organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Five symmetrically substituted 2-aryl-3-benzyl-1,3-thia­zolidin-4-ones: supra­molecular structures in zero, one and two dimensions

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 6 December 2006; accepted 19 December 2006; online 13 January 2007)

There are no direction-specific inter­actions between the mol­ecules of 3-(2-methoxy­benz­yl)-2-(2-methoxy­phen­yl)-1,3-thia­zolidin-4-one, C18H19NO3S, (I); the mol­ecules of 3-(4-nitro­benz­yl)-2-(4-nitro­phen­yl)-1,3-thia­zolidin-4-one, C16H13N3O5S, (II), are linked by four independent C—H⋯O hydrogen bonds into complex chains of fused rings. In 3-(4-methoxy­benz­yl)-2-(4-methoxy­phen­yl)-1,3-thia­zolidin-4-one, (III), isomeric with (I), the mol­ecules are linked into sheets by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds, while in 3-(2-nitro­benz­yl)-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one, (IV)[link], isomeric with (II), the sheets are built from three independent C—H⋯O hydrogen bonds and one C—H⋯π(arene) hydrogen bond, and reinforced by an aromatic ππ stacking inter­action. In 3-(2-fluoro­benz­yl)-2-(2-fluoro­phen­yl)-1,3-thia­zolidin-4-one, C16H13F2NOS, (V)[link], where the 2-aryl ring exhibits orientational disorder, the mol­ecules are linked into sheets by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds, and the sheets are linked in pairs, forming bilayers, by an aromatic ππ stacking inter­action.

Comment

We report here the mol­ecular and supra­molecular structures of five substituted 2-aryl-3-benzyl-1,3-thia­zolidin-4-ones, (I)–(V)[link], all obtained from the reactions of the corresponding aryl aldehydes with L-valine [(S)-2-amino-3-methyl­propionic acid] and mercaptoacetic acid in the presence of diisopropyl­ethyl­amine (Cunico et al., 2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.]). The method of synthesis (Cunico et al., 2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.]) represents a one-stage simplification of a previously published two-stage procedure (Holmes et al., 1995[Holmes, C. P., Chinn, J. P., Look, G. C., Gordon, E. M. & Gallop, M. A. (1995). J. Org. Chem. 60, 7328-7333.]); in this earlier investigation, it was found that, under the forcing reaction conditions required, the use of enantiomerically pure chiral amines consistently led to products with no enantio­selectivity at C2. A preliminary report has appeared on compound (V)[link], establishing proof of the constitution of this unexpected reaction product, but that report gave no stereochemical information nor any discussion of the supra­molecular aggregation (Cunico et al., 2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.]).

[Scheme 1]

In each of compounds (I)–(V)[link] (Figs. 1[link]–5[link][link][link][link]), atom C2 is a stereogenic centre; all the compounds, as prepared, are racemic despite the use of enantiomerically pure L-valine as the source of the ring N atom. Each compound crystallizes in a centrosymmetric space group and for each the reference mol­ecule was selected as one having the S configuration at C2.

While the amidic portion of the heterocyclic ring is effectively planar in each compound, overall these rings are all non-planar. In each of compounds (I)–(IV)[link], the heterocyclic ring adopts an envelope conformation, folded across the line C2⋯C5, while in compound (V)[link], the ring adopts the half-chair conformation, twisted about the S1—C5 bond. The bond distances and angles present no unusual values. The primary inter­est in the structures is the dramatic influence exerted upon the supra­molecular aggregation by the nature and location of the single substituent in the aryl rings; the structural variation involves both the types of direction-specific inter­molecular inter­action present in the supra­molecular structures and the effects of these inter­actions upon the dimensionality of these structures. We discuss the structures in order of increasing complexity, from the isolated mol­ecules in compound (I)[link] up to the bilayers in compound (V)[link].

There are no direction-specific inter­molecular inter­actions in the crystal structure of compound (I)[link], which thus consists of effectively isolated mol­ecules.

In the structure of compound (II)[link], there are four independent C—H⋯O hydrogen bonds (Table 1[link]), which link the mol­ecules into complex chains. Atoms C2 and C37 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to nitro atoms O241 and O342 in the mol­ecules at (x, −1 + y, z) and (x, 1 + y, z), so generating by translation a chain of edge-fused R22(20) rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction. This chain is weakly reinforced by a further, rather long and possibly adventitious, inter­action between C32 at (x, y, z) and O342 at (x, 1 + y, z). Pairs of these chains are linked by the final hydrogen bond in which atom C22 in the mol­ecule at (x, y, z) acts as a donor to ring atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a complex chain of rings (Fig. 6[link]). Two such chains, related to one another by the translational symmetry operations, run along the lines ([1\over2], y, 0) and ([1\over2], y, [1\over2]), but there are no direction-specific inter­actions between adjacent chains.

The formation of the hydrogen-bonded sheets in compound (III)[link] is very simple, utilizing only two hydrogen bonds, one of C—H⋯O and one of C—H⋯π(arene) type (Table 2[link]). Atoms C5 and C37 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to meth­oxy atom O34 in the mol­ecule at (−1 + x, −1 + y, z) and to the C31–C36 ring in the mol­ecule at (−1 + x, y, z). These inter­actions thus generate by translation a sheet lying parallel to (001) (Fig. 7[link]). Four such sheets pass through each unit cell, in the domains 0.04 < z < 0.31, 0.19 < z < 0.46, 0.54 < z < 0.81 and 0.69 < z < 0.96, but there are no direction-specific inter­molecular inter­actions between the sheets, nor is there any inter­weaving of the pairs of sheets within the domains 0 < z < 0.5 and 0.5 < z < 1.0.

The sheet structure of compound (IV)[link] is much more complex than that in compound (III)[link] and it is most readily analysed in terms of two substructures, built, respectively, from two C—H⋯O hydrogen bonds, and from one C—H⋯O and one C—H⋯π(arene) hydrogen bond (Table 3[link]). In the first of these substructures, atoms C24 and C26 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms O4 at (x, 1 + y, z) and O31 at (1 − x, y, [{3\over 2}] − z). Propagation of these two inter­actions by translation and rotation then produces a chain of edge-fused rings running parallel to the [010] direction and generated by the twofold rotation axis along ([1\over2], y, [3\over4]), and containing alternating R22(20) and R44(32) rings (Fig. 8[link]).

In the second substructure, atom C35 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O4 in the mol­ecule at (x, −y, −[{1\over 2}] + z), so forming a C(8) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0 (Fig. 9[link]). At the same time, atom C25 at (x, y, z) acts as a donor to the C31–C36 ring in the mol­ecule at (x, 1 − y, [{1\over 2}] + z), so forming another chain along [001], this time generated by the c-glide plane at y = [1\over2]. The combination of these two chains along [001] generates a sheet parallel to (100) (Fig. 9[link]). Hence, the combination of this rather simple two-dimensional substructure with the chain of fused rings (Fig. 8[link]) generates a sheet structure of considerable complexity.

The mol­ecule of compound (V)[link] exhibits disorder in the orientation of the C21–C26 ring, where two orientations are related by a 180° rotation about the C2—C21 bond, so that the F atom is disordered over two sites, denoted F22 and F26 (Fig. 5[link]), with occupancies 0.647 (4) and 0.353 (4), respectively. There are only two hydrogen bonds in the structure of compound (V)[link] (Table 4[link]) and these link the mol­ecules into sheets, pairs of which are further linked into bilayers by a single aromatic ππ stacking inter­action; the formation of the bilayers is not influenced by the disorder. Atom C24 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O4 in the mol­ecule at (x, 1 + y, z), so generating by translation a C(9) chain running parallel to the [010] direction. At the same time atom C35 in the mol­ecule at (x, y, z) acts as a donor to the C21–C26 ring in the mol­ecule at (x, [{1\over 2}] − y, −[{1\over 2}] + z), so forming a chain along [001] generated by the c-glide plane at y = 0.25; the combination of the chains along [010] and [001] generates a sheet parallel to (100) (Fig. 10[link]). Two sheets of this type, generated by the c-glide planes at y = [1\over4] and y = [3\over4], and related to one another by inversion, pass through each unit cell and these pairs are linked into bilayers by a centrosymmetric ππ stacking inter­action. The C31–C36 rings in the mol­ecules at (x, y, z) and (1 − x, −y, 1 − z) are strictly parallel with an inter­planar spacing of 3.695 (2) Å; the ring-centroid separation is 3.862 (2) Å, corresponding to a ring-centroid offset of 1.125 (2) Å (Fig. 11[link]).

The supra­molecular structures described here show some marked variations consequent upon changes only in the location or identity of a single substituent common to the two aryl rings. This variation is particularly striking in the pairs of isomeric compounds (I)[link] and (II)[link], containing methyl substituents, and (I)[link] and (IV)[link], containing nitro substituents. Whereas compound (I)[link], containing 2-meth­oxy substituents, adopts a structure exhibiting no direction-specific inter­molecular inter­actions, the isomeric compound (III)[link], containing 4-meth­oxy substituents, aggregates into a two-dimensional structure. On the other hand, compound (IV)[link], containing 2-nitro substituents, has a two-dimensional structure, while the isomeric compound (II)[link], containing 4-nitro substituents, has a supra­molecular structure that is only one-dimensional.

[Figure 1]
Figure 1
A mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
A mol­ecule of (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
A mol­ecule of (V)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Atom sites F22 and F26, and the associated H-atom sites, have partial occupancies (see Comment).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (II)[link], showing the formation of a chain of fused rings built from C—H⋯O hydrogen bonds and running along [010]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a sheet parallel to (001) built from C—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of compound (IV)[link], showing the formation of a chain of edge-fused R22(20) and R44(32) rings built from C—H⋯O hydrogen bonds and running along [010]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 9]
Figure 9
A stereoview of part of the crystal structure of compound (IV)[link], showing the formation of a sheet parallel to (100) built from C—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of compound (V)[link], showing the formation of a sheet parallel to (100) built from C—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 11]
Figure 11
Part of the crystal structure of compound (V)[link], showing the ππ stacking inter­action that links pairs of sheets. For the sake of clarity, all H atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).

Experimental

Samples of compounds (I)–(V)[link] were prepared according to a published procedure (Cunico et al., 2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.]); crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol.

Compound (I)[link]

Crystal data
  • C18H19NO3S

  • Mr = 329.40

  • Monoclinic, P 21 /n

  • a = 8.3321 (2) Å

  • b = 18.3668 (4) Å

  • c = 10.8568 (2) Å

  • β = 94.450 (2)°

  • V = 1656.45 (6) Å3

  • Z = 4

  • Dx = 1.321 Mg m−3

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.35 × 0.35 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.959

  • 17857 measured reflections

  • 3643 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.04

  • 3643 reflections

  • 210 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0269P)2 + 1.0914P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Compound (II)[link]

Crystal data
  • C16H13N3O5S

  • Mr = 359.35

  • Monoclinic, P 21 /c

  • a = 14.2230 (7) Å

  • b = 7.9862 (4) Å

  • c = 14.1156 (7) Å

  • β = 93.908 (3)°

  • V = 1599.63 (14) Å3

  • Z = 4

  • Dx = 1.492 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.18 × 0.16 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.995

  • 3641 measured reflections

  • 3641 independent reflections

  • 2630 reflections with I > 2σ(I)

  • Rint = 0.0

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.122

  • wR(F2) = 0.438

  • S = 1.10

  • 3641 reflections

  • 227 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.35P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O241i 1.00 2.37 3.263 (8) 148
C22—H22⋯O4ii 0.95 2.45 3.210 (7) 137
C32—H32⋯O342iii 0.95 2.52 3.355 (7) 147
C37—H37B⋯O342iii 0.99 2.39 3.327 (7) 158
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.

Compound (III)[link]

Crystal data
  • C18H19NO3S

  • Mr = 329.42

  • Monoclinic, P 21 /c

  • a = 4.6687 (4) Å

  • b = 9.6210 (8) Å

  • c = 35.478 (3) Å

  • β = 95.335 (3)°

  • V = 1586.7 (2) Å3

  • Z = 4

  • Dx = 1.379 Mg m−3

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.32 × 0.15 × 0.07 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.985

  • 7975 measured reflections

  • 3026 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.239

  • S = 1.10

  • 3026 reflections

  • 210 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1489P)2 + 1.6071P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H52⋯O34i 0.99 2.43 3.360 (5) 156
C37—H37ACg1ii 0.99 2.81 3.525 (4) 129
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z.

Compound (IV)[link]

Crystal data
  • C16H13N3O5S

  • Mr = 359.35

  • Monoclinic, C 2/c

  • a = 22.3000 (4) Å

  • b = 9.9352 (3) Å

  • c = 14.6945 (4) Å

  • β = 96.435 (2)°

  • V = 3235.13 (14) Å3

  • Z = 8

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.955

  • 34307 measured reflections

  • 3713 independent reflections

  • 2956 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.06

  • 3713 reflections

  • 226 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0484P)2 + 2.1203P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O4i 0.95 2.38 3.2724 (18) 156
C26—H26⋯O31ii 0.95 2.45 3.1985 (19) 135
C35—H35⋯O4iii 0.95 2.46 3.1163 (18) 126
C25—H25⋯Cg1iv 0.95 2.96 3.7624 (17) 143
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) x, [-y, z-{\script{1\over 2}}]; (iv) x, -y+1, [z+{\script{1\over 2}}].

Compound (V)[link]

Crystal data
  • C16H13F2NOS

  • Mr = 305.33

  • Monoclinic, P 21 /c

  • a = 13.9981 (6) Å

  • b = 10.1236 (3) Å

  • c = 10.1491 (4) Å

  • β = 106.333 (2)°

  • V = 1380.20 (9) Å3

  • Z = 4

  • Dx = 1.469 Mg m−3

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.36 × 0.30 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.990

  • 15108 measured reflections

  • 3123 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.145

  • S = 1.05

  • 3123 reflections

  • 200 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0597P)2 + 1.6351P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.93 e Å−3

Table 4
Hydrogen-bond geometry (Å, °) for (V)[link]

Cg2 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O4i 0.95 2.40 3.274 (3) 153
C35—H35⋯Cg2ii 0.95 2.86 3.569 (3) 133
Symmetry codes: (i) x, y+1, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

For compound (I)[link], the space group P21/n was uniquely assigned from the systematic absences; the space group P21/c was similarly assigned for each of compounds (II)[link], (III)[link] and (V)[link]. For compound (IV)[link], the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and then confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups in (III) and k = 1.2 for all other H atoms. The structure of compound (II)[link] indicated twinning. The TwinRotMAt procedure in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) was used to generate a HKLF5 file containing 3641 reflections, with an estimated BASF value of 0.41; the final BASF value was 0.299 (7). Accordingly, the final R factors are high because of the lack of any averaging of equivalent reflections. It was apparent from an early stage that one of the F atoms in compound (V)[link] was disordered over two sites, denoted F22 and F26; the final refined occupancies were 0.647 (4) and 0.353 (4).

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures of five substituted 2-aryl-3-benzyl-1,3-thiazolidin-4-ones, (I)–(V), all obtained from the reactions of the corresponding aryl aldehydes with L-valine [(S)-2-amino-3-methylpropionic acid] and mercaptoacetic acid in the presence of diisopropylethylamine (Cunico et al., 2006). The method of synthesis (Cunico et al., 2006) represents a one-stage simplification of a previously published two-stage procedure (Holmes et al., 1995); in this earlier investigation, it was found that, under the forcing reaction conditions required, the use of enantiomerically pure chiral amines consistently led to products with no enantioselectivity at C2. A preliminary report has appeared on compound (V) establishing proof of constitution of this unexpected reaction product, but that report gave no stereochemical information nor any discussion of the supramolecular aggregation (Cunico et al., 2006).

In each of compounds (I)–(V) (Figs. 1–5), atom C2 is a stereogenic centre; all the compounds, as prepared, are racemic despite the use of enantiomerically pure L-valine as the source of the ring N atom. Each compound crystallizes in a centrosymmetric space group, and for each, the reference molecule was selected as one having the S configuration at C2.

While the amidic portion of the heterocyclic ring is effectively planar in each compound, overall these rings are all non-planar. In each of compounds (I)–(IV), the heterocyclic ring adopts an envelope conformation, folded across the line C2···C5, while in compound (V), the ring adopts the half-chair conformation, twisted about the S1—C5 bond. The bond distances and angles present no unusual values. The primary interest in the structures is the dramatic influence exerted upon the supramolecular aggregation by the nature and location of the single substituent in the aryl rings; the structural variation involves both the types of direction-specific intermolecular interaction present in the supramolecular structures and the effects of these interactions upon the dimensionality of these structures. We discuss the structures in order of increasing complexity, from the isolated molecules in compound (I) up to the bilayers in compound (V).

There are no direction-specific intermolecular interactions in the crystal structure of compound (I), which thus consists of effectively isolated molecules.

In the structure of compound (II), there are four independent C—H···O hydrogen bonds (Table 1) which link the molecules into complex chains. Atoms C2 and C37 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to nitro atoms O241 and O342 in the molecules at (x, -1 + y, z) and (x, 1 + y, z), so generating by translation a chain of edge-fused R22(20) rings (Bernstein et al., 1995) running parallel to the [010] direction. This chain is weakly reinforced by a further, rather long and possibly adventitious interaction between C32 at (x, y, z) and O342 at (x, 1 + y, z). Pairs of these chains are linked by the final hydrogen bond in which atom C22 in the molecule at (x, y, z) acts as a donor to ring atom O4 in the molecule at (1 - x, 1 - y, 1 - z), so forming a complex chain of rings (Fig. 6). Two such chains, related to one another by the translational symmetry operations, run along the lines (1/2, y, 0) and (1/2, y, 1/2), but there are no direction-specific interactions between adjacent chains.

The formation of the hydrogen-bonded sheets in compound (III) is very simple, utilizing only two hydrogen bonds, one of C—H.·O and one C—H···π(arene) types (Table 2). Atoms C5 and C37 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to methoxy atom O34 in the molecule at (-1 + x, -1 + y, z) and to the C31–C36 ring in the molecule at (-1 + x, y, z). These interactions thus generate by translation a sheet lying parallel to (001) (Fig. 7). Four such sheets pass through each unit cell, in the domains 0.04 < z < 0.31, 0.19 < z < 0.46, 0.54 < z < 0.81, 0.69 < z < 0.96, but there are no direction-specific intermolecular interactions between the sheets, nor is there any interweaving of the pairs of sheets within the domains 0 < z < 0.5 and 0.5 < z < 1.0.

The sheet structure of compound (IV) is much more complex than that in compound (III) and it is most readily analysed in terms of two substructures, built, respectively, from two C—H···O hydrogen bonds, and from one C—H.·O and one C—H···π(arene) hydrogen bond (Table 3). In the first of these substructures, atoms C24 and C26 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms O4 at (x, 1 + y, z) and O31 at (1 - x, y, 3/2 - z). Propagation of these two interactions by translation and rotation then produces a chain of edge-fused rings running parallel to the [010] direction and generated by the twofold rotation axis along (1/2, y, 3/4), and containing alternating R22(20) and R44(32) rings (Fig. 8).

In the second substructure, atom C35 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O4 in the molecule at (x, -y, -1/2 + z), so forming a C(8) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0 (Fig. 9). At the same time, atom C25 at (x, y, z) acts as a donor to the C31–C36 ring in the molecule at (x, 1 - y, 1/2 + z), so forming another chain along [001], this time generated by the c-glide plane at y = 1/2. The combination of these two chains along [001] generates a sheet parallel to (100) (Fig. 9). Hence the combination of this rather simple two-dimensional substructure with the chain of fused rings (Fig. 8) generates a sheet structure of considerable complexity.

The molecule of compound (V) exhibits disorder in the orientation of the C21—C26 ring, where two orientations are related by a 180° rotation about the C2—C21 bond, so that the F atom is disordered over two sites, denoted F22 and F26 (Fig. 5), with occupancies 0.647 (4) and 0.353 (4), respectively. There are only two hydrogen bonds in the structure of compound (V) (Table 4), and these link the molecules into sheets, pairs of which are further linked into bilayers by a single aromatic ππ stacking interaction; the formation of the bilayers is not influenced by the disorder. Atom C24 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O4 in the molecule at (x, 1 + y, z), so generating by translation a C(9) chain running parallel to the [010] direction. At the same time atom C35 in the molecule at (x, y, z) acts as a donor to the C21–C26 ring in the molecule at (x, 1/2 - y, -1/2 + z), so forming a chain along [001] generated by the c-glide plane at y = 0.25: the combination of the chains along [010] and [001] generates a sheet parallel to (100) (Fig. 10). Two sheets of this type, generated by the c-glide planes at y = 1/4 and y = 3/4, and related to one another by inversion, pass through each unit cell and these pairs are linked into bilayers by a centrosymmetric ππ stacking interaction. The C31–C36 rings in the molecules at (x, y, z) and (1 - x, -y, 1 - z) are strictly parallel with an interplanar spacing of 3.695 (2) Å; the ring-centroid separation is 3.862 (2) Å, corresponding to a ring-centroid offset of 1.125 (2) Å (Fig. 11).

The supramolecular structures described here show some marked variations consequent upon changes only in the location or identity of a single substituent common to the two aryl rings. This variation is particularly striking in the pairs of isomeric compounds (I) and (II), containing methyl substituents, and (I) and (IV) containing nitro substituents. Whereas compound (I), containing 2-methoxy substituents, adopts a structure exhibiting no direction-specific intermolecular interactions, the isomeric compound (III), containing 4-methoxy substituents, aggregates into a two-dimensional structure. On the other hand, compound (IV), containing 2-nitro substituents, has a two-dimensional structure, while the isomeric compound (II), containing 4-nitro substituents, has a supramolecular structure that is only one-dimensional.

Related literature top

For related literature, see: Bernstein et al. (1995); Cunico et al. (2006); Holmes et al. (1995); Spek (2003).

Experimental top

Samples of compounds (I)–(V) were prepared according to the published procedure (Cunico et al., 2006); crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol.

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences; the space group P21/c was similarly assigned for each of compounds (II), (III) and (V). For compound (IV), the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and then confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups in (III) and 1.2 for all other H atoms. The structure of compound (II) indicated twinning. The TwinRotMAt procedure in PLATON (Spek, 2003) was used to generate an HKLF5 file containing 3641 reflections, with an estimated BASF value of 0.41; the final BASF value was 0.299 (7). Accordingly the final R factors are high, because of the lack of any averaging of equivalent reflections. It was apparent from an early stage that one of the F atoms in compound (V) was disordered over two sites, denoted F22 and F26; the final refined occupancies were 0.647 (4) and 0.353 (4).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A molecule of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. A molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atom sites F22 and F26, and the associated H-atom sites, have partial occupancies (see text).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II), showing the formation of a chain of fused rings built from C—H···O hydrogen bonds and running along [010]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III), showing the formation of a sheet parallel to (001) built from C—H···O and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (IV), showing the formation of a chain of edge-fused R22(20) and R44(32) rings built from C—H···O hydrogen bonds and running along [010]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of compound (IV), showing the formation of a sheet parallel to (100) built from C—H···O and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of compound (V), showing the formation of a sheet parallel to (100) built from C—H···O and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 11] Fig. 11. Part of the crystal structure of compound (V), showing the ππ stacking interaction that links pairs of sheets. For the sake of clarity, all H atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, 1 - z).
(I) 3-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1,3-thiazolidin-4-one top
Crystal data top
C18H19NO3SF(000) = 696
Mr = 329.40Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3643 reflections
a = 8.3321 (2) Åθ = 3.3–27.5°
b = 18.3668 (4) ŵ = 0.21 mm1
c = 10.8568 (2) ÅT = 120 K
β = 94.450 (2)°Block, colourless
V = 1656.45 (6) Å30.35 × 0.35 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3643 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 910
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2323
Tmin = 0.940, Tmax = 0.959l = 1414
17857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.0914P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H19NO3SV = 1656.45 (6) Å3
Mr = 329.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3321 (2) ŵ = 0.21 mm1
b = 18.3668 (4) ÅT = 120 K
c = 10.8568 (2) Å0.35 × 0.35 × 0.20 mm
β = 94.450 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3259 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.959Rint = 0.032
17857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3643 reflectionsΔρmin = 0.25 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74584 (4)0.517259 (18)0.47498 (3)0.01964 (10)
C20.71836 (16)0.50387 (7)0.64006 (12)0.0164 (3)
C210.84157 (16)0.45225 (7)0.70183 (12)0.0165 (3)
C220.82233 (17)0.37724 (7)0.67929 (12)0.0186 (3)
O220.69400 (13)0.35958 (5)0.59885 (9)0.0227 (2)
C2210.6691 (2)0.28392 (8)0.57169 (14)0.0316 (4)
C230.92925 (18)0.32726 (8)0.73653 (14)0.0240 (3)
C241.05738 (19)0.35246 (9)0.81393 (14)0.0279 (3)
C251.08049 (18)0.42616 (9)0.83516 (14)0.0264 (3)
C260.97188 (17)0.47576 (8)0.77853 (13)0.0210 (3)
N30.72868 (14)0.57652 (6)0.69289 (10)0.0162 (2)
C370.68126 (17)0.58965 (7)0.81732 (12)0.0180 (3)
C310.51103 (16)0.61795 (7)0.82077 (12)0.0172 (3)
C320.45595 (17)0.63563 (7)0.93613 (13)0.0199 (3)
O320.56653 (12)0.62518 (6)1.03487 (9)0.0242 (2)
C3210.5106 (2)0.63609 (10)1.15509 (13)0.0302 (4)
C330.30138 (19)0.66200 (9)0.94547 (14)0.0288 (3)
C340.19960 (19)0.66985 (9)0.83815 (15)0.0315 (4)
C350.25127 (19)0.65255 (8)0.72409 (14)0.0265 (3)
C360.40722 (17)0.62666 (7)0.71600 (13)0.0203 (3)
C40.80050 (17)0.62907 (7)0.62972 (12)0.0181 (3)
O40.82535 (13)0.69122 (5)0.66759 (9)0.0259 (2)
C50.85140 (19)0.60177 (7)0.50706 (13)0.0224 (3)
H20.60810.48400.64880.020*
H22A0.76200.26470.53210.038*
H22B0.57170.27810.51590.038*
H22C0.65640.25720.64850.038*
H230.91460.27650.72270.029*
H241.13070.31850.85310.034*
H251.16940.44270.88780.032*
H260.98740.52640.79270.025*
H37A0.75650.62530.85870.022*
H37B0.69140.54360.86480.022*
H32A0.48150.68731.16480.036*
H32B0.59610.62301.21830.036*
H32C0.41610.60541.16430.036*
H330.26550.67451.02370.035*
H340.09310.68740.84370.038*
H350.18100.65830.65160.032*
H360.44280.61480.63740.024*
H510.96920.59370.51180.027*
H520.82290.63770.44100.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (2)0.01877 (17)0.01534 (17)0.00047 (12)0.00152 (13)0.00249 (12)
C20.0184 (7)0.0144 (6)0.0169 (6)0.0007 (5)0.0043 (5)0.0007 (5)
C210.0182 (7)0.0157 (6)0.0163 (6)0.0024 (5)0.0063 (5)0.0017 (5)
C220.0239 (7)0.0173 (6)0.0157 (6)0.0001 (5)0.0087 (5)0.0012 (5)
O220.0321 (6)0.0143 (5)0.0218 (5)0.0038 (4)0.0023 (4)0.0019 (4)
C2210.0541 (11)0.0160 (7)0.0250 (8)0.0089 (6)0.0042 (7)0.0015 (6)
C230.0296 (8)0.0174 (6)0.0266 (7)0.0047 (5)0.0126 (6)0.0065 (5)
C240.0263 (8)0.0297 (8)0.0286 (8)0.0108 (6)0.0076 (6)0.0127 (6)
C250.0198 (8)0.0326 (8)0.0265 (7)0.0041 (6)0.0006 (6)0.0041 (6)
C260.0194 (7)0.0209 (7)0.0228 (7)0.0008 (5)0.0030 (6)0.0002 (5)
N30.0199 (6)0.0137 (5)0.0156 (5)0.0024 (4)0.0055 (4)0.0011 (4)
C370.0216 (7)0.0191 (6)0.0139 (6)0.0033 (5)0.0053 (5)0.0001 (5)
C310.0196 (7)0.0129 (6)0.0195 (6)0.0005 (5)0.0044 (5)0.0010 (5)
C320.0195 (7)0.0219 (7)0.0185 (6)0.0017 (5)0.0023 (5)0.0010 (5)
O320.0206 (5)0.0380 (6)0.0145 (5)0.0070 (4)0.0046 (4)0.0015 (4)
C3210.0289 (9)0.0471 (10)0.0154 (7)0.0080 (7)0.0074 (6)0.0005 (6)
C330.0243 (8)0.0404 (9)0.0225 (7)0.0070 (6)0.0066 (6)0.0049 (6)
C340.0185 (8)0.0433 (9)0.0326 (8)0.0084 (6)0.0019 (6)0.0042 (7)
C350.0211 (8)0.0329 (8)0.0249 (7)0.0028 (6)0.0025 (6)0.0015 (6)
C360.0240 (8)0.0182 (6)0.0189 (6)0.0002 (5)0.0031 (5)0.0028 (5)
C40.0197 (7)0.0168 (6)0.0180 (6)0.0023 (5)0.0028 (5)0.0003 (5)
O40.0378 (6)0.0155 (5)0.0251 (5)0.0030 (4)0.0070 (5)0.0027 (4)
C50.0285 (8)0.0199 (7)0.0197 (7)0.0028 (5)0.0084 (6)0.0018 (5)
Geometric parameters (Å, º) top
S1—C51.8047 (14)C37—C311.5138 (19)
S1—C21.8409 (13)C37—H37A0.99
C2—N31.4523 (16)C37—H37B0.99
C2—C211.5152 (18)C31—C361.3838 (19)
C2—H21.00C31—C321.4049 (19)
C21—C261.385 (2)C32—O321.3718 (17)
C21—C221.4064 (18)C32—C331.387 (2)
C22—O221.3661 (18)O32—C3211.4336 (16)
C22—C231.392 (2)C321—H32A0.98
O22—C2211.4324 (17)C321—H32B0.98
C221—H22A0.98C321—H32C0.98
C221—H22B0.98C33—C341.394 (2)
C221—H22C0.98C33—H330.95
C23—C241.386 (2)C34—C351.379 (2)
C23—H230.95C34—H340.95
C24—C251.384 (2)C35—C361.393 (2)
C24—H240.95C35—H350.95
C25—C261.393 (2)C36—H360.95
C25—H250.95C4—O41.2253 (16)
C26—H260.95C4—C51.5140 (18)
N3—C41.3505 (17)C5—H510.99
N3—C371.4567 (16)C5—H520.99
C5—S1—C291.29 (6)N3—C37—H37B108.8
N3—C2—C21112.51 (11)C31—C37—H37B108.8
N3—C2—S1104.70 (8)H37A—C37—H37B107.7
C21—C2—S1112.54 (9)C36—C31—C32118.65 (13)
N3—C2—H2109.0C36—C31—C37123.12 (12)
C21—C2—H2109.0C32—C31—C37118.22 (12)
S1—C2—H2109.0O32—C32—C33124.26 (13)
C26—C21—C22118.91 (12)O32—C32—C31114.72 (12)
C26—C21—C2122.93 (12)C33—C32—C31121.02 (13)
C22—C21—C2118.15 (12)C32—O32—C321116.49 (11)
O22—C22—C23124.83 (12)O32—C321—H32A109.5
O22—C22—C21114.63 (12)O32—C321—H32B109.5
C23—C22—C21120.54 (13)H32A—C321—H32B109.5
C22—O22—C221117.11 (12)O32—C321—H32C109.5
O22—C221—H22A109.5H32A—C321—H32C109.5
O22—C221—H22B109.5H32B—C321—H32C109.5
H22A—C221—H22B109.5C32—C33—C34118.88 (14)
O22—C221—H22C109.5C32—C33—H33120.6
H22A—C221—H22C109.5C34—C33—H33120.6
H22B—C221—H22C109.5C35—C34—C33120.96 (14)
C24—C23—C22119.13 (13)C35—C34—H34119.5
C24—C23—H23120.4C33—C34—H34119.5
C22—C23—H23120.4C34—C35—C36119.53 (14)
C25—C24—C23121.21 (14)C34—C35—H35120.2
C25—C24—H24119.4C36—C35—H35120.2
C23—C24—H24119.4C31—C36—C35120.95 (13)
C24—C25—C26119.27 (14)C31—C36—H36119.5
C24—C25—H25120.4C35—C36—H36119.5
C26—C25—H25120.4O4—C4—N3124.42 (12)
C21—C26—C25120.91 (13)O4—C4—C5123.51 (12)
C21—C26—H26119.5N3—C4—C5112.05 (11)
C25—C26—H26119.5C4—C5—S1106.80 (9)
C4—N3—C2118.10 (11)C4—C5—H51110.4
C4—N3—C37121.03 (11)S1—C5—H51110.4
C2—N3—C37120.42 (10)C4—C5—H52110.4
N3—C37—C31113.69 (11)S1—C5—H52110.4
N3—C37—H37A108.8H51—C5—H52108.6
C31—C37—H37A108.8
C5—S1—C2—N323.73 (10)C2—N3—C37—C3196.90 (14)
C5—S1—C2—C2198.77 (10)N3—C37—C31—C363.42 (18)
N3—C2—C21—C2614.23 (18)N3—C37—C31—C32177.07 (11)
S1—C2—C21—C26103.77 (13)C36—C31—C32—O32179.85 (12)
N3—C2—C21—C22166.10 (11)C37—C31—C32—O320.31 (18)
S1—C2—C21—C2275.90 (13)C36—C31—C32—C330.6 (2)
C26—C21—C22—O22177.60 (12)C37—C31—C32—C33179.82 (13)
C2—C21—C22—O222.09 (17)C33—C32—O32—C3216.1 (2)
C26—C21—C22—C232.2 (2)C31—C32—O32—C321174.40 (13)
C2—C21—C22—C23178.08 (12)O32—C32—C33—C34179.63 (15)
C23—C22—O22—C2210.25 (19)C31—C32—C33—C340.9 (2)
C21—C22—O22—C221179.58 (12)C32—C33—C34—C350.7 (3)
O22—C22—C23—C24178.31 (13)C33—C34—C35—C360.2 (3)
C21—C22—C23—C241.5 (2)C32—C31—C36—C350.1 (2)
C22—C23—C24—C250.1 (2)C37—C31—C36—C35179.66 (13)
C23—C24—C25—C260.6 (2)C34—C35—C36—C310.1 (2)
C22—C21—C26—C251.5 (2)C2—N3—C4—O4175.45 (13)
C2—C21—C26—C25178.80 (13)C37—N3—C4—O43.1 (2)
C24—C25—C26—C210.1 (2)C2—N3—C4—C53.01 (17)
C21—C2—N3—C4102.76 (13)C37—N3—C4—C5175.34 (12)
S1—C2—N3—C419.76 (14)O4—C4—C5—S1165.71 (12)
C21—C2—N3—C3769.62 (15)N3—C4—C5—S115.81 (15)
S1—C2—N3—C37167.86 (10)C2—S1—C5—C422.68 (10)
C4—N3—C37—C3190.95 (15)
(II) 3-(4-nitrobenzyl)-2-(4-nitrophenyl)-1,3-thiazolidin-4-one top
Crystal data top
C16H13N3O5SF(000) = 744
Mr = 359.35Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3641 reflections
a = 14.2230 (7) Åθ = 2.9–27.5°
b = 7.9862 (4) ŵ = 0.24 mm1
c = 14.1156 (7) ÅT = 120 K
β = 93.908 (3)°Plate, colourless
V = 1599.63 (14) Å30.18 × 0.16 × 0.02 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3641 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.966, Tmax = 0.995l = 1618
3641 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.122Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.438H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.35P)2]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C16H13N3O5SV = 1599.63 (14) Å3
Mr = 359.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2230 (7) ŵ = 0.24 mm1
b = 7.9862 (4) ÅT = 120 K
c = 14.1156 (7) Å0.18 × 0.16 × 0.02 mm
β = 93.908 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2630 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.995Rint = 0.0
3641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1220 restraints
wR(F2) = 0.438H-atom parameters constrained
S = 1.10Δρmax = 1.01 e Å3
3641 reflectionsΔρmin = 0.68 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57935 (12)0.3020 (2)0.25750 (11)0.0345 (6)
C20.6704 (4)0.3409 (7)0.3549 (4)0.0233 (13)
C210.7232 (4)0.5020 (7)0.3406 (4)0.0212 (12)
C220.6771 (4)0.6565 (7)0.3434 (4)0.0219 (12)
C230.7243 (4)0.8034 (7)0.3264 (5)0.0242 (13)
C240.8186 (4)0.7926 (7)0.3067 (4)0.0204 (12)
N240.8683 (4)0.9486 (7)0.2865 (4)0.0340 (13)
O2410.8229 (4)1.0779 (6)0.2771 (5)0.0524 (16)
O2420.9539 (3)0.9423 (6)0.2771 (4)0.0431 (13)
C250.8662 (4)0.6424 (8)0.3060 (4)0.0259 (13)
C260.8183 (4)0.4970 (7)0.3224 (5)0.0254 (13)
N30.6199 (3)0.3373 (6)0.4400 (3)0.0203 (11)
C370.6741 (4)0.3395 (7)0.5314 (4)0.0223 (12)
C310.7322 (4)0.1820 (7)0.5459 (4)0.0230 (12)
C320.8298 (5)0.1898 (7)0.5522 (5)0.0296 (14)
C330.8832 (5)0.0423 (8)0.5595 (5)0.0327 (15)
C340.8356 (4)0.1088 (7)0.5629 (4)0.0252 (13)
N340.8920 (4)0.2628 (7)0.5687 (4)0.0304 (12)
O3410.9763 (4)0.2540 (7)0.5611 (5)0.0565 (18)
O3420.8506 (3)0.3948 (5)0.5820 (4)0.0381 (12)
C350.7390 (4)0.1190 (8)0.5590 (4)0.0264 (13)
C360.6870 (4)0.0272 (7)0.5501 (4)0.0240 (12)
C40.5253 (4)0.3139 (7)0.4354 (4)0.0234 (12)
O40.4780 (3)0.2999 (6)0.5036 (3)0.0321 (11)
C50.4834 (5)0.3084 (9)0.3345 (5)0.0332 (16)
H20.71640.24600.35720.028*
H220.61260.66040.35700.026*
H230.69330.90860.32820.029*
H250.93120.63940.29440.031*
H260.85010.39250.32150.030*
H37A0.63060.34960.58300.027*
H37B0.71630.43820.53460.027*
H320.86050.29530.55170.036*
H330.95010.04590.56200.039*
H350.70840.22440.56240.032*
H360.62010.02230.54680.029*
H510.44410.40890.32070.040*
H520.44320.20790.32460.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0372 (10)0.0455 (11)0.0212 (8)0.0160 (7)0.0063 (7)0.0078 (7)
C20.028 (3)0.022 (3)0.022 (3)0.002 (2)0.012 (2)0.004 (2)
C210.020 (3)0.022 (3)0.022 (3)0.000 (2)0.007 (2)0.002 (2)
C220.018 (3)0.026 (3)0.022 (3)0.002 (2)0.005 (2)0.002 (2)
C230.021 (3)0.025 (3)0.028 (3)0.001 (2)0.007 (2)0.001 (2)
C240.018 (3)0.023 (3)0.020 (3)0.005 (2)0.003 (2)0.004 (2)
N240.036 (3)0.028 (3)0.040 (3)0.009 (2)0.015 (2)0.008 (2)
O2410.058 (3)0.018 (2)0.086 (4)0.003 (2)0.043 (3)0.009 (3)
O2420.026 (2)0.048 (3)0.056 (3)0.014 (2)0.004 (2)0.002 (3)
C250.018 (3)0.030 (3)0.029 (3)0.002 (2)0.003 (2)0.003 (2)
C260.020 (3)0.023 (3)0.033 (3)0.008 (2)0.007 (2)0.003 (2)
N30.020 (2)0.023 (2)0.019 (2)0.0007 (19)0.0047 (19)0.0021 (19)
C370.023 (3)0.021 (3)0.023 (3)0.001 (2)0.006 (2)0.002 (2)
C310.025 (3)0.023 (3)0.021 (3)0.001 (2)0.001 (2)0.001 (2)
C320.030 (3)0.022 (3)0.036 (3)0.007 (2)0.001 (3)0.003 (3)
C330.027 (3)0.029 (3)0.042 (4)0.005 (3)0.002 (3)0.005 (3)
C340.028 (3)0.022 (3)0.025 (3)0.000 (2)0.001 (2)0.000 (2)
N340.029 (3)0.027 (3)0.035 (3)0.001 (2)0.001 (2)0.001 (2)
O3410.030 (3)0.038 (3)0.103 (5)0.007 (2)0.017 (3)0.015 (3)
O3420.036 (3)0.022 (2)0.055 (3)0.005 (2)0.006 (2)0.001 (2)
C350.029 (3)0.026 (3)0.024 (3)0.006 (2)0.001 (2)0.000 (2)
C360.024 (3)0.025 (3)0.023 (3)0.005 (2)0.004 (2)0.002 (2)
C40.022 (3)0.023 (3)0.026 (3)0.000 (2)0.004 (2)0.000 (2)
O40.029 (2)0.041 (3)0.028 (2)0.0060 (19)0.0137 (19)0.0000 (19)
C50.022 (3)0.043 (4)0.034 (4)0.006 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—C51.803 (7)C37—C311.511 (8)
S1—C21.849 (6)C37—H37A0.99
C2—N31.442 (7)C37—H37B0.99
C2—C211.510 (8)C31—C321.386 (9)
C2—H21.00C31—C361.397 (8)
C21—C261.394 (7)C32—C331.401 (9)
C21—C221.400 (8)C32—H320.95
C22—C231.380 (8)C33—C341.386 (8)
C22—H220.95C33—H330.95
C23—C241.391 (8)C34—C351.375 (8)
C23—H230.95C34—N341.467 (8)
C24—C251.378 (8)N34—O3411.214 (7)
C24—N241.470 (7)N34—O3421.228 (7)
N24—O2411.220 (7)C35—C361.383 (9)
N24—O2421.235 (7)C35—H350.95
C25—C261.374 (8)C36—H360.95
C25—H250.95C4—O41.216 (8)
C26—H260.95C4—C51.507 (9)
N3—C41.356 (7)C5—H510.99
N3—C371.457 (7)C5—H520.99
C5—S1—C293.9 (3)N3—C37—H37B109.4
N3—C2—C21114.1 (5)C31—C37—H37B109.4
N3—C2—S1104.7 (4)H37A—C37—H37B108.0
C21—C2—S1111.9 (4)C32—C31—C36119.9 (5)
N3—C2—H2108.7C32—C31—C37120.5 (5)
C21—C2—H2108.7C36—C31—C37119.5 (5)
S1—C2—H2108.7C31—C32—C33120.2 (5)
C26—C21—C22119.5 (5)C31—C32—H32119.9
C26—C21—C2119.9 (5)C33—C32—H32119.9
C22—C21—C2120.6 (5)C34—C33—C32118.1 (5)
C23—C22—C21120.6 (5)C34—C33—H33121.0
C23—C22—H22119.7C32—C33—H33121.0
C21—C22—H22119.7C35—C34—C33122.6 (6)
C22—C23—C24118.0 (5)C35—C34—N34119.6 (5)
C22—C23—H23121.0C33—C34—N34117.8 (5)
C24—C23—H23121.0O341—N34—O342123.4 (6)
C25—C24—C23122.4 (5)O341—N34—C34119.1 (5)
C25—C24—N24119.5 (5)O342—N34—C34117.5 (5)
C23—C24—N24118.0 (5)C34—C35—C36118.7 (5)
O241—N24—O242122.8 (5)C34—C35—H35120.6
O241—N24—C24118.7 (5)C36—C35—H35120.6
O242—N24—C24118.5 (5)C35—C36—C31120.4 (5)
C26—C25—C24118.9 (5)C35—C36—H36119.8
C26—C25—H25120.5C31—C36—H36119.8
C24—C25—H25120.5O4—C4—N3125.2 (6)
C25—C26—C21120.4 (5)O4—C4—C5122.7 (6)
C25—C26—H26119.8N3—C4—C5112.1 (5)
C21—C26—H26119.8C4—C5—S1107.7 (4)
C4—N3—C2120.8 (5)C4—C5—H51110.2
C4—N3—C37120.5 (5)S1—C5—H51110.2
C2—N3—C37118.3 (5)C4—C5—H52110.2
N3—C37—C31111.2 (5)S1—C5—H52110.2
N3—C37—H37A109.4H51—C5—H52108.5
C31—C37—H37A109.4
C5—S1—C2—N36.1 (4)C2—N3—C37—C3165.4 (6)
C5—S1—C2—C21118.0 (4)N3—C37—C31—C32115.1 (6)
N3—C2—C21—C26128.6 (6)N3—C37—C31—C3663.0 (7)
S1—C2—C21—C26112.8 (5)C36—C31—C32—C332.2 (9)
N3—C2—C21—C2252.8 (7)C37—C31—C32—C33175.9 (6)
S1—C2—C21—C2265.8 (6)C31—C32—C33—C341.8 (9)
C26—C21—C22—C231.3 (9)C32—C33—C34—C350.3 (9)
C2—C21—C22—C23177.3 (5)C32—C33—C34—N34178.9 (6)
C21—C22—C23—C240.0 (9)C35—C34—N34—O341171.6 (6)
C22—C23—C24—C251.8 (9)C33—C34—N34—O3417.1 (9)
C22—C23—C24—N24178.6 (5)C35—C34—N34—O3429.0 (8)
C25—C24—N24—O241172.1 (6)C33—C34—N34—O342172.3 (6)
C23—C24—N24—O2418.3 (9)C33—C34—C35—C360.9 (9)
C25—C24—N24—O2425.9 (8)N34—C34—C35—C36177.7 (5)
C23—C24—N24—O242173.7 (6)C34—C35—C36—C310.5 (9)
C23—C24—C25—C262.2 (9)C32—C31—C36—C351.1 (9)
N24—C24—C25—C26178.2 (5)C37—C31—C36—C35177.1 (5)
C24—C25—C26—C210.8 (9)C2—N3—C4—O4175.7 (6)
C22—C21—C26—C251.0 (9)C37—N3—C4—O43.0 (9)
C2—C21—C26—C25177.7 (6)C2—N3—C4—C54.9 (7)
C21—C2—N3—C4120.9 (6)C37—N3—C4—C5177.5 (5)
S1—C2—N3—C41.7 (6)O4—C4—C5—S1171.5 (5)
C21—C2—N3—C3766.3 (7)N3—C4—C5—S19.1 (6)
S1—C2—N3—C37171.1 (4)C2—S1—C5—C48.6 (5)
C4—N3—C37—C31107.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O241i1.002.373.263 (8)148
C22—H22···O4ii0.952.453.210 (7)137
C32—H32···O342iii0.952.523.355 (7)147
C37—H37B···O342iii0.992.393.327 (7)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
(III) 3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1,3-thiazolidin-4-one top
Crystal data top
C18H19NO3SF(000) = 696
Mr = 329.42Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3026 reflections
a = 4.6687 (4) Åθ = 3.1–27.6°
b = 9.6210 (8) ŵ = 0.22 mm1
c = 35.478 (3) ÅT = 120 K
β = 95.335 (3)°Plate, colourless
V = 1586.7 (2) Å30.32 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3026 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ and ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.942, Tmax = 0.985l = 4645
7975 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1489P)2 + 1.6071P]
where P = (Fo2 + 2Fc2)/3
3026 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C18H19NO3SV = 1586.7 (2) Å3
Mr = 329.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6687 (4) ŵ = 0.22 mm1
b = 9.6210 (8) ÅT = 120 K
c = 35.478 (3) Å0.32 × 0.15 × 0.07 mm
β = 95.335 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3026 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2470 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.985Rint = 0.034
7975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.10Δρmax = 0.52 e Å3
3026 reflectionsΔρmin = 0.43 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66774 (18)0.06878 (9)0.36674 (2)0.0260 (3)
C20.5801 (7)0.2531 (4)0.36097 (9)0.0217 (7)
C210.4458 (7)0.2853 (4)0.32152 (9)0.0218 (7)
C220.5438 (7)0.3974 (4)0.30115 (9)0.0256 (7)
C230.4199 (7)0.4292 (4)0.26511 (10)0.0266 (8)
C240.1979 (7)0.3465 (4)0.24831 (9)0.0252 (7)
O240.0895 (6)0.3860 (3)0.21274 (7)0.0321 (6)
C2410.1270 (8)0.3016 (4)0.19353 (9)0.0344 (9)
C250.1011 (7)0.2333 (4)0.26778 (9)0.0255 (7)
C260.2236 (7)0.2037 (4)0.30407 (9)0.0235 (7)
N30.3882 (6)0.2834 (3)0.39034 (7)0.0229 (6)
C370.2748 (7)0.4247 (4)0.39350 (9)0.0258 (7)
C310.4999 (7)0.5287 (4)0.40836 (9)0.0224 (7)
C320.6091 (7)0.5292 (4)0.44588 (9)0.0237 (7)
C330.8111 (7)0.6271 (3)0.46036 (8)0.0230 (7)
C340.9067 (7)0.7255 (3)0.43591 (9)0.0223 (7)
O341.0994 (5)0.8288 (3)0.44665 (7)0.0309 (6)
C3411.2048 (8)0.8373 (4)0.48554 (10)0.0342 (9)
C350.8028 (8)0.7257 (4)0.39797 (9)0.0265 (7)
C360.6013 (7)0.6298 (4)0.38458 (9)0.0251 (7)
C40.3757 (7)0.1912 (4)0.41875 (9)0.0274 (8)
O40.2389 (6)0.2101 (3)0.44638 (7)0.0356 (7)
C50.5527 (8)0.0618 (4)0.41413 (9)0.0273 (8)
H20.76020.30890.36600.026*
H220.69810.45270.31220.031*
H230.48600.50710.25190.032*
H24A0.05000.20840.18980.052*
H24B0.18860.34300.16890.052*
H24C0.29200.29540.20860.052*
H250.04860.17620.25630.031*
H260.15520.12640.31730.028*
H37A0.11880.42310.41060.031*
H37B0.19020.45550.36820.031*
H320.54460.46070.46240.028*
H330.88140.62630.48640.028*
H34A1.33360.91740.48940.051*
H34B1.31040.75210.49300.051*
H34C1.04280.84810.50100.051*
H350.87150.79240.38120.032*
H360.52920.63210.35870.030*
H510.72140.05990.43320.033*
H520.43570.02250.41730.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (5)0.0259 (5)0.0203 (4)0.0026 (3)0.0049 (3)0.0006 (3)
C20.0197 (15)0.0243 (18)0.0213 (14)0.0007 (13)0.0038 (11)0.0019 (12)
C210.0213 (15)0.0233 (18)0.0212 (14)0.0033 (13)0.0042 (11)0.0003 (12)
C220.0261 (17)0.0242 (18)0.0273 (16)0.0011 (14)0.0072 (13)0.0043 (13)
C230.0280 (18)0.0235 (18)0.0296 (16)0.0013 (14)0.0086 (13)0.0051 (13)
C240.0294 (17)0.0263 (19)0.0203 (15)0.0069 (14)0.0044 (12)0.0012 (12)
O240.0386 (14)0.0322 (15)0.0254 (12)0.0023 (12)0.0021 (10)0.0081 (10)
C2410.038 (2)0.045 (2)0.0197 (15)0.0054 (18)0.0001 (13)0.0019 (15)
C250.0250 (16)0.0275 (19)0.0242 (16)0.0016 (14)0.0031 (12)0.0023 (13)
C260.0267 (16)0.0232 (17)0.0213 (14)0.0024 (14)0.0049 (12)0.0002 (12)
N30.0236 (14)0.0245 (16)0.0206 (12)0.0022 (11)0.0025 (10)0.0028 (10)
C370.0241 (17)0.028 (2)0.0244 (15)0.0014 (14)0.0004 (12)0.0043 (13)
C310.0192 (15)0.0231 (17)0.0250 (15)0.0020 (13)0.0028 (12)0.0041 (12)
C320.0260 (16)0.0243 (18)0.0216 (15)0.0071 (14)0.0068 (12)0.0014 (12)
C330.0275 (17)0.0254 (18)0.0159 (13)0.0037 (14)0.0001 (11)0.0016 (12)
C340.0237 (16)0.0161 (17)0.0279 (16)0.0028 (13)0.0059 (12)0.0042 (12)
O340.0385 (14)0.0278 (14)0.0268 (12)0.0138 (11)0.0056 (10)0.0027 (10)
C3410.036 (2)0.038 (2)0.0292 (18)0.0166 (17)0.0054 (14)0.0083 (15)
C350.0370 (19)0.0199 (18)0.0233 (15)0.0007 (15)0.0070 (13)0.0018 (12)
C360.0319 (17)0.0239 (18)0.0191 (14)0.0066 (14)0.0001 (12)0.0026 (12)
C40.0302 (17)0.030 (2)0.0221 (15)0.0105 (15)0.0051 (12)0.0059 (13)
O40.0402 (15)0.0424 (17)0.0261 (12)0.0077 (13)0.0139 (10)0.0077 (11)
C50.0329 (18)0.029 (2)0.0216 (15)0.0044 (15)0.0088 (13)0.0008 (13)
Geometric parameters (Å, º) top
S1—C51.813 (3)C37—C311.510 (5)
S1—C21.827 (4)C37—H37A0.99
C2—N31.465 (4)C37—H37B0.99
C2—C211.512 (4)C31—C321.381 (4)
C2—H21.00C31—C361.399 (5)
C21—C221.398 (5)C32—C331.397 (5)
C21—C261.399 (5)C32—H320.95
C22—C231.388 (5)C33—C341.385 (5)
C22—H220.95C33—H330.95
C23—C241.395 (5)C34—O341.371 (4)
C23—H230.95C34—C351.388 (4)
C24—O241.369 (4)O34—C3411.424 (4)
C24—C251.388 (5)C341—H34A0.98
O24—C2411.420 (5)C341—H34B0.98
C241—H24A0.98C341—H34C0.98
C241—H24B0.98C35—C361.370 (5)
C241—H24C0.98C35—H350.95
C25—C261.389 (4)C36—H360.95
C25—H250.95C4—O41.232 (4)
C26—H260.95C4—C51.511 (5)
N3—C41.348 (4)C5—H510.99
N3—C371.467 (5)C5—H520.99
C5—S1—C293.28 (15)N3—C37—H37B108.9
N3—C2—C21112.9 (3)C31—C37—H37B108.9
N3—C2—S1105.0 (2)H37A—C37—H37B107.7
C21—C2—S1111.9 (2)C32—C31—C36117.6 (3)
N3—C2—H2109.0C32—C31—C37121.5 (3)
C21—C2—H2109.0C36—C31—C37120.9 (3)
S1—C2—H2109.0C31—C32—C33122.2 (3)
C22—C21—C26118.0 (3)C31—C32—H32118.9
C22—C21—C2120.6 (3)C33—C32—H32118.9
C26—C21—C2121.4 (3)C34—C33—C32118.4 (3)
C23—C22—C21121.2 (3)C34—C33—H33120.8
C23—C22—H22119.4C32—C33—H33120.8
C21—C22—H22119.4O34—C34—C33124.2 (3)
C22—C23—C24119.8 (3)O34—C34—C35115.4 (3)
C22—C23—H23120.1C33—C34—C35120.3 (3)
C24—C23—H23120.1C34—O34—C341118.0 (3)
O24—C24—C25124.5 (3)O34—C341—H34A109.5
O24—C24—C23115.6 (3)O34—C341—H34B109.5
C25—C24—C23119.9 (3)H34A—C341—H34B109.5
C24—O24—C241118.0 (3)O34—C341—H34C109.5
O24—C241—H24A109.5H34A—C341—H34C109.5
O24—C241—H24B109.5H34B—C341—H34C109.5
H24A—C241—H24B109.5C36—C35—C34120.1 (3)
O24—C241—H24C109.5C36—C35—H35119.9
H24A—C241—H24C109.5C34—C35—H35119.9
H24B—C241—H24C109.5C35—C36—C31121.3 (3)
C24—C25—C26119.8 (3)C35—C36—H36119.4
C24—C25—H25120.1C31—C36—H36119.4
C26—C25—H25120.1O4—C4—N3124.0 (4)
C25—C26—C21121.3 (3)O4—C4—C5122.5 (3)
C25—C26—H26119.3N3—C4—C5113.5 (3)
C21—C26—H26119.3C4—C5—S1106.4 (2)
C4—N3—C2118.2 (3)C4—C5—H52110.5
C4—N3—C37120.8 (3)S1—C5—H52110.5
C2—N3—C37119.2 (3)C4—C5—H51110.5
N3—C37—C31113.3 (3)S1—C5—H51110.5
N3—C37—H37A108.9H51—C5—H52108.6
C31—C37—H37A108.9
C5—S1—C2—N317.4 (2)C2—N3—C37—C3170.7 (4)
C5—S1—C2—C21140.2 (2)N3—C37—C31—C3272.7 (4)
N3—C2—C21—C22109.7 (3)N3—C37—C31—C36108.5 (3)
S1—C2—C21—C22132.1 (3)C36—C31—C32—C330.7 (5)
N3—C2—C21—C2671.2 (4)C37—C31—C32—C33178.1 (3)
S1—C2—C21—C2647.0 (4)C31—C32—C33—C340.8 (5)
C26—C21—C22—C231.7 (5)C32—C33—C34—O34178.5 (3)
C2—C21—C22—C23179.1 (3)C32—C33—C34—C350.1 (5)
C21—C22—C23—C241.6 (5)C33—C34—O34—C3411.1 (5)
C22—C23—C24—O24179.9 (3)C35—C34—O34—C341177.5 (3)
C22—C23—C24—C250.3 (5)O34—C34—C35—C36177.7 (3)
C25—C24—O24—C2413.3 (5)C33—C34—C35—C361.1 (5)
C23—C24—O24—C241177.0 (3)C34—C35—C36—C311.2 (5)
O24—C24—C25—C26179.0 (3)C32—C31—C36—C350.3 (5)
C23—C24—C25—C260.7 (5)C37—C31—C36—C35179.1 (3)
C24—C25—C26—C210.5 (5)C2—N3—C4—O4174.5 (3)
C22—C21—C26—C250.7 (5)C37—N3—C4—O410.0 (5)
C2—C21—C26—C25179.8 (3)C2—N3—C4—C54.1 (4)
C21—C2—N3—C4137.7 (3)C37—N3—C4—C5168.6 (3)
S1—C2—N3—C415.6 (3)O4—C4—C5—S1171.7 (3)
C21—C2—N3—C3757.6 (4)N3—C4—C5—S19.7 (4)
S1—C2—N3—C37179.7 (2)C2—S1—C5—C415.6 (3)
C4—N3—C37—C3193.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O34i0.992.433.360 (5)156
C37—H37A···Cg1ii0.992.813.525 (4)129
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z.
(IV) 3-(2-nitrobenzyl)-2-(2-nitrophenyl)-1,3-thiazolidin-4-one top
Crystal data top
C16H13N3O5SF(000) = 1488
Mr = 359.35Dx = 1.476 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3713 reflections
a = 22.3000 (4) Åθ = 3.4–27.5°
b = 9.9352 (3) ŵ = 0.23 mm1
c = 14.6945 (4) ÅT = 120 K
β = 96.435 (2)°Block, colourless
V = 3235.13 (14) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3713 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.929, Tmax = 0.955l = 1919
34307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0484P)2 + 2.1203P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H13N3O5SV = 3235.13 (14) Å3
Mr = 359.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3000 (4) ŵ = 0.23 mm1
b = 9.9352 (3) ÅT = 120 K
c = 14.6945 (4) Å0.40 × 0.30 × 0.20 mm
β = 96.435 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2956 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.955Rint = 0.044
34307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3713 reflectionsΔρmin = 0.35 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.249646 (16)0.30202 (4)0.63087 (3)0.02756 (12)
C20.32355 (6)0.36762 (14)0.60790 (10)0.0202 (3)
C210.33390 (6)0.50949 (14)0.64541 (10)0.0200 (3)
C220.32299 (6)0.62652 (15)0.59430 (10)0.0217 (3)
N220.29712 (6)0.61902 (13)0.49815 (9)0.0284 (3)
O210.26210 (6)0.52621 (12)0.47498 (8)0.0374 (3)
O220.31089 (6)0.70736 (13)0.44586 (8)0.0397 (3)
C230.33571 (6)0.75438 (15)0.62961 (11)0.0246 (3)
C240.35926 (6)0.76771 (15)0.72004 (11)0.0260 (3)
C250.37063 (7)0.65308 (16)0.77319 (11)0.0258 (3)
C260.35808 (6)0.52664 (15)0.73656 (10)0.0228 (3)
N30.36746 (5)0.27402 (12)0.65187 (8)0.0198 (3)
C370.43045 (6)0.28765 (15)0.63698 (10)0.0208 (3)
C310.44430 (6)0.22049 (14)0.54871 (9)0.0203 (3)
C320.49388 (6)0.25402 (15)0.50369 (10)0.0237 (3)
N320.53682 (6)0.35697 (14)0.54166 (9)0.0292 (3)
O310.54649 (5)0.36579 (14)0.62538 (8)0.0405 (3)
O320.56141 (5)0.42805 (12)0.48848 (9)0.0389 (3)
C330.50658 (7)0.19220 (17)0.42329 (10)0.0298 (4)
C340.46912 (7)0.09009 (18)0.38692 (11)0.0326 (4)
C350.41918 (7)0.05500 (16)0.42909 (10)0.0296 (4)
C360.40659 (7)0.12048 (15)0.50807 (10)0.0245 (3)
C40.34923 (7)0.17529 (15)0.70611 (10)0.0226 (3)
O40.38332 (5)0.09143 (11)0.74341 (7)0.0308 (3)
C50.28268 (7)0.18231 (17)0.71488 (11)0.0286 (3)
H20.32610.36790.54040.024*
H230.32830.83160.59190.030*
H240.36760.85440.74570.031*
H250.38720.66160.83540.031*
H260.36610.44960.77430.027*
H37A0.45600.24690.68920.025*
H37B0.44080.38440.63480.025*
H330.54040.21950.39380.036*
H340.47780.04440.33310.039*
H350.39320.01460.40380.036*
H360.37130.09650.53510.029*
H510.27600.21180.77730.034*
H520.26400.09260.70360.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02135 (19)0.0265 (2)0.0340 (2)0.00085 (15)0.00036 (15)0.00130 (16)
C20.0203 (7)0.0199 (7)0.0200 (7)0.0017 (6)0.0009 (5)0.0005 (6)
C210.0173 (6)0.0186 (7)0.0240 (7)0.0019 (5)0.0023 (5)0.0010 (6)
C220.0193 (7)0.0237 (7)0.0220 (7)0.0033 (6)0.0020 (5)0.0004 (6)
N220.0321 (7)0.0252 (7)0.0268 (7)0.0100 (6)0.0015 (5)0.0022 (6)
O210.0455 (7)0.0260 (6)0.0360 (6)0.0069 (5)0.0169 (5)0.0021 (5)
O220.0500 (8)0.0388 (7)0.0303 (6)0.0095 (6)0.0046 (5)0.0142 (5)
C230.0211 (7)0.0190 (7)0.0341 (8)0.0042 (6)0.0045 (6)0.0040 (6)
C240.0209 (7)0.0206 (7)0.0366 (9)0.0001 (6)0.0037 (6)0.0058 (6)
C250.0236 (7)0.0269 (8)0.0264 (7)0.0013 (6)0.0002 (6)0.0050 (6)
C260.0246 (7)0.0207 (7)0.0231 (7)0.0035 (6)0.0020 (6)0.0002 (6)
N30.0219 (6)0.0168 (6)0.0207 (6)0.0023 (5)0.0021 (5)0.0015 (5)
C370.0208 (7)0.0192 (7)0.0218 (7)0.0017 (5)0.0004 (5)0.0012 (5)
C310.0213 (7)0.0193 (7)0.0194 (7)0.0065 (6)0.0018 (5)0.0026 (5)
C320.0210 (7)0.0238 (7)0.0254 (7)0.0044 (6)0.0016 (6)0.0022 (6)
N320.0193 (6)0.0304 (7)0.0379 (8)0.0032 (5)0.0031 (5)0.0011 (6)
O310.0300 (6)0.0550 (8)0.0351 (7)0.0111 (6)0.0029 (5)0.0080 (6)
O320.0285 (6)0.0350 (7)0.0557 (8)0.0007 (5)0.0158 (5)0.0078 (6)
C330.0247 (7)0.0397 (9)0.0253 (8)0.0096 (7)0.0046 (6)0.0021 (7)
C340.0360 (9)0.0392 (9)0.0218 (7)0.0137 (8)0.0000 (6)0.0059 (7)
C350.0348 (8)0.0278 (8)0.0244 (8)0.0043 (7)0.0044 (6)0.0059 (6)
C360.0268 (7)0.0228 (7)0.0233 (7)0.0027 (6)0.0004 (6)0.0009 (6)
C40.0298 (8)0.0191 (7)0.0188 (7)0.0015 (6)0.0023 (6)0.0008 (6)
O40.0368 (6)0.0238 (6)0.0306 (6)0.0042 (5)0.0013 (5)0.0073 (5)
C50.0287 (8)0.0318 (9)0.0257 (8)0.0028 (7)0.0048 (6)0.0052 (7)
Geometric parameters (Å, º) top
S1—C51.8103 (16)C37—C311.521 (2)
S1—C21.8384 (15)C37—H37A0.99
C2—N31.4488 (18)C37—H37B0.99
C2—C211.522 (2)C31—C321.391 (2)
C2—H21.00C31—C361.392 (2)
C21—C221.391 (2)C32—C331.389 (2)
C21—C261.397 (2)C32—N321.468 (2)
C22—C231.389 (2)N32—O321.2272 (18)
C22—N221.4670 (18)N32—O311.2281 (18)
N22—O221.2281 (17)C33—C341.383 (2)
N22—O211.2313 (18)C33—H330.95
C23—C241.379 (2)C34—C351.378 (2)
C23—H230.95C34—H340.95
C24—C251.388 (2)C35—C361.386 (2)
C24—H240.95C35—H350.95
C25—C261.383 (2)C36—H360.95
C25—H250.95C4—O41.2162 (18)
C26—H260.95C4—C51.506 (2)
N3—C41.3548 (19)C5—H510.99
N3—C371.4520 (18)C5—H520.99
C5—S1—C293.06 (7)N3—C37—H37B109.1
N3—C2—C21111.45 (11)C31—C37—H37B109.1
N3—C2—S1105.40 (9)H37A—C37—H37B107.9
C21—C2—S1111.37 (10)C32—C31—C36116.17 (13)
N3—C2—H2109.5C32—C31—C37123.28 (13)
C21—C2—H2109.5C36—C31—C37120.55 (13)
S1—C2—H2109.5C33—C32—C31123.19 (14)
C22—C21—C26116.17 (13)C33—C32—N32116.43 (14)
C22—C21—C2124.66 (12)C31—C32—N32120.37 (13)
C26—C21—C2119.13 (12)O32—N32—O31123.78 (14)
C23—C22—C21123.15 (13)O32—N32—C32118.55 (13)
C23—C22—N22116.60 (13)O31—N32—C32117.66 (13)
C21—C22—N22120.25 (13)C34—C33—C32118.77 (15)
O22—N22—O21123.88 (13)C34—C33—H33120.6
O22—N22—C22117.87 (13)C32—C33—H33120.6
O21—N22—C22118.24 (13)C35—C34—C33119.69 (14)
C24—C23—C22119.16 (14)C35—C34—H34120.2
C24—C23—H23120.4C33—C34—H34120.2
C22—C23—H23120.4C34—C35—C36120.48 (15)
C23—C24—C25119.28 (14)C34—C35—H35119.8
C23—C24—H24120.4C36—C35—H35119.8
C25—C24—H24120.4C35—C36—C31121.64 (15)
C26—C25—C24120.66 (14)C35—C36—H36119.2
C26—C25—H25119.7C31—C36—H36119.2
C24—C25—H25119.7O4—C4—N3123.19 (14)
C25—C26—C21121.57 (13)O4—C4—C5124.44 (14)
C25—C26—H26119.2N3—C4—C5112.36 (13)
C21—C26—H26119.2C4—C5—S1107.56 (10)
C4—N3—C2119.65 (12)C4—C5—H51110.2
C4—N3—C37121.02 (12)S1—C5—H51110.2
C2—N3—C37119.32 (11)C4—C5—H52110.2
N3—C37—C31112.33 (11)S1—C5—H52110.2
N3—C37—H37A109.1H51—C5—H52108.5
C31—C37—H37A109.1
C5—S1—C2—N311.63 (10)C2—N3—C37—C3183.37 (15)
C5—S1—C2—C21109.38 (11)N3—C37—C31—C32158.49 (13)
N3—C2—C21—C22146.44 (13)N3—C37—C31—C3621.11 (18)
S1—C2—C21—C2296.16 (15)C36—C31—C32—C330.6 (2)
N3—C2—C21—C2631.10 (18)C37—C31—C32—C33179.74 (14)
S1—C2—C21—C2686.29 (14)C36—C31—C32—N32179.17 (13)
C26—C21—C22—C230.9 (2)C37—C31—C32—N321.2 (2)
C2—C21—C22—C23176.76 (14)C33—C32—N32—O3234.51 (19)
C26—C21—C22—N22179.42 (13)C31—C32—N32—O32146.86 (14)
C2—C21—C22—N223.0 (2)C33—C32—N32—O31144.74 (14)
C23—C22—N22—O2230.08 (19)C31—C32—N32—O3133.9 (2)
C21—C22—N22—O22149.66 (14)C31—C32—C33—C341.6 (2)
C23—C22—N22—O21148.64 (14)N32—C32—C33—C34177.02 (13)
C21—C22—N22—O2131.6 (2)C32—C33—C34—C352.2 (2)
C21—C22—C23—C241.2 (2)C33—C34—C35—C360.6 (2)
N22—C22—C23—C24179.03 (13)C34—C35—C36—C311.7 (2)
C22—C23—C24—C251.1 (2)C32—C31—C36—C352.3 (2)
C23—C24—C25—C260.6 (2)C37—C31—C36—C35178.09 (13)
C24—C25—C26—C210.2 (2)C2—N3—C4—O4178.24 (13)
C22—C21—C26—C250.3 (2)C37—N3—C4—O41.7 (2)
C2—C21—C26—C25177.40 (13)C2—N3—C4—C52.05 (18)
C21—C2—N3—C4113.30 (14)C37—N3—C4—C5177.96 (12)
S1—C2—N3—C47.66 (15)O4—C4—C5—S1169.36 (12)
C21—C2—N3—C3766.71 (16)N3—C4—C5—S110.93 (16)
S1—C2—N3—C37172.33 (10)C2—S1—C5—C412.90 (11)
C4—N3—C37—C3196.62 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O4i0.952.383.2724 (18)156
C26—H26···O31ii0.952.453.1985 (19)135
C35—H35···O4iii0.952.463.1163 (18)126
C25—H25···Cg1iv0.952.963.7624 (17)143
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+3/2; (iii) x, y, z1/2; (iv) x, y+1, z+1/2.
(V) 3-(2-fluorobenzyl)-2-(2-fluorophenyl)-1,3-thiazolidin-4-one top
Crystal data top
C16H13F2NOSF(000) = 632
Mr = 305.33Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3123 reflections
a = 13.9981 (6) Åθ = 2.9–27.5°
b = 10.1236 (3) ŵ = 0.26 mm1
c = 10.1491 (4) ÅT = 120 K
β = 106.333 (2)°Plate, colourless
V = 1380.20 (9) Å30.36 × 0.30 × 0.04 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3123 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1213
Tmin = 0.944, Tmax = 0.990l = 1213
15108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.6351P]
where P = (Fo2 + 2Fc2)/3
3123 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.84 e Å3
2 restraintsΔρmin = 0.93 e Å3
Crystal data top
C16H13F2NOSV = 1380.20 (9) Å3
Mr = 305.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9981 (6) ŵ = 0.26 mm1
b = 10.1236 (3) ÅT = 120 K
c = 10.1491 (4) Å0.36 × 0.30 × 0.04 mm
β = 106.333 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3123 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2575 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.990Rint = 0.034
15108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.84 e Å3
3123 reflectionsΔρmin = 0.93 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.04772 (4)0.28961 (6)0.22639 (6)0.03433 (19)
C20.17686 (16)0.3297 (2)0.3220 (2)0.0256 (5)
C210.18495 (15)0.4644 (2)0.3894 (2)0.0249 (5)
C220.23582 (16)0.5670 (2)0.3529 (2)0.0358 (6)
F220.29382 (16)0.5411 (3)0.2692 (2)0.0462 (8)0.647 (4)
C230.2396 (2)0.6926 (3)0.4032 (3)0.0453 (7)
C240.1904 (2)0.7189 (3)0.5013 (3)0.0473 (8)
C250.13979 (19)0.6181 (3)0.5469 (3)0.0411 (6)
C260.13884 (17)0.4964 (2)0.4886 (2)0.0323 (5)
F260.0953 (3)0.4011 (3)0.5457 (4)0.0405 (13)0.353 (4)
N30.20894 (14)0.22276 (18)0.4213 (2)0.0287 (4)
C370.31440 (18)0.2116 (2)0.4954 (3)0.0356 (6)
C310.37369 (17)0.1486 (2)0.4074 (2)0.0299 (5)
C320.4711 (2)0.1843 (2)0.4209 (3)0.0366 (6)
F320.51150 (13)0.28225 (18)0.5107 (2)0.0594 (5)
C330.5294 (2)0.1257 (3)0.3473 (3)0.0428 (6)
C340.4886 (2)0.0261 (3)0.2549 (3)0.0374 (6)
C350.39173 (19)0.0128 (3)0.2375 (3)0.0371 (6)
C360.33508 (19)0.0475 (2)0.3128 (3)0.0348 (6)
C40.14172 (19)0.1312 (2)0.4358 (2)0.0316 (5)
O40.16134 (16)0.03883 (17)0.51676 (19)0.0466 (5)
C50.03943 (19)0.1548 (2)0.3394 (3)0.0339 (5)
H20.21890.32870.25710.031*
H220.27130.54940.28760.055*0.353 (4)
H230.27490.76010.37170.054*
H240.19110.80560.53740.057*
H250.10720.63350.61590.049*
H260.10350.42820.51890.049*0.647 (4)
H37A0.32170.15760.57900.043*
H37B0.34150.30060.52440.043*
H330.59620.15340.35990.051*
H340.52760.01530.20360.045*
H350.36360.08080.17390.045*
H360.26830.01950.30000.042*
H510.00790.17730.39240.041*
H520.01530.07410.28520.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (3)0.0314 (3)0.0320 (3)0.0069 (2)0.0028 (2)0.0026 (2)
C20.0267 (11)0.0251 (11)0.0244 (11)0.0001 (8)0.0061 (9)0.0011 (9)
C210.0198 (10)0.0227 (10)0.0284 (11)0.0014 (8)0.0008 (8)0.0012 (9)
C220.0260 (11)0.0352 (13)0.0424 (14)0.0054 (10)0.0036 (10)0.0023 (11)
F220.0421 (14)0.0623 (17)0.0382 (14)0.0218 (12)0.0179 (11)0.0029 (12)
C230.0372 (14)0.0270 (12)0.0598 (18)0.0100 (10)0.0057 (13)0.0061 (12)
C240.0403 (14)0.0249 (13)0.0593 (18)0.0075 (11)0.0148 (13)0.0105 (12)
C250.0358 (13)0.0399 (14)0.0413 (15)0.0146 (11)0.0005 (11)0.0094 (12)
C260.0292 (11)0.0320 (12)0.0331 (13)0.0063 (9)0.0042 (10)0.0005 (10)
F260.044 (2)0.037 (2)0.047 (3)0.0057 (18)0.022 (2)0.0045 (19)
N30.0313 (10)0.0232 (9)0.0279 (10)0.0048 (8)0.0023 (8)0.0018 (8)
C370.0354 (13)0.0338 (13)0.0300 (12)0.0097 (10)0.0032 (10)0.0083 (10)
C310.0326 (12)0.0269 (11)0.0258 (11)0.0076 (9)0.0010 (9)0.0007 (9)
C320.0425 (14)0.0299 (12)0.0337 (13)0.0039 (10)0.0047 (11)0.0057 (10)
F320.0513 (10)0.0561 (11)0.0702 (12)0.0180 (8)0.0157 (9)0.0337 (9)
C330.0380 (14)0.0452 (15)0.0460 (15)0.0064 (12)0.0131 (12)0.0061 (13)
C340.0416 (14)0.0369 (14)0.0341 (13)0.0052 (11)0.0115 (11)0.0020 (11)
C350.0401 (13)0.0327 (13)0.0353 (13)0.0022 (10)0.0054 (11)0.0084 (11)
C360.0329 (12)0.0316 (12)0.0359 (13)0.0030 (10)0.0030 (10)0.0083 (10)
C40.0479 (14)0.0210 (11)0.0268 (12)0.0028 (10)0.0121 (10)0.0041 (9)
O40.0765 (14)0.0229 (9)0.0372 (10)0.0040 (9)0.0107 (10)0.0055 (8)
C50.0383 (13)0.0268 (12)0.0380 (13)0.0030 (10)0.0130 (11)0.0013 (10)
Geometric parameters (Å, º) top
S1—C51.808 (2)N3—C371.460 (3)
S1—C21.841 (2)C37—C311.520 (3)
C2—N31.461 (3)C37—H37A0.99
C2—C211.516 (3)C37—H37B0.99
C2—H21.00C31—C321.379 (4)
C21—C221.368 (3)C31—C361.403 (3)
C21—C261.379 (3)C32—F321.358 (3)
C22—F221.3557 (5)C32—C331.385 (4)
C22—C231.366 (4)C33—C341.387 (4)
C22—H220.95C33—H330.95
C23—C241.387 (5)C34—C351.375 (4)
C23—H230.95C34—H340.95
C24—C251.393 (4)C35—C361.388 (3)
C24—H240.95C35—H350.95
C25—C261.365 (3)C36—H360.95
C25—H250.95C4—O41.224 (3)
C26—F261.3553 (5)C4—C51.509 (4)
C26—H260.95C5—H510.99
N3—C41.358 (3)C5—H520.99
C5—S1—C293.46 (11)N3—C37—H37A109.3
N3—C2—C21112.70 (18)C31—C37—H37A109.3
N3—C2—S1105.45 (15)N3—C37—H37B109.3
C21—C2—S1111.96 (15)C31—C37—H37B109.3
N3—C2—H2108.9H37A—C37—H37B107.9
C21—C2—H2108.9C32—C31—C36116.0 (2)
S1—C2—H2108.9C32—C31—C37121.3 (2)
C22—C21—C26113.9 (2)C36—C31—C37122.6 (2)
C22—C21—C2122.6 (2)F32—C32—C31118.2 (2)
C26—C21—C2123.4 (2)F32—C32—C33118.5 (2)
F22—C22—C23116.6 (2)C31—C32—C33123.4 (2)
F22—C22—C21118.2 (2)C32—C33—C34118.9 (2)
C23—C22—C21125.0 (2)C32—C33—H33120.5
C23—C22—H22117.5C34—C33—H33120.5
C21—C22—H22117.5C35—C34—C33119.9 (2)
C22—C23—C24118.2 (2)C35—C34—H34120.1
C22—C23—H23120.9C33—C34—H34120.1
C24—C23—H23120.9C34—C35—C36119.9 (2)
C23—C24—C25119.9 (2)C34—C35—H35120.0
C23—C24—H24120.0C36—C35—H35120.0
C25—C24—H24120.0C35—C36—C31121.8 (2)
C26—C25—C24117.5 (3)C35—C36—H36119.1
C26—C25—H25121.3C31—C36—H36119.1
C24—C25—H25121.3O4—C4—N3124.2 (2)
F26—C26—C25114.1 (3)O4—C4—C5123.3 (2)
F26—C26—C21120.2 (3)N3—C4—C5112.5 (2)
C25—C26—C21125.4 (2)C4—C5—S1108.20 (16)
C25—C26—H26117.3C4—C5—H51110.1
C21—C26—H26117.3S1—C5—H51110.1
C4—N3—C37121.5 (2)C4—C5—H52110.1
C4—N3—C2119.50 (19)S1—C5—H52110.1
C37—N3—C2118.85 (19)H51—C5—H52108.4
N3—C37—C31111.73 (19)
C5—S1—C2—N38.63 (16)S1—C2—N3—C37168.23 (16)
C5—S1—C2—C21114.27 (17)C4—N3—C37—C3196.8 (3)
N3—C2—C21—C22126.2 (2)C2—N3—C37—C3178.6 (3)
S1—C2—C21—C22115.1 (2)N3—C37—C31—C32147.1 (2)
N3—C2—C21—C2656.5 (3)N3—C37—C31—C3635.9 (3)
S1—C2—C21—C2662.2 (3)C36—C31—C32—F32179.6 (2)
C26—C21—C22—F22171.8 (2)C37—C31—C32—F323.1 (4)
C2—C21—C22—F2210.6 (3)C36—C31—C32—C330.1 (4)
C26—C21—C22—C232.5 (4)C37—C31—C32—C33177.1 (2)
C2—C21—C22—C23175.1 (2)F32—C32—C33—C34179.7 (2)
F22—C22—C23—C24172.7 (2)C31—C32—C33—C340.1 (4)
C21—C22—C23—C241.7 (4)C32—C33—C34—C350.1 (4)
C22—C23—C24—C250.6 (4)C33—C34—C35—C360.2 (4)
C23—C24—C25—C261.8 (4)C34—C35—C36—C310.2 (4)
C24—C25—C26—F26174.9 (3)C32—C31—C36—C350.0 (4)
C24—C25—C26—C210.9 (4)C37—C31—C36—C35177.2 (2)
C22—C21—C26—F26172.5 (3)C37—N3—C4—O45.2 (3)
C2—C21—C26—F269.9 (4)C2—N3—C4—O4179.5 (2)
C22—C21—C26—C251.1 (3)C37—N3—C4—C5174.2 (2)
C2—C21—C26—C25176.4 (2)C2—N3—C4—C51.2 (3)
C21—C2—N3—C4115.2 (2)O4—C4—C5—S1173.64 (19)
S1—C2—N3—C47.3 (2)N3—C4—C5—S15.7 (2)
C21—C2—N3—C3769.3 (2)C2—S1—C5—C48.32 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O4i0.952.403.274 (3)153
C35—H35···Cg2ii0.952.863.569 (3)133
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z3/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC18H19NO3SC16H13N3O5SC18H19NO3SC16H13N3O5S
Mr329.40359.35329.42359.35
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)120120120120
a, b, c (Å)8.3321 (2), 18.3668 (4), 10.8568 (2)14.2230 (7), 7.9862 (4), 14.1156 (7)4.6687 (4), 9.6210 (8), 35.478 (3)22.3000 (4), 9.9352 (3), 14.6945 (4)
β (°) 94.450 (2) 93.908 (3) 95.335 (3) 96.435 (2)
V3)1656.45 (6)1599.63 (14)1586.7 (2)3235.13 (14)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.210.240.220.23
Crystal size (mm)0.35 × 0.35 × 0.200.18 × 0.16 × 0.020.32 × 0.15 × 0.070.40 × 0.30 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.940, 0.9590.966, 0.9950.942, 0.9850.929, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
17857, 3643, 3259 3641, 3641, 2630 7975, 3026, 2470 34307, 3713, 2956
Rint0.0320.00.0340.044
(sin θ/λ)max1)0.6500.6490.6520.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.04 0.122, 0.438, 1.10 0.061, 0.239, 1.10 0.036, 0.096, 1.06
No. of reflections3643364130263713
No. of parameters210227210226
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.251.01, 0.680.52, 0.430.26, 0.35


(V)
Crystal data
Chemical formulaC16H13F2NOS
Mr305.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.9981 (6), 10.1236 (3), 10.1491 (4)
β (°) 106.333 (2)
V3)1380.20 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.36 × 0.30 × 0.04
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.944, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15108, 3123, 2575
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.145, 1.05
No. of reflections3123
No. of parameters200
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.93

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O241i1.002.373.263 (8)148
C22—H22···O4ii0.952.453.210 (7)137
C32—H32···O342iii0.952.523.355 (7)147
C37—H37B···O342iii0.992.393.327 (7)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O34i0.992.433.360 (5)156
C37—H37A···Cg1ii0.992.813.525 (4)129
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O4i0.952.383.2724 (18)156
C26—H26···O31ii0.952.453.1985 (19)135
C35—H35···O4iii0.952.463.1163 (18)126
C25—H25···Cg1iv0.952.963.7624 (17)143
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+3/2; (iii) x, y, z1/2; (iv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O4i0.952.403.274 (3)153
C35—H35···Cg2ii0.952.863.569 (3)133
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405–3408.  Web of Science CSD CrossRef Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHolmes, C. P., Chinn, J. P., Look, G. C., Gordon, E. M. & Gallop, M. A. (1995). J. Org. Chem. 60, 7328–7333.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds