O) hydrogen bonds to the same oxalate dianion. Then, the (C20H22FON2+)2·C2O42- units are linked into [001] chains by way of the oxalic acid molecules, i.e. the oxalate dianions and oxalic acid molecules alternate in the chains. The short H···O seprations of the oxalic acid-to-oxalate hydrogen bonds suggests that they are strong interactions.

Although it is not expected from a consideration of the pKa values of oxalic acid (pKa1 = 1.23, pKa2 = 4.19; Newkome et al., 1985) the co-existence of oxalate dianions and oxalic acid molecues in the same crystal has been observed in a number of compounds, with three examples being bis(pyridinium) oxalate oxalic acid (Newkome et al., 1985), barium oxalate oxalic acid dihydrate (Chaix-Pluchery et al., 1989), and 1-(α-pyrrolidiniobenzyl)-2-naphthol oxalate oxalic acid (Periasamy et al., 2004). These three compounds show the same altertnating oxalate–oxalic acid hydrogen-bonded chains seen in (I).

Related literature top

For related literature, see: Allen (2002); Burke (2002); Chaix-Pluchery, Mutin, Bouillot & Niepce (1989); Harrison et al. (2005); Newkome et al. (1985); Periasamy et al. (2004); Sanchez et al. (2004); Sorbera et al. (2001).

Experimental top

The title compound was obtained as a gift sample from Jubilant Organosys, Nanjangud, India. The sample of (I) was recrystallized from ethanol (m.p. 420 K).

Refinement top

Anomalous dispersion effects were negligible and Friedel pairs were merged before refinement. The absolute structure of (I) was assigned on the basis of the known chirality of escitalopram (Sanchez et al., 2004). The C– and N-bound H atoms were placed in idealized locations (C—H = 0.95–0.99 Å and N—H = 0.93 Å) and refined as riding with Uiso(H) values of 1.2Ueq(carrier) or 1.5Ueq(methyl C). The oxalic acid H atoms were located in a difference map and refined with the restraint O—H = 0.90 (1) Å and the constraint Uiso(H) = 1.2Ueq(O). The H atoms of the partially occupied water molecule could not be located.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). All H atoms, except those involved in hydrogen bonds (dashed lines), have been omitted for clarity.
[Figure 2] Fig. 2. A view along [010] of part of a [001] chain in (I), with hydrogen bonds shown as dashed lines. Atoms with the label suffix * are generated by the symmetry operation (x, y, z - 1).
(S)-(+)-3-[5-cyano-2-(4-fluorophenyl)-1,3-dihydroisobenzofuran-2- yl]propanaminium oxalate oxalic acid 0.325-hydrate top
Crystal data top
2C20H22FN2O+·C2O42·C2H2O4·0.325H2OF(000) = 879
Mr = 834.05Dx = 1.324 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4241 reflections
a = 7.9355 (3) Åθ = 1.0–27.5°
b = 24.7376 (9) ŵ = 0.10 mm1
c = 11.1332 (5) ÅT = 120 K
β = 106.589 (2)°Block, colourless
V = 2094.54 (14) Å30.32 × 0.24 × 0.18 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3609 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 97
Tmin = 0.969, Tmax = 0.982k = 2820
7581 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.008
3609 reflectionsΔρmax = 0.17 e Å3
562 parametersΔρmin = 0.21 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (16)
Crystal data top
2C20H22FN2O+·C2O42·C2H2O4·0.325H2OV = 2094.54 (14) Å3
Mr = 834.05Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.9355 (3) ŵ = 0.10 mm1
b = 24.7376 (9) ÅT = 120 K
c = 11.1332 (5) Å0.32 × 0.24 × 0.18 mm
β = 106.589 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2652 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.982Rint = 0.037
7581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
3609 reflectionsΔρmin = 0.21 e Å3
562 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1867 (5)0.50590 (17)0.2222 (5)0.0372 (12)
H1A0.29600.52240.21310.045*
H1B0.14010.52880.27830.045*
C20.0547 (5)0.49930 (16)0.0984 (4)0.0293 (11)
C30.0086 (5)0.53215 (17)0.0070 (5)0.0309 (10)
H3A0.06030.56680.00600.037*
C40.1143 (5)0.51331 (16)0.1139 (4)0.0304 (11)
C50.1927 (5)0.46288 (16)0.1166 (4)0.0292 (10)
H50.27590.45060.19100.035*
C60.1488 (5)0.43037 (16)0.0094 (4)0.0290 (11)
H60.20280.39610.00970.035*
C70.0255 (5)0.44895 (15)0.0968 (4)0.0244 (10)
C80.0571 (4)0.42090 (15)0.2204 (4)0.0258 (10)
C90.0554 (5)0.42440 (15)0.3107 (4)0.0245 (10)
C100.0145 (5)0.44332 (16)0.4313 (4)0.0303 (10)
H100.13410.45430.45810.036*
C110.0863 (5)0.44663 (17)0.5139 (4)0.0367 (11)
H110.03800.46010.59660.044*
C120.2579 (6)0.42998 (18)0.4731 (5)0.0412 (13)
C130.3339 (5)0.41126 (17)0.3553 (5)0.0378 (12)
H130.45380.40050.32980.045*
C140.2312 (5)0.40827 (16)0.2736 (4)0.0315 (11)
H140.28130.39500.19110.038*
C150.1078 (5)0.36332 (15)0.1956 (4)0.0270 (10)
H15A0.18870.36560.14260.032*
H15B0.00000.34480.14540.032*
C160.1942 (5)0.32708 (15)0.3076 (4)0.0237 (10)
H16A0.30000.34470.36320.028*
H16B0.11110.31900.35670.028*
C170.2436 (5)0.27583 (15)0.2503 (4)0.0254 (10)
H17A0.13770.26220.18680.030*
H17B0.33160.28520.20610.030*
C180.1856 (5)0.20924 (16)0.4014 (4)0.0340 (11)
H18A0.14830.23810.44850.051*
H18B0.23940.17990.45860.051*
H18C0.08320.19540.33690.051*
C190.3830 (5)0.18763 (16)0.2745 (4)0.0302 (11)
H19A0.43720.15920.33440.045*
H19B0.47070.20260.23700.045*
H19C0.28510.17230.20850.045*
C200.1608 (6)0.54493 (18)0.2272 (5)0.0361 (12)
N10.3165 (4)0.23120 (12)0.3405 (3)0.0221 (8)
H10.41110.24490.40300.026*
N20.1973 (5)0.56893 (16)0.3191 (5)0.0496 (12)
O10.2185 (3)0.45139 (11)0.2705 (3)0.0313 (7)
F10.3583 (3)0.43279 (11)0.5554 (3)0.0620 (9)
C211.2617 (5)0.08104 (16)0.6468 (4)0.0304 (11)
H21A1.17150.09670.57470.037*
H21B1.26020.04120.63790.037*
C221.4402 (4)0.10331 (15)0.6546 (4)0.0244 (10)
C231.5332 (4)0.10253 (16)0.5663 (4)0.0268 (10)
H231.48550.08600.48680.032*
C241.6998 (5)0.12684 (15)0.5982 (5)0.0299 (11)
C251.7717 (5)0.14936 (17)0.7160 (5)0.0372 (13)
H251.88500.16550.73620.045*
C261.6790 (5)0.14833 (16)0.8037 (5)0.0349 (12)
H261.72910.16260.88540.042*
C271.5114 (5)0.12614 (15)0.7704 (4)0.0258 (10)
C281.3852 (5)0.12033 (16)0.8490 (4)0.0283 (10)
C291.4661 (5)0.08086 (17)0.9568 (5)0.0323 (11)
C301.4517 (5)0.02579 (18)0.9328 (5)0.0423 (13)
H301.38060.01330.85390.051*
C311.5397 (6)0.01152 (19)1.0225 (6)0.0459 (14)
H311.53060.04921.00500.055*
C321.6387 (7)0.0069 (2)1.1354 (6)0.0527 (16)
C331.6570 (7)0.0606 (2)1.1644 (5)0.0631 (16)
H331.72670.07251.24420.076*
C341.5691 (6)0.0975 (2)1.0718 (5)0.0516 (14)
H341.58130.13511.08930.062*
C351.3299 (5)0.17483 (15)0.8933 (4)0.0316 (11)
H35A1.23470.16810.93260.038*
H35B1.43130.18990.95850.038*
C361.2669 (5)0.21680 (15)0.7906 (4)0.0276 (10)
H36A1.16490.20270.72440.033*
H36B1.36200.22540.75230.033*
C371.2147 (5)0.26719 (15)0.8497 (4)0.0248 (10)
H37A1.12140.25740.88870.030*
H37B1.31770.27980.91730.030*
C381.2811 (5)0.33380 (17)0.7003 (4)0.0311 (11)
H38A1.31480.30480.65190.047*
H38B1.38520.34640.76510.047*
H38C1.23030.36380.64430.047*
C391.0881 (5)0.35777 (16)0.8273 (4)0.0336 (11)
H39A0.99930.34380.86490.050*
H39B1.03660.38660.76780.050*
H39C1.18790.37220.89320.050*
C401.7918 (5)0.12983 (17)0.5048 (5)0.0392 (12)
N31.1498 (4)0.31321 (12)0.7601 (3)0.0238 (8)
H21.05350.30090.69690.029*
N41.8635 (5)0.13274 (15)0.4290 (5)0.0543 (12)
O21.2306 (3)0.09660 (11)0.7634 (3)0.0319 (7)
F21.7240 (4)0.02926 (13)1.2247 (3)0.0738 (10)
C410.7749 (5)0.27769 (15)0.4960 (4)0.0222 (9)
C420.6823 (5)0.27435 (15)0.6015 (4)0.0229 (10)
O30.9337 (3)0.28748 (11)0.5248 (3)0.0305 (7)
O40.6729 (3)0.26948 (11)0.3869 (3)0.0295 (7)
O50.7829 (3)0.28588 (12)0.7101 (3)0.0317 (7)
O60.5271 (3)0.26119 (10)0.5749 (3)0.0287 (7)
C430.7576 (5)0.27084 (16)0.9901 (4)0.0241 (10)
C440.6897 (4)0.28035 (17)1.1045 (4)0.0255 (10)
O70.6595 (3)0.29301 (13)0.8892 (3)0.0365 (8)
H30.702 (5)0.2899 (17)0.822 (2)0.044*
O80.8913 (3)0.24532 (12)0.9986 (3)0.0345 (8)
O90.7910 (3)0.26052 (13)1.2057 (3)0.0354 (8)
H40.756 (5)0.2628 (17)1.276 (2)0.042*
O100.5536 (3)0.30523 (13)1.0950 (3)0.0425 (8)
O110.9399 (12)0.1504 (4)1.1364 (11)0.055 (5)0.325 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.031 (3)0.040 (4)0.008 (2)0.012 (3)0.001 (2)
C20.029 (2)0.027 (2)0.034 (3)0.0025 (17)0.013 (2)0.001 (2)
C30.035 (2)0.025 (2)0.036 (3)0.0013 (18)0.014 (2)0.003 (2)
C40.033 (2)0.031 (3)0.030 (3)0.0106 (19)0.014 (2)0.011 (2)
C50.0242 (19)0.033 (3)0.029 (3)0.0060 (17)0.005 (2)0.000 (2)
C60.028 (2)0.027 (2)0.032 (3)0.0050 (17)0.009 (2)0.002 (2)
C70.0234 (19)0.022 (2)0.029 (3)0.0049 (17)0.010 (2)0.001 (2)
C80.0256 (19)0.024 (2)0.027 (3)0.0051 (17)0.007 (2)0.0001 (19)
C90.0270 (19)0.019 (2)0.027 (3)0.0024 (16)0.008 (2)0.0023 (19)
C100.029 (2)0.033 (2)0.027 (3)0.0023 (18)0.005 (2)0.003 (2)
C110.043 (2)0.038 (3)0.029 (3)0.003 (2)0.011 (2)0.001 (2)
C120.046 (3)0.046 (3)0.042 (4)0.010 (2)0.029 (3)0.015 (3)
C130.031 (2)0.042 (3)0.042 (4)0.005 (2)0.013 (3)0.005 (2)
C140.033 (2)0.035 (3)0.028 (3)0.0047 (18)0.011 (2)0.000 (2)
C150.030 (2)0.026 (2)0.026 (3)0.0022 (17)0.009 (2)0.004 (2)
C160.0260 (19)0.029 (2)0.016 (3)0.0016 (16)0.005 (2)0.0033 (18)
C170.0234 (17)0.028 (2)0.026 (3)0.0011 (16)0.009 (2)0.006 (2)
C180.035 (2)0.037 (3)0.038 (3)0.0017 (18)0.025 (2)0.008 (2)
C190.031 (2)0.029 (2)0.034 (3)0.0042 (17)0.015 (2)0.001 (2)
C200.040 (2)0.033 (3)0.039 (4)0.008 (2)0.017 (3)0.008 (2)
N10.0194 (14)0.0285 (19)0.018 (2)0.0005 (13)0.0044 (16)0.0004 (16)
N20.054 (2)0.043 (3)0.053 (4)0.0105 (19)0.018 (3)0.014 (2)
O10.0239 (13)0.0326 (18)0.034 (2)0.0073 (12)0.0031 (15)0.0009 (14)
F10.0614 (17)0.087 (2)0.052 (2)0.0086 (15)0.0385 (18)0.0066 (17)
C210.030 (2)0.032 (2)0.030 (3)0.0037 (17)0.010 (2)0.004 (2)
C220.0222 (18)0.023 (2)0.024 (3)0.0042 (17)0.0006 (19)0.003 (2)
C230.0278 (19)0.023 (2)0.027 (3)0.0034 (17)0.004 (2)0.0028 (19)
C240.026 (2)0.024 (2)0.042 (4)0.0043 (18)0.015 (2)0.008 (2)
C250.025 (2)0.025 (2)0.062 (4)0.0002 (18)0.013 (3)0.000 (2)
C260.035 (2)0.027 (2)0.041 (4)0.0013 (19)0.007 (3)0.006 (2)
C270.0273 (19)0.020 (2)0.029 (3)0.0053 (17)0.006 (2)0.003 (2)
C280.0233 (19)0.035 (2)0.020 (3)0.0007 (17)0.003 (2)0.002 (2)
C290.032 (2)0.036 (3)0.032 (3)0.0093 (19)0.013 (2)0.004 (2)
C300.032 (2)0.039 (3)0.057 (4)0.001 (2)0.015 (3)0.010 (2)
C310.035 (2)0.038 (3)0.066 (5)0.004 (2)0.017 (3)0.018 (3)
C320.054 (3)0.055 (4)0.056 (5)0.031 (3)0.027 (3)0.027 (3)
C330.087 (4)0.072 (4)0.026 (4)0.044 (3)0.010 (3)0.007 (3)
C340.071 (3)0.051 (3)0.026 (4)0.031 (3)0.002 (3)0.004 (3)
C350.032 (2)0.033 (3)0.029 (3)0.0055 (18)0.007 (2)0.004 (2)
C360.0257 (19)0.032 (3)0.026 (3)0.0021 (17)0.010 (2)0.002 (2)
C370.0219 (17)0.032 (2)0.019 (3)0.0036 (16)0.0027 (19)0.0006 (19)
C380.033 (2)0.035 (3)0.030 (3)0.0013 (18)0.016 (2)0.002 (2)
C390.037 (2)0.032 (2)0.035 (3)0.0044 (18)0.015 (2)0.004 (2)
C400.028 (2)0.034 (3)0.058 (4)0.0022 (19)0.015 (3)0.004 (2)
N30.0192 (14)0.0313 (19)0.022 (2)0.0003 (13)0.0066 (16)0.0049 (16)
N40.042 (2)0.057 (3)0.071 (4)0.0001 (19)0.028 (3)0.005 (2)
O20.0291 (14)0.0355 (17)0.032 (2)0.0022 (12)0.0106 (15)0.0015 (14)
F20.078 (2)0.077 (2)0.070 (3)0.0371 (17)0.026 (2)0.043 (2)
C410.0251 (18)0.025 (2)0.018 (3)0.0038 (17)0.008 (2)0.001 (2)
C420.0237 (18)0.025 (2)0.020 (3)0.0038 (17)0.007 (2)0.002 (2)
O30.0183 (12)0.0506 (18)0.023 (2)0.0027 (12)0.0056 (13)0.0012 (14)
O40.0245 (13)0.051 (2)0.0131 (19)0.0077 (13)0.0056 (14)0.0013 (14)
O50.0272 (13)0.0516 (19)0.017 (2)0.0091 (13)0.0078 (15)0.0059 (15)
O60.0218 (13)0.0460 (19)0.020 (2)0.0028 (12)0.0082 (14)0.0008 (14)
C430.0219 (17)0.033 (3)0.016 (3)0.0099 (17)0.004 (2)0.003 (2)
C440.0182 (17)0.039 (2)0.018 (3)0.0083 (18)0.002 (2)0.002 (2)
O70.0342 (16)0.060 (2)0.020 (2)0.0028 (14)0.0147 (16)0.0021 (16)
O80.0313 (14)0.0528 (19)0.019 (2)0.0030 (14)0.0066 (15)0.0032 (15)
O90.0330 (15)0.059 (2)0.018 (2)0.0056 (14)0.0131 (16)0.0045 (15)
O100.0263 (14)0.078 (2)0.024 (2)0.0048 (15)0.0083 (15)0.0047 (16)
O110.060 (7)0.048 (7)0.045 (9)0.009 (5)0.004 (6)0.000 (5)
Geometric parameters (Å, º) top
C1—O11.447 (5)C23—C241.403 (5)
C1—C21.483 (6)C23—H230.9500
C1—H1A0.9900C24—C251.389 (6)
C1—H1B0.9900C24—C401.433 (6)
C2—C31.388 (6)C25—C261.380 (6)
C2—C71.396 (5)C25—H250.9500
C3—C41.386 (6)C26—C271.388 (5)
C3—H3A0.9500C26—H260.9500
C4—C51.391 (6)C27—C281.513 (5)
C4—C201.440 (6)C28—O21.446 (5)
C5—C61.398 (5)C28—C291.538 (6)
C5—H50.9500C28—C351.542 (6)
C6—C71.381 (5)C29—C341.370 (6)
C6—H60.9500C29—C301.386 (6)
C7—C81.513 (6)C30—C311.392 (6)
C8—O11.453 (4)C30—H300.9500
C8—C151.526 (5)C31—C321.356 (7)
C8—C91.526 (5)C31—H310.9500
C9—C101.380 (6)C32—F21.364 (6)
C9—C141.395 (5)C32—C331.365 (7)
C10—C111.383 (5)C33—C341.405 (7)
C10—H100.9500C33—H330.9500
C11—C121.370 (6)C34—H340.9500
C11—H110.9500C35—C361.519 (6)
C12—C131.358 (6)C35—H35A0.9900
C12—F11.377 (5)C35—H35B0.9900
C13—C141.386 (5)C36—C371.521 (5)
C13—H130.9500C36—H36A0.9900
C14—H140.9500C36—H36B0.9900
C15—C161.530 (5)C37—N31.504 (5)
C15—H15A0.9900C37—H37A0.9900
C15—H15B0.9900C37—H37B0.9900
C16—C171.520 (5)C38—N31.478 (4)
C16—H16A0.9900C38—H38A0.9800
C16—H16B0.9900C38—H38B0.9800
C17—N11.493 (5)C38—H38C0.9800
C17—H17A0.9900C39—N31.491 (5)
C17—H17B0.9900C39—H39A0.9800
C18—N11.496 (4)C39—H39B0.9800
C18—H18A0.9800C39—H39C0.9800
C18—H18B0.9800C40—N41.147 (6)
C18—H18C0.9800N3—H20.9300
C19—N11.484 (5)C41—O31.233 (4)
C19—H19A0.9800C41—O41.269 (5)
C19—H19B0.9800C41—C421.555 (5)
C19—H19C0.9800C42—O61.225 (4)
C20—N21.146 (6)C42—O51.277 (5)
N1—H10.9300C43—O81.215 (4)
C21—O21.441 (5)C43—O71.292 (5)
C21—C221.499 (5)C43—C441.536 (5)
C21—H21A0.9900C44—O101.221 (4)
C21—H21B0.9900C44—O91.280 (5)
C22—C271.373 (6)O7—H30.91 (3)
C22—C231.387 (5)O9—H40.91 (3)
O1—C1—C2104.2 (3)C27—C22—C21109.5 (3)
O1—C1—H1A110.9C23—C22—C21129.7 (4)
C2—C1—H1A110.9C22—C23—C24117.9 (4)
O1—C1—H1B110.9C22—C23—H23121.0
C2—C1—H1B110.9C24—C23—H23121.0
H1A—C1—H1B108.9C25—C24—C23121.0 (4)
C3—C2—C7120.2 (4)C25—C24—C40120.5 (4)
C3—C2—C1131.8 (4)C23—C24—C40118.5 (4)
C7—C2—C1108.0 (4)C26—C25—C24120.1 (4)
C2—C3—C4118.7 (4)C26—C25—H25119.9
C2—C3—H3A120.7C24—C25—H25119.9
C4—C3—H3A120.7C25—C26—C27118.8 (4)
C3—C4—C5121.4 (4)C25—C26—H26120.6
C3—C4—C20120.7 (4)C27—C26—H26120.6
C5—C4—C20117.9 (4)C22—C27—C26121.3 (4)
C4—C5—C6119.8 (4)C22—C27—C28109.9 (3)
C4—C5—H5120.1C26—C27—C28128.7 (4)
C6—C5—H5120.1O2—C28—C27103.6 (3)
C7—C6—C5118.8 (4)O2—C28—C29110.1 (3)
C7—C6—H6120.6C27—C28—C29108.3 (3)
C5—C6—H6120.6O2—C28—C35107.5 (3)
C6—C7—C2121.1 (4)C27—C28—C35113.4 (3)
C6—C7—C8130.0 (4)C29—C28—C35113.5 (4)
C2—C7—C8108.7 (4)C34—C29—C30118.0 (4)
O1—C8—C7102.5 (3)C34—C29—C28122.9 (4)
O1—C8—C15107.8 (3)C30—C29—C28118.7 (4)
C7—C8—C15109.4 (3)C29—C30—C31121.1 (5)
O1—C8—C9109.5 (3)C29—C30—H30119.5
C7—C8—C9112.9 (3)C31—C30—H30119.5
C15—C8—C9114.0 (3)C32—C31—C30118.8 (5)
C10—C9—C14118.3 (4)C32—C31—H31120.6
C10—C9—C8120.8 (3)C30—C31—H31120.6
C14—C9—C8120.9 (4)C31—C32—F2119.4 (5)
C9—C10—C11121.3 (4)C31—C32—C33122.7 (5)
C9—C10—H10119.4F2—C32—C33117.9 (6)
C11—C10—H10119.4C32—C33—C34117.5 (6)
C12—C11—C10118.0 (4)C32—C33—H33121.2
C12—C11—H11121.0C34—C33—H33121.2
C10—C11—H11121.0C29—C34—C33121.9 (5)
C13—C12—C11123.2 (4)C29—C34—H34119.0
C13—C12—F1118.5 (4)C33—C34—H34119.0
C11—C12—F1118.2 (5)C36—C35—C28114.8 (4)
C12—C13—C14118.0 (4)C36—C35—H35A108.6
C12—C13—H13121.0C28—C35—H35A108.6
C14—C13—H13121.0C36—C35—H35B108.6
C13—C14—C9121.1 (4)C28—C35—H35B108.6
C13—C14—H14119.5H35A—C35—H35B107.5
C9—C14—H14119.5C35—C36—C37107.9 (3)
C8—C15—C16118.7 (3)C35—C36—H36A110.1
C8—C15—H15A107.7C37—C36—H36A110.1
C16—C15—H15A107.7C35—C36—H36B110.1
C8—C15—H15B107.7C37—C36—H36B110.1
C16—C15—H15B107.7H36A—C36—H36B108.4
H15A—C15—H15B107.1N3—C37—C36114.7 (3)
C17—C16—C15104.9 (3)N3—C37—H37A108.6
C17—C16—H16A110.8C36—C37—H37A108.6
C15—C16—H16A110.8N3—C37—H37B108.6
C17—C16—H16B110.8C36—C37—H37B108.6
C15—C16—H16B110.8H37A—C37—H37B107.6
H16A—C16—H16B108.9N3—C38—H38A109.5
N1—C17—C16115.6 (3)N3—C38—H38B109.5
N1—C17—H17A108.4H38A—C38—H38B109.5
C16—C17—H17A108.4N3—C38—H38C109.5
N1—C17—H17B108.4H38A—C38—H38C109.5
C16—C17—H17B108.4H38B—C38—H38C109.5
H17A—C17—H17B107.4N3—C39—H39A109.5
N1—C18—H18A109.5N3—C39—H39B109.5
N1—C18—H18B109.5H39A—C39—H39B109.5
H18A—C18—H18B109.5N3—C39—H39C109.5
N1—C18—H18C109.5H39A—C39—H39C109.5
H18A—C18—H18C109.5H39B—C39—H39C109.5
H18B—C18—H18C109.5N4—C40—C24178.9 (5)
N1—C19—H19A109.5C38—N3—C39110.2 (3)
N1—C19—H19B109.5C38—N3—C37114.0 (3)
H19A—C19—H19B109.5C39—N3—C37109.0 (3)
N1—C19—H19C109.5C38—N3—H2107.8
H19A—C19—H19C109.5C39—N3—H2107.8
H19B—C19—H19C109.5C37—N3—H2107.8
N2—C20—C4178.3 (5)C21—O2—C28111.8 (3)
C19—N1—C17109.2 (3)O3—C41—O4127.3 (3)
C19—N1—C18110.6 (3)O3—C41—C42118.8 (4)
C17—N1—C18112.8 (3)O4—C41—C42113.9 (3)
C19—N1—H1108.0O6—C42—O5127.0 (3)
C17—N1—H1108.0O6—C42—C41119.4 (4)
C18—N1—H1108.0O5—C42—C41113.6 (3)
C1—O1—C8107.5 (3)O8—C43—O7125.8 (4)
O2—C21—C22104.6 (3)O8—C43—C44121.4 (4)
O2—C21—H21A110.8O7—C43—C44112.9 (3)
C22—C21—H21A110.8O10—C44—O9125.9 (4)
O2—C21—H21B110.8O10—C44—C43121.1 (4)
C22—C21—H21B110.8O9—C44—C43112.9 (3)
H21A—C21—H21B108.9C43—O7—H3114 (3)
C27—C22—C23120.8 (3)C44—O9—H4118 (3)
O1—C1—C2—C3158.6 (4)C22—C23—C24—C252.1 (6)
O1—C1—C2—C719.1 (4)C22—C23—C24—C40175.5 (4)
C7—C2—C3—C41.6 (5)C23—C24—C25—C260.3 (6)
C1—C2—C3—C4175.8 (4)C40—C24—C25—C26177.3 (4)
C2—C3—C4—C50.7 (5)C24—C25—C26—C272.2 (6)
C2—C3—C4—C20177.4 (3)C23—C22—C27—C261.0 (6)
C3—C4—C5—C60.6 (5)C21—C22—C27—C26178.0 (4)
C20—C4—C5—C6178.7 (3)C23—C22—C27—C28178.6 (3)
C4—C5—C6—C71.0 (5)C21—C22—C27—C280.4 (4)
C5—C6—C7—C20.1 (5)C25—C26—C27—C222.8 (6)
C5—C6—C7—C8174.3 (3)C25—C26—C27—C28179.9 (4)
C3—C2—C7—C61.2 (5)C22—C27—C28—O24.9 (4)
C1—C2—C7—C6176.8 (3)C26—C27—C28—O2177.7 (4)
C3—C2—C7—C8176.7 (3)C22—C27—C28—C29111.9 (4)
C1—C2—C7—C81.3 (4)C26—C27—C28—C2965.4 (5)
C6—C7—C8—O1158.1 (3)C22—C27—C28—C35121.1 (4)
C2—C7—C8—O116.8 (4)C26—C27—C28—C3561.5 (5)
C6—C7—C8—C1543.9 (5)O2—C28—C29—C34155.7 (4)
C2—C7—C8—C15131.0 (3)C27—C28—C29—C3491.8 (5)
C6—C7—C8—C984.1 (5)C35—C28—C29—C3435.1 (5)
C2—C7—C8—C9101.0 (3)O2—C28—C29—C3032.0 (5)
O1—C8—C9—C1013.7 (5)C27—C28—C29—C3080.6 (4)
C7—C8—C9—C10127.3 (4)C35—C28—C29—C30152.5 (3)
C15—C8—C9—C10107.1 (4)C34—C29—C30—C310.3 (6)
O1—C8—C9—C14166.7 (3)C28—C29—C30—C31172.4 (3)
C7—C8—C9—C1453.1 (5)C29—C30—C31—C320.9 (6)
C15—C8—C9—C1472.5 (5)C30—C31—C32—F2179.2 (4)
C14—C9—C10—C110.3 (6)C30—C31—C32—C330.6 (7)
C8—C9—C10—C11180.0 (3)C31—C32—C33—C340.3 (7)
C9—C10—C11—C120.7 (6)F2—C32—C33—C34179.9 (4)
C10—C11—C12—C131.0 (7)C30—C29—C34—C330.7 (7)
C10—C11—C12—F1179.4 (4)C28—C29—C34—C33173.0 (4)
C11—C12—C13—C140.9 (7)C32—C33—C34—C291.0 (7)
F1—C12—C13—C14179.5 (4)O2—C28—C35—C3664.0 (4)
C12—C13—C14—C90.5 (6)C27—C28—C35—C3649.9 (5)
C10—C9—C14—C130.2 (6)C29—C28—C35—C36174.0 (3)
C8—C9—C14—C13179.9 (4)C28—C35—C36—C37178.9 (3)
O1—C8—C15—C1669.2 (4)C35—C36—C37—N3179.6 (3)
C7—C8—C15—C16180.0 (3)C36—C37—N3—C3861.5 (4)
C9—C8—C15—C1652.5 (4)C36—C37—N3—C39174.9 (3)
C8—C15—C16—C17174.3 (3)C22—C21—O2—C287.7 (4)
C15—C16—C17—N1174.6 (3)C27—C28—O2—C217.9 (4)
C16—C17—N1—C19171.5 (3)C29—C28—O2—C21107.7 (4)
C16—C17—N1—C1865.1 (4)C35—C28—O2—C21128.2 (3)
C2—C1—O1—C830.3 (4)O3—C41—C42—O6175.3 (4)
C7—C8—O1—C129.0 (4)O4—C41—C42—O64.5 (5)
C15—C8—O1—C1144.3 (3)O3—C41—C42—O54.2 (5)
C9—C8—O1—C191.2 (4)O4—C41—C42—O5175.9 (3)
O2—C21—C22—C274.3 (4)O8—C43—C44—O10178.7 (4)
O2—C21—C22—C23176.8 (4)O7—C43—C44—O102.0 (5)
C27—C22—C23—C241.5 (6)O8—C43—C44—O92.3 (5)
C21—C22—C23—C24179.8 (4)O7—C43—C44—O9177.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.931.912.768 (4)152
N1—H1···O40.932.222.886 (4)128
N3—H2···O30.931.912.764 (4)152
N3—H2···O50.932.222.884 (4)127
O7—H3···O50.91 (3)1.56 (3)2.466 (4)177 (4)
O9—H4···O4i0.91 (3)1.57 (3)2.465 (4)173 (4)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula2C20H22FN2O+·C2O42·C2H2O4·0.325H2O
Mr834.05
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)7.9355 (3), 24.7376 (9), 11.1332 (5)
β (°) 106.589 (2)
V3)2094.54 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.969, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7581, 3609, 2652
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.02
No. of reflections3609
No. of parameters562
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.931.912.768 (4)152
N1—H1···O40.932.222.886 (4)128
N3—H2···O30.931.912.764 (4)152
N3—H2···O50.932.222.884 (4)127
O7—H3···O50.91 (3)1.56 (3)2.466 (4)177 (4)
O9—H4···O4i0.91 (3)1.57 (3)2.465 (4)173 (4)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, W. J. (2002). Expert Opin. Invest. Drugs, 11, 1477–1486.  Web of Science CrossRef CAS Google Scholar
First citationChaix-Pluchery, O., Mutin, J. C., Bouillot, J. & Niepce, J. C. (1989). Acta Cryst. C45, 1699–1705.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810–o3812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNewkome, G. R., Theriot, K. J. & Fronczek, F. R. (1985). Acta Cryst. C41, 1642–1644.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPeriasamy, M., Reddy, M. N. & Anwar, S. (2004). Tetrahedron Asymmetry, 15, 1809–1812.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanchez, C., Bogeso, K. P., Ebert, B., Reines, E. H. & Braestrup, C. (2004). Psychopharmacology, 174, 163–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSorbera, L. A., Revel, L., Martin, L. & Castaner, J. (2001). Drugs Future, 26, 115–120.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds