addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Lupulin structures revisited

CROSSMARK_Color_square_no_text.svg

aInstitut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Bellaterra, Spain, and bDep. Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona "Josep Pascual Vila" (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
*Correspondence e-mail: elies.molins@icmab.es

(Received 3 December 2007; accepted 4 January 2008; online 7 February 2009)

The crystal structures of lupulin A, C30H46O11, and lupulin D, C25H38O8, should both display the neoclerodane skeleton, but the deposited atomic coordinates of lupulin D correspond to the inverted enanti­omer.

1. Comment

The X-ray analysis reports for the isolates from Ajuga lupulina, viz. lupulin A (Chen et al., 1997[Chen, H., Tan, R.-X., Liu, Z.-L., Zhao, C.-Y. & Sun, J. (1997). Acta Cryst. C53, 814-816.]) and lupulin D (Chen, Tan, Liu, Liu & Chen, 1996[Chen, H., Tan, R., Liu, Z., Liu, J. & Chen, M. (1996). Acta Cryst. C52, 2229-2231.]) (also called clerodinin B; Lin et al., 1989[Lin, Y. L., Kuo, Y. H. & Chen, Y. L. (1989). Chem. Pharm. Bull. 37, 2191-2193.]), show contradictory graphical information. The simpler structure of lupulin D, as shown in Chen, Tan, Liu, Liu & Chen (1996[Chen, H., Tan, R., Liu, Z., Liu, J. & Chen, M. (1996). Acta Cryst. C52, 2229-2231.]) (Fig. 1[link] of the paper = Fig. 1[link]a[link] here), could be described as 15α-methoxy­dihydro­clerodin (but is named 3-de­­oxy-14,15-dihydro-15-methoxy­caryoptinol). The formula shows the corresponding neoclerodane skeleton with a few stereochemistries undisclosed. The 15α-meth­oxy substitution (discussed as C17 in the Comment, according to the atom-numbering scheme in Fig. 1 of the paper) was `in agreement with the structural elucidation of Lin et al. (1989[Lin, Y. L., Kuo, Y. H. & Chen, Y. L. (1989). Chem. Pharm. Bull. 37, 2191-2193.])'. However, this Fig. 1[link] displays the view with displacement ellipsoids of an ent-neoclerodane structure with a 15α-meth­oxy substitution. Thus, the deposited atomic coordinates must correspond to the inverted enanti­omer of lupulin D [Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode TEHZOV, Fig. 1[link]b[link]] and, further, the correct stereoformulae should be revised to 15β-methoxy­dihydro­clerodin [see revised lupulin D in Fig. 1[link]c[link]]. As a consequence, the early C-15 stereochemical assignments for clerodinins A and B (Lin et al., 1989[Lin, Y. L., Kuo, Y. H. & Chen, Y. L. (1989). Chem. Pharm. Bull. 37, 2191-2193.]) must also be reversed. The reversal of the previously assigned stereochemistries at position C-15 for both clerodinins A and B (change from β to α and from α to β, respectively), was already proposed by Ben Jannet et al. (1999[Ben Jannet, H., Chaari, A., Mighri, Z., Martin, M. T. & Loukaci, A. (1999). Phytochemistry, 52, 1541-1545.]) from the results of NMR NOESY experiments reported for hativenes A–C.

The structures of lupulin A and lupulin B were first elucidated by spectroscopic means (Chen, Tan, Liu, Zhang & Yang, 1996[Chen, H., Tan, R. X., Liu, Z. L., Zhang, Y. & Yang, L. (1996). J. Nat. Prod. 59, 668-670.]) and reported as 15β-meth­oxy (Fig. 2[link]a[link]) and 2-deoxy-15α-methoxy­dihydro­ajugapitin, respectively, by comparison with NMR data of clerodinin A and clerodinin B. Lupulin A showed strong anti­bacterial activity, and accordingly, it should be the compound studied by means of X-ray crystallographic analysis (Chen et al., 1997[Chen, H., Tan, R.-X., Liu, Z.-L., Zhao, C.-Y. & Sun, J. (1997). Acta Cryst. C53, 814-816.]) (confirmed by melting point and empirical formula). This X-ray report shows the neo­clerodane structure of 15α-methoxy­dihydro­ajugapitin (Fig. 2[link]b[link]) in the view with displacement ellipsoids. In this instance, quite unexpectedly, opposite graphical displays were again shown. There, the stereoformula displayed was the inverted enanti­omer ent-neoclerodane 15β-methoxy­dihydro­ajugapitin (Fig. 2[link]c[link]).

Furthermore, this X-ray structure already points out the reversal of the previously assigned stereochemistries at position C-15 for lupulins A and B (change from β to α and from α to β, respectively), based on NMR data. As already mentioned for clerodinins A and B, the reversal of the stereochemistries at C-15 for lupulins A and B had been already proposed from the results of NMR NOESY experiments (Ben Jannet et al., 1999[Ben Jannet, H., Chaari, A., Mighri, Z., Martin, M. T. & Loukaci, A. (1999). Phytochemistry, 52, 1541-1545.], 2000[Ben Jannet, H., Harzallah-Skhiri, F., Mighri, Z., Simmonds, M. S. J. & Blaney, W. M. (2000). Fitoterapia, 71, 105-112.]). Unfortunately, the structure depicted in both papers for lupulin A (as shown in Fig. 3[link]) was yet the uncorrected 15β-methoxy­dihydro­ajugapitin analogous to hativene A, rather than the revised proposal analogous to hativene B.

In summary, lupulin A should display a revised 15α-meth­oxyneoclerodane structure (Fig. 2[link]b[link]), whereas lupulin B and lupulin D (Fig. 1c[link]) display a 15β-meth­oxy neoclerodane structure.

Note added in proof. The authors acknowledge Professor Hichem Ben Jannet for kindly providing a reprint (Ben Jannet et al., 2002) reporting the `Structure of a new neoclerodane diterpenoid from Ajuga pseudoiva'. The compound was named hativene D, being in fact elucidated as the 15-epimer (15α-MeO) of the uncorrected structure reported for lupulin A (Fig. 3d[link], 15β-MeO). However, the reported NMR data (an extended set showing a few corrections and assignment changes likely based on HMQC or HMBC spectroscopic data) match, not unexpectedly, quite well those of lupulin A, since the proposed structure revision points out the identical nature of hativene D and lupulin A.

Supporting information


Comment top

The X-ray analysis reports for the isolates from Ajuga lupulina, viz. lupulin A, (I) (Chen et al., 1997), and lupulin D, (II) (Chen, Tan, Liu, Liu & Chen, 1996) (also called clerodinin B; Lin et al., 1989), show contradictory graphical information. The simpler structure of (II), as shown in Chen, Tan, Liu, Liu & Chen (1996) (Fig. 1 of the paper = Fig. 1a here), could be described as 15α-methoxydihydroclerodin (but is named 3-deoxy-14,15-dihydro-15-methoxycaryoptinol). The formula shows the corresponding neo-clerodane skeleton with a few stereochemistries undisclosed. The 15α-methoxy substitution (discussed as C17 in the Comment, according to the atom numbering scheme in Fig. 1 of the paper) was `in agreement with the structural elucidation of Lin et al. (1989)'. However, this Fig. 1 displays the view with displacement ellipsoids of an ent-neoclerodane structure with a 15α-methoxy substitution. Thus, the deposited atomic coordinates must correspond to the inverted enantiomer of lupulin D [Cambridge Structural Database (Allen, 2002) refcode TEHZOV, Fig. 1 b] and, further, the correct stereoformulae should be revised to 15β-methoxydihydroclerodin [see revised (II) in Fig. 1c]. As a consequence, the early C-15 stereochemical assignments for clerodinins A and B (Lin et al. 1989) must be reversed also. The reversal of the previously assigned stereochemistries at position C-15 for both clerodinins A and B (change from β to α and from α to β, respectively), was already proposed by Ben Jannet et al. (1999) from the results of NMR NOESY experiments reported for hativenes A—C.

The structures of lupulin A (I) and lupulin B were first elucidated by spectral means (Chen, Tan, Liu, Zhang & Yang, 1996) and reported as 15β-methoxy (Fig. 2a) and 15α-methoxydihydroajugapitin, respectively, by comparison with NMR data of clerodinin A and clerodinin B. Lupulin A showed strong antibacterial activity, and accordingly, it should be the compound studied by means of X-ray crystallographic analysis (Chen et al. 1997). This X-ray report shows the neo-clerodane structure of 15α-methoxydihydroajugapitin (Fig. 2 b) in the view with displacement ellipsoids. In this instance, quite unexpectedly, again opposite graphical displays were shown. There, the stereoformula displayed was the inverted enantiomer ent-neo-clerodane 15β-methoxydihydroajugapitin (Fig. 2c).

Furthermore, this X-ray structure already points out the reversal of the previously assigned stereochemistries at position C-15 for lupulins A and B (change from β to α and from α to β, respectively), based on NMR data. As already mentioned for clerodinins A and B, the reversal of the stereochemistries at C-15 for lupulins A and B had been already proposed from the results of NMR NOESY experiments (Ben Jannet et al., 1999, 2000). Unfortunately, the structure depicted in both papers for lupulin A was yet the uncorrected 15β-methoxydihydroajugapitin analogous to hativene A, rather than the revised proposal analogous to hativene B, as shown in Fig 3.

In summary, lupulin A should display a revised 15α-methoxy neo-clerodane structure (Fig. 2 b) whereas lupulin B and lupulin D (Fig, 1c), a 15β-methoxy neo-clerodane one.

Computing details top

Figures top
[Figure 1] Fig. 1. Lupulin D, (II), in Chen, Tan, Liu, Liu & Chen (1996), showing (a) the formula shown in the original paper, (b) the structure according to deposited data (TEHZOV) showing an ent-neoclerodane skeleton, and (c) lupulin D/clerodinin B (revised) showing the neo-clerodane skeleton and the 15β-methoxy substitution.
[Figure 2] Fig. 2. Lupulin A, (I), according to (a) Chen, Tan, Liu, Zhang & Yang (1996) and to deposited data RAVWUG, (b) (revised) showing the neo-clerodane skeleton and the C-15 α-substituent, and (c) the stereoformula shown in Chen et al. (1997).
[Figure 3] Fig. 3. Structures of (a) hativene A, (b) hativene B, (c) hativene C and (d) uncorrected lupulin A in Ben Jannet et al. (2000).
15α-methoxydihydroclerodin top
Crystal data top
C25H38O8V = 2409.48 Å3
Mr = ?Z = 4
Orthorhombic, P212121Dx = 1.29 Mg m3
a = 10.114 (3) Å? radiation, λ = ? Å
b = 11.289 (4) Å, white
c = 21.103 (9) Å × × mm
Data collection top
h = ??l = ??
k = ??
Refinement top
R[F2 > 2σ(F2)] = 0.037
Crystal data top
C25H38O8c = 21.103 (9) Å
Mr = ?V = 2409.48 Å3
Orthorhombic, P212121Z = 4
a = 10.114 (3) Å? radiation, λ = ? Å
b = 11.289 (4) Å × × mm
Data collection top
Refinement top
R[F2 > 2σ(F2)] = 0.037
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1531000.3821000.1412000.05000
O20.1086000.4707000.0491000.05000
O30.3359000.2629000.2119000.05000
O40.4711000.1385000.2633000.05000
O50.3695000.2831000.0734000.05000
O60.3417000.4239000.0578000.05000
O70.0521000.1854000.1377000.05000
O80.2363000.3068000.1329000.05000
C10.1139000.0504000.1177000.05000
C20.0252000.0330000.1494000.05000
C30.1094000.1453000.1360000.05000
C40.0371000.2587000.1549000.05000
C50.0937000.2716000.1208000.05000
C60.1892000.1696000.1338000.05000
C70.3097000.1698000.0888000.05000
C80.4051000.0695000.0983000.05000
C90.3314000.0464000.0854000.05000
C100.2060000.0577000.1246000.05000
C110.1028000.0710000.1196000.05000
C120.1196000.2692000.1004000.05000
C130.1662000.2069000.0394000.05000
C140.1144000.0799000.0479000.05000
C150.3417000.3153000.0897000.05000
C160.3176000.2178000.0416000.05000
C170.3681000.5224000.0979000.05000
C180.0171000.0063000.2216000.05000
C190.2476000.1466000.1662000.05000
C200.1584000.4721000.1008000.05000
C210.2342000.5741000.1276000.05000
C220.2373000.1720000.2032000.05000
C230.4426000.2357000.2457000.05000
C240.5208000.3461000.2599000.05000
C250.3019000.2178000.0243000.05000
H10.0920000.0560000.0740000.05000
H20.1220000.1420000.0910000.05000
H30.0210000.2560000.1990000.05000
H40.0920000.3250000.1450000.05000
H50.0760000.2710000.0770000.05000
H60.4380000.0700000.1400000.05000
H70.4770000.0780000.0690000.05000
H80.3880000.1110000.0950000.05000
H90.3070000.0490000.0420000.05000
H100.1600000.1270000.1120000.05000
H110.2310000.0640000.1680000.05000
H120.1870000.0530000.1370000.05000
H130.0640000.3360000.0940000.05000
H140.1360000.2360000.0000000.05000
H150.0310000.0680000.0280000.05000
H160.1760000.0240000.0320000.05000
H170.4230000.3100000.1120000.05000
H180.3530000.2400000.0020000.05000
H190.3560000.1450000.0550000.05000
H200.4190000.4870000.1300000.05000
H210.2920000.5570000.1170000.05000
H220.4200000.5830000.0790000.05000
H230.0510000.0500000.2300000.05000
H240.1000000.0250000.2350000.05000
H250.0010000.0780000.2440000.05000
H260.2430000.1400000.2110000.05000
H270.2970000.0800000.1510000.05000
H280.2900000.2190000.1550000.05000
H290.2290000.5660000.1720000.05000
H300.1960000.6480000.1160000.05000
H310.3250000.5730000.1160000.05000
H320.1640000.1870000.2300000.05000
H330.2750000.0970000.2130000.05000
H340.4760000.3890000.2920000.05000
H350.5280000.3940000.2230000.05000
H360.6070000.3260000.2750000.05000
H370.3500000.1830000.0090000.05000
H380.2190000.2460000.0090000.05000

Experimental details

Crystal data
Chemical formulaC25H38O8
Mr?
Crystal system, space groupOrthorhombic, P212121
Temperature (K)?
a, b, c (Å)10.114 (3), 11.289 (4), 21.103 (9)
V3)2409.48
Z4
Radiation type?, λ = ? Å
µ (mm1)?
Crystal size (mm) × ×
Data collection
Diffractometer?
Absorption correction?
No. of measured, independent and
observed (?) reflections
?, ?, ?
Rint?
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, ?, ?
No. of reflections?
No. of parameters?
No. of restraints?
Δρmax, Δρmin (e Å3)?, ?

 

Acknowledgements

The authors thank the Ministerio de Ciencia e Innovación (grant No. 2004-05252) and the Generalitat de Catalunya (grant No. 2005SGR-452).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Jannet, H., Chaari, A., Mighri, Z., Martin, M. T. & Loukaci, A. (1999). Phytochemistry, 52, 1541–1545.  Web of Science CrossRef Google Scholar
First citationBen Jannet, H., Harzallah-Skhiri, F., Mighri, Z., Simmonds, M. S. J. & Blaney, W. M. (2000). Fitoterapia, 71, 105–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBen Jannet, H., Oueslati, M. H., Chaari, A., Martin, M. T., Loukaci, A., Simmonds, M. J. & Mighri, Z. (2002). J. Soc. Chim. Tun. 4, 1545–1549.  CAS Google Scholar
First citationChen, H., Tan, R., Liu, Z., Liu, J. & Chen, M. (1996). Acta Cryst. C52, 2229–2231.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, H., Tan, R. X., Liu, Z. L., Zhang, Y. & Yang, L. (1996). J. Nat. Prod. 59, 668–670.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, H., Tan, R.-X., Liu, Z.-L., Zhao, C.-Y. & Sun, J. (1997). Acta Cryst. C53, 814–816.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLin, Y. L., Kuo, Y. H. & Chen, Y. L. (1989). Chem. Pharm. Bull. 37, 2191–2193.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds