organic compounds
2-Propynyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside
aApplied Chemical Sciences, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan, and bDepartment of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
*Correspondence e-mail: bruce.grindley@dal.ca
The 2-propynyl group in the title compound, C17H22O10, adopts an exoanomeric conformation, with the acetylenic group gauche with respect to position C1. Comparison of 13C NMR chemical shifts from solution and the solid state suggest that the acetylenic group also adopts a conformation anti to C1 in solution. The pyranose ring adopts a 4C1 conformation. Of the three secondary O-acetyl groups, that on position O4, flanked by two equatorial groups, adopts a syn conformation, in agreement with recent generalizations [González-Outeiriño, Nasser & Anderson (2005). J. Org. Chem. 70, 2486–2493]. The acetyl group on position O3 adopts a gauche conformation, also in agreement with the recent generalizations, but that on position O2 adopts a syn conformation, not in agreement with the recent generalizations.
Comment
2-Propenyl groups attached to via many of the chemistries available to this group, such as click chemistry (van der Peet et al., 2006; Balou et al., 2009; Müller & Brunsveld, 2009; Perez-Balderas et al., 2009; Ermeydan et al., 2010), Sonagasira coupling (Roy et al., 2000; Perez-Balderas & Santoyo-González, 2001; Casas-Solvas et al., 2009), cyclotrimerization (Kaufman & Sidhu, 1982; Dominique et al., 2000) and andoxidative coupling (Roy et al., 2001; Belghiti et al., 2002). Despite this strong interest, particularly directed at 2-propynyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside, (I), no structural data are available for any member of this class of compounds. Thus, we present here the structure of (I).
as aglycones have become important reactive sites for the creation of larger carbohydrate-bearing moleculesThe pyranose ring of (I) adopts a standard slightly distorted 4C1 chair conformation (Fig. 1), with torsion angles ranging from 52.4 (2) to 61.0 (2)° (Table 1). These values resemble those from the cluster of eight α-mannopyranose structures selected from the Cambridge Structural Database (Allen, 2002) by Allen & Fortier (1993) (σ = 3.2° with the same torsion angles), but are more similar to those of two acylated derivatives, methyl 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside (Shalaby et al., 1994) (σ = 2.0° for molecule A and 2.4° for molecule B) and methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside (Matijašić et al., 2003) (σ = 2.2°). The ring-puckering parameters (Cremer & Pople, 1975) for (I) [Q = 0.573 (2) Å, θ = 5.9 (2)° and φ = 259 (2)°] resemble those of other mannose derivatives (Matijašić et al., 2003). The C—C and saturated C—O bond lengths agree with the values reported for other (Allen et al., 1987; Jeffrey, 1990; Allen & Fortier, 1993). The C5—C6 rotamer adopted was the gt conformer (Table 1), similar to that observed for methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside (Matijašić et al., 2003), but Allen & Fortier (1993) found that α-mannopyranose derivatives were split 5:3 in favour of the gg over the gt conformer in the solid state.
The C1—O1 bond length is in agreement with previous observations (Allen et al., 1987; Jeffrey, 1990; Shalaby et al., 1994). The aglycone is in the exoanomeric conformation (Lemieux et al., 1979), gauche to O5 and anti to C2, as for the other alkyl O-acylated α-mannopyranosides (Shalaby et al., 1994; Matijašić et al., 2003) and indeed for most alkyl α-pyranosides.
Atom C8, the first acetylenic C atom, is gauche to atom C1 [torsion angle = 60.7 (3)°], giving it a syn-1,3 relationship with atom H1. The two alternative staggered positions are the −gauche position, where atom C8 would have a syn-1,3 relationship with atom O5, and the anti position, where atom C8 would have no syn-1,3 relationships. Presumably, a syn-1,3 relationship between an H atom and a linear two-coordinate C atom is not sterically destabilizing. This arrangement of the propargyl group leaves it sterically unencumbered, consistent with its excellent reactivity as mentioned above.
Evidence for the preferences of (I) in solution can be obtained by comparing the solution-state (CDCl3) 13C NMR chemical shifts with those from the solid state (Table 2). Most of the chemical shifts are very similar in the two phases: the standard deviation of the differences between the chemical shifts in the two phases for the four acetyl carbonyl C atoms is 0.92 p.p.m., that for the four acetyl methyl C atoms is 0.74 p.p.m., and that for atoms C2, C3, C5, and C6 is 0.94 p.p.m. Atoms C1 (2.9 p.p.m.), C7 (2.9 p.p.m.), and C4 (2.9 p.p.m.) differ more. The relatively shielded position of atom C1 in the solid state is consistent with the well known γ-gauche shielding effect of its gauche conformation if the solution conformational assembly includes both gauche and anti conformers. The shielded position of atom C7 may arise from differences in the geometry of the gauche and anti conformers, while the effects on atom C4 are probably due to differences in the acetyl group conformations (see below).
The conformations of acetate groups require two torsion angles to be fully described, viz. the H—C—O—C and C—O—C=O torsion angles. The size of the latter is dictated, by resonance within the ester group, to be 0 or 180°, the s-cis or s-trans conformers. strongly prefer the s-cis conformer in the solid state (Leung & Marchessault, 1974; González-Outeiriño et al., 2005) and in solution (Grindley, 1982), and the four acetate groups of (I) are all in the s-cis conformation. However, all the carbonyl O atoms are disordered to varying extents in directions consistent with libration about the C—O bond. Only one of the acetate methyl C atoms was refined with a two-position disordered model, but the remainder had larger displacement ellipsoids in directions consistent with libration about the carbohydrate-O—carbonyl-C bond. Because the solid-state 13C NMR spectrum gives single lines for every C atom, the disorder is fast on the NMR timescale.
González-Outeiriño et al. (2005), based on analyses of structures from the Cambridge Structural Database, have suggested that secondary acetates with two adjacent equatorial substituents will prefer to adopt conformations with H—C—O—C torsion angles close to 0°, i.e. with the C—H bond with the O—C bond. having only one adjacent equatorial substitutent normally adopt conformations with H—C—O—C torsion angles in the range 20–50°. These concepts were originally proposed by Mathieson (1965) and elaborated by Schweizer & Dunitz (1982). It is thought that the preference arises from the fact that the destabilization accompanying gauche conformations, because of repulsive parallel 1,3 interactions, is larger than that due to the eclipsing interaction of the C—H and O—C bonds (González-Outeiriño et al., 2005).
Compound (I) has three secondary acetate groups providing examples of three of the four possibilities, namely an axial acetate with one flanking equatorial group, an equatorial acetate with one flanking equatorial group and an equatorial acetate with two flanking equatorial groups. The equatorial acetate with two flanking equatorial groups, on atom O4, has an H—C—O—C torsion angle of −4.4°, in agreement with the concepts described above (González-Outeiriño et al., 2005). The equatorial acetate with one flanking equatorial group, on atom O3, has H—C—O—C = 36.1° turned towards atom C2, similar to the 330 cases of this type where the average angle was 27.8° (González-Outeiriño et al., 2005). However, the axial acetate with one flanking equatorial group, on atom O2, has H—C—O—C = −0.5°. This eclipsing arrangement is unusual for this class. González-Outeiriño et al. (2005) indicated that most of the 302 members of the class that they selected from the Cambridge Structural Database were turned away from the equatorial substituent but a substantial minority were not.
The conformations of the acetate groups in solution can be investigated by measuring the size of the 3JC,H values between the sugar H atoms and the carbonyl C atoms, using the Karplus relationship developed by Andersen and co-workers (González-Outeiriño et al., 2005; Jonsson et al., 2006): 3JC,H = 3.1cos2θ − 1.25cosθ + 2.35. 3JC,H values were measured using the J-HMBC method of Meissner & Sørensen (2001). The chemical shifts and coupling constants observed in the relevant sections of the spectra are given in Table 3. The 3JC,H values for atoms H2 and H4 were 3.6 Hz, and the value for atom H3 was 3.2 Hz, which yield, from the Karplus equation above, θ values of 30 and 40°, respectively, which are population-weighted averages of the values from the conformations present. For atom H3, the value of 40° is very similar to the X-ray diffraction value (36.4°), as expected. For atom H2, because the acetate was expected to have rotated away from the equatorial group on atom C3, the solution value matches expectation (González-Outeiriño et al., 2005) better than the solid-state value. For atom H4, because an eclipsed conformation was expected, the solution value does not match expectation as well as the X-ray value.
Experimental
To a stirred solution of peracetylated mannose (10.76 g, 0.028 mol) and propargyl alcohol (6.6 ml, 0.11 mol) in dry CH2Cl2 (80 ml) was added BF3 etherate (46.5%, 37.8 ml, 0.14 mol) dropwise at 273 K. The resulting reaction mixture was stirred in the dark for 26 h and then carefully treated with a cold saturated aqueous solution of Na(HCO3) (200 ml). The organic phase was separated and washed with H2O (100 ml), dried (MgSO4) and filtered. The filtrate was then concentrated to a brown residue, which was crystallized from a CH3OH–EtOAc–hexane mixture (1:1:1 v/v/v) to afford colourless crystals of (I) [yield 7.35 g, 68%; m.p. 375–376 K; literature values 372–378 K (Kaufman & Sidhu, 1982) and 373 K (Roy et al., 2000)]. 1H and 13C NMR data for (I) are similar to those reported previously (Roy et al., 2000).
Crystal data
|
Refinement
|
|
|
|
Some low-angle reflections were eliminated automatically by the software because of streaking and because high local background scatter made their intensities difficult to estimate accurately. All carbonyl O atoms were disordered to varying extents, in directions consistent with libration about the C—O bond. Each acetate O atom was refined with a two-position disordered model. Occupancies for the major components refined to 0.616 (1) for O7, 0.57 (9) for O9 and 0.82 (7) for O10. In addition, one of the complete acetate groups (atoms O8, C12 and C13) had to be refined with a two-position disordered model; the occupancy for the major component refined to 0.910 (6). The C12A/B—O3 bond lengths in the disordered group were restrained to a target value of 1.340 (15) Å and all atoms of the A/B pairs of this disordered group were assigned equal anisotropic displacement parameters. An additional rigid-bond restraint was placed on the C10—O7A bond, and its length was restrained to 1.180 (15) Å. The remaining acetate groups had C atoms with larger displacement ellipsoids in directions consistent with libration, but the disorder was not modelled. All H atoms were placed in geometrically calculated positions and treated as riding, with C—H = 0.96–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise. The H atoms on C11 and C17 were modeled as idealized disordered methyl groups, with the two sets of positions rotated by 60° and occupancies set at 0.5 for each group. The of the structure could not be determined from the X-ray data, since Mo radiation was used and there were no heavy atoms present in the molecule. Friedel opposites were merged in the final The is known from the starting material used and the product is shown with the known correct configuration.
Data collection: CrystalClear (Rigaku/MSC, 2006); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S010827011005225X/gd3372sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S010827011005225X/gd3372Isup2.hkl
To a stirred solution of peracetylated mannose (10.76 g, 0.028 mol) and propargyl alcohol (6.6 ml, 0.11 mol) in dry CH2Cl2 (80 ml) was added BF3 etherate (46.5%, 37.8 ml, 0.14 mol) dropwise at 273 K. The resulting reaction mixture was stirred in the dark for 26 h and then carefully treated with a cold saturated aqueous solution of Na(HCO3) (200 ml). The organic phase was separated and washed with H2O (100 ml), dried (MgSO4) and filtered. The filtrate was then concentrated to a brown residue, which was crystallized from a CH3OH–EtOAc–hexane mixture (1:1:1 v/v) to afford colourless crystals [yield 7.35 g, 68%; m.p. 375–376 K; literature values 372–378 K (Kaufman & Sidhu, 1982); 373 K (Roy et al., 2000)]. 1H and 13C NMR data are similar to those reported previously (Roy et al., 2000).
Some low-angle reflections were eliminated automatically by the software because of streaking and because high local background scatter made their intensities difficult to estimate accurately. All carbonyl O atoms were disordered to varying extents, in directions consistent with libration about the C—O bond. Each acetate O atom was refined with a two-position disordered model. Occupancies for the major components refined to 0.616 (1) for O7, 0.57 (9) for O9 and 0.82 (7) for O10. In addition, one of the complete acetate groups (atoms O8, C12 and C13) had to be refined with a two-position disordered model; the occupancy for the major component refined to 0.910 (6). The C12A/B—O3 bond lengths in the disordered group were restrained to a target value of 1.340 (15) Å and all atoms of the A/B pairs of this disordered group were assigned equal anisotropic displacement parameters. An additional rigid-bond restraint was placed on the C10—O7A bond, and its length was restrained to 1.180 (15) Å. The remaining acetate groups had C atoms with larger displacement ellipsoids in directions consistent with libration, but the disorder was not modelled. All H atoms were placed in geometrically calculated positions and not refined; Uiso(H) = 1.2Ueq(parent atom), or 1.5Ueq(C) for methyl H. The
of the structure could not be determined from the X-ray data, since Mo radiation was used and there were no heavy atoms present in the molecule. Friedel opposites were merged in the final The is known from the starting material used and the product is shown with the known correct configuration.Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C17H22O10 | F(000) = 816 |
Mr = 386.35 | Dx = 1.249 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5983 reflections |
a = 9.6848 (5) Å | θ = 2.9–72.9° |
b = 10.5107 (5) Å | µ = 0.10 mm−1 |
c = 20.1765 (13) Å | T = 298 K |
V = 2053.8 (2) Å3 | Prism, colourless |
Z = 4 | 0.28 × 0.27 × 0.24 mm |
Rigaku R-AXIS RAPID diffractometer | 2396 independent reflections |
Radiation source: fine-focus sealed tube | 2255 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 10.00 pixels mm-1 | θmax = 26.5°, θmin = 2.9° |
ω scans | h = −12→9 |
Absorption correction: multi-scan (ABSCOR; Higashi 1995) | k = −13→9 |
Tmin = 0.708, Tmax = 0.979 | l = −24→25 |
11076 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0724P)2 + 0.0949P] where P = (Fo2 + 2Fc2)/3 |
2396 reflections | (Δ/σ)max < 0.001 |
284 parameters | Δρmax = 0.15 e Å−3 |
4 restraints | Δρmin = −0.13 e Å−3 |
C17H22O10 | V = 2053.8 (2) Å3 |
Mr = 386.35 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.6848 (5) Å | µ = 0.10 mm−1 |
b = 10.5107 (5) Å | T = 298 K |
c = 20.1765 (13) Å | 0.28 × 0.27 × 0.24 mm |
Rigaku R-AXIS RAPID diffractometer | 2396 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi 1995) | 2255 reflections with I > 2σ(I) |
Tmin = 0.708, Tmax = 0.979 | Rint = 0.016 |
11076 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 4 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.15 e Å−3 |
2396 reflections | Δρmin = −0.13 e Å−3 |
284 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | −0.13407 (17) | 0.37590 (17) | 0.15731 (7) | 0.0741 (4) | |
O2 | 0.1923 (2) | 0.21761 (15) | 0.15202 (8) | 0.0797 (5) | |
O3 | 0.23755 (16) | 0.35342 (16) | 0.26957 (6) | 0.0715 (4) | |
O4 | 0.24223 (17) | 0.59714 (15) | 0.21487 (8) | 0.0698 (4) | |
O5 | 0.05185 (16) | 0.42245 (15) | 0.08801 (7) | 0.0673 (4) | |
O6 | 0.27215 (18) | 0.56659 (15) | 0.04280 (8) | 0.0763 (4) | |
O7A | 0.1740 (6) | 0.0541 (5) | 0.2215 (4) | 0.139 (3) | 0.616 (10) |
O7B | 0.1025 (12) | 0.0384 (6) | 0.1616 (6) | 0.141 (5) | 0.384 (10) |
O8A | 0.0745 (3) | 0.2960 (3) | 0.34246 (11) | 0.0991 (9) | 0.910 (6) |
O8B | 0.084 (3) | 0.383 (4) | 0.3466 (11) | 0.0991 (9) | 0.090 (6) |
O9A | 0.4643 (17) | 0.5685 (19) | 0.1849 (14) | 0.106 (4) | 0.57 (9) |
O9B | 0.4660 (18) | 0.5561 (18) | 0.204 (3) | 0.091 (6) | 0.43 (9) |
O10A | 0.3793 (8) | 0.7542 (11) | 0.0316 (12) | 0.098 (3) | 0.82 (7) |
O10B | 0.384 (3) | 0.731 (5) | 0.058 (5) | 0.098 (9) | 0.18 (7) |
C1 | −0.0141 (2) | 0.3299 (2) | 0.12698 (11) | 0.0680 (5) | |
H1 | −0.0388 | 0.2577 | 0.0986 | 0.082* | |
C2 | 0.0776 (2) | 0.2822 (2) | 0.18294 (11) | 0.0675 (5) | |
H2 | 0.0264 | 0.2237 | 0.2117 | 0.081* | |
C3 | 0.1334 (2) | 0.3932 (2) | 0.22270 (9) | 0.0620 (5) | |
H3 | 0.0575 | 0.4350 | 0.2463 | 0.074* | |
C4 | 0.2023 (2) | 0.48740 (19) | 0.17680 (10) | 0.0610 (4) | |
H4 | 0.2830 | 0.4489 | 0.1554 | 0.073* | |
C5 | 0.0979 (2) | 0.5312 (2) | 0.12499 (10) | 0.0648 (5) | |
H5 | 0.0186 | 0.5698 | 0.1475 | 0.078* | |
C6 | 0.1558 (3) | 0.6252 (2) | 0.07573 (12) | 0.0744 (6) | |
H6A | 0.0857 | 0.6480 | 0.0435 | 0.089* | |
H6B | 0.1851 | 0.7020 | 0.0984 | 0.089* | |
C7 | −0.2372 (3) | 0.4169 (3) | 0.11105 (14) | 0.0841 (6) | |
H7A | −0.1999 | 0.4853 | 0.0842 | 0.101* | |
H7B | −0.3158 | 0.4501 | 0.1353 | 0.101* | |
C8 | −0.2837 (3) | 0.3141 (3) | 0.06754 (13) | 0.0898 (7) | |
C9 | −0.3157 (5) | 0.2328 (4) | 0.03238 (17) | 0.1204 (12) | |
H9 | −0.3414 | 0.1673 | 0.0040 | 0.144* | |
C10 | 0.2150 (4) | 0.0985 (3) | 0.1648 (2) | 0.1130 (11) | |
C11 | 0.3332 (5) | 0.0454 (4) | 0.1267 (2) | 0.1301 (14) | |
H11A | 0.4104 | 0.1025 | 0.1296 | 0.195* | 0.50 |
H11B | 0.3071 | 0.0352 | 0.0811 | 0.195* | 0.50 |
H11C | 0.3585 | −0.0358 | 0.1449 | 0.195* | 0.50 |
H11D | 0.3070 | −0.0345 | 0.1075 | 0.195* | 0.50 |
H11E | 0.4102 | 0.0327 | 0.1560 | 0.195* | 0.50 |
H11F | 0.3588 | 0.1037 | 0.0922 | 0.195* | 0.50 |
C12A | 0.1935 (3) | 0.3115 (3) | 0.32929 (11) | 0.0728 (7) | 0.910 (6) |
C13A | 0.3126 (6) | 0.2862 (5) | 0.3747 (2) | 0.1039 (13) | 0.910 (6) |
H13A | 0.2785 | 0.2648 | 0.4180 | 0.156* | 0.910 (6) |
H13B | 0.3693 | 0.3609 | 0.3776 | 0.156* | 0.910 (6) |
H13C | 0.3663 | 0.2167 | 0.3577 | 0.156* | 0.910 (6) |
C12B | 0.203 (4) | 0.375 (3) | 0.3323 (8) | 0.0728 (7) | 0.090 (6) |
C13B | 0.304 (7) | 0.340 (6) | 0.376 (3) | 0.1039 (13) | 0.090 (6) |
H13D | 0.2632 | 0.3197 | 0.4181 | 0.156* | 0.090 (6) |
H13E | 0.3684 | 0.4087 | 0.3815 | 0.156* | 0.090 (6) |
H13F | 0.3522 | 0.2665 | 0.3594 | 0.156* | 0.090 (6) |
C14 | 0.3784 (3) | 0.6246 (3) | 0.21930 (12) | 0.0758 (6) | |
C15 | 0.3999 (4) | 0.7394 (3) | 0.26100 (17) | 0.1015 (9) | |
H15A | 0.4970 | 0.7559 | 0.2651 | 0.152* | |
H15B | 0.3610 | 0.7254 | 0.3041 | 0.152* | |
H15C | 0.3556 | 0.8112 | 0.2406 | 0.152* | |
C16 | 0.3794 (3) | 0.6398 (3) | 0.02660 (11) | 0.0725 (6) | |
C17 | 0.4921 (3) | 0.5656 (3) | −0.00432 (15) | 0.0945 (8) | |
H17A | 0.4676 | 0.4771 | −0.0048 | 0.142* | 0.50 |
H17B | 0.5755 | 0.5769 | 0.0207 | 0.142* | 0.50 |
H17C | 0.5063 | 0.5946 | −0.0489 | 0.142* | 0.50 |
H17D | 0.5654 | 0.6219 | −0.0172 | 0.142* | 0.50 |
H17E | 0.4575 | 0.5221 | −0.0427 | 0.142* | 0.50 |
H17F | 0.5266 | 0.5044 | 0.0269 | 0.142* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0633 (8) | 0.0878 (10) | 0.0712 (7) | −0.0006 (8) | 0.0038 (7) | −0.0087 (8) |
O2 | 0.0907 (11) | 0.0596 (8) | 0.0889 (9) | 0.0141 (8) | 0.0156 (9) | 0.0046 (7) |
O3 | 0.0679 (8) | 0.0856 (10) | 0.0610 (7) | 0.0073 (8) | 0.0073 (6) | 0.0117 (7) |
O4 | 0.0651 (8) | 0.0637 (8) | 0.0806 (8) | 0.0022 (7) | 0.0101 (7) | −0.0088 (7) |
O5 | 0.0751 (9) | 0.0667 (8) | 0.0601 (7) | 0.0028 (7) | 0.0060 (6) | 0.0006 (6) |
O6 | 0.0875 (10) | 0.0618 (8) | 0.0795 (8) | 0.0043 (8) | 0.0209 (8) | 0.0086 (7) |
O7A | 0.133 (4) | 0.092 (3) | 0.192 (6) | 0.017 (3) | 0.027 (4) | 0.065 (4) |
O7B | 0.178 (8) | 0.077 (3) | 0.167 (9) | −0.050 (4) | 0.037 (7) | −0.016 (4) |
O8A | 0.0951 (14) | 0.125 (2) | 0.0772 (10) | −0.0262 (15) | 0.0167 (10) | 0.0165 (13) |
O8B | 0.0951 (14) | 0.125 (2) | 0.0772 (10) | −0.0262 (15) | 0.0167 (10) | 0.0165 (13) |
O9A | 0.074 (4) | 0.139 (9) | 0.105 (7) | −0.019 (5) | 0.026 (4) | −0.033 (4) |
O9B | 0.061 (4) | 0.084 (6) | 0.128 (13) | 0.010 (4) | 0.016 (6) | −0.023 (6) |
O10A | 0.110 (2) | 0.069 (2) | 0.116 (6) | −0.015 (2) | 0.026 (3) | 0.004 (3) |
O10B | 0.111 (10) | 0.077 (10) | 0.11 (2) | −0.037 (10) | 0.007 (12) | 0.007 (14) |
C1 | 0.0712 (12) | 0.0656 (11) | 0.0672 (10) | 0.0005 (10) | 0.0057 (10) | −0.0058 (9) |
C2 | 0.0720 (12) | 0.0619 (11) | 0.0686 (10) | −0.0016 (10) | 0.0110 (10) | 0.0067 (9) |
C3 | 0.0603 (9) | 0.0666 (11) | 0.0590 (9) | 0.0059 (9) | 0.0088 (8) | 0.0046 (8) |
C4 | 0.0622 (10) | 0.0574 (9) | 0.0635 (9) | 0.0041 (8) | 0.0089 (9) | 0.0007 (8) |
C5 | 0.0685 (11) | 0.0584 (10) | 0.0676 (10) | 0.0101 (9) | 0.0083 (9) | 0.0024 (8) |
C6 | 0.0829 (14) | 0.0620 (11) | 0.0783 (12) | 0.0125 (11) | 0.0116 (11) | 0.0126 (10) |
C7 | 0.0734 (13) | 0.0866 (15) | 0.0922 (14) | 0.0072 (13) | −0.0042 (12) | −0.0026 (13) |
C8 | 0.0880 (17) | 0.0994 (18) | 0.0819 (13) | 0.0077 (15) | −0.0188 (13) | −0.0028 (15) |
C9 | 0.128 (3) | 0.125 (3) | 0.1077 (19) | 0.008 (2) | −0.044 (2) | −0.020 (2) |
C10 | 0.103 (2) | 0.0585 (13) | 0.177 (3) | 0.0032 (14) | 0.021 (2) | 0.0063 (18) |
C11 | 0.126 (3) | 0.085 (2) | 0.179 (4) | 0.038 (2) | −0.008 (3) | −0.032 (2) |
C12A | 0.0902 (16) | 0.0696 (17) | 0.0586 (10) | −0.0003 (15) | 0.0077 (11) | 0.0028 (11) |
C13A | 0.106 (2) | 0.134 (4) | 0.0724 (13) | 0.029 (3) | 0.0011 (15) | 0.022 (2) |
C12B | 0.0902 (16) | 0.0696 (17) | 0.0586 (10) | −0.0003 (15) | 0.0077 (11) | 0.0028 (11) |
C13B | 0.106 (2) | 0.134 (4) | 0.0724 (13) | 0.029 (3) | 0.0011 (15) | 0.022 (2) |
C14 | 0.0663 (12) | 0.0782 (14) | 0.0827 (13) | −0.0086 (12) | 0.0085 (11) | 0.0008 (12) |
C15 | 0.0894 (19) | 0.100 (2) | 0.1146 (19) | −0.0182 (16) | 0.0070 (17) | −0.0236 (17) |
C16 | 0.0775 (13) | 0.0783 (14) | 0.0618 (10) | −0.0030 (12) | −0.0011 (10) | 0.0112 (11) |
C17 | 0.0869 (16) | 0.1025 (19) | 0.0943 (15) | 0.0078 (16) | 0.0126 (15) | 0.0124 (16) |
O1—C1 | 1.399 (3) | C6—H6A | 0.9700 |
O1—C7 | 1.433 (3) | C6—H6B | 0.9700 |
O2—C10 | 1.297 (3) | C7—C8 | 1.463 (4) |
O2—C2 | 1.444 (3) | C7—H7A | 0.9700 |
O3—C12B | 1.326 (14) | C7—H7B | 0.9700 |
O3—C12A | 1.352 (3) | C8—C9 | 1.153 (5) |
O3—C3 | 1.444 (3) | C9—H9 | 0.9300 |
O4—C14 | 1.353 (3) | C10—C11 | 1.488 (5) |
O4—C4 | 1.439 (3) | C11—H11A | 0.9600 |
O5—C1 | 1.404 (3) | C11—H11B | 0.9600 |
O5—C5 | 1.436 (3) | C11—H11C | 0.9600 |
O6—C16 | 1.334 (3) | C11—H11D | 0.9600 |
O6—C6 | 1.446 (3) | C11—H11E | 0.9600 |
O7A—C10 | 1.298 (6) | C11—H11F | 0.9600 |
O7A—O7B | 1.403 (11) | C12A—C13A | 1.497 (6) |
O7B—C10 | 1.261 (10) | C13A—H13A | 0.9600 |
O8A—C12A | 1.193 (4) | C13A—H13B | 0.9600 |
O8B—C12B | 1.19 (4) | C13A—H13C | 0.9600 |
O9A—C14 | 1.234 (14) | C12B—C13B | 1.37 (7) |
O9B—C14 | 1.154 (15) | C13B—H13D | 0.9600 |
O10A—O10B | 0.58 (8) | C13B—H13E | 0.9600 |
O10A—C16 | 1.207 (10) | C13B—H13F | 0.9600 |
O10B—C16 | 1.15 (3) | C14—C15 | 1.486 (4) |
C1—C2 | 1.522 (3) | C15—H15A | 0.9600 |
C1—H1 | 0.9800 | C15—H15B | 0.9600 |
C2—C3 | 1.516 (3) | C15—H15C | 0.9600 |
C2—H2 | 0.9800 | C16—C17 | 1.480 (4) |
C3—C4 | 1.511 (3) | C17—H17A | 0.9600 |
C3—H3 | 0.9800 | C17—H17B | 0.9600 |
C4—C5 | 1.526 (3) | C17—H17C | 0.9600 |
C4—H4 | 0.9800 | C17—H17D | 0.9600 |
C5—C6 | 1.509 (3) | C17—H17E | 0.9600 |
C5—H5 | 0.9800 | C17—H17F | 0.9600 |
C1—O1—C7 | 113.41 (17) | C10—C11—H11E | 109.5 |
C10—O2—C2 | 119.9 (2) | H11A—C11—H11E | 56.3 |
C12B—O3—C3 | 113.7 (15) | H11B—C11—H11E | 141.1 |
C12A—O3—C3 | 117.23 (19) | H11C—C11—H11E | 56.3 |
C14—O4—C4 | 117.92 (17) | H11D—C11—H11E | 109.5 |
C1—O5—C5 | 113.68 (14) | C10—C11—H11F | 109.5 |
C16—O6—C6 | 118.29 (19) | H11A—C11—H11F | 56.3 |
O1—C1—O5 | 112.57 (18) | H11B—C11—H11F | 56.3 |
O1—C1—C2 | 105.91 (17) | H11C—C11—H11F | 141.1 |
O5—C1—C2 | 112.21 (18) | H11D—C11—H11F | 109.5 |
O1—C1—H1 | 108.7 | H11E—C11—H11F | 109.5 |
O5—C1—H1 | 108.7 | O8A—C12A—O3 | 123.2 (3) |
C2—C1—H1 | 108.7 | O8A—C12A—C13A | 125.7 (3) |
O2—C2—C3 | 108.43 (19) | O3—C12A—C13A | 111.1 (3) |
O2—C2—C1 | 106.49 (17) | C12A—C13A—H13A | 109.5 |
C3—C2—C1 | 110.30 (17) | C12A—C13A—H13B | 109.5 |
O2—C2—H2 | 110.5 | H13A—C13A—H13B | 109.5 |
C3—C2—H2 | 110.5 | C12A—C13A—H13C | 109.5 |
C1—C2—H2 | 110.5 | H13A—C13A—H13C | 109.5 |
O3—C3—C4 | 106.42 (17) | H13B—C13A—H13C | 109.5 |
O3—C3—C2 | 111.88 (17) | O8B—C12B—O3 | 119 (3) |
C4—C3—C2 | 109.74 (16) | O8B—C12B—C13B | 124 (3) |
O3—C3—H3 | 109.6 | O3—C12B—C13B | 113 (3) |
C4—C3—H3 | 109.6 | C12B—C13B—H13D | 109.5 |
C2—C3—H3 | 109.6 | C12B—C13B—H13E | 109.5 |
O4—C4—C3 | 108.48 (16) | H13D—C13B—H13E | 109.5 |
O4—C4—C5 | 107.56 (16) | C12B—C13B—H13F | 109.5 |
C3—C4—C5 | 108.97 (18) | H13D—C13B—H13F | 109.5 |
O4—C4—H4 | 110.6 | H13E—C13B—H13F | 109.5 |
C3—C4—H4 | 110.6 | O9B—C14—O4 | 124.5 (10) |
C5—C4—H4 | 110.6 | O9A—C14—O4 | 121.2 (9) |
O5—C5—C6 | 107.11 (17) | O9B—C14—C15 | 123.6 (13) |
O5—C5—C4 | 108.74 (16) | O9A—C14—C15 | 127.7 (8) |
C6—C5—C4 | 113.7 (2) | O4—C14—C15 | 110.3 (2) |
O5—C5—H5 | 109.1 | C14—C15—H15A | 109.5 |
C6—C5—H5 | 109.1 | C14—C15—H15B | 109.5 |
C4—C5—H5 | 109.1 | H15A—C15—H15B | 109.5 |
O6—C6—C5 | 108.27 (17) | C14—C15—H15C | 109.5 |
O6—C6—H6A | 110.0 | H15A—C15—H15C | 109.5 |
C5—C6—H6A | 110.0 | H15B—C15—H15C | 109.5 |
O6—C6—H6B | 110.0 | O10B—C16—O6 | 112 (3) |
C5—C6—H6B | 110.0 | O10A—C16—O6 | 123.6 (4) |
H6A—C6—H6B | 108.4 | O10B—C16—C17 | 129.8 (16) |
O1—C7—C8 | 112.6 (2) | O10A—C16—C17 | 124.2 (5) |
O1—C7—H7A | 109.1 | O6—C16—C17 | 111.9 (3) |
C8—C7—H7A | 109.1 | C16—C17—H17A | 109.5 |
O1—C7—H7B | 109.1 | C16—C17—H17B | 109.5 |
C8—C7—H7B | 109.1 | H17A—C17—H17B | 109.5 |
H7A—C7—H7B | 107.8 | C16—C17—H17C | 109.5 |
C9—C8—C7 | 177.6 (4) | H17A—C17—H17C | 109.5 |
C8—C9—H9 | 180.0 | H17B—C17—H17C | 109.5 |
O7B—C10—O2 | 109.1 (6) | C16—C17—H17D | 109.5 |
O2—C10—O7A | 118.1 (4) | H17A—C17—H17D | 141.1 |
O7B—C10—C11 | 116.8 (5) | H17B—C17—H17D | 56.3 |
O2—C10—C11 | 112.9 (3) | H17C—C17—H17D | 56.3 |
O7A—C10—C11 | 123.7 (4) | C16—C17—H17E | 109.5 |
C10—C11—H11A | 109.5 | H17A—C17—H17E | 56.3 |
C10—C11—H11B | 109.5 | H17B—C17—H17E | 141.1 |
H11A—C11—H11B | 109.5 | H17C—C17—H17E | 56.3 |
C10—C11—H11C | 109.5 | H17D—C17—H17E | 109.5 |
H11A—C11—H11C | 109.5 | C16—C17—H17F | 109.5 |
H11B—C11—H11C | 109.5 | H17A—C17—H17F | 56.3 |
C10—C11—H11D | 109.5 | H17B—C17—H17F | 56.3 |
H11A—C11—H11D | 141.1 | H17C—C17—H17F | 141.1 |
H11B—C11—H11D | 56.3 | H17D—C17—H17F | 109.5 |
H11C—C11—H11D | 56.3 | H17E—C17—H17F | 109.5 |
C7—O1—C1—O5 | 61.2 (2) | C4—C5—C6—O6 | 58.3 (2) |
C7—O1—C1—C2 | −175.8 (2) | C1—O1—C7—C8 | 60.7 (3) |
C5—O5—C1—O1 | 61.9 (2) | O7A—O7B—C10—O2 | −113.1 (5) |
C5—O5—C1—C2 | −57.5 (2) | O7A—O7B—C10—C11 | 117.3 (5) |
C10—O2—C2—C3 | 120.7 (3) | C2—O2—C10—O7B | 45.9 (7) |
C10—O2—C2—C1 | −120.6 (3) | C2—O2—C10—O7A | −27.0 (6) |
O1—C1—C2—O2 | 171.73 (17) | C2—O2—C10—C11 | 177.6 (3) |
O5—C1—C2—O2 | −65.1 (2) | O7B—O7A—C10—O2 | 99.9 (7) |
O1—C1—C2—C3 | −70.8 (2) | O7B—O7A—C10—C11 | −107.5 (6) |
O5—C1—C2—C3 | 52.4 (2) | C12B—O3—C12A—O8A | 97 (3) |
C12B—O3—C3—C4 | 122.4 (18) | C3—O3—C12A—O8A | 6.5 (5) |
C12A—O3—C3—C4 | 154.5 (2) | C12B—O3—C12A—C13A | −84 (3) |
C12B—O3—C3—C2 | −117.8 (18) | C3—O3—C12A—C13A | −174.3 (3) |
C12A—O3—C3—C2 | −85.6 (3) | C12A—O3—C12B—O8B | −80 (4) |
O2—C2—C3—O3 | −54.7 (2) | C3—O3—C12B—O8B | 24 (4) |
C1—C2—C3—O3 | −170.98 (16) | C12A—O3—C12B—C13B | 78 (4) |
O2—C2—C3—C4 | 63.1 (2) | C3—O3—C12B—C13B | −178 (4) |
C1—C2—C3—C4 | −53.1 (2) | C4—O4—C14—O9B | −13 (3) |
C14—O4—C4—C3 | 117.1 (2) | C4—O4—C14—O9A | 9.6 (17) |
C14—O4—C4—C5 | −125.2 (2) | C4—O4—C14—C15 | −179.3 (2) |
O3—C3—C4—O4 | −64.3 (2) | O10A—O10B—C16—O6 | −120 (4) |
C2—C3—C4—O4 | 174.47 (17) | O10A—O10B—C16—C17 | 90 (5) |
O3—C3—C4—C5 | 178.89 (16) | O10B—O10A—C16—O6 | 75 (4) |
C2—C3—C4—C5 | 57.6 (2) | O10B—O10A—C16—C17 | −112 (4) |
C1—O5—C5—C6 | −175.66 (18) | C6—O6—C16—O10B | 22 (5) |
C1—O5—C5—C4 | 61.0 (2) | C6—O6—C16—O10A | −7.9 (14) |
O4—C4—C5—O5 | −177.61 (15) | C6—O6—C16—C17 | 177.8 (2) |
C3—C4—C5—O5 | −60.2 (2) | H2—C2—O2—C10 | −0.5 |
O4—C4—C5—C6 | 63.1 (2) | H3—C3—O3—C12A | 36.1 |
C3—C4—C5—C6 | −179.45 (17) | H4—C4—O4—C14 | −4.4 |
C16—O6—C6—C5 | −144.4 (2) | H3—C3—O3—C12B | 4.0 |
O5—C5—C6—O6 | −61.9 (2) |
Experimental details
Crystal data | |
Chemical formula | C17H22O10 |
Mr | 386.35 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 9.6848 (5), 10.5107 (5), 20.1765 (13) |
V (Å3) | 2053.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.28 × 0.27 × 0.24 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi 1995) |
Tmin, Tmax | 0.708, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11076, 2396, 2255 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.113, 1.06 |
No. of reflections | 2396 |
No. of parameters | 284 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.13 |
Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
O1—C1 | 1.399 (3) | C1—C2 | 1.522 (3) |
O1—C7 | 1.433 (3) | C2—C3 | 1.516 (3) |
O2—C2 | 1.444 (3) | C3—C4 | 1.511 (3) |
O3—C3 | 1.444 (3) | C4—C5 | 1.526 (3) |
O4—C4 | 1.439 (3) | C5—C6 | 1.509 (3) |
O5—C1 | 1.404 (3) | C7—C8 | 1.463 (4) |
O5—C5 | 1.436 (3) | C8—C9 | 1.153 (5) |
O6—C6 | 1.446 (3) | ||
C1—O1—C7 | 113.41 (17) | C3—C4—C5 | 108.97 (18) |
C1—O5—C5 | 113.68 (14) | O5—C5—C4 | 108.74 (16) |
O5—C1—C2 | 112.21 (18) | O1—C7—C8 | 112.6 (2) |
C3—C2—C1 | 110.30 (17) | C9—C8—C7 | 177.6 (4) |
C4—C3—C2 | 109.74 (16) | ||
C7—O1—C1—O5 | 61.2 (2) | C1—O5—C5—C6 | −175.66 (18) |
C7—O1—C1—C2 | −175.8 (2) | C1—O5—C5—C4 | 61.0 (2) |
C5—O5—C1—O1 | 61.9 (2) | C3—C4—C5—O5 | −60.2 (2) |
C5—O5—C1—C2 | −57.5 (2) | C3—C4—C5—C6 | −179.45 (17) |
O1—C1—C2—O2 | 171.73 (17) | O5—C5—C6—O6 | −61.9 (2) |
O1—C1—C2—C3 | −70.8 (2) | C4—C5—C6—O6 | 58.3 (2) |
O5—C1—C2—C3 | 52.4 (2) | C1—O1—C7—C8 | 60.7 (3) |
O2—C2—C3—O3 | −54.7 (2) | H2—C2—O2—C10 | −0.5 |
O2—C2—C3—C4 | 63.1 (2) | H3—C3—O3—C12A | 36.1 |
C1—C2—C3—C4 | −53.1 (2) | H4—C4—O4—C14 | −4.4 |
O3—C3—C4—O4 | −64.3 (2) | H3—C3—O3—C12B | 4.0 |
C2—C3—C4—C5 | 57.6 (2) |
State | C1 | C2 | C3 | C4 | C5 | C6 | OCH2 | qC | CH |
Solid | 93.5 | 70.8* | 69.5* | 63.3 | 69.0* | 61.1 | 52.2 | 79.5 | 76.7 |
Solution | 96.4 | 69.5 | 69.1* | 66.2 | 69.0* | 62.4 | 55.1 | 78.0 | 75.7 |
Note: (*) Assignments may be interchanged. |
Position | δH (p.p.m.) | 3JH,H+1 (Hz) | δC═O (p.p.m.) | 3JH,C═O (Hz) |
1 | 5.01 | 1.7 | ||
2 | 5.25 | 3.3 | 170.03 | 3.6 |
3 | 5.32 | 10.0 | 169.92 | 3.2 |
4 | 5.28 | 9.4 | 169.78 | 3.6 |
5 | 4.00 | 2.4, 5.2 | ||
6 | 4.09 | 2JH,H 12.2 | 170.7 | 3.2 |
6 | 4.27 | 2.5 |
Acknowledgements
This work was supported by a grant from NSERC to TBG. We thank Edgar Anderson for discussions of acetate conformations.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. & Fortier, S. (1993). Acta Cryst. B49, 1021–1031. CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Balou, G. R., Joly, J. P., Vernex-Loset, L. & Chapleur, Y. (2009). Lett. Org. Chem. 6, 106–109. CrossRef CAS Google Scholar
Belghiti, T., Joly, J. P., Didierjean, C., Dahaoui, S. & Chapleur, Y. (2002). Tetrahedron Lett. 43, 1441–1443. Web of Science CSD CrossRef CAS Google Scholar
Casas-Solvas, J. M., Ortiz-Salmeron, E., Gimenez-Martinez, J. J., Garcia-Fuentes, L., Capitan-Vallvey, L. F., Santoyo-González, F. & Vargas-Berenguel, A. (2009). Chem. Eur. J. 15, 710–725. PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dominique, R., Liu, B., Das, S. K. & Roy, R. (2000). Synthesis, pp. 862–868. CrossRef Google Scholar
Ermeydan, M. A., Dumoulin, F., Basova, T. V., Bouchu, D., Gurek, A. G., Ahsen, V. & Lafont, D. (2010). New J. Chem. 34, 1153–1162. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
González-Outeiriño, J., Nasser, R. & Anderson, J. E. (2005). J. Org. Chem. 70, 2486–2493. Web of Science CrossRef PubMed CAS Google Scholar
Grindley, T. B. (1982). Tetrahedron Lett. 23, 1757–1760. CrossRef CAS Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jeffrey, G. A. (1990). Acta Cryst. B46, 89–103. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jonsson, K. H. M., Eriksson, L. & Widmalm, G. (2006). Acta Cryst. C62, o447–o449. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kaufman, R. J. & Sidhu, R. S. (1982). J. Org. Chem. 47, 4941–4947. CrossRef CAS Web of Science Google Scholar
Lemieux, R. U., Koto, S. & Voisin, D. (1979). The Exoanomeric Effect, Anomeric Effect, Origin and Consequences, edited by W. A. Szarek & D. Horton, pp. 17–29. Washington: American Chemical Society. Google Scholar
Leung, F. & Marchessault, R. H. (1974). Can. J. Chem. 52, 2516–2522. CrossRef CAS Web of Science Google Scholar
Mathieson, A. M. (1965). Tetrahedron Lett. pp. 4137–4144. Google Scholar
Matijašić, I., Pavlović, G. & Trojko, R. Jr (2003). Acta Cryst. C59, o184–o186. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meissner, A. & Sørensen, O. W. (2001). Magn. Reson. Chem. 39, 49–52. Web of Science CrossRef CAS Google Scholar
Müller, M. K. & Brunsveld, L. (2009). Angew. Chem. Int. Ed. 48, 2921–2924. Web of Science CSD CrossRef Google Scholar
Peet, P. van der, Gannon, C. T., Walker, I., Dinev, Z., Angelin, M., Tam, S., Ralton, J. E., McConville, M. J. & Williams, S. J. (2006). ChemBioChem, 7, 1384–1391. Web of Science PubMed Google Scholar
Perez-Balderas, F., Morales-Sanfrutos, J., Hernandez-Mateo, F., Isac-García, J. & Santoyo-González, F. (2009). Eur. J. Org. Chem. pp. 2441–2453. Google Scholar
Perez-Balderas, F. & Santoyo-González, F. (2001). Synlett, pp. 1699–1702. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Version 3.8. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Roy, R., Das, S. K., Hernández-Mateo, F., Santoyo-González, F. & Gan, Z. H. (2001). Synthesis, pp. 1049–1052. CrossRef Google Scholar
Roy, R., Das, S. K., Santoyo-González, F., Hernández-Mateo, F., Dam, T. K. & Brewer, C. F. (2000). Chem. Eur. J. 6, 1757–1762. CrossRef PubMed CAS Google Scholar
Schweizer, W. B. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547–1554. CrossRef CAS Web of Science Google Scholar
Shalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 173–180. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
2-Propenyl groups attached to carbohydrates as aglycones have become important reactive sites for the creation of larger carbohydrate-bearing molecules via many of the chemistries available to this group, such as click chemistry (van der Peet et al., 2006; Balou et al., 2009; Müller & Brunsveld, 2009; Perez-Balderas et al., 2009; Ermeydan et al., 2010), Sonagasira coupling (Roy et al., 2000; Perez-Balderas & Santoyo-González, 2001; Casas-Solvas et al., 2009), cyclotrimerization (Kaufman & Sidhu, 1982; Dominique et al., 2000) and andoxidative coupling (Roy et al., 2001; Belghiti et al., 2002). Despite this strong interest, particularly directed at 2-propynyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (I), no structural data are available for any member of this class of compounds. Thus, we present here the structure of (I)
The pyranose ring of (I) adopts a standard slightly distorted 4C1 chair conformation (Fig. 1), with torsion angles ranging from 52.4 (2) to 61.0 (2)° (Table 1). These values resemble those from the cluster of eight α-mannopyranose structures selected from the Cambridge Structural Database (Allen, 2002) by Allen & Fortier (1993) (σ = 3.2° with the same torsion angles), but are more similar to those of two acylated derivatives, methyl 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside (Shalaby et al., 1994) (σ = 2.0° for molecule A, 2.4° for molecule B) and methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside (Matijašić et al., 2003) (σ = 2.2°). The ring-puckering parameters (Cremer & Pople, 1975) for (I) [Q = 0.573 (2) Å, θ = 5.9 (2)° and ϕ = 259 (2)°] resemble those of other mannose derivatives (Matijašić et al., 2003). The C—C and saturated C—O bond lengths agree with the values reported for other carbohydrates (Allen et al., 1987; Jeffrey, 1990; Allen & Fortier, 1993). The C5—C6 rotamer adopted was the gt conformer (Table 1), similar to that observed for methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside (Matijašić et al., 2003), but Allen & Fortier (1993) found that α-mannopyranose derivatives were split 5:3 in favour of the gg over the gt conformer in the solid state.
The C1—O1 bond length is in agreement with previous observations (Allen et al., 1987; Jeffrey, 1990; Shalaby et al., 1994). The aglycone is in the exoanomeric conformation (Lemieux et al., 1979), gauche to O5 and anti to C2, as for the other alkyl O-acylated-α-mannopyranosides (Shalaby et al., 1994; Matijašić et al., 2003) and indeed for most alkyl α-pyranosides.
Atom C8, the first acetylenic C atom, is gauche to atom C1 [60.7 (3)°], giving it a syn-1,3 relationship with atom H1. The two alternative staggered positions are the –gauche position, where atom C8 would have a syn-1,3 relationship with atom O5, and the anti position, where atom C8 would have no syn-1,3 relationships. Presumably, a syn-1,3 relationship between an H atom and a linear two-coordinate C atom is not sterically destabilizing. This arrangement of the propargyl group leaves it sterically unencumbered, consistent with its excellent reactivity as mentioned above.
Evidence about the preferences of (I) in solution can be obtained by comparing the solution-state (CDCl3) 13C NMR chemical shifts with those from the solid state (Table 2). Most of the chemical shifts are very similar in the two phases: the standard deviation of the differences between the chemical shifts in the two phases for the four acetyl carbonyl C atoms is 0.92 p.p.m., that for the four acetyl methyl C atoms is 0.74 p.p.m., and that for atoms C2, C3, C5, and C6 is 0.94 p.p.m. Atoms C1 (2.9 p.p.m.), C7 (2.9 p.p.m.) and C4 (2.9 p.p.m.) differ more. The relatively shielded position of atom C1 in the solid state is consistent with the well known γ-gauche shielding effect of its gauche conformation if the solution conformational assembly includes both gauche and anti conformers. The shielded position of atom C7 may arise from differences in the geometry of the gauche and anti conformers, while the effects on atom C4 are probably due to differences in the acetyl group conformations (see below).
The conformations of acetates require two torsion angles to be fully described, the H—C—O—C and C—O—C═O torsion angles. The size of the latter torsion angle is dictated by resonance within the ester group to be 0 or 180°, the s-cis or s-trans conformers. Esters strongly prefer the s-cis conformer in the solid state (Leung & Marchessault, 1974; González-Outeiriño et al., 2005) and in solution (Grindley, 1982), and the four acetates of (I) are all in the s-cis conformation. However, all the carbonyl O atoms are disordered to varying extents, in directions consistent with libration about the C—O bond. Only one of the acetate methyl C atoms was refined with a two-position disordered model, but the remainder had larger displacement ellipsoids in directions consistent with libration about the carbohydrate-O—carbonyl-C bond. Because the solid-state 13C NMR spectrum gives single lines for every C atom, the disorder is fast on the NMR timescale.
González-Outeiriño et al. (2005), based on analyses of structures from the Cambridge Structural Database, have suggested that secondary acetates with two adjacent equatorial substituents will prefer to adopt conformations with H—C—O—C torsion angles close to zero, i.e. with the C—H bond synperiplanar with the O—C bond. Esters having only one adjacent equatorial substitutent normally adopt conformations with H—C—O—C torsion angles in the range 20–50°. These concepts were originally proposed by Mathieson (1965) and elaborated by Schweizer & Dunitz (1982). It is thought that the preference arises from the fact that the destabilization accompanying gauche conformations because of repulsive parallel 1,3 interactions is larger than that due to the eclipsing interaction of the synperiplanar C—H and O—C bonds (González-Outeiriño et al., 2005).
Compound (I) has three secondary acetates providing examples of three of the four possibilities, namely an axial acetate with one flanking equatorial group, an equatorial acetate with one flanking equatorial group and an equatorial acetate with two flanking equatorial groups. The equatorial acetate with two flanking equatorial groups, on atom O4, has an H—C—O—C torsion angle of -4.4°, in agreement with the concepts described above (González-Outeiriño et al., 2005). The equatorial acetate with one flanking equatorial group, on atom O3, has an H—C—O—C torsion angle of 36.1° turned towards atom C2, similar to the 330 cases of this type where the average angle was 27.8° (González-Outeiriño et al., 2005). However, the axial acetate with one flanking equatorial group, on atom O2, has an H—C—O—C torsion angle of -0.5°. This eclipsing arrangement is unusual for this class. González-Outeiriño et al. (2005) suggested that none of the 302 members of the class that they selected from the Cambridge Structural Database adopted this arrangement.
The conformations of the acetate groups in solution can be investigated by measuring the size of the 3JC,H values between the sugar H atoms and the carbonyl C atoms, using the Karplus relationship developed by Andersen and co-workers (González-Outeiriño et al., 2005; Jonsson et al., 2006): 3JC,H = 3.1cos2θ - 1.25cosθ + 2.35. 3JC,H values were measured using the J-HMBC method of Meissner & Sorensen (2001). The chemical shifts and coupling constants observed in the relevant sections of the spectra are given in Table 3. The 3JC,H values for atoms H2 and H4 were 3.6 Hz, and the value for atom H3 was 3.2 Hz, which yield, from the Karplus equation above, θ values of 30 and 40°, respectively, which are population-weighted averages of the values from the conformations present. For atom H3, the value of 40° is very similar to the X-ray diffraction value (36.4°), as expected. For atom H2, because the acetate was expected to have rotated away from the equatorial group on atom C3, the solution value matches expectation (González-Outeiriño et al., 2005) better than the solid-state value. For atom H4, because an eclipsed conformation was expected, the solution value does not match expectation as well as the X-ray value.