organic compounds
N-{N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl}-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features
aPeptides International Inc., 11621 Electron Drive, Louisville, KY 40299, USA, bLawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA, cBasic Research Program, SAIC–Frederick Inc., Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439, USA, and dSynchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439, USA
*Correspondence e-mail: dauter@anl.gov
The title compound, C23H26F2N2O4, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer's disease. The molecule adopts a compact conformation, without intramolecular hydrogen bonds. In the one of the amide N atoms forms the only intermolecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL and modeling of these features as additional interatomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å−3.
Comment
Alzheimer's disease, a progressive neurodegenerative disorder, is the most prominent contributor to senile dementia, a condition affecting millions of individuals worldwide. The disease is associated with the presence of extracellular plaques and intracellular neurofibrillary tangles in the brains of Alzheimer's sufferers (Goedert & Spillantini, 2006). Amyloid-β plaque are produced as a result of the sequential proteolytic cleavages of a protein precursor, involving β- and γ-secretase enzymes (Chapman et al., 2001). A great amount of effort has been expended in exploring the use of the enzyme inhibitors and modulators aimed at preventing amyloid formation (Wolfe, 2008). An approach based on targeting γ-secretase (Roberts, 2002; Barten et al., 2006; Tomita, 2008) seems to be more promising (Wolfe, 2008) than an approach that has been focused on β-secretase (Vassar, 2002; Schmidt et al., 2006). This research generated a number of potent and specific inhibitors, among them N-[N-(3,5-difluorophenylacetyl)-S-alanyl]-(S)-phenylglycine tert-butyl ester (DAPT) (Dovey et al., 2001). DAPT, (I), has been shown to block amyloid-β production in human neuronal cultures, and its administration to transgenic mice resulted in the first successful reduction of amyloid level in vivo (Dovey et al., 2001; Lanz et al., 2003). Presenilin, a component of the γ-secretase complex, has been reported as a molecular target of DAPT (Morohashi et al., 2006). Besides being a γ-secretase inhibitor, DAPT is also an inhibitor of the Notch signaling pathway, involved in cell proliferation, differentiation and apoptosis (Hansson et al., 2004; Katoh & Katoh, 2007). Due to this inhibition property, future clinical applications of DAPT for Alzheimer's disease treatment are rather unlikely. However, it is still widely used as a valuable tool in a variety of biomedical investigations (Sjolund et al., 2008; Bittner et al., 2009; Huang et al., 2010; Zhu et al., 2010), with new and interesting features and possible novel applications emerging (Grottkau et al., 2009; Loane et al., 2009). To facilitate the rational design of γ-secretase inhibitors with improved properties, we have crystallized and elucidated the structure of DAPT.
The single molecule of the DAPT dipeptide in the is in a compact conformation (Fig. 1), in which the main-chain torsion angles lie in the allowed regions of the Ramachandran plot, viz. φ = −69.43 (17)° and ψ = −33.53 (18)° for Ala, and φ = −161.83 (14)° and ψ = 157.57 (13)° for PheGly, so that the former residue corresponds to the α-helical and the latter to the extended β-conformation.
of (I)There is only a single intermolecular hydrogen bond between the Ala N20—H group and carbonyl atom O21 of the Ala residue related by translation parallel to a (Fig. 2a). The remaining N and O atoms of DAPT are not engaged in hydrogen bonds.
All H atoms were identified from the difference Fourier synthesis. Two modes of their SHELXL (Sheldrick, 2008), and secondly refining all their positional and isotropic U parameters without any constraints or restraints. The R(all) factors for such constrained and free refinements were comparable (0.0408 and 0.0399, respectively). The root-mean-square deviation (r.m.s.d.) of all 26 bond lengths to all H atoms between the two models was 0.036 Å and the r.m.s.d. of all bond directions was 4.0°, with only one outlier differing by 14.6° from the idealized bond direction. The single outlier corresponds to H201, an H atom of the amide N atom, which is engaged in the only (intermolecular) hydrogen bond in the structure. Its distortion from the direction exactly bisecting the C11—N20—C22 angle is clearly caused by the tendency of the hydrogen bond to be linear (Fig. 2b). Excluding it from the statistics of the bond directions resulted in an r.m.s.d. for the 25 bond directions of 2.8°. The model after the nonconstrained of H atoms was accepted as the result of the SHELXL minimization.
were applied, firstly using the customary `riding' model in geometrically idealized positions utilizing the appropriate rigid-body constraints inThe difference Fourier synthesis computed at the end of the SHELXL showed relatively strong residual electron-density maxima located between bonded atoms (near bond centers) for almost all bonds. These features are due to bonding effects and their visibility is warranted by the combination of three facts: high data resolution, high model quality (low R factor) and low B factors (B < 5 Å2) (Afonine et al., 2004). A multipolar model (Hansen & Coppens, 1978) is appropriate to use in such cases, since it accounts for the effects of atom interations. It has been demonstrated that a simplified interatomic scatterers (IAS) model is capable of producing results of similar quality using fewer refinable parameters (Afonine et al., 2004, 2007). An additional was therefore undertaken with the program PHENIX (Afonine et al., 2005), which supports with the IAS option.
The PHENIX procedure started with the independent atom model (IAM), which included completely unrestrained of atomic coordinates, anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms. The occupancies of the H atoms were allowed to refine, to account for the possible effect of H-atom abstraction due to radiation damage (Meents et al., 2009). This resulted in R(all) = 0.0411. For comparison, an analogous was attempted where the only difference was that a riding model (of the same character as previously with SHELXL) was used for the H atoms instead of refining them freely. using a riding model resulted in an increased R(all) value of 0.0444. The model-phased residual (Fobs − Fcalc) map computed for the best IAM model (with H atoms refined freely) showed significant positive electron-density peaks around centers for almost all bonds, as well as negative stick-like electron-density blobs at the centers of the aromatic rings oriented perpendicular to the ring plane (Fig. 3a). These features were accounted for by the addition of IAS to those bonds that showed pronounced residual electron density, and their occupancies and isotropic displacement parameters were refined (anisotropic displacement parameters were refined for aromatic ring-centered IAS). This procedure resulted in R(all) = 0.0325 and considerably cleared up the difference density map (Fig. 3b). The distribution of the values of the grid points of this map is shown in Fig. 4. Before the introduction of IAS, the map values ranged between −0.214 and 0.266 eÅ−3 (r.m.s.d. = 0.063 e Å−3), and afterwards the map was flatter with a range of values between −0.155 and 0.154 e Å−3 (r.m.s.d. = 0.037 e Å−3). The results of the PHENIX should be treated as final, but are presented in the Supplementary Material , since the refined parameters are not accompanied by standard uncertainties.
Experimental
DAPT was prepared according to the general synthetic procedure reported by Kan et al. (2004), and a 64% overall yield was obtained. The crude product was purified using preparative high-pressure followed by crystallization from a 1:1 mixture of acetonitrile and water.
A needle-like crystal of (I) elongated along a was selected, picked up in a rayon loop and quickly cryo-cooled in a stream of cold nitrogen gas at the single-axis goniostat of the SERCAT synchrotron station 22ID at the Advanced Photon Source, Argonne National Laboratory, USA. Diffraction images were collected using a Marresearch MAR300 CCD detector in four passes differing in their effective exposure and resolution limits, in order to measure adequately the weakest high-resolution reflections as well as the strongest low-angle reflections without overloading the detector pixels. All 53285 measured intensities from all passes were scaled and merged together into the set of 3216 unique reflections with an overall Rmerge factor of 0.061. The data set is rather strong, with an I/σ(I) ratio of 38 at the highest resolution of 0.72 Å.
Crystal data
|
Refinement
|
The H atoms were located in a difference synthesis and refined without restraints.
The PHENIX (Afonine et al., 2005) was performed using a direct summation algorithm for structure-factor and gradient calculation (as opposed to using a fast Fourier transform) and using a target (Lunin et al., 2002). Waasmaier & Kirfel (1995) approximation to the standard form factors was used. The form factors for IAS are distributed as part of cctbx (Grosse-Kunstleve et al., 2002).
Data collection: SERGUI (SERCAT APS beamline software); cell HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: ORTEP-3 and pyMOL.
Supporting information
10.1107/S0108270110044136/mx3037sup1.cif
contains datablocks global, I, phenix. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270110044136/mx3037Isup2.hkl
Structure factors: contains datablock . DOI: 10.1107/S0108270110044136/mx3037phenixsup3.hkl
DAPT was prepared according to the general synthetic scheme reported by Kan et al. (2004), and a 64% overall yield was obtained. The crude product was purified using preparative high-pressure
followed by crystallization from a 1:1 mixture of acetonitrile and water.A needle-like crystal of (I) elongated along a was selected, picked up in a rayon loop and quickly cryo-cooled in a stream of cold nitrogen gas at the single-axis goniostat of the SERCAT synchrotron station 22ID at the Advanced Photon Source, Argonne National Laboratory, USA. Diffraction images were collected using a Marresearch MAR300 CCD detector in four passes differing in their effective exposure and resolution limits, in order to measure adequately the weakest high-resolution reflections as well as the strongest low-angle ones without overloading the detector pixels. All 53285 measured intensities from all passes were scaled and merged together into the set of 3216 unique reflections with an overall Rmerge factor of 0.061. The data set is rather strong, with an I/σ(I) ratio of 38 at the highest resolution of 0.72 Å.
The structure was solved with SHELXD and refined with SHELXL (Sheldrick, 2008) to R[F2>2σ(F2)] = 0.0395 and R1(all) = 0.0399. The H atoms were located in a difference synthesis (Fig. 3a) and refined without restraints.
The PHENIX (Afonine et al., 2005)
was performed using a direct summation algorithm for structure-factor and gradient calculation (as opposed to using a fast Fourier transform) and using a target (Lunin et al., 2002). Waasmaier & Kirfel (1995) approximation to the standard form factors was used. The form factors for IAS are distributed as part of cctbx (Grosse-Kunstleve et al., 2002).Data collection: SERGUI, SERCAT APS beamline software for (I). Cell
HKL-2000 (Otwinowski & Minor, 1997) for (I). Data reduction: HKL-2000 (Otwinowski & Minor, 1997) for (I). Program(s) used to solve structure: SHELXD (Sheldrick, 2008) for (I). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for (I). Molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002) for (I). Software used to prepare material for publication: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002) for (I).C23H26F2N2O4 | F(000) = 912 |
Mr = 432.46 | Dx = 1.341 Mg m−3 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.70000 Å |
a = 5.490 (5) Å | θ = 1.5–29.1° |
b = 15.720 (15) Å | µ = 0.10 mm−1 |
c = 24.82 (2) Å | T = 100 K |
V = 2142 (4) Å3 | Needle, colourless |
Z = 4 | 0.25 × 0.05 × 0.04 mm |
Marresearch MAR300 CCD diffractometer | 3216 independent reflections |
Radiation source: SERCAT 22ID synchrotron beamline, APS, USA | 3157 reflections with I > 2σ(I) |
Si111 double crystal monochromator | Rint = 0.061 |
ω scans | θmax = 29.1°, θmin = 1.5° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = 0→6 |
Tmin = 0.974, Tmax = 0.996 | k = 0→21 |
3216 measured reflections | l = 0→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2521P] where P = (Fo2 + 2Fc2)/3 |
3216 reflections | (Δ/σ)max < 0.001 |
384 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C23H26F2N2O4 | V = 2142 (4) Å3 |
Mr = 432.46 | Z = 4 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.70000 Å |
a = 5.490 (5) Å | µ = 0.10 mm−1 |
b = 15.720 (15) Å | T = 100 K |
c = 24.82 (2) Å | 0.25 × 0.05 × 0.04 mm |
Marresearch MAR300 CCD diffractometer | 3216 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | 3157 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.996 | Rint = 0.061 |
3216 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.112 | All H-atom parameters refined |
S = 1.10 | Δρmax = 0.35 e Å−3 |
3216 reflections | Δρmin = −0.23 e Å−3 |
384 parameters |
Experimental. diffraction data were measured at the station 22ID of the APS synchrotron by rotation method a in three sweeps of different exposure and all data were scaled and merged ino one data set |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.6539 (3) | 0.28035 (9) | 0.30106 (5) | 0.0201 (3) | |
O11 | 0.4447 (2) | 0.27996 (8) | 0.28339 (5) | 0.0256 (3) | |
C12 | 0.8693 (3) | 0.30527 (10) | 0.26642 (6) | 0.0233 (3) | |
H121 | 0.853 (5) | 0.2715 (15) | 0.2341 (10) | 0.032 (6)* | |
H122 | 1.016 (5) | 0.2923 (16) | 0.2835 (10) | 0.030 (6)* | |
C13 | 0.8620 (3) | 0.39950 (9) | 0.25378 (5) | 0.0211 (3) | |
C14 | 1.0419 (3) | 0.45296 (10) | 0.27404 (6) | 0.0248 (3) | |
H141 | 1.167 (6) | 0.4343 (16) | 0.2930 (10) | 0.036 (7)* | |
C15 | 1.0266 (4) | 0.53925 (11) | 0.26319 (6) | 0.0279 (4) | |
F15 | 1.2001 (3) | 0.59119 (7) | 0.28355 (5) | 0.0390 (3) | |
C16 | 0.8429 (4) | 0.57523 (10) | 0.23277 (6) | 0.0270 (3) | |
H161 | 0.831 (6) | 0.6349 (16) | 0.2259 (10) | 0.034 (6)* | |
C17 | 0.6696 (4) | 0.51989 (10) | 0.21324 (6) | 0.0249 (3) | |
F17 | 0.4878 (2) | 0.55269 (7) | 0.18267 (4) | 0.0343 (3) | |
C18 | 0.6721 (3) | 0.43342 (10) | 0.22280 (6) | 0.0236 (3) | |
H181 | 0.553 (6) | 0.3990 (17) | 0.2092 (10) | 0.036 (6)* | |
C21 | 0.3526 (3) | 0.32386 (9) | 0.40160 (6) | 0.0196 (3) | |
O21 | 0.1333 (2) | 0.32019 (7) | 0.41180 (5) | 0.0248 (3) | |
C22 | 0.5011 (3) | 0.24373 (9) | 0.38930 (6) | 0.0202 (3) | |
H221 | 0.393 (6) | 0.2058 (15) | 0.3702 (10) | 0.034 (6)* | |
N20 | 0.7020 (3) | 0.26076 (8) | 0.35303 (5) | 0.0208 (3) | |
H201 | 0.852 (6) | 0.2726 (17) | 0.3679 (11) | 0.042 (7)* | |
C23 | 0.5961 (4) | 0.20635 (10) | 0.44195 (6) | 0.0276 (4) | |
H231 | 0.468 (5) | 0.1985 (15) | 0.4680 (10) | 0.031 (6)* | |
H232 | 0.719 (5) | 0.2452 (15) | 0.4603 (9) | 0.026 (5)* | |
H233 | 0.678 (6) | 0.1537 (17) | 0.4349 (10) | 0.037 (6)* | |
C31 | 0.5399 (3) | 0.54795 (9) | 0.40207 (6) | 0.0219 (3) | |
O31 | 0.7531 (3) | 0.53848 (7) | 0.39163 (5) | 0.0267 (3) | |
C32 | 0.3781 (3) | 0.47558 (9) | 0.42252 (6) | 0.0217 (3) | |
H321 | 0.214 (4) | 0.4849 (12) | 0.4083 (8) | 0.014 (4)* | |
N30 | 0.4815 (3) | 0.39654 (8) | 0.40330 (6) | 0.0229 (3) | |
H301 | 0.639 (8) | 0.396 (2) | 0.3937 (14) | 0.062 (10)* | |
C33 | 0.3839 (3) | 0.48287 (9) | 0.48414 (6) | 0.0211 (3) | |
C34 | 0.1976 (4) | 0.52431 (10) | 0.51115 (7) | 0.0265 (3) | |
H341 | 0.051 (5) | 0.5420 (16) | 0.4905 (10) | 0.034 (6)* | |
C35 | 0.2105 (4) | 0.53464 (10) | 0.56697 (7) | 0.0315 (4) | |
H351 | 0.082 (6) | 0.5656 (17) | 0.5835 (11) | 0.041 (7)* | |
C36 | 0.4094 (4) | 0.50469 (11) | 0.59552 (7) | 0.0305 (4) | |
H361 | 0.420 (5) | 0.5126 (15) | 0.6362 (10) | 0.035 (6)* | |
C37 | 0.5960 (4) | 0.46317 (12) | 0.56849 (7) | 0.0304 (4) | |
H371 | 0.729 (6) | 0.4426 (17) | 0.5879 (10) | 0.034 (6)* | |
C38 | 0.5831 (4) | 0.45218 (11) | 0.51271 (7) | 0.0265 (3) | |
H381 | 0.719 (6) | 0.4225 (16) | 0.4938 (11) | 0.037 (7)* | |
O40 | 0.4132 (2) | 0.61970 (6) | 0.40121 (4) | 0.0210 (2) | |
C40 | 0.5361 (3) | 0.70330 (9) | 0.39555 (6) | 0.0203 (3) | |
C41 | 0.6757 (4) | 0.70880 (11) | 0.34279 (6) | 0.0270 (3) | |
H411 | 0.569 (6) | 0.6977 (18) | 0.3116 (12) | 0.046 (7)* | |
H412 | 0.801 (6) | 0.6698 (17) | 0.3424 (10) | 0.038 (7)* | |
H413 | 0.738 (5) | 0.7686 (15) | 0.3396 (9) | 0.033 (6)* | |
C42 | 0.3215 (4) | 0.76394 (10) | 0.39591 (7) | 0.0276 (3) | |
H421 | 0.385 (6) | 0.8219 (17) | 0.3924 (11) | 0.043 (7)* | |
H422 | 0.202 (7) | 0.7472 (19) | 0.3670 (12) | 0.050 (8)* | |
H423 | 0.234 (6) | 0.7637 (19) | 0.4307 (11) | 0.042 (7)* | |
C43 | 0.6977 (4) | 0.71596 (11) | 0.44472 (6) | 0.0273 (3) | |
H431 | 0.752 (5) | 0.7734 (16) | 0.4444 (10) | 0.032 (6)* | |
H432 | 0.600 (6) | 0.7031 (15) | 0.4796 (10) | 0.035 (6)* | |
H433 | 0.835 (5) | 0.6775 (15) | 0.4437 (9) | 0.027 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0221 (8) | 0.0188 (5) | 0.0195 (6) | −0.0010 (5) | 0.0003 (5) | −0.0024 (5) |
O11 | 0.0213 (6) | 0.0326 (6) | 0.0229 (5) | −0.0019 (5) | −0.0027 (4) | 0.0007 (4) |
C12 | 0.0220 (8) | 0.0240 (6) | 0.0240 (6) | 0.0003 (6) | 0.0041 (6) | −0.0019 (5) |
C13 | 0.0213 (8) | 0.0236 (6) | 0.0183 (5) | −0.0014 (5) | 0.0023 (5) | −0.0015 (5) |
C14 | 0.0227 (9) | 0.0288 (7) | 0.0229 (6) | −0.0016 (6) | −0.0015 (6) | −0.0034 (5) |
C15 | 0.0283 (10) | 0.0287 (7) | 0.0266 (7) | −0.0063 (7) | 0.0001 (6) | −0.0068 (6) |
F15 | 0.0377 (7) | 0.0323 (5) | 0.0469 (6) | −0.0106 (5) | −0.0104 (5) | −0.0087 (5) |
C16 | 0.0324 (10) | 0.0239 (7) | 0.0246 (6) | −0.0038 (6) | 0.0009 (6) | −0.0006 (5) |
C17 | 0.0271 (9) | 0.0284 (7) | 0.0191 (6) | −0.0006 (6) | −0.0016 (6) | 0.0025 (5) |
F17 | 0.0370 (7) | 0.0337 (5) | 0.0322 (5) | 0.0001 (5) | −0.0109 (5) | 0.0087 (4) |
C18 | 0.0247 (9) | 0.0266 (7) | 0.0196 (6) | −0.0038 (6) | −0.0007 (6) | −0.0008 (5) |
C21 | 0.0238 (8) | 0.0169 (5) | 0.0181 (5) | −0.0026 (5) | −0.0008 (5) | 0.0009 (4) |
O21 | 0.0237 (7) | 0.0232 (5) | 0.0277 (5) | −0.0031 (4) | −0.0006 (5) | −0.0002 (4) |
C22 | 0.0236 (8) | 0.0166 (5) | 0.0205 (6) | −0.0031 (5) | −0.0010 (5) | 0.0001 (5) |
N20 | 0.0204 (7) | 0.0215 (5) | 0.0206 (5) | −0.0020 (5) | −0.0018 (5) | −0.0002 (4) |
C23 | 0.0384 (11) | 0.0221 (6) | 0.0224 (6) | 0.0005 (7) | −0.0018 (6) | 0.0051 (5) |
C31 | 0.0275 (9) | 0.0174 (6) | 0.0208 (6) | −0.0029 (6) | −0.0001 (6) | −0.0007 (5) |
O31 | 0.0253 (7) | 0.0207 (5) | 0.0341 (6) | −0.0017 (5) | 0.0051 (5) | 0.0004 (4) |
C32 | 0.0244 (8) | 0.0154 (5) | 0.0253 (6) | −0.0021 (5) | 0.0000 (6) | −0.0001 (5) |
N30 | 0.0236 (8) | 0.0164 (5) | 0.0288 (6) | −0.0038 (5) | 0.0032 (5) | −0.0031 (4) |
C33 | 0.0246 (8) | 0.0140 (5) | 0.0246 (6) | −0.0019 (5) | 0.0030 (6) | 0.0015 (4) |
C34 | 0.0281 (9) | 0.0191 (6) | 0.0324 (7) | 0.0042 (6) | 0.0051 (7) | 0.0030 (5) |
C35 | 0.0376 (11) | 0.0228 (7) | 0.0339 (8) | 0.0040 (7) | 0.0090 (7) | −0.0024 (6) |
C36 | 0.0381 (11) | 0.0271 (7) | 0.0262 (7) | −0.0039 (7) | 0.0045 (7) | −0.0022 (6) |
C37 | 0.0300 (10) | 0.0339 (8) | 0.0272 (7) | −0.0004 (7) | −0.0016 (6) | 0.0016 (6) |
C38 | 0.0252 (9) | 0.0266 (7) | 0.0275 (7) | 0.0021 (6) | 0.0018 (6) | −0.0005 (6) |
O40 | 0.0235 (6) | 0.0160 (4) | 0.0234 (5) | −0.0033 (4) | −0.0009 (4) | 0.0017 (3) |
C40 | 0.0239 (8) | 0.0168 (5) | 0.0202 (5) | −0.0045 (5) | −0.0030 (5) | 0.0009 (4) |
C41 | 0.0292 (9) | 0.0292 (7) | 0.0226 (6) | −0.0039 (7) | 0.0024 (6) | 0.0063 (6) |
C42 | 0.0263 (9) | 0.0198 (6) | 0.0366 (8) | −0.0015 (6) | −0.0025 (7) | 0.0014 (5) |
C43 | 0.0298 (10) | 0.0280 (7) | 0.0242 (6) | −0.0034 (7) | −0.0070 (6) | −0.0036 (6) |
C11—O11 | 1.229 (2) | C31—C32 | 1.530 (2) |
C11—N20 | 1.352 (2) | C32—N30 | 1.447 (2) |
C11—C12 | 1.514 (3) | C32—C33 | 1.534 (3) |
C12—C13 | 1.515 (3) | C32—H321 | 0.98 (2) |
C12—H121 | 0.97 (2) | N30—H301 | 0.90 (4) |
C12—H122 | 0.93 (3) | C33—C38 | 1.390 (3) |
C13—C14 | 1.391 (2) | C33—C34 | 1.386 (2) |
C13—C18 | 1.401 (2) | C34—C35 | 1.397 (3) |
C14—C15 | 1.385 (3) | C34—H341 | 1.00 (3) |
C14—H141 | 0.89 (3) | C35—C36 | 1.384 (3) |
C15—F15 | 1.352 (2) | C35—H351 | 0.95 (3) |
C15—C16 | 1.381 (3) | C36—C37 | 1.388 (3) |
C16—C17 | 1.377 (3) | C36—H361 | 1.02 (3) |
C16—H161 | 0.95 (2) | C37—C38 | 1.397 (3) |
C17—F17 | 1.356 (2) | C37—H371 | 0.93 (3) |
C17—C18 | 1.380 (3) | C38—H381 | 1.00 (3) |
C18—H181 | 0.92 (3) | O40—C40 | 1.484 (2) |
C21—O21 | 1.232 (3) | C40—C42 | 1.516 (3) |
C21—N30 | 1.344 (2) | C40—C41 | 1.520 (2) |
C21—C22 | 1.531 (2) | C40—C43 | 1.522 (2) |
C22—N20 | 1.449 (2) | C41—H411 | 0.99 (3) |
C22—C23 | 1.525 (2) | C41—H412 | 0.92 (3) |
C22—H221 | 0.97 (3) | C41—H413 | 1.00 (2) |
N20—H201 | 0.92 (3) | C42—H421 | 0.98 (3) |
C23—H231 | 0.96 (3) | C42—H422 | 1.01 (3) |
C23—H232 | 1.02 (3) | C42—H423 | 0.99 (3) |
C23—H233 | 0.96 (3) | C43—H431 | 0.95 (3) |
C31—O31 | 1.208 (3) | C43—H432 | 1.04 (3) |
C31—O40 | 1.325 (2) | C43—H433 | 0.97 (3) |
O11—C11—N20 | 121.46 (15) | C31—C32—C33 | 105.25 (13) |
O11—C11—C12 | 121.90 (15) | N30—C32—H321 | 111.8 (12) |
N20—C11—C12 | 116.61 (16) | C31—C32—H321 | 107.7 (12) |
C13—C12—C11 | 110.49 (14) | C33—C32—H321 | 111.5 (12) |
C13—C12—H121 | 111.3 (14) | C21—N30—C32 | 122.26 (16) |
C11—C12—H121 | 104.9 (17) | C21—N30—H301 | 120 (2) |
C13—C12—H122 | 109.3 (16) | C32—N30—H301 | 118 (2) |
C11—C12—H122 | 111.1 (16) | C38—C33—C34 | 119.80 (16) |
H121—C12—H122 | 110 (2) | C38—C33—C32 | 119.96 (15) |
C14—C13—C18 | 119.80 (15) | C34—C33—C32 | 120.14 (15) |
C14—C13—C12 | 119.82 (16) | C33—C34—C35 | 119.82 (18) |
C18—C13—C12 | 120.37 (15) | C33—C34—H341 | 118.8 (15) |
C15—C14—C13 | 118.58 (17) | C35—C34—H341 | 121.2 (15) |
C15—C14—H141 | 118.4 (17) | C36—C35—C34 | 120.54 (18) |
C13—C14—H141 | 123.1 (17) | C36—C35—H351 | 122.7 (17) |
F15—C15—C16 | 118.12 (16) | C34—C35—H351 | 116.7 (17) |
F15—C15—C14 | 118.41 (17) | C37—C36—C35 | 119.66 (17) |
C16—C15—C14 | 123.47 (16) | C37—C36—H361 | 119.5 (16) |
C17—C16—C15 | 115.99 (16) | C35—C36—H361 | 120.9 (16) |
C17—C16—H161 | 120.8 (18) | C36—C37—C38 | 119.99 (19) |
C15—C16—H161 | 123.2 (18) | C36—C37—H371 | 119.5 (16) |
F17—C17—C16 | 117.73 (16) | C38—C37—H371 | 120.5 (17) |
F17—C17—C18 | 118.56 (16) | C33—C38—C37 | 120.19 (17) |
C16—C17—C18 | 123.70 (17) | C33—C38—H381 | 120.7 (16) |
C17—C18—C13 | 118.46 (16) | C37—C38—H381 | 119.1 (16) |
C17—C18—H181 | 120.8 (17) | C31—O40—C40 | 121.11 (15) |
C13—C18—H181 | 120.8 (17) | O40—C40—C42 | 101.71 (15) |
O21—C21—N30 | 123.21 (16) | O40—C40—C41 | 111.18 (12) |
O21—C21—C22 | 121.52 (15) | C42—C40—C41 | 111.18 (14) |
N30—C21—C22 | 115.18 (16) | O40—C40—C43 | 107.75 (12) |
N20—C22—C23 | 110.07 (16) | C42—C40—C43 | 111.48 (14) |
N20—C22—C21 | 112.17 (13) | C41—C40—C43 | 112.93 (17) |
C23—C22—C21 | 109.15 (13) | C40—C41—H411 | 111.4 (19) |
N20—C22—H221 | 106.1 (16) | C40—C41—H412 | 110.3 (16) |
C23—C22—H221 | 113.2 (15) | H411—C41—H412 | 109 (2) |
C21—C22—H221 | 106.2 (17) | C40—C41—H413 | 107.1 (14) |
C11—N20—C22 | 119.06 (15) | H411—C41—H413 | 108 (2) |
C11—N20—H201 | 120.6 (18) | H412—C41—H413 | 112 (2) |
C22—N20—H201 | 118.0 (18) | C40—C42—H421 | 108 (2) |
C22—C23—H231 | 112.0 (16) | C40—C42—H422 | 109.8 (18) |
C22—C23—H232 | 112.3 (13) | H421—C42—H422 | 114 (2) |
H231—C23—H232 | 105.2 (19) | C40—C42—H423 | 112.5 (18) |
C22—C23—H233 | 109.7 (15) | H421—C42—H423 | 105 (2) |
H231—C23—H233 | 111 (2) | H422—C42—H423 | 108 (3) |
H232—C23—H233 | 107 (2) | C40—C43—H431 | 107.4 (15) |
O31—C31—O40 | 127.59 (15) | C40—C43—H432 | 110.0 (17) |
O31—C31—C32 | 122.83 (15) | H431—C43—H432 | 111 (2) |
O40—C31—C32 | 109.47 (16) | C40—C43—H433 | 110.6 (14) |
N30—C32—C31 | 107.54 (15) | H431—C43—H433 | 110 (2) |
N30—C32—C33 | 112.62 (13) | H432—C43—H433 | 108 (2) |
O11—C11—C12—C13 | 69.49 (19) | O40—C31—C32—N30 | 157.57 (13) |
N20—C11—C12—C13 | −108.71 (15) | O31—C31—C32—C33 | 94.25 (18) |
C11—C12—C13—C14 | 114.09 (18) | O40—C31—C32—C33 | −82.15 (16) |
C11—C12—C13—C18 | −64.48 (19) | O21—C21—N30—C32 | 6.3 (2) |
C18—C13—C14—C15 | 0.5 (2) | C22—C21—N30—C32 | −170.14 (13) |
C12—C13—C14—C15 | −178.07 (15) | C31—C32—N30—C21 | −161.83 (14) |
C13—C14—C15—F15 | 179.15 (15) | C33—C32—N30—C21 | 82.7 (2) |
C13—C14—C15—C16 | −0.7 (3) | N30—C32—C33—C38 | 38.0 (2) |
F15—C15—C16—C17 | −179.56 (15) | C31—C32—C33—C38 | −78.90 (18) |
C14—C15—C16—C17 | 0.3 (3) | N30—C32—C33—C34 | −145.73 (15) |
C15—C16—C17—F17 | −179.28 (15) | C31—C32—C33—C34 | 97.40 (19) |
C15—C16—C17—C18 | 0.3 (3) | C38—C33—C34—C35 | −0.3 (2) |
F17—C17—C18—C13 | 179.13 (14) | C32—C33—C34—C35 | −176.63 (15) |
C16—C17—C18—C13 | −0.5 (3) | C33—C34—C35—C36 | 0.8 (3) |
C14—C13—C18—C17 | 0.0 (2) | C34—C35—C36—C37 | −0.8 (3) |
C12—C13—C18—C17 | 178.60 (14) | C35—C36—C37—C38 | 0.3 (3) |
O21—C21—C22—N20 | 149.97 (14) | C34—C33—C38—C37 | −0.1 (2) |
N30—C21—C22—N20 | −33.53 (18) | C32—C33—C38—C37 | 176.19 (16) |
O21—C21—C22—C23 | −87.76 (19) | C36—C37—C38—C33 | 0.1 (3) |
N30—C21—C22—C23 | 88.74 (17) | O31—C31—O40—C40 | −10.6 (2) |
O11—C11—N20—C22 | −3.6 (2) | C32—C31—O40—C40 | 165.54 (12) |
C12—C11—N20—C22 | 174.62 (12) | C31—O40—C40—C42 | 179.27 (13) |
C23—C22—N20—C11 | 168.83 (13) | C31—O40—C40—C41 | 60.84 (18) |
C21—C22—N20—C11 | −69.43 (17) | C31—O40—C40—C43 | −63.41 (18) |
O31—C31—C32—N30 | −26.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N20—H201···O21i | 0.92 (4) | 2.03 (3) | 2.933 (3) | 165 (3) |
Symmetry code: (i) x+1, y, z. |
? | c = 24.82 Å |
Mr = ? | V = ? Å3 |
Orthorhombic, P212121 | Z = ? |
a = 5.49 Å | ? radiation, λ = ? Å |
b = 15.72 Å | × × mm |
? | c = 24.82 Å |
Mr = ? | V = ? Å3 |
Orthorhombic, P212121 | Z = ? |
a = 5.49 Å | ? radiation, λ = ? Å |
b = 15.72 Å | × × mm |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C11 | 0.653786 | 0.280327 | 0.301097 | 0.021554 | |
O11 | 0.444798 | 0.279932 | 0.283292 | 0.026736 | 0.983 |
C12 | 0.869344 | 0.305128 | 0.266369 | 0.024996 | 0.987 |
H121 | 0.854684 | 0.271323 | 0.233122 | 0.013159 | |
H122 | 1.013142 | 0.291286 | 0.281878 | 0.015870 | |
C13 | 0.861638 | 0.399424 | 0.253819 | 0.020884 | 0.970 |
C14 | 1.042176 | 0.453008 | 0.274135 | 0.026011 | 0.992 |
H141 | 1.175792 | 0.430745 | 0.295641 | 0.019966 | |
C15 | 1.026849 | 0.539476 | 0.263173 | 0.028360 | 0.985 |
F15 | 1.199902 | 0.591124 | 0.283586 | 0.039666 | 0.976 |
C16 | 0.842425 | 0.575558 | 0.232653 | 0.027155 | 0.971 |
H161 | 0.828496 | 0.634330 | 0.226848 | 0.014640 | |
C17 | 0.669053 | 0.519773 | 0.213202 | 0.025575 | 0.983 |
F17 | 0.487692 | 0.552580 | 0.182672 | 0.034853 | 0.979 |
C18 | 0.671870 | 0.433185 | 0.222719 | 0.024568 | 0.988 |
H181 | 0.542577 | 0.397451 | 0.210249 | 0.011054 | |
C21 | 0.353834 | 0.323760 | 0.401515 | 0.019624 | 0.965 |
O21 | 0.133061 | 0.320232 | 0.411834 | 0.024058 | 0.958 |
C22 | 0.501039 | 0.243646 | 0.389292 | 0.020683 | 0.971 |
H221 | 0.388842 | 0.205961 | 0.372985 | 0.004120 | |
N20 | 0.702187 | 0.260749 | 0.353103 | 0.021694 | 0.981 |
H201 | 0.836229 | 0.269400 | 0.367445 | 0.014438 | |
C23 | 0.595514 | 0.206161 | 0.441911 | 0.028855 | 0.988 |
H231 | 0.466398 | 0.199981 | 0.468531 | 0.021642 | |
H232 | 0.717059 | 0.245615 | 0.457767 | 0.012924 | |
H233 | 0.676185 | 0.152372 | 0.435017 | 0.016243 | |
C31 | 0.539341 | 0.547990 | 0.401971 | 0.022773 | 0.989 |
O31 | 0.753567 | 0.538338 | 0.391560 | 0.027847 | 0.973 |
C32 | 0.378082 | 0.475690 | 0.422557 | 0.022442 | 0.979 |
H321 | 0.213625 | 0.484988 | 0.408488 | 0.006355 | |
N30 | 0.481259 | 0.396623 | 0.403270 | 0.024534 | 0.990 |
H301 | 0.626986 | 0.396810 | 0.393912 | 0.022370 | |
C33 | 0.383889 | 0.482715 | 0.483929 | 0.021908 | 0.988 |
C34 | 0.197494 | 0.524398 | 0.511101 | 0.027553 | 0.983 |
H341 | 0.056129 | 0.543155 | 0.491099 | 0.016134 | |
C35 | 0.210878 | 0.534632 | 0.566918 | 0.031062 | 0.969 |
H351 | 0.075952 | 0.559572 | 0.586479 | 0.026066 | |
C36 | 0.410176 | 0.504506 | 0.595816 | 0.030151 | 0.956 |
H361 | 0.419331 | 0.511175 | 0.632812 | 0.015617 | |
C37 | 0.595664 | 0.462950 | 0.568450 | 0.030673 | 0.962 |
H371 | 0.733251 | 0.436840 | 0.587331 | 0.011873 | |
C38 | 0.582661 | 0.452050 | 0.512687 | 0.026556 | 0.962 |
H381 | 0.711531 | 0.423191 | 0.493605 | 0.012720 | |
O40 | 0.413362 | 0.620000 | 0.401228 | 0.021908 | 0.978 |
C40 | 0.536410 | 0.703231 | 0.395598 | 0.020614 | 0.976 |
C41 | 0.675059 | 0.708789 | 0.342876 | 0.028129 | 0.987 |
H411 | 0.578854 | 0.697745 | 0.313113 | 0.012189 | |
H412 | 0.802169 | 0.670908 | 0.341296 | 0.011793 | |
H413 | 0.727411 | 0.766239 | 0.338908 | 0.020955 | |
C42 | 0.321761 | 0.764017 | 0.395839 | 0.028546 | 0.971 |
H421 | 0.382924 | 0.821599 | 0.390258 | 0.019891 | |
H422 | 0.214743 | 0.749950 | 0.367193 | 0.013121 | |
H423 | 0.227607 | 0.759285 | 0.429688 | 0.012847 | |
C43 | 0.697555 | 0.715952 | 0.444691 | 0.028465 | 0.990 |
H431 | 0.761512 | 0.774538 | 0.444199 | 0.008953 | |
H432 | 0.598748 | 0.703563 | 0.476436 | 0.019884 | |
H433 | 0.833885 | 0.678886 | 0.444133 | 0.019150 | |
IS1 | 0.541990 | 0.280107 | 0.291570 | 0.126651 | 0.586 |
IS2 | 0.749791 | 0.291380 | 0.285644 | 0.043669 | 0.874 |
IS3 | 0.683854 | 0.268179 | 0.333328 | 0.051617 | |
IS4 | 0.865881 | 0.347579 | 0.260719 | 0.067507 | |
IS5 | 0.958175 | 0.428105 | 0.264684 | 0.051314 | 0.752 |
IS6 | 0.771572 | 0.415462 | 0.239052 | 0.046530 | |
IS7 | 1.033825 | 0.500123 | 0.268166 | 0.063483 | |
IS8 | 1.124670 | 0.568635 | 0.274714 | 0.034035 | 0.375 |
IS9 | 0.917170 | 0.560906 | 0.245035 | 0.061699 | |
IS10 | 0.749719 | 0.545676 | 0.222260 | 0.062619 | |
IS11 | 0.582945 | 0.535331 | 0.198697 | 0.046489 | 0.460 |
IS12 | 0.670713 | 0.472146 | 0.218443 | 0.066325 | |
IS13 | 0.249943 | 0.322098 | 0.406369 | 0.021046 | 0.517 |
IS14 | 0.437506 | 0.278098 | 0.394559 | 0.041517 | |
IS15 | 0.418590 | 0.360917 | 0.402422 | 0.011072 | 0.420 |
IS16 | 0.605595 | 0.252541 | 0.370468 | 0.007323 | 0.403 |
IS17 | 0.550107 | 0.224158 | 0.416652 | 0.041522 | |
IS18 | 0.666826 | 0.542243 | 0.395767 | 0.041572 | 0.432 |
IS19 | 0.458714 | 0.511840 | 0.412263 | 0.058630 | 0.794 |
IS20 | 0.458802 | 0.594026 | 0.401495 | 0.032760 | 0.910 |
IS21 | 0.436906 | 0.430628 | 0.411574 | 0.046118 | 0.538 |
IS22 | 0.381021 | 0.479243 | 0.453548 | 0.052223 | |
IS23 | 0.291632 | 0.503349 | 0.497380 | 0.046851 | 0.979 |
IS24 | 0.495139 | 0.465546 | 0.500038 | 0.041651 | 0.599 |
IS25 | 0.203783 | 0.529161 | 0.537049 | 0.052640 | 0.860 |
IS26 | 0.324444 | 0.517463 | 0.583371 | 0.037855 | 0.813 |
IS27 | 0.500085 | 0.484357 | 0.582528 | 0.045676 | 0.716 |
IS28 | 0.588345 | 0.456854 | 0.537223 | 0.076387 | |
IS29 | 0.482311 | 0.666565 | 0.398080 | 0.035843 | 0.363 |
IS30 | 0.602957 | 0.705892 | 0.370298 | 0.023767 | 0.864 |
IS31 | 0.420481 | 0.736050 | 0.395730 | 0.034850 | 0.411 |
IS32 | 0.624968 | 0.710234 | 0.422595 | 0.023928 | 0.721 |
IS33 | 0.852049 | 0.487466 | 0.243249 | 0.240326 | |
IS34 | 0.396952 | 0.493611 | 0.539862 | 0.305167 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.030404 | 0.014135 | 0.020122 | −0.000966 | 0.000887 | −0.001950 |
O11 | 0.029907 | 0.027797 | 0.022505 | −0.001843 | −0.002471 | 0.001053 |
C12 | 0.032625 | 0.017420 | 0.024942 | 0.000807 | 0.004593 | −0.001037 |
C13 | 0.027195 | 0.017476 | 0.017983 | −0.000726 | 0.000496 | −0.001429 |
C14 | 0.031117 | 0.022408 | 0.024507 | −0.002479 | −0.001739 | −0.003684 |
C15 | 0.037320 | 0.020180 | 0.027579 | −0.006433 | −0.002347 | −0.004962 |
F15 | 0.046133 | 0.025239 | 0.047625 | −0.011627 | −0.011007 | −0.008326 |
C16 | 0.038810 | 0.017626 | 0.025028 | −0.003222 | −0.001347 | −0.000411 |
C17 | 0.035729 | 0.020233 | 0.020763 | −0.001715 | −0.003289 | 0.002305 |
F17 | 0.045290 | 0.027235 | 0.032034 | 0.000137 | −0.011165 | 0.008689 |
C18 | 0.033899 | 0.018860 | 0.020946 | −0.002359 | −0.002148 | 0.000915 |
C21 | 0.029086 | 0.011146 | 0.018640 | −0.003423 | −0.000497 | 0.000673 |
O21 | 0.029050 | 0.016004 | 0.027121 | −0.002958 | −0.000633 | −0.000759 |
C22 | 0.033071 | 0.009305 | 0.019673 | −0.002803 | −0.000383 | −0.000384 |
N20 | 0.029154 | 0.015828 | 0.020100 | −0.002225 | −0.001790 | −0.000181 |
C23 | 0.047507 | 0.015876 | 0.023183 | 0.001348 | −0.001679 | 0.005336 |
C31 | 0.034559 | 0.011859 | 0.021900 | −0.003051 | 0.000249 | −0.000604 |
O31 | 0.033440 | 0.014777 | 0.035322 | −0.001306 | 0.004700 | 0.000939 |
C32 | 0.033034 | 0.009441 | 0.024850 | −0.001893 | 0.001253 | 0.000327 |
N30 | 0.033971 | 0.009951 | 0.029680 | −0.003526 | 0.002765 | −0.003297 |
C33 | 0.031548 | 0.009724 | 0.024451 | −0.000097 | 0.003046 | 0.001227 |
C34 | 0.037886 | 0.013917 | 0.030856 | 0.004534 | 0.005264 | 0.001459 |
C35 | 0.044518 | 0.017621 | 0.031049 | 0.003957 | 0.008168 | −0.001540 |
C36 | 0.043845 | 0.021961 | 0.024648 | −0.001307 | 0.003621 | −0.001945 |
C37 | 0.038232 | 0.027862 | 0.025925 | 0.000366 | 0.000609 | 0.000718 |
C38 | 0.033831 | 0.020810 | 0.025027 | 0.002401 | 0.000592 | 0.000534 |
O40 | 0.032581 | 0.009296 | 0.023847 | −0.001985 | −0.001316 | 0.001340 |
C40 | 0.032058 | 0.010277 | 0.019506 | −0.004369 | −0.001907 | 0.001063 |
C41 | 0.038111 | 0.023188 | 0.023088 | −0.004106 | 0.001789 | 0.006886 |
C42 | 0.035056 | 0.013177 | 0.037404 | −0.000505 | −0.002751 | 0.001670 |
C43 | 0.039099 | 0.022184 | 0.024111 | −0.003921 | −0.007487 | −0.003900 |
IS33 | 0.095790 | 0.319835 | 0.305352 | −0.018250 | −0.022023 | 0.055111 |
IS34 | 0.103929 | 0.389800 | 0.421772 | −0.030586 | 0.027845 | 0.004137 |
Experimental details
(I) | (PHENIX) | |
Crystal data | ||
Chemical formula | C23H26F2N2O4 | ? |
Mr | 432.46 | ? |
Crystal system, space group | Orthorhombic, P212121 | Orthorhombic, P212121 |
Temperature (K) | 100 | ? |
a, b, c (Å) | 5.490 (5), 15.720 (15), 24.82 (2) | 5.49, 15.72, 24.82 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 |
V (Å3) | 2142 (4) | ? |
Z | 4 | ? |
Radiation type | Synchrotron, λ = 0.70000 Å | ?, λ = ? Å |
µ (mm−1) | 0.10 | ? |
Crystal size (mm) | 0.25 × 0.05 × 0.04 | × × |
Data collection | ||
Diffractometer | Marresearch MAR300 CCD diffractometer | ? |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski et al., 2003) | ? |
Tmin, Tmax | 0.974, 0.996 | ?, ? |
No. of measured, independent and observed reflections | 3216, 3216, 3157 [I > 2σ(I)] | ?, ?, ? (?) |
Rint | 0.061 | ? |
(sin θ/λ)max (Å−1) | 0.694 | – |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.112, 1.10 | ?, ?, ? |
No. of reflections | 3216 | ? |
No. of parameters | 384 | ? |
No. of restraints | 0 | ? |
H-atom treatment | All H-atom parameters refined | – |
Δρmax, Δρmin (e Å−3) | 0.35, −0.23 | ?, ? |
Computer programs: SERGUI, SERCAT APS beamline software, HKL-2000 (Otwinowski & Minor, 1997), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002).
D—H···A | D—H | H···A | D···A | D—H···A |
N20—H201···O21i | 0.92 (4) | 2.03 (3) | 2.933 (3) | 165 (3) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
Richard Gildea and Luc Bourhis are thanked for their help with using smtbx tools. This work was funded in part with federal funds from the National Cancer Institute under contract No. NO1-CO-12400. The X-ray data were collected at the SERCAT 22ID beamline of the Advanced Photon Source, Argonne National Laboratory; use of the APS was supported by the US Department of Energy under contract No. W-31-109-Eng-38.
References
Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. (2005). CCP4 Newslett. 42, contribution 8. Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D., Lunin, V. Y. & Urzhumtsev, A. (2007). Acta Cryst. D63, 1194–1197. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Lunin, V. Y., Muzet, N. & Urzhumtsev, A. (2004). Acta Cryst. D60, 260–274. Web of Science CrossRef CAS IUCr Journals Google Scholar
Barten, D. M., Meredith, J. E., Zaczek, R., Houston, J. G. & Albright, C. F. (2006). Drugs R D, 7, 87–97. CrossRef PubMed CAS Google Scholar
Bittner, T., Fuhrmann, M., Burgold, S., Jung, C. K. E., Volbracht, C., Steiner, H., Mitteregger, G., Kretzschmar, H. A., Haass, C. & Herms, J. (2009). J. Neurosci. 29, 10405–10409. Web of Science CrossRef PubMed CAS Google Scholar
Chapman, P. F., Falinska, A. M., Knevett, S. G. & Ramsay, M. F. (2001). Trends Genet. 17, 254–261. Web of Science CrossRef PubMed CAS Google Scholar
DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. Google Scholar
Dovey, H. F., et al. (2001). J. Neurochem. 76, 173–181. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Goedert, M. & Spillantini, M. G. (2006). Science, 314, 777–781. Web of Science CrossRef PubMed CAS Google Scholar
Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002). J. Appl. Cryst. 35, 126–136. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grottkau, B. E., Chen, X., Friedrich, C. C., Yang, X., Jing, W., Wu, Y., Cai, X., Liu, Y., Huang, Y. & Lin, Y. (2009). Int. J. Oral Sci. 1, 81–89. CrossRef PubMed Google Scholar
Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921. CrossRef CAS IUCr Journals Web of Science Google Scholar
Hansson, E. M., Lendahl, U. & Chapman, G. (2004). Semin. Cancer Biol. 14, 320–328. Web of Science CrossRef PubMed CAS Google Scholar
Huang, Y., Yang, X., Wu, Y., Jing, W., Cai, X., Tang, W., Liu, L., Liu, Y., Grottkau, B. E. & Lin, Y. (2010). Cell Prolif. 43, 147–156. Web of Science CrossRef CAS PubMed Google Scholar
Kan, T., Tominari, Y., Rikimaru, K., Morohashi, Y., Natsugari, H., Tomita, T., Iwatsubo, T. & Fukuyama, T. (2004). Bioorg. Med. Chem. Lett. 14, 1983–1985. Web of Science CrossRef PubMed CAS Google Scholar
Katoh, M. & Katoh, M. (2007). Int. J. Oncol. 30, 247–251. Web of Science PubMed CAS Google Scholar
Lanz, T. A., Himes, C. S., Pallante, G., Adams, L., Yamazaki, S., Amore, B. & Merchant, K. M. (2003). J. Pharmacol. Exp. Ther. 305, 864–871. Web of Science CrossRef PubMed CAS Google Scholar
Loane, D. J., Pocivavsek, A., Moussa, C., Thompson, R., Matsuoka, Y., aden, A. I., Rebeck, G. W. & Burns, M. P. (2009). Nat. Med. 15, 377–379. Web of Science CrossRef PubMed CAS Google Scholar
Lunin, V. Y., Afonine, P. V. & Urzhumtsev, A. G. (2002). Acta Cryst. A58, 270–282. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meents, A., Dittrich, B. & Gutmann, S. (2009). J. Synchrotron Rad. 16, 183–190. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morohashi, Y., Kan, T., Tominari, Y., Fuwa, H., Okamura, Y., Watanabe, N., Sato, C., Natsugari, H., Fukuyama, T., Iwatsubo, T. & Tomita, T. (2006). J. Biol. Chem. 281, 14670–14676. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Roberts, S. B. (2002). Adv. Drug Deliv. Rev. 54, 1579–1588. Web of Science CrossRef PubMed CAS Google Scholar
Schmidt, B., Baumann, S., Braun, H. A. & Larbig, G. (2006). Curr. Top. Med. Chem. 6, 377–392. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sjolund, J., Johansson, M., Manna, S., Norin, C., Pietras, A., Beckman, S., Nilsson, E., Ljungberg, B. & Axelson, H. (2008). J. Clin. Invest. 118, 217–228. Web of Science CrossRef PubMed Google Scholar
Tomita, T. (2008). Naunyn-Schmiedeberg's Arch. Pharmacol. 377, 295–300. Web of Science CrossRef CAS Google Scholar
Vassar, R. (2002). Adv. Drug Deliv. Rev. 54, 1589–1602. Web of Science CrossRef PubMed CAS Google Scholar
Waasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416–431. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wolfe, M. S. (2008). Curr. Alzheimer Res. 5, 158–164. Web of Science CrossRef PubMed CAS Google Scholar
Zhu, F., Li, T., Qiu, F., Fan, J., Zhou, Q., Ding, X., Nie, J. & Yu, X. (2010). Am. J. Pathol. 176, 650–659. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Alzheimer's disease, a progressive neurodegenerative disorder, is the most prominent contributor to senile dementia, a condition affecting millions of individuals worldwide. The disease is associated with the presence of extracellular plaques and intracellular neurofibrillary tangles in the brains of Alzheimer's sufferers (Goedert & Spillantini, 2006). Amyloid-β plaque peptides are produced as a result of the sequential proteolytic cleavages of a protein precursor, involving β- and γ-secretase enzymes (Chapman et al., 2001). A great amount of effort has been spent in exploring the use of the enzyme inhibitors and modulators aimed at preventing amyloid formation (Wolfe, 2008). An approach based on targeting γ-secretase (Roberts, 2002; Barten et al., 2006; Tomita, 2008) seems to be more promising (Wolfe, 2008) than an approach that has been focused on β-secretase (Vassar, 2002; Schmidt et al., 2006). This research generated a number of potent and specific inhibitors, among them N-[N-(3,5-difluorophenylacetyl)-S-alanyl]-(S)- phenylglycine tert-butyl ester (DAPT) (Dovey et al., 2001). DAPT, (I), has been shown to block amyloid-β production in human neuronal cultures, and its administration to transgenic mice resulted in the first successful reduction of amyloid level in vivo (Dovey et al., 2001; Lanz et al., 2003). Presenilin, a component of the γ-secretase complex, has been reported as a molecular target of DAPT (Morohashi et al., 2006). Besides being a γ-secretase inhibitor, DAPT is also an inhibitor of the Notch signaling pathway, involved in cell proliferation, differentiation and apoptosis (Hansson et al., 2004; Katoh & Katoh, 2007). Due to this inhibition property, future clinical applications of DAPT for Alzheimer's disease treatment are rather unlikely. However, it is still widely used as a valuable tool in a variety of biomedical investigations (Sjolund et al., 2008; Bittner et al., 2009; Huang et al., 2010; Zhu et al., 2010), with new and interesting features and possible novel applications emerging (Grottkau et al., 2009; Loane et al., 2009).
The single molecule of DAPT dipeptide in the asymmetric unit of (I) is in a compact conformation (Fig. 1), in which the main-chain torsion angles lie in the allowed regions of the Ramachandran plot, ϕ = -69.5°, ψ = 33.6° for Ala and ϕ= -161.7°, ψ = 157.6° for PheGly, so that the former residue corresponds to the α-helical and the latter to the extended β-conformation.
There is only a single intermolecular hydrogen bond between the Ala N20—H group and carbonyl atom O21 of the Ala residue related by translation parallel to a (Fig. 2a). The remaining N and O atoms of DAPT are not engaged in hydrogen bonds.
All H atoms were identified from the difference Fourier synthesis. Two modes of their refinement were applied, firstly using the customary `riding' model in geometrically idealized positions utilizing the appropriate rigid-body constraints in SHELXL (Sheldrick, 2008), and secondly refining all their positional and isotropic U parameters without any constraints or restraints. The R(all) factors for such constrained and free refinement were comparable (0.0408 and 0.0399, respectively). The root mean-square deviation (r.m.s.d.) of all 26 bond lengths to all H atoms between the two models was 0.036 Å and the r.m.s.d. of all bond directions was 4.0°, with only one outlier differing by 14.6° from the idealized bond direction. The single outlier corresponds to H201, an H atom of the amide N atom, which is engaged in the only (intermolecular) hydrogen bond in the structure. Its distortion from the direction exactly bisecting the C11—N20—C22 angle is clearly caused by the tendency of the hydrogen bond to be linear (Fig. 2b). Excluding it from the statistics of the bond directions resulted in an r.m.s.d. for the 25 bond directions of 2.8°. The model after the non-constrained refinement of H atoms was accepted as the result of the SHELXL minimization.
The difference Fourier synthesis computed at the end of the SHELXL refinement showed relatively strong residual density maxima located between bonded atoms (near bond centers) for almost all bonds.These features are due to bonding effects and their visibility is warranted by the combination of three facts: high resolution of the data, high model quality (low R factor) and low B factors (B < 5 Å2) (Afonine et al., 2004). A multipolar model (Hansen & Coppens, 1978) is appropriate to use in such cases, since it accounts for the effects of atom interations. It has been demonstrated that a simplified interatomic scatterers (IAS) model is capable of producing results of similar quality using fewer refinable parameters (Afonine et al., 2004, 2007). An additional refinement was therefore undertaken with the program PHENIX (Afonine et al., 2005), which supports refinement with the IAS option.
The PHENIX procedure started with the independent atom model (IAM), which included completely unrestrained refinement of coordinates, anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms. The occupancies of the H atoms were allowed to refine, to account for the possible effect of H-atom abstraction due to radiation damage (Meents et al., 2009). This resulted in R(all) = 0.0411. For comparison, an analogous refinement was attempted where the only difference was that a riding model (of the same character as previously with SHELXL) was used for the H atoms instead of refining them freely. Refinement using a riding model resulted in an increased R(all) of 0.0444. The model-phased residual (Fobs - Fcalc) map computed for the best IAM model (with H atoms refined freely) showed significant positive electron-density peaks around covalent bond centers for almost all bonds, as well as negative stick-like electron-density blobs at the centers of the aromatic rings oriented perpendicular to the ring plane (Fig. 3a). These features were accounted for by the addition of IAS to those bonds that showed pronounced residual electron density, and their occupancies and isotropic displacement parameters were refined (anisotropic displacement parameters were refined for aromatic ring-centered IAS). This procedure resulted in R(all) = 0.0325 and considerably cleared up the difference density map (Fig. 3b). The distribution of the values of the grid points of this map is shown in Fig. 4. Before the introduction of IAS, the map values ranged between -0.214 and 0.266 eÅ-3 (r.m.s.d. 0.063 e Å-3), and afterwards the map was flatter with a range of values between -0.155 and 0.154 e Å-3 (r.m.s.d. 0.037 e Å-3). The results of the PHENIX refinement should be treated as final, but are presented in the Supplementary Material, since the refined parameters are not accompanied by standard uncertainties.