organic compounds
Carbonyl–carbonyl, carbonyl–π and carbonyl–halogen dipolar interactions as the directing motifs of the supramolecular structure of ethyl 6-chloro-2-oxo-2H-chromene-3-carboxylate and ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate
aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán, Colima 28400, Mexico, bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, DF 07340, Mexico, and cCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa., Cuernavaca, Morelos, CP 62210, Mexico
*Correspondence e-mail: ipadilla@acei.upibi.ipn.mx
The title compounds, C12H9ClO4, (I), and C12H9BrO4, (II), are isomorphous and crystallize in the monoclinic P21/c. Both compounds present an anti conformation between the 3-carboxy and the lactone carbonyl groups. Both carbonyl groups are out of the plane defined by the remaining chromene atoms, by 8.37 (6) and 17.57 (6)° for (I), and by 9.07 (8) and 18.96 (18)° for (II), owing to their involvement in intermolecular interactions. In both compounds, layers of centrosymmetric hydrogen-bonded dimers are developed in the [ 22] plane through C—H⋯O interactions, involving both carbonyl groups as acceptors. Two families of dimers stack through C=O⋯C=O, C=O⋯π and C—X⋯C=O (X = Cl and Br) dipolar interactions, as well as a C—H⋯π interaction, developing the three-dimensional structure along the c axis.
Comment
), antibacterials (Gursoy & Karali, 2003) and antihelmintics (de Marchi et al., 2004). They have been proposed in HIV (Lee & Morris, 1999) and cancer (Lacy & O'Kennedy, 2004) treatment, as well as being inhibitors of monoaminooxidase (Chimenti et al., 2004; Santana et al., 2006). Non-covalent interactions are involved in most of the molecular recognition processes. Particularly, hydrogen bonding and π-stacking interactions are responsible for the self-association of coumarin derivatives in the solid state (Magaña-Vergara et al., 2004; García-Báez et al., 2003). Following on from these studies, we report here the molecular and supramolecular structures of the isostructural ethyl 6-chloro- and 6-bromo-2-oxo-1H-benzopyran-3-carboxylates, viz. (I) and (II), respectively.
have demonstrated a great variety of biological properties as anti-inflamatories (Kontogiorgis & Hadjipavlou-Litina, 2005The title compounds are isomorphous; they crystallize in the monoclinic P21/c with four molecules in the The molecular structures of (I) and (II) are shown in Figs. 1 and 2, and selected bond lengths and angles are listed in Tables 1 and 3, respectively. The geometric parameters of the coumarin ring are comparable to those reported for similar structures retrieved from the Cambridge Structural Database (Version of May 2005; Allen, 2002). Most of the bond distances and angles in (I) and (II) are very similar to the values reported for the isomorphic ethyl coumarin-3-carboxylate, (III) (García-Báez et al., 2003), except for the O1—C9 bond length, which is slightly shorter; the mean value is 1.366 (2) Å for (I) and (II), compared with 1.377 (2) Å in (III). This is probably due to the inductive negative effect of the halogen atom on the lactone O atom (O1) lone pair of electrons. Compounds (I) and (II) present an anti conformation between the 3-carboxy and the lactone carbonyl groups, in contrast to the previously reported syn arrangement in (III). In both title molecules, the lactone and the carboxylate carbonyl groups are out of the plane defined by atoms O1/C3–C10 by 8.37 (6) and 17.57 (6)°, respectively, for (I), and by 9.07 (8) and 18.96 (18)°, respectively, for (II). The above-mentioned carbonyl deviations from planarity seem to be related to intermolecular interactions. It is interesting to note that the replacement of Cl by Br does not alter the molecular packing.
In the crystal structures of compounds (I) and (II), hydrogen-bonded dimers are formed by self-complementary interactions involving the carboxylate carbonyl O atom as a hydrogen-bond acceptor, and the C4—H4 and C5—H5 groups as hydrogen-bond donors (Tables 2 and 4), so defining an R22(14)[R21(6)] motif (Bernstein et al., 1995). This dimer, which lies in the family of planes [ 3 14], is hydrogen bonded to another dimer lying in the family of planes [ 14], through two C—H⋯O interactions (C7⋯O2ii and C8⋯O2ii; the symmetry code is as in Tables 2 and 4), to form an R21(5) motif. The hydrogen-bonding motifs are shown in Fig. 3 for compound (I). Thus, layers of centrosymmetric hydrogen-bonded dimers are developed in the [ 22] plane.
In both compounds, the two families of dimers stack through C=O⋯C=O, C=O⋯π and C—Cl⋯C=O dipolar interactions to develop the third dimension (Fig. 4). In the absence of strong hydrogen-bonding donors, carbonyl dipolar interactions are strong enough to direct the crystal packing of both isomorphs. Two self-complementary sheared parallel C=O⋯C=O interactions (Allen et al., 1998) form a stacked centrosymmetric dimer [O11⋯C2iii = 3.130 (2) Å, C11=O11⋯C2iii = 108.9 (1)° and C11⋯O2=C2 = 55.1 (1)° for (I); O11⋯C2iii = 3.130 (3) Å, C11=O11⋯C2iii = 109.0 (2)° and C11⋯O2=C2 = 55.5 (2)° for (II); symmetry code: (iii) −x + 1, −y, −z + 1]. In this interaction, the 3-carboxy carbonyl group acts as the donor and the lactone carbonyl group as the acceptor of electronic density. The former carbonyl group and the lactone ring (centroid Cg1) are almost parallel [C11=O11⋯Cg1iii = 96.5 (1) and 96.8 (2)° for (I) and (II), respectively], and are separated by 3.034 (3) Å in (I) and 3.035 (2) Å in (II). This gives rise to the interaction of the lone pair of atom O11 with the electron-deficient lactone ring (García-Báez et al., 2003). This type of interaction has also been observed for 4-chloro-3-nitrocoumarin (Fujii et al., 2005).
A weak Csp3—H⋯π interaction (Umezawa et al., 1998) complements the packing [C13⋯Cg2iii = 3.787 (2) Å for (I) and 3.833 (3) Å for (II), and C13—H13A⋯Cg2iii = 150.8 (2)° for (I) and 150.3 (3)° for (II); Cg2 is the centroid of the benzene ring]. This set of stacked dimers lying in the family of planes [ 3 14] is linked to the set of stacked dimers lying in the family of planes [ 14] through dipolar C—Cl(δ−)⋯C(δ+)=O interactions [Cl1⋯C2iv = 3.456 (2) Å and C11—Cl1⋯C2iv = 95.8 (1)° for (I); Br1⋯C2iv = 3.516 (3) Å and C11—Br1⋯C2iv = 95.5 (2)° for (II); symmetry code: (iv) −x + 1, y + , −z + ]. This interaction shows distances below the sum of the van der Waals radii of the halogen and C atoms (C = 1.70 Å, Cl = 1.80 Å and Br = 1.90 Å; Bondi, 1964), with an almost perpendicular arrangement between the donor and the acceptor groups, in agreement with the side-on geometry proposed for C—X⋯E interactions (X = halogen and E = Lommerse et al., 1996; Bosch & Barnes, 2002) and in contrast to the head-on geometry proposed for C—X⋯Nu (X = halogen and Nu = nucleophile) interactions (Ouvrard et al., 2003; Auffinger et al., 2004).
As a consequence of the above-mentioned group of interactions, a block of zigzag centrosymmetric pairs of dimers stacking along the c-axis direction is formed. The C3⋯C4iii distances of 3.602 (3) and 3.592 (4) Å for (I) and (II), respectively, are in the expected range for photochemical dimerization (Gnanaguru et al., 1985). Thus, further studies on the photoreactivity of compounds (I) and (II) are currently being carried out.
Experimental
Compounds (I) and (II) were synthesized as reported by Bonsignore et al. (1995), starting from 5-chloro- or 5-bromosalicylaldehyde with diethyl malonate in equimolar amounts. All reagents were purchased from Aldrich. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol. For compound (I) (m.p. 440 K), FT–IR (ν, cm−1): 1743, 1700 (C=O); 1H NMR (DMSO-d6): δ 8.72 (s, 1H, H-4), 8.06 (d, 1H, H-5), 7.78 (dd, 1H, H-7), 7.48 (d, 1H, H-8), 4.3 (q, 2H, OCH2), 1.31 (t, 3H, CH3); 13C NMR (DMSO-d6): δ 155.4 (C2), 118.6 (C3), 147.3 (C4), 129.0 (C5), 128.3 (C6), 133.7 (C7), 118.2 (C8), 153.3 (C9), 119.1 (C10), 162.2 (C11), 61.3 (C13), 13.9 (C14). For compound (II) (m.p. 445 K), FT–IR (ν, cm−1): 1743, 1718 (C=O); 1H NMR (CDCl3): δ 8.42 (s, 1H, H-4), 7.69 (d, 1H, H-5), 7.73 (dd, 1H, H-7), 7.23 (d, 1H, H-8), 4.4 (q, 2H, OCH2), 1.39 (t, 3H, CH3); 13C NMR (CDCl3): δ 155.9 (C2), 117.3 (C3), 147.0 (C4), 131.4 (C5), 119.3 (C6), 136.8 (C7), 118.4 (C8), 153.8 (C9), 119.2 (C10), 162.5 (C11), 62.1 (C13), 14.0 (C14).
Compound (I)
Crystal data
|
Refinement
|
|
Compound (II)
Crystal data
|
Refinement
|
|
H atoms were included in calculated positions and refined as riding atoms. The C—H distances are in the range 0.93–0.97 Å and Uiso(H) values were set at 1.5 or 1.2 times Ueq(parent C atom).
For both compounds, data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and WinGX2003 (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S0108270107008712/su3001sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S0108270107008712/su3001Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S0108270107008712/su3001IIsup3.hkl
For both compounds, data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and WinGX2003 (Farrugia, 1999).C12H9ClO4 | F(000) = 520 |
Mr = 252.64 | Dx = 1.499 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 600 reflections |
a = 5.7982 (5) Å | θ = 20–25° |
b = 13.0702 (12) Å | µ = 0.34 mm−1 |
c = 15.5540 (12) Å | T = 293 K |
β = 108.191 (3)° | Block, colorless |
V = 1119.83 (17) Å3 | 0.20 × 0.18 × 0.14 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→7 |
Tmin = 0.935, Tmax = 0.954 | k = −17→17 |
8206 measured reflections | l = −19→20 |
2615 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0847P)2 + 0.376P] where P = (Fo2 + 2Fc2)/3 |
2615 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.83937 (11) | 0.44331 (4) | 0.37740 (5) | 0.0658 (2) | |
O1 | 0.1703 (2) | 0.09721 (10) | 0.31028 (10) | 0.0463 (4) | |
O2 | 0.0698 (3) | −0.05735 (11) | 0.33959 (12) | 0.0576 (5) | |
O11 | 0.7769 (3) | −0.13011 (11) | 0.48547 (11) | 0.0560 (5) | |
O12 | 0.4434 (3) | −0.19667 (10) | 0.38878 (11) | 0.0531 (5) | |
C2 | 0.2323 (3) | 0.00067 (14) | 0.34636 (13) | 0.0407 (5) | |
C3 | 0.4928 (3) | −0.01738 (14) | 0.39037 (12) | 0.0373 (5) | |
C4 | 0.6526 (3) | 0.05987 (13) | 0.40360 (13) | 0.0389 (5) | |
C5 | 0.7355 (3) | 0.24450 (15) | 0.38742 (14) | 0.0437 (6) | |
C6 | 0.6460 (4) | 0.33847 (15) | 0.35488 (14) | 0.0446 (6) | |
C7 | 0.4034 (4) | 0.35195 (15) | 0.30462 (14) | 0.0476 (6) | |
C8 | 0.2464 (4) | 0.27051 (16) | 0.28880 (14) | 0.0477 (6) | |
C9 | 0.3332 (3) | 0.17570 (14) | 0.32359 (12) | 0.0395 (5) | |
C10 | 0.5774 (3) | 0.16098 (14) | 0.37194 (12) | 0.0383 (5) | |
C11 | 0.5865 (3) | −0.12015 (14) | 0.42679 (13) | 0.0398 (5) | |
C13 | 0.5294 (4) | −0.29786 (16) | 0.42282 (18) | 0.0587 (7) | |
C14 | 0.3247 (6) | −0.3694 (2) | 0.3897 (2) | 0.0822 (10) | |
H4 | 0.81570 | 0.04737 | 0.43398 | 0.0466* | |
H5 | 0.89923 | 0.23631 | 0.41938 | 0.0525* | |
H7 | 0.34762 | 0.41621 | 0.28172 | 0.0572* | |
H8 | 0.08401 | 0.27895 | 0.25518 | 0.0573* | |
H13A | 0.58670 | −0.29751 | 0.48846 | 0.0705* | |
H13B | 0.66243 | −0.31838 | 0.40127 | 0.0705* | |
H14A | 0.27332 | −0.37099 | 0.32479 | 0.1233* | |
H14B | 0.19238 | −0.34720 | 0.40991 | 0.1233* | |
H14C | 0.37491 | −0.43663 | 0.41291 | 0.1233* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0589 (4) | 0.0426 (3) | 0.0925 (5) | −0.0088 (2) | 0.0189 (3) | 0.0069 (3) |
O1 | 0.0318 (7) | 0.0395 (7) | 0.0544 (8) | 0.0035 (5) | −0.0054 (6) | −0.0015 (6) |
O2 | 0.0374 (8) | 0.0467 (9) | 0.0773 (11) | −0.0043 (6) | 0.0014 (7) | −0.0066 (7) |
O11 | 0.0412 (8) | 0.0437 (8) | 0.0684 (10) | 0.0043 (6) | −0.0041 (7) | 0.0112 (7) |
O12 | 0.0501 (8) | 0.0338 (7) | 0.0632 (9) | 0.0023 (6) | 0.0001 (7) | 0.0012 (6) |
C2 | 0.0326 (9) | 0.0363 (9) | 0.0455 (10) | 0.0008 (7) | 0.0009 (7) | −0.0060 (7) |
C3 | 0.0331 (9) | 0.0355 (9) | 0.0392 (9) | 0.0042 (7) | 0.0054 (7) | 0.0005 (7) |
C4 | 0.0286 (8) | 0.0383 (9) | 0.0449 (10) | 0.0053 (7) | 0.0045 (7) | 0.0034 (7) |
C5 | 0.0329 (9) | 0.0408 (10) | 0.0544 (11) | 0.0012 (7) | 0.0092 (8) | 0.0033 (8) |
C6 | 0.0435 (10) | 0.0370 (9) | 0.0527 (11) | −0.0013 (8) | 0.0141 (9) | 0.0012 (8) |
C7 | 0.0496 (11) | 0.0380 (10) | 0.0511 (11) | 0.0101 (8) | 0.0097 (9) | 0.0085 (8) |
C8 | 0.0400 (10) | 0.0452 (10) | 0.0487 (10) | 0.0108 (8) | 0.0006 (8) | 0.0038 (8) |
C9 | 0.0343 (9) | 0.0389 (9) | 0.0399 (9) | 0.0033 (7) | 0.0039 (7) | −0.0021 (7) |
C10 | 0.0319 (9) | 0.0363 (9) | 0.0432 (9) | 0.0052 (7) | 0.0066 (7) | 0.0021 (7) |
C11 | 0.0362 (9) | 0.0372 (9) | 0.0441 (10) | 0.0019 (7) | 0.0099 (8) | 0.0016 (7) |
C13 | 0.0564 (13) | 0.0352 (10) | 0.0757 (15) | 0.0058 (9) | 0.0078 (11) | 0.0050 (10) |
C14 | 0.0813 (19) | 0.0428 (13) | 0.104 (2) | −0.0090 (12) | 0.0024 (16) | 0.0001 (13) |
Cl1—C6 | 1.736 (2) | C7—C8 | 1.372 (3) |
O1—C2 | 1.382 (2) | C8—C9 | 1.383 (3) |
O1—C9 | 1.366 (2) | C9—C10 | 1.394 (3) |
O2—C2 | 1.188 (2) | C13—C14 | 1.472 (4) |
O11—C11 | 1.200 (3) | C4—H4 | 0.9300 |
O12—C11 | 1.316 (2) | C5—H5 | 0.9300 |
O12—C13 | 1.454 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.470 (3) | C8—H8 | 0.9300 |
C3—C4 | 1.342 (3) | C13—H13A | 0.9700 |
C3—C11 | 1.493 (3) | C13—H13B | 0.9700 |
C4—C10 | 1.430 (3) | C14—H14A | 0.9600 |
C5—C6 | 1.368 (3) | C14—H14B | 0.9600 |
C5—C10 | 1.397 (3) | C14—H14C | 0.9600 |
C6—C7 | 1.391 (3) | ||
Cl1···C2i | 3.456 (2) | C3···C11ii | 3.514 (3) |
O1···O11ii | 3.125 (2) | C4···O2viii | 3.270 (3) |
O2···C4iii | 3.270 (3) | C4···O11v | 3.346 (3) |
O2···O12 | 2.749 (2) | C4···C11ii | 3.433 (3) |
O2···C8iv | 3.182 (3) | C5···O11v | 3.263 (3) |
O2···C7iv | 3.182 (3) | C7···O2vi | 3.182 (3) |
O11···C4v | 3.346 (3) | C8···O2vi | 3.182 (3) |
O11···C5v | 3.263 (3) | C9···O11ii | 3.281 (2) |
O11···C2ii | 3.130 (2) | C10···C11ii | 3.584 (3) |
O11···C9ii | 3.281 (2) | C11···C3ii | 3.514 (3) |
O11···O1ii | 3.125 (2) | C11···C4ii | 3.433 (3) |
O12···O2 | 2.749 (2) | C11···C10ii | 3.584 (3) |
O1···H14Avi | 2.8000 | H4···O2viii | 2.7500 |
O2···H7iv | 2.5900 | H4···O11 | 2.4900 |
O2···H4iii | 2.7500 | H4···H5 | 2.5400 |
O2···H8iv | 2.5900 | H4···O11v | 2.5400 |
O11···H13B | 2.7700 | H5···H4 | 2.5400 |
O11···H13A | 2.4600 | H5···O11v | 2.4300 |
O11···H4v | 2.5400 | H7···O2vi | 2.5900 |
O11···H5v | 2.4300 | H8···O2vi | 2.5900 |
O11···H4 | 2.4900 | H13A···O11 | 2.4600 |
C2···Cl1vii | 3.456 (2) | H13B···O11 | 2.7700 |
C2···O11ii | 3.130 (2) | H14A···O1iv | 2.8000 |
C3···C3ii | 3.416 (3) | ||
C2—O1—C9 | 122.98 (15) | O11—C11—C3 | 121.72 (17) |
C11—O12—C13 | 115.55 (18) | O12—C11—C3 | 114.18 (16) |
O1—C2—O2 | 116.62 (17) | O12—C13—C14 | 107.6 (2) |
O1—C2—C3 | 115.78 (15) | C3—C4—H4 | 119.00 |
O2—C2—C3 | 127.59 (18) | C10—C4—H4 | 119.00 |
C2—C3—C4 | 120.70 (17) | C6—C5—H5 | 120.00 |
C2—C3—C11 | 121.37 (16) | C10—C5—H5 | 120.00 |
C4—C3—C11 | 117.82 (16) | C6—C7—H7 | 120.00 |
C3—C4—C10 | 121.38 (17) | C8—C7—H7 | 120.00 |
C6—C5—C10 | 119.03 (18) | C7—C8—H8 | 120.00 |
Cl1—C6—C5 | 119.20 (17) | C9—C8—H8 | 120.00 |
Cl1—C6—C7 | 119.32 (15) | O12—C13—H13A | 110.00 |
C5—C6—C7 | 121.48 (19) | O12—C13—H13B | 110.00 |
C6—C7—C8 | 120.04 (19) | C14—C13—H13A | 110.00 |
C7—C8—C9 | 119.0 (2) | C14—C13—H13B | 110.00 |
O1—C9—C8 | 117.64 (17) | H13A—C13—H13B | 108.00 |
O1—C9—C10 | 121.07 (16) | C13—C14—H14A | 109.00 |
C8—C9—C10 | 121.28 (18) | C13—C14—H14B | 109.00 |
C4—C10—C5 | 123.34 (17) | C13—C14—H14C | 109.00 |
C4—C10—C9 | 117.55 (17) | H14A—C14—H14B | 109.00 |
C5—C10—C9 | 119.11 (17) | H14A—C14—H14C | 110.00 |
O11—C11—O12 | 124.10 (18) | H14B—C14—H14C | 109.00 |
C9—O1—C2—O2 | 170.94 (18) | C4—C3—C11—O12 | −159.90 (18) |
C9—O1—C2—C3 | −7.9 (2) | C3—C4—C10—C5 | 177.27 (19) |
C2—O1—C9—C8 | −176.03 (17) | C3—C4—C10—C9 | −2.5 (3) |
C2—O1—C9—C10 | 2.9 (3) | C10—C5—C6—Cl1 | 177.71 (15) |
C13—O12—C11—O11 | 0.3 (3) | C10—C5—C6—C7 | −1.9 (3) |
C13—O12—C11—C3 | −179.94 (17) | C6—C5—C10—C4 | −179.58 (19) |
C11—O12—C13—C14 | 166.4 (2) | C6—C5—C10—C9 | 0.2 (3) |
O1—C2—C3—C4 | 7.9 (3) | Cl1—C6—C7—C8 | −177.82 (17) |
O1—C2—C3—C11 | −175.94 (16) | C5—C6—C7—C8 | 1.8 (3) |
O2—C2—C3—C4 | −170.8 (2) | C6—C7—C8—C9 | 0.1 (3) |
O2—C2—C3—C11 | 5.4 (3) | C7—C8—C9—O1 | 177.03 (18) |
C2—C3—C4—C10 | −2.9 (3) | C7—C8—C9—C10 | −1.9 (3) |
C11—C3—C4—C10 | −179.18 (17) | O1—C9—C10—C4 | 2.6 (3) |
C2—C3—C11—O11 | −156.44 (19) | O1—C9—C10—C5 | −177.12 (17) |
C2—C3—C11—O12 | 23.8 (3) | C8—C9—C10—C4 | −178.52 (18) |
C4—C3—C11—O11 | 19.9 (3) | C8—C9—C10—C5 | 1.7 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) −x, y−1/2, −z+1/2; (v) −x+2, −y, −z+1; (vi) −x, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O11v | 0.930 | 2.54 | 3.346 (3) | 145 |
C5—H5···O11v | 0.93 | 2.43 | 3.263 (3) | 149 |
C7—H7···O2vi | 0.93 | 2.59 | 3.182 (3) | 122 |
C8—H8···O2vi | 0.93 | 2.59 | 3.182 (3) | 122 |
Symmetry codes: (v) −x+2, −y, −z+1; (vi) −x, y+1/2, −z+1/2. |
C12H9BrO4 | F(000) = 592 |
Mr = 297.10 | Dx = 1.726 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 600 reflections |
a = 5.8432 (6) Å | θ = 20–25° |
b = 13.2073 (14) Å | µ = 3.60 mm−1 |
c = 15.6959 (15) Å | T = 293 K |
β = 109.327 (3)° | Block, colorless |
V = 1143.0 (2) Å3 | 0.26 × 0.15 × 0.12 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2091 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.455, Tmax = 0.672 | k = −17→17 |
12998 measured reflections | l = −19→20 |
2754 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4243P] where P = (Fo2 + 2Fc2)/3 |
2754 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.84921 (6) | 0.44363 (2) | 0.37854 (3) | 0.0644 (1) | |
O1 | 0.1635 (3) | 0.09348 (15) | 0.31200 (14) | 0.0489 (6) | |
O2 | 0.0656 (4) | −0.05880 (16) | 0.34303 (17) | 0.0592 (8) | |
O11 | 0.7741 (4) | −0.13087 (16) | 0.48632 (15) | 0.0601 (7) | |
O12 | 0.4410 (4) | −0.19686 (15) | 0.38850 (15) | 0.0583 (7) | |
C2 | 0.2270 (5) | −0.0016 (2) | 0.34845 (18) | 0.0436 (8) | |
C3 | 0.4874 (5) | −0.0194 (2) | 0.39127 (18) | 0.0421 (8) | |
C4 | 0.6471 (5) | 0.05665 (19) | 0.40357 (19) | 0.0426 (8) | |
C5 | 0.7279 (5) | 0.2389 (2) | 0.38623 (19) | 0.0464 (9) | |
C6 | 0.6385 (5) | 0.3310 (2) | 0.35353 (19) | 0.0457 (8) | |
C7 | 0.3948 (5) | 0.3448 (2) | 0.3036 (2) | 0.0502 (9) | |
C8 | 0.2387 (5) | 0.2639 (2) | 0.2888 (2) | 0.0499 (9) | |
C9 | 0.3259 (5) | 0.1710 (2) | 0.32412 (18) | 0.0420 (8) | |
C10 | 0.5710 (5) | 0.1565 (2) | 0.37181 (18) | 0.0416 (8) | |
C11 | 0.5832 (5) | −0.1214 (2) | 0.42728 (18) | 0.0430 (8) | |
C13 | 0.5305 (7) | −0.2968 (2) | 0.4225 (3) | 0.0685 (13) | |
C14 | 0.3306 (8) | −0.3683 (3) | 0.3897 (3) | 0.0901 (18) | |
H4 | 0.81076 | 0.04410 | 0.43340 | 0.0511* | |
H5 | 0.89221 | 0.23086 | 0.41794 | 0.0557* | |
H7 | 0.33805 | 0.40823 | 0.28034 | 0.0603* | |
H8 | 0.07560 | 0.27191 | 0.25516 | 0.0599* | |
H13A | 0.59040 | −0.29646 | 0.48797 | 0.0825* | |
H13B | 0.66249 | −0.31621 | 0.40127 | 0.0825* | |
H14A | 0.28028 | −0.37168 | 0.32502 | 0.1351* | |
H14B | 0.19718 | −0.34616 | 0.40785 | 0.1351* | |
H14C | 0.38270 | −0.43405 | 0.41463 | 0.1351* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0588 (2) | 0.0472 (2) | 0.0825 (3) | −0.0078 (1) | 0.0173 (2) | 0.0027 (2) |
O1 | 0.0340 (9) | 0.0441 (10) | 0.0536 (11) | 0.0032 (8) | −0.0058 (8) | −0.0024 (9) |
O2 | 0.0397 (11) | 0.0512 (13) | 0.0740 (15) | −0.0034 (9) | 0.0019 (10) | −0.0045 (10) |
O11 | 0.0449 (11) | 0.0509 (12) | 0.0683 (14) | 0.0072 (9) | −0.0031 (10) | 0.0129 (10) |
O12 | 0.0527 (12) | 0.0367 (10) | 0.0710 (14) | 0.0037 (9) | 0.0008 (10) | 0.0016 (10) |
C2 | 0.0365 (13) | 0.0417 (15) | 0.0433 (14) | 0.0013 (12) | 0.0008 (11) | −0.0059 (12) |
C3 | 0.0375 (13) | 0.0419 (14) | 0.0405 (14) | 0.0033 (11) | 0.0043 (11) | −0.0006 (11) |
C4 | 0.0321 (12) | 0.0417 (14) | 0.0478 (15) | 0.0032 (10) | 0.0050 (11) | 0.0024 (11) |
C5 | 0.0332 (12) | 0.0496 (16) | 0.0502 (16) | 0.0023 (11) | 0.0055 (11) | 0.0030 (13) |
C6 | 0.0431 (14) | 0.0414 (14) | 0.0496 (16) | −0.0029 (12) | 0.0114 (12) | 0.0002 (12) |
C7 | 0.0491 (15) | 0.0426 (15) | 0.0508 (16) | 0.0093 (12) | 0.0055 (12) | 0.0076 (12) |
C8 | 0.0391 (14) | 0.0489 (16) | 0.0500 (16) | 0.0098 (12) | −0.0011 (12) | 0.0020 (13) |
C9 | 0.0351 (12) | 0.0410 (14) | 0.0421 (14) | 0.0036 (10) | 0.0024 (10) | −0.0043 (11) |
C10 | 0.0348 (12) | 0.0394 (14) | 0.0442 (14) | 0.0040 (10) | 0.0043 (10) | 0.0011 (11) |
C11 | 0.0406 (13) | 0.0414 (14) | 0.0451 (14) | 0.0029 (11) | 0.0118 (12) | 0.0031 (12) |
C13 | 0.0594 (19) | 0.0426 (17) | 0.090 (3) | 0.0066 (14) | 0.0064 (18) | 0.0068 (17) |
C14 | 0.081 (3) | 0.049 (2) | 0.120 (4) | −0.0077 (18) | 0.006 (3) | 0.004 (2) |
Br1—C6 | 1.888 (3) | C7—C8 | 1.374 (4) |
O1—C2 | 1.379 (3) | C8—C9 | 1.373 (4) |
O1—C9 | 1.366 (3) | C9—C10 | 1.392 (4) |
O2—C2 | 1.189 (4) | C13—C14 | 1.457 (6) |
O11—C11 | 1.198 (4) | C4—H4 | 0.9300 |
O12—C11 | 1.311 (3) | C5—H5 | 0.9300 |
O12—C13 | 1.455 (4) | C7—H7 | 0.9300 |
C2—C3 | 1.465 (4) | C8—H8 | 0.9300 |
C3—C4 | 1.341 (4) | C13—H13A | 0.9700 |
C3—C11 | 1.496 (4) | C13—H13B | 0.9700 |
C4—C10 | 1.428 (4) | C14—H14A | 0.9600 |
C5—C6 | 1.356 (4) | C14—H14B | 0.9600 |
C5—C10 | 1.392 (4) | C14—H14C | 0.9600 |
C6—C7 | 1.392 (4) | ||
Br1···C14i | 3.713 (5) | C3···C4iv | 3.592 (4) |
Br1···O1ii | 3.567 (2) | C3···C11iv | 3.538 (4) |
Br1···C2ii | 3.516 (3) | C4···O2ix | 3.278 (4) |
O1···Br1iii | 3.567 (2) | C4···O11vii | 3.394 (4) |
O1···O11iv | 3.104 (3) | C4···C3iv | 3.592 (4) |
O2···C4v | 3.278 (4) | C4···C11iv | 3.458 (4) |
O2···O12 | 2.759 (3) | C5···O11vii | 3.264 (4) |
O2···C8vi | 3.239 (4) | C7···O2viii | 3.171 (4) |
O2···C7vi | 3.171 (4) | C8···O2viii | 3.239 (4) |
O11···C4vii | 3.394 (4) | C9···O11iv | 3.260 (4) |
O11···C5vii | 3.264 (4) | C10···C11iv | 3.585 (4) |
O11···C2iv | 3.130 (3) | C11···C3iv | 3.538 (4) |
O11···C9iv | 3.260 (4) | C11···C4iv | 3.458 (4) |
O11···O1iv | 3.104 (3) | C11···C10iv | 3.585 (4) |
O12···O2 | 2.759 (3) | C14···Br1x | 3.713 (5) |
O1···H14Aviii | 2.8100 | H4···O2ix | 2.7300 |
O2···H7vi | 2.5500 | H4···O11 | 2.4900 |
O2···H4v | 2.7300 | H4···H5 | 2.5400 |
O2···H8vi | 2.6900 | H4···O11vii | 2.6000 |
O11···H13B | 2.7600 | H5···H4 | 2.5400 |
O11···H13A | 2.4400 | H5···O11vii | 2.4200 |
O11···H4vii | 2.6000 | H7···O2viii | 2.5500 |
O11···H5vii | 2.4200 | H8···O2viii | 2.6900 |
O11···H4 | 2.4900 | H13A···O11 | 2.4400 |
C2···Br1iii | 3.516 (3) | H13B···O11 | 2.7600 |
C2···O11iv | 3.130 (3) | H14A···O1vi | 2.8100 |
C3···C3iv | 3.406 (4) | ||
C2—O1—C9 | 123.1 (2) | O11—C11—C3 | 121.5 (3) |
C11—O12—C13 | 115.1 (3) | O12—C11—C3 | 114.1 (2) |
O1—C2—O2 | 116.8 (3) | O12—C13—C14 | 108.0 (3) |
O1—C2—C3 | 115.6 (2) | C3—C4—H4 | 119.00 |
O2—C2—C3 | 127.6 (3) | C10—C4—H4 | 119.00 |
C2—C3—C4 | 120.9 (2) | C6—C5—H5 | 120.00 |
C2—C3—C11 | 121.3 (2) | C10—C5—H5 | 120.00 |
C4—C3—C11 | 117.7 (3) | C6—C7—H7 | 120.00 |
C3—C4—C10 | 121.3 (3) | C8—C7—H7 | 120.00 |
C6—C5—C10 | 119.3 (3) | C7—C8—H8 | 120.00 |
Br1—C6—C5 | 119.0 (2) | C9—C8—H8 | 120.00 |
Br1—C6—C7 | 119.3 (2) | O12—C13—H13A | 110.00 |
C5—C6—C7 | 121.7 (3) | O12—C13—H13B | 110.00 |
C6—C7—C8 | 119.5 (3) | C14—C13—H13A | 110.00 |
C7—C8—C9 | 119.3 (3) | C14—C13—H13B | 110.00 |
O1—C9—C8 | 117.8 (3) | H13A—C13—H13B | 108.00 |
O1—C9—C10 | 121.0 (2) | C13—C14—H14A | 109.00 |
C8—C9—C10 | 121.2 (3) | C13—C14—H14B | 109.00 |
C4—C10—C5 | 123.6 (3) | C13—C14—H14C | 109.00 |
C4—C10—C9 | 117.4 (3) | H14A—C14—H14B | 109.00 |
C5—C10—C9 | 119.0 (2) | H14A—C14—H14C | 110.00 |
O11—C11—O12 | 124.4 (3) | H14B—C14—H14C | 110.00 |
C9—O1—C2—O2 | 170.7 (3) | C4—C3—C11—O12 | −158.2 (3) |
C9—O1—C2—C3 | −8.1 (4) | C3—C4—C10—C5 | 177.2 (3) |
C2—O1—C9—C8 | −176.4 (3) | C3—C4—C10—C9 | −2.7 (4) |
C2—O1—C9—C10 | 2.7 (4) | C10—C5—C6—Br1 | 176.9 (2) |
C13—O12—C11—O11 | 0.2 (4) | C10—C5—C6—C7 | −1.9 (4) |
C13—O12—C11—C3 | −180.0 (3) | C6—C5—C10—C4 | −179.9 (3) |
C11—O12—C13—C14 | 166.1 (3) | C6—C5—C10—C9 | 0.0 (4) |
O1—C2—C3—C4 | 8.1 (4) | Br1—C6—C7—C8 | −177.0 (2) |
O1—C2—C3—C11 | −175.3 (2) | C5—C6—C7—C8 | 1.7 (5) |
O2—C2—C3—C4 | −170.5 (3) | C6—C7—C8—C9 | 0.4 (4) |
O2—C2—C3—C11 | 6.1 (5) | C7—C8—C9—O1 | 176.8 (3) |
C2—C3—C4—C10 | −2.9 (4) | C7—C8—C9—C10 | −2.4 (4) |
C11—C3—C4—C10 | −179.7 (3) | O1—C9—C10—C4 | 3.0 (4) |
C2—C3—C11—O11 | −155.0 (3) | O1—C9—C10—C5 | −176.9 (3) |
C2—C3—C11—O12 | 25.1 (4) | C8—C9—C10—C4 | −178.0 (3) |
C4—C3—C11—O11 | 21.7 (4) | C8—C9—C10—C5 | 2.2 (4) |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) −x, y−1/2, −z+1/2; (vii) −x+2, −y, −z+1; (viii) −x, y+1/2, −z+1/2; (ix) x+1, y, z; (x) x−1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O11vii | 0.93 | 2.60 | 3.394 (3) | 143 |
C5—H5···O11vii | 0.93 | 2.42 | 3.264 (4) | 151 |
C7—H7···O2viii | 0.93 | 2.55 | 3.171 (4) | 125 |
C8—H8···O2viii | 0.93 | 2.69 | 3.239 (3) | 119 |
Symmetry codes: (vii) −x+2, −y, −z+1; (viii) −x, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the SIP–IPN (Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional), the CGIC–UC (Coordinación General de Investigación Cientifica de la Universidad de Colima) and PROMEP–SEP.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). PNAS, 101, 16789–16794. CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bondi, A. J. (1964). Chem. Phys. 68, 441. CrossRef Google Scholar
Bonsignore, L., Cottiglia, F., Maccioni, A. & Secci, D. (1995). J. Heterocycl. Chem. 32, 573–577. CrossRef CAS Google Scholar
Bosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299–302. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chimenti, F., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turín, P. & Ortuso, F. (2004). Bioorg. Med. Chem. Lett. 14, 3697–3703. CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fujii, I., Mano, Y. & Hirayama, N. (2005). Acta Cryst. E61, o1456–o1458. Web of Science CSD CrossRef IUCr Journals Google Scholar
García-Báez, E. V., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2003). Cryst. Growth Des. 3, 35–45. Google Scholar
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346. CSD CrossRef CAS Web of Science Google Scholar
Gursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545–551. Google Scholar
Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400–6408. Web of Science CrossRef PubMed CAS Google Scholar
Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. Web of Science CrossRef PubMed CAS Google Scholar
Lee, K. H. & Morris, S. (1999). Pure Appl. Chem. 71, 1045–1051. CAS Google Scholar
Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116. CSD CrossRef CAS Web of Science Google Scholar
Magaña-Vergara, N. E., Martínez-Martínez, F. J., Padilla-Martínez, I. I., Höpfl, H. & García-Báez, E. V. (2004). Acta Cryst. E60, o2306–o2308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marchi, A. A. de, Castilho, M. S., Nascimento, P. G. B., Archanjo, F. C., Del Ponte, G., Oliva, G. & Pupo, M. T. (2004). Bioorg. Med. Chem. 12, 4823–4833. PubMed Google Scholar
Ouvrard, C., Le Questel, J.-Y., Berthelot, M. & Laurence, C. (2003). Acta Cryst. B59, 512–526. Web of Science CrossRef CAS IUCr Journals Google Scholar
Santana, L., Uriarte, E., Gonzalez, H., Zagotto, G., Soto, R. & Mendez, E. (2006). J. Med. Chem. 49, 1149–1156. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1207–1213. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.